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1 Introduction

One of the most important conformal field theories (CFTs) in high energy physics is the
four dimensional N “ 4 supersymmetric Yang-Mills (SYM) with gauge group SUpNq. The
AdS/CFT correspondence was originally formulated using this CFT [1] and the holographic
dictionary is perhaps best understood in this version of the correspondence [2–4]. Despite
this, the spectrum of thermal states in this CFT at non-zero chemical potential is still not
completely understood.

Maldacena’s AdS5/CFT4 duality [1] conjectures that classical type IIB superstring
theory on AdS5 ˆ S5 (at equal radii L) with string coupling gs and string length `s is
equivalent to N “ 4 SYM with gauge group SUpNq and ’t Hooft coupling λ “ g2

YMN . The
CFT lives on the conformal boundary of AdS5 — which in global coordinates is the Einstein
Static Universe Rt ˆ S3 — and the parameters on the two sides of the duality are identified
according to λ „ pL{`sq4 and gs „ λ{N . The stringy theory side of this duality is best
understood in the low energy limit `s{L Ñ 0 (which suppresses stringy corrections) and
at weak coupling gs Ñ 0 (which suppresses loop corrections) where the theory reduces to
classical type IIB supergravity on AdS5 ˆ S

5. In this limit, the CFT is strongly coupled
(λÑ8) and is truncated to the planar sector (N Ñ8).

Under the holographic dictionary, thermal states of N “ 4 SYM with temperature
T , chemical potentials µi and energies of order N2 living on the Einstein static universe
are dual — in the large N limit — to black hole solutions with Hawking temperature
T and chemical potentials µi of IIB supergravity with global AdS5 ˆ S5 asymptotics [3].
Consequently, finding the full phase space of black hole solutions of IIB is mandatory to
understand the dynamics and thermodynamics of thermal phases of N “ 4 SYM.

The massless bosonic fields of d “ 10 type IIB supergravity are the metric tensor
gab, the dilaton Φ, the axion C, the NS-NS antisymmetric 2-tensor Bp2q, the R-R 2-form
potential Cp2q, and the R-R 4-form field Cp4q with a 5-form field strength Fp5q “ dCp4q
satisfying a self-duality condition ‹ rFp5q “ rFp5q “ Fp5q ´

1
2Cp2q ^Hp3q `

1
2Bp2q ^ Fp3q (their

fermionic superpartners are a complex Weyl gravitino and a complex Weyl dilatino) [5, 6].
Solving the associated coupled system of equations of motion (EoM) to find solutions of
type IIB with all or some of these fields switched on is usually a fairly complicated task. A
notable exception is the Schwarzschild-AdS5 ˆ S5 black hole or its rotating partner, the
Hawking-Hunter-Taylor-AdS5 ˆ S5 black hole [7] (with two arbitrary angular momenta)
which are solutions of the SLp2,Rq-invariant sector of type IIB where only the metric g
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and the self-dual 5-form field Fp5q are turned on. These are “simple” solutions because
they are everywhere (not only at the boundary) the direct product of two base spaces
M5 ˆ S5 and have horizon topology S3 ˆ S5. Despite their simplicity, these solutions
exhibit exceptionally rich thermodynamics: for example, we can have small and large black
holes and the latter dominate the canonical ensemble at high temperatures, with a phase
transition into a thermal AdS5ˆS

5 gas of gravitons at the Hawking-Page temperature [3, 8]
(dual to a confinement/deconfinement first order phase transition on the SYM [3]).

Less trivial solutions of type IIB in the SLp2,Rq-invariant sector which are asymptotically
globally AdS5ˆS

5 but break the SOp6q symmetry of S5 down to SOp5q have also been found
recently. They describe either lumpy black holes with polar deformations along the S5 [9, 10]
or black holes that localize on the S5 [11] (the latter have S8 horizon topology). Their
existence demonstrates how important it is to find the full phase diagram of asymptotically
global AdS5 ˆ S5 black holes. Indeed, these solutions show that the much loved SOp6q-
preserving Schwarzschild-AdS5 ˆ S

5 black holes can be unstable to a localisation on the S5

if their radius (in AdS units) is sufficiently small [12–15] and the localized SOp5q-preserving
black holes associated to this Gregory-Laflamme-like instability actually dominate the
microcanonical ensemble at small energies. This first-order transition is dual to spontaneous
breaking of the SOp6q R-symmetry of N “ 4 SYM down to SOp5q. In other words, from the
viewpoint of a dimensional reduction of IIB along the S5, the localized phases correspond to
the condensation of an infinite tower of scalar operators (the VEV of the condensed scalars
vanish for the SOp6q-preserving states [9, 11]) with increasing conformal dimension that
can be read off using Kaluza-Klein holographic renormalization [9, 11, 16].

The above examples invite us to explore even further (and ultimately, in full) the phase
space of thermal states of Maldacena’s AdS/CFT. Once this is done, we can identify all
the relevant saddle points for the thermodynamic partition functions of the theory. For this
we can benefit from the fact that, if we are interested in systems with enough symmetry so
that the above localization phenomenon does not occur, a dimensional reduction of type IIB
supergravity along the S5 yields 5-dimensional N “ 8 gauged supergravity [17]. It is believed
(although not yet proven) that this is a consistent reduction of the full IIB supergravity on
AdS5 ˆ S

5.1 If so, full information of the 10-dimensional fields tgab,Φ, C,Bp2q, Cp2q, Cp4qu
is equivalently encoded in the 5-dimensional spectrum of gauged N “ 8 supergravity
whose field content consists of one graviton, fifteen SOp6q gauge fields, twelve 2-form gauge
potentials in the 6 ` s6 representations of SOp6q, 42 scalars in the 1 ` 1 ` 201 ` 10 ` 10
representations of SOp6q and the fermionic superpartners. But solving for these fields in
full generality is still a formidable task.

Out of the above IIB fields, the most relevant ones for Maldacena’s AdS/CFT are the
graviton and the self-dual 5-form (since these are the fields that are sourced by D3-branes)
and it is well known that type IIB supergravity itself can be consistently truncated in

1At the linearised level, the reduction ansatz was given in [18] and the full non-linear reduction ansatz
was conjectured in [19]. However, at the full non-linear level, so far the only complete proofs that the
reduction is consistent are for the consistent embedding of the maximal Abelian Up1q3 truncation [20], the
N “ 4 gauged SUp2q ˆUp1q truncation [21], and the scalar truncation in [22, 23]. For recent progress on
trying to extend the proof to the full theory see [24] were a strategy to establish the proof is outlined.
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d “ 10 to this SLp2,Rq-invariant subsector (in the sense that the system of equations of
type IIB closes if we set the other fields to zero). A dimensional reduction of this IIB
subsector along the S5 yields the so-called 5-dimensional SOp6q gauged supergravity and it
has been established that this is a consistent reduction of the SLp2,Rq-invariant subsector
of IIB supergravity [25].2 Additionally, the d “ 5 SOp6q gauged supergravity is also a
consistent truncation of d “ 5 N “ 8 gauged supergravity where we simultaneously set
the 1 ` 1 ` 10 ` 10 scalars and the 6 ` s6 2-form potentials to zero. The bosons that
survive — namely the graviton, the 15 SOp6q gauge fields Aij

p1q, and the 201 scalars which
parameterise the full SLp6,Rq{SOp6q submanifold of the complete scalar coset (the scalars
are parameterized by a symmetric unimodolar SOp6q tensor Tij) — descend from the metric
and the self-dual 5-form of the original d “ 10 type IIB supergravity. Undoubtedly, we
should attempt to find the full phase space of thermal solutions in this consistent reduction
of IIB, but even this task is challenging.

On this long-term programme we can however start by looking into a further consistent
truncation of 5-dimensional SOp6q gauged supergravity which is singled out by the Up1q3

Cartan subgroup of SOp6q. In this truncation, the non-zero fields in the bosonic sector are
the graviton, two neutral real scalar fields tϕ1, ϕ2u,3 3 complex scalar fields tΦ1,Φ2,Φ3u

that are charged under three Up1q gauge field potentials tA1
p1q, A

2
p1q, A

3
p1qu. The most general

black hole solution of this theory is expected to have 6 conserved charges: the energy E,
three Up1q electric charges tQ1, Q2, Q3u, and two independent angular momenta tJ1, J2u

along the two independent rotation planes of AdS5 with SOp4q symmetry. In the holographic
dictionary, the dual thermal states in N “ 4 SYM have SUp4q – SOp6q R-charge given by
the weight vector pQ1, Q2, Q3q and chemical potentials tµ1, µ2, µ3u given by the sources of
tA1
p1q, A

2
p1q, A

3
p1qu [20]. On the other hand, pJ1, J2q is proportional to a weight vector of the

four dimensional rotation group SOp4q. In the dual CFT language, one usually works with
JL ” J1 ` J2 and JR ” J1 ´ J2, which are proportional to the weights with respect to the
two SUp2q factors in SOp4q „ SUp2qL ˆ SUp2qR [26].

The black hole solutions in this theory when the charged scalar fields Φ1,2,3 vanish —
in which case the theory reduces to d “ 5, N “ 2 Up1q3 gauged supergravity coupled to
two vector multiplets (or minimal supergravity when the three Up1q’s are equal) — are
already fully known. In this case, the most general non-extremal solution with arbitrary
tE,Q1, Q2, Q3u but zero angular momentum J1 “ J2 “ 0 was found by Behrndt-Cvetič-
Sabra [27]. Solutions with equal angular momenta were found by Cvetič-Lü-Pope [28] which
was then generalized to have all the six charges arbitrary by Wu [29].4 In section 2.2 we

2The Kaluza-Klein reduction along S5 is also proven to be a consistent reduction if one further retains
the dilaton Φ and axion C of the type IIB. In D “ 5 the SOp6q gauged supergravity is simply supplemented
with an additional SLp2,Rq invariant term in the action [25].

3It is often convenient to replace the two real scalar fields tϕ1, ϕ2u with 3 real scalars tX1, X2, X3u

subject to the constraint X1X2X3 “ 1.
4The solution of [29] reduces to previously known black holes of the theory, namely: to [30] (with arbitrary

Q1 “ Q2 “ Q3 and J1 “ J2), to [31] (with arbitrary Q1 “ Q2 “ Q3 and J1, J2), to [28] (with arbitrary
Q1, Q2, Q3 and J1 “ J2), to [32] (with arbitrary Q1 “ Q2, Q3 “ 0 and J1, J2), to [33] (with arbitrary
Q1 “ Q2, Q3 and J1, J2), to [32] (with arbitrary Q1 “ Q2 “ 0, Q3 and J1 “ J2), and to [34, 35] (with
arbitrary Q1 “ Q2 “ 0, Q3 and J1, J2).
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will review the solution of [27] while taking the opportunity to write it in a novel form that
is more tailored to study its physical and thermodynamical properties (which we will do
here thus filling a gap in the literature).5

Often, the extremal limit of the non-extremal black holes has conserved charges that
match those of the supersymmetric black holes of the theory.6 The most general such
solution known is a 4-parameter solution with charges tE,Q1, Q2, Q3u and angular momenta
tJ1, J2u whose mass satisfies the BPS condition E “ Q1`Q2`Q3` J1{L` J2{L, where L
is the AdS5 radius. This is described by the Kunduri-Lucietti-Reall supersymmetric black
hole [26].7 Note that although the most general supersymmetric black holes are expected to
have 5 independent conserved charges tQ1, Q2, Q3, J1, J2u, the supersymmetric black holes
of [26] are just a 4-parameter family of solutions because its 5 parameters have to obey an
additional constraint (this adds to the BPS condition that fixes the energy as a function of
the other conserved charges).

In this manuscript we want to extend the programme of finding thermal states at
finite chemical potential of N “ 4 SYM further and find solutions of 5-dimensional SOp6q
gauged supergravity with non-vanishing complex scalars Φ1,2,3 (hereinafter we refer to
these solutions as “hairy” black holes since they have non-trivial scalar hair given by the
expectation value (VEV) of the spontaneously broken fields Φ1,2,3). These asymptotically
global AdS5 ˆ S

5 hairy black holes are dual to thermal states with finite chemical potential
and they are relevant because the “bald” black holes [27–29] with Φ1,2,3 “ 0 are unstable
to the condensation of these scalars and, as we will find, the novel hairy black holes can
dominate some thermodynamic ensembles in windows of the parameter space.8 Moreover,
in a phase diagram of asymptotically global AdS5 ˆ S

5 solutions, often these hairy black
holes exist in a region between the onset of the condensation instability (where they merge
with [27–29]) and the boundary defined by the BPS condition of the system. A special
family of these hairy black holes with Φ1 “ Φ2 “ Φ3 (and A1 “ A2 “ A3) was already found
recently in [53–55]. The solutions of [53, 54] are static hairy black holes with Q1 “ Q2 “ Q3
and J1 “ J2 “ 0 while the equal angular momenta partner solutions with Q1 “ Q2 “ Q3
and J1 “ J2 were found in [53, 55]. In this case, the solutions without hair are literally the
Reissner-Nordström-AdS5ˆS

5 (in the static case) and Kerr-Newman-AdS5ˆS
5 black holes.

In this manuscript, we shall lift the restriction of Φ1 “ Φ2 “ Φ3 and A1 “ A2 “ A3

and construct asymptotically globally AdS5 ˆ S
5 static hairy solutions in two other sectors

5In this manuscript, we will only be interested in asymptotically global AdS5 ˆ S
5 supergravity solutions.

However, there are also solutions with Poincaré AdS5 ˆ S
5 asymptotics that are dual to Coulomb flows or

to top-down models of holographic superconductors; see e.g. [36–42] and references therein.
6There are subsectors of the theory where there is no T Ñ 0 limit of the non-extremal black holes. This

is e.g. the case when at least one of the charges Q1,2,3 is zero as we will find later.
7In contains as special cases the previously known supersymmetric black holes of [43] (with arbitrary

Q1 “ Q2 “ Q3 and J1 “ J2), of [44] (with arbitrary Q1, Q2, Q3 and J1 “ J2) and of [31, 32] (with arbitrary
Q1 “ Q2 “ Q3 and J1, J2).

8The physical mechanisms that are responsible for the condensation of scalar fields in black hole
backgrounds with a Maxwell field or rotation are the superradiant instability and/or the violation of the
near-horizon AdS2 Breitenlöhner-Freedman (BF) bound [45]. This occurs already in solutions of AdS-
Einstein(-Maxwell) gravity coupled to a scalar field a.k.a the Abelian Higgs model in AdS which can be seen
as a bottom up model for the supergravity physics and hairy black holes we discuss here; see [46–52] for
early discussions of these condensation mechanisms in Abelian Higgs model systems with bound states.
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of the consistent truncation, 1) A1 “ A2 ” 0, A3 ” A (the EoM then imply Φ1 “ Φ2 ” 0,
Φ3 ” Φ), and 2) A1 “ A2 ” A, A3 ” 0 (the EoM then imply Φ1 “ Φ2 ” Φ, Φ3 ” 0). In
future work, we plan to extend the analysis to find the rotating partners of these solutions
with equal angular momenta. Altogether, the sector studied in [53–55] together with the
two sectors discussed here gives us a good understanding of the full phase space of hairy
solutions with three arbitrary charged fields Φ1,2,3.9

There are at least three main motivations to undergo the programme advocated above.
piq Firstly, as mentioned before but worth emphasizing, if we are to fully understand and
benefit from Maldacena’s AdS/CFT correspondence we should (besides formally proving
it) find all the thermal solutions and map them into states in the dual N “ 4 SYM. Only
then will we be able to identify the dominant phases (as saddle points) in the relevant
thermodynamic ensembles. For example, in this manuscript we will identify new thermal
phases with a finite chemical potential that can dominate some thermodynamic ensembles
(at least in some regions of the phase space) over already known phases. piiq Secondly,
the Bekenstein-Hawking entropy of some asymptotically flat black holes has already been
reproduced microscopically within string theory and with the help of holographic techniques
(notably in [57]). Remarkably, such a programme is still lacking for asymptotically AdS
black holes though there are several promising recent developments on this front (see [58]
and references therein). In order to complete such an initiative, we necessarily need to
identify all the black holes of the bulk theory. piiiq Finally, a remarkable puzzle of SOp6q
gauged supergravity is that its most general supersymmetric thermal solution known
so far has only 4 independent parameters. This is the aforementioned Kunduri-Luietti-
Reall solution [26]. However, given that such asymptotically AdS5 ˆ S5 black holes are
characterized by 6 conserved charges with one of them constrained by the BPS relation
E “ Q1`Q2`Q3` J1{L` J2{L, one should expect that the most general supersymmetric
black hole should be a 5-parameter solution. From the dual CFT perspective, we also expect
the most general supersymmetric states to be characterized by 5 parameters. So, what is the
missing gravitational parameter? An important observation is that the Kunduri-Lucietti-
Reall solution has no charged scalar hair (i.e. Φ1,2,3 “ 0). In the consistently truncated
theory with Φ1 “ Φ2 “ Φ3 (and thus with Q1 “ Q2 “ Q3) and for the J1 “ J2 case, it was
found that there are hairy black holes that, in the extremal T Ñ 0 limit obey the BPS
condition and thus fill the BPS surface beyond the region where the Kunduri-Luietti-Reall
solutions exist [55]. This suggests that the charged scalar condensate might be the missing
gravitational parameter. One would like to extend this proposal to the most general SOp6q
gauged supergravity without particular restrictions on tΦ1,Φ2,Φ3u. Motivated by this
conjecture, in the present manuscript, we will construct static hairy solutions within certain
consistent truncations of SOp6q gauged supergravity. In future work [59], we generalize our
analysis to rotating solutions in order to test the conjecture proposed in [55]

The plan of the manuscript is the following. In section 2 we start by describing
the consistent truncation of type IIB supergravity on AdS5 ˆ S5, namely SOp6q gauged

9Our asymptotically global AdS5ˆS
5 hairy black holes and (most of) our solitons are regular. Truncations

of N “ 8 gauged supergravity that are different from ours and described in [56] may also have similar hairy
black holes and supersymmetric solitons.
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supergravity and its Up1q3 gauged supergravity truncations that we will study (which retain
the gauge symmetry associated to the Cartan subgroup of SOp6q). We also revisit the
Behrndt-Cvetič-Sabra black holes of the theory and we take the opportunity to study their
thermodynamics (thus filling a gap in the literature). In section 3 we do a consistent
search of static hairy solutions (i.e. with finite chemical potential) of the SOp6q gauged
supergravity truncation with a single charge while in section 4 we repeat the process but
this time for the truncation with two equal charges. We follow a similar exposition plan for
both truncations/sections, as it is best clear from the table of contents. Indeed, in the first
subsection of both sections, we start by setting up the ansatzë and boundary conditions of
the boundary value problem that we need to solve. Next, in the second subsection, we find
the thermodynamic quantities of the truncated system using holographic renormalization.
Before finding the hairy black hole of the system, in the third subsection, we first find the
hairy supersymmetric solitons. In the fourth subsection, we then revisit the “bald” BCS
black holes of the theory, in the particular truncation at hand, to study their thermodynamic
properties (that were not studied previously in the literature). In the fifth subsection, we
find that these BCS black holes are unstable to condensation of the charged scalar field of
SOp6q gauged supergravity and we find the instability timescale. In the sixth subsection, we
find directly the onset of this scalar condensation instability which also marks the merger of
the hairy and bald black holes of the theory in a phase diagram of solutions. In the seventh
and eighth subsections we collect the results (about BCS and hairy black holes and solitons)
of the previous subsections to finally mount the phase diagram of static solutions of the
truncated theory, first (seventh subsection) in the microcanonical ensemble (that hairy black
holes can dominate) and then in the grand-canonical ensemble (eighth subsection). Finally,
in the ninth subsection, we present a complementary construction of the hairy solitons and
black holes of the truncation using perturbation theory (with the perturbation parameters
being the charged scalar condensate and in addition, for the black holes, the horizon radius).
These perturbative results are a very good approximation to the numerical solutions for
small energies and charges and nearby the instability onset where the “bald” BCS and
hairy black holes merge. We have three appendices. In appendix A, we apply mutatis
mutandis the holographic renormalization procedure of Bianchi-Freedman-Skenderis [60, 61]
to compute the holographic stress tensor and current of the Up1q3 gauged supergravity
´ i.e. of the truncation of SOp6q gauged supergravity that retains a Up1q3 – SOp6q{Z3

2
gauge symmetry (associated to the Cartan subgroup of SOp6q) with associated gauge fields
tAK
p1qu ´ with all sources turned on. Finally, in appendices B and C we give details of the

perturbative analysis done in sections 3.9 and 4.9 for the single charge and two equal charge
truncations, respectively.

2 A consistent truncation of SOp6q gauged supergravity

2.1 Truncating SOp6q down to Up1q3 gauged supergravity

As discussed in the introduction, five-dimensional N “ 8 gauged supergravity is expected
to be a consistent truncation of type IIB supergravity on AdS5 ˆ S

5 [17]. The bosonic field
content of this theory consists of one graviton, fifteen SOp6q gauge fields, twelve 2-form gauge
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potentials in the 6` s6 representations of SOp6q, and 42 scalars in the 1` 1` 201 ` 10` 10
representations of SOp6q [17]. This theory admits a further truncation — the SOp6q gauged
supergravity [25] — that retains only the metric, the scalars in the 201 that parameterise
the full SLp6,Rq{SOp6q submanifold of the complete scalar coset (that are parametrized
by a symmetric unimodolar SOp6q tensor Tij), and the 15 Yang-Mills fields Aij

p1q. It is a
consistent reduction of the SLp2,Rq invariant sector of 10-dimensional IIB supergravity
(which contains only the metric and the self-dual 5-form field) along the S5. The action for
SOp6q gauged supergravity is given by [25]

S“
1

16πG5

ż

d5x
?
´g

„

R´
1
4T

´1
ij pDaTjkqT

´1
kl pD

aTliq´
1
8T

´1
ik T

´1
jl F

ij
abpF

klqab´V

´
1

192ε
abcdeεi1¨¨¨i6

ˆ

F i1i2ab F i3i4cd Ai5i6e ´
1
L
F i1i2ab Ai3i4c Ai5jd Aji6e `

2
5L2A

i1i2
a Ai3jb Aji4c Ai5kd Aki6e

˙

(2.1)

where R is the Ricci scalar, V is the potential associated to the scalar fields described by the
symmetric SOp6q tensors Tij with unit determinant, pi, j, k, ¨ ¨ ¨ q denote the SOp6q vector
indices, pa, b, ¨ ¨ ¨ q are the spacetime indices, εabcde denotes the spacetime Levi-Civita tensor
with ε01234 ” ´ 1?

´g
, εi1¨¨¨i6 is the Levi-Civita tensor with εi1¨¨¨i6 ” 1, and

V “
1
2
“

2TijTij ´ pTiiq2
‰

,

F ij
p2q “ dAij

p1q `A
ik
p1qA

kj
p1q,

DaTij “ BaTij `A
ik
a Tkj `A

jk
a Tik.

(2.2)

Using the holographic dictionary, we can relate the 5-dimensional Newton’s constant with
the rank N of the gauge group SUpNq of the dual N “ 4 SYM theory and with the AdS5
radius L as10

G5 “
πL3

2N2 . (2.3)

In this manuscript, we consider a further consistent truncation of (2.1). To describe
this, it is convenient to use a complex basis for the SOp6q vector indices that appear summed
in (2.1), as was done in the simpler truncation of [53]. Let txju pj “ 1, ¨ ¨ ¨ , 6q denote SOp6q
Cartesian directions and introduce the complex coordinates

zK “ x2K´1 ` ix2K , z̄K “ x2K´1 ´ ix2K , K “ 1, 2, 3. (2.4)

We now consider a restriction of (2.1) which preserves a Zp1q2 ˆ Zp2q2 ˆ Zp3q2 symmetry where
ZpKq2 denotes a rotation by π in the complex zK plane (under which zK , z̄K Ñ ´zK ,´z̄K).

10In detail, matching the low energy limit of string theory with type IIB supergravity in the Einstein
frame one finds that the 10-dimensional Newton constant is G10 “ 8π6g2

s`
8
s where gs and `s are the string

coupling and string length respectively. The t’Hooft coupling is λ “ g2
YMN where for p-branes the YM

coupling is given by g2
YM “ p2πqp´2gs`

p´3
s . For p “ 3, the equivalence between the 3-brane and D3-brane

charges requires that λ “ L4

2`4
s
and thus G10 “

π4L8

2N2 . Finally, the 5-dimensional Newton constant G5 is

obtained by dimensional reduction of the 10d theory so G5 “
G10

Ω5L5 “
πL3

2N2 (Ω5 “ π3 is the volume of a unit
S5 and L is the radius of the S5 and of the AdS5 due to the 10-dimensional EoM).
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The most general field configuration which preserves this symmetry satisfies

TzJzK “ Tz̄J z̄K “ TzJ z̄K “ AzJzK
p1q “ Az̄J z̄K

p1q “ AzJ z̄K
p1q “ 0 @ J ‰ K. (2.5)

The remaining non-vanishing fields, namely TzKzK and its conjugate T :zKzK “ Tz̄K z̄K , TzK z̄K
and AzK z̄K

p1q can be parameterized as

TzKzK “
1
4 XKΦK , TzK z̄K “

1
4 XK

b

4` Φ:KΦK , AzK z̄K
p1q “ 2iAKp1q. (2.6)

The scalar fields XK satisfy the unimodularity constraint X1X2X3 “ 1 and thus effectively
describe two real scalar fields ϕ1 and ϕ2,

X1 “ e
´ 1?

6
ϕ1´

1?
2
ϕ2 , X2 “ e

´ 1?
6
ϕ1`

1?
2
ϕ2 , X3 “ e

b

2
3ϕ1 . (2.7)

Equations (2.5)–(2.7) describe the most general configuration which is invariant under the
discrete Z3

2 symmetry described above. Consequently, this is a consistent truncation of
the system (2.1).11 More precisely, it is a truncation which retains a Up1q3 – SOp6q{Z3

2
gauge symmetry (this is the Cartan subgroup of SOp6q) with associated gauge fields
tAK
p1qu. The matter content consists of 2 neutral scalars tϕ1, ϕ2u and three complex

scalar fields tΦKu that are charged under the Up1q’s gauge fields. All 5 scalars have
mass m2L2 “ ´4 and thus saturate the AdS5 Breitenlöhner-Freedman (BF) bound [45].12

Under the AdS/CFT dictionary these fields are dual to operators of conformal dimension
∆ “ d

2 `
b

d2

4 `m
2L2 “ 2. Additionally, the 3 complex scalars tΦKu have electric charge

qL “ 2.
Substituting (2.5)–(2.7) into the EoM derived from the action (2.1), we can check that

the resulting EoM for the dynamical fields can be derived from the following effective action

S “
1

16πG5

ż

d5x
?
´g

"

R´ V ´
1
2

2
ÿ

K“1
p∇ϕKq2 ´

1
4

3
ÿ

K“1

1
X2
K

´

FKp2q

¯2

´
1
8

3
ÿ

K“1

„

pDaΦKqpD
aΦKq

: ´
p∇λKq2

4p4` λKq

*

´
1

16πG5

ż

F 1
p2q ^ F

2
p2q ^A

3
p1q ,

(2.8)

where we have defined (with no Einstein summation convention over K “ 1, 2, 3)

DaΦK ” BaΦK ´ i
2
L
AKa ΦK ,

FKab ” BaA
K
b ´ BbA

K
a ,

λK ” ΦKΦ:K ,

(2.9)

11We also verify that (2.5) is consistent with the EoM derived from (2.1).
12For the neutral scalar field ϕK , given the relative normalization of its kinetic and potential contributions to

the action, the mass is m2
“ B

2
ϕK
V
ˇ

ˇ

ϕK“0. On the other hand, taking into account the relative normalization
of the kinetic and potential contributions in the action for the charged scalar field, the mass of ΦK is
m2

“ BΦKBΦ:

K

p8V q
ˇ

ˇ

ΦK“Φ:

K
“0.
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and the scalar potential for the truncation (2.6) is

V “
1

2L2

„

X2
1λ1 `X

2
2λ2 `X

2
3λ3 ´

2
X1

a

4` λ2
a

4` λ3

´
2
X2

a

4` λ1
a

4` λ3 ´
2
X3

a

4` λ1
a

4` λ2



.

(2.10)

Extremization of the action (2.8) yields the field equation for the graviton

Rab ´
1
2gabR “ Tϕab `

1
2T

A
ab `

1
8T

Φ
ab ´

1
2gabV, (2.11)

where

Tϕab “
1
2

2
ÿ

K“1

ˆ

∇aϕK∇bϕK ´
1
2gabp∇cϕKqp∇cϕKq

˙

,

TAab “
3
ÿ

K“1

1
X2
K

ˆ

FKac pF
Kqb

c ´
1
4gabpF

K
p2qq

2
˙

,

TΦ
ab “

1
2

3
ÿ

K“1

„

pDaΦKq pDbΦKq
:
` pDbΦKq pDaΦKq

:
´ gabpDcΦKqpD

cΦKq
:

´
1

2
`

4` λK
˘

ˆ

∇aλK∇bλK ´
1
2gab∇cλK∇cλK

˙

,

(2.12)

and the equations of motion for the other fields

lϕ1 ´
1

2
?

6

«

pF 1
p2qq

2

X2
1

`
pF 2
p2qq

2

X2
2

´ 2
pF 3
p2qq

2

X2
3

ff

´
BV

Bϕ1
“ 0,

lϕ2 ´
1

2
?

2

«

pF 1
p2qq

2

X2
1

´
pF 2
p2qq

2

X2
2

ff

´
BV

Bϕ2
“ 0,

d
ˆ

1
X2

1
‹ F 1

p2q

˙

` F 2
p2q ^ F

3
p2q “ ´ ‹ J

1
p1q,

d
ˆ

1
X2

2
‹ F 2

p2q

˙

` F 3
p2q ^ F

1
p2q “ ´ ‹ J

2
p1q, (2.13)

d
ˆ

1
X2

3
‹ F 3

p2q

˙

` F 1
p2q ^ F

2
p2q “ ´ ‹ J

3
p1q,

DaDaΦK `

„

∇aλK∇aλK

4
`

4` λK
˘2 ´

lλK
2
`

4` λK
˘ ´

8
ΦK

BV

BΦ:K



ΦK “ 0, pK “ 1, 2, 3q,

DaDaΦ:K `
„

∇aλK∇aλK

4
`

4` λK
˘2 ´

lλK
2
`

4` λK
˘ ´

8
Φ:K

BV

BΦK



Φ:K “ 0, pK “ 1, 2, 3q,

with l “ gab∇a∇b and JKp1q “
i

4L rΦ
:

KpDΦKq ´ ΦKpDΦKq
:s is the electric current, d is the

exterior derivative, ‹ is the Hodge dual and we use the differential form conventions listed
in appendix of [62].

There are three special cases of the consistent truncation (2.8) of SOp6q gauged super-
gravity where the field equations simplify considerably, namely:
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I) Truncation with three equal charges: the action (2.8) admits a S3 permutation
symmetry which acts on K index of all the fields. The most general S3-invariant field
configuration satisfies A1 “ A2 “ A3 ” A, Φ1 “ Φ2 “ Φ3 ” Φ and X1 “ X2 “ X3 “ 1
or equivalently ϕ1 “ ϕ2 “ 0. This truncation can also be obtained directly from (2.1)
by restricting to SOp3q-invariant field configurations (instead of Z3

2).13

II) Truncation with a single charge: the action (2.8) has a Z2ˆZ2 symmetry where
the first factor is the permutation group of K “ 1, 2 and the second factor is a discrete
Up1q transformation on K “ 1 (or equivalently on K “ 2), namely a rotation by π
which maps Φ1 Ñ ´Φ1. Field configurations which are invariant under this symmetry
satisfy Φ1 “ Φ2 “ 0, Φ3 ” Φ, A1 “ A2 “ B, A3 “ A and X1 “ X2 or equivalently
ϕ1 ” ϕ, ϕ2 “ 0. In this sector, the action has an enhanced Z2 symmetry under which
B Ñ ´B and we can further consistently truncate to B “ 0. This truncation can also
be obtained directly from (2.1) by restricting to SOp4q-invariant field configurations.14

III) Truncation with two equal charges: the action (2.8) has a Z2 ˆ Z2 symmetry
where the first Z2 corresponds to the permutation group of K “ 1, 2 and the second
Z2 is a discrete Up1q transformation on K “ 3, namely a rotation by π which maps
Φ3 Ñ ´Φ3. Field configurations which are invariant under this symmetry satisfy
A1 “ A2 “ A, A3 “ B, Φ1 “ Φ2 ” Φ, Φ3 “ 0 and X1 “ X2 or equivalently ϕ1 ” ϕ,
ϕ2 “ 0. This truncation can also be obtained directly from (2.1) by restricting to
SOp2q-invariant field configurations.15

Static solutions (which is the topic of this manuscript) have an additional time-reversal
symmetry which sets the Chern-Simons term in (2.8) to zero. In this case, the action
has an enhanced Z2 symmetry under which B Ñ ´B and we can further consistently
truncate to B “ 0.

Static asymptotically AdS5 ˆ S
5 hairy black hole and solitonic solutions of the first theory

where already studied in detail using perturbation theory in [53] and a full numerical
analysis was done in [54]. This has been further extended to include angular momenta
J1 “ J2 in [53, 55]. In this manuscript, we construct the static asymptotically AdS5 ˆ S

5

hairy black hole and solitonic solutions in the second and third truncations (in future work,
we plan to extend this study to include angular momenta J1 “ J2 [59]) using perturbation
theory and a full numerical analysis. Truncation II) is studied in section 3 and truncation
III) is studied in section 4. Altogether, the case studied in [53–55] along with the two cases

13More precisely, think of Tij as a 3 ˆ 3 matrix where each entry is a 2 ˆ 2 matrix. Consider the
SOp3q Ă SOp6q which acts on this 3 ˆ 3 matrix. SOp3q-invariant field configurations are proportional to
the identity (Schur’s Lemma) so we can decompose Tij “ T2ˆ2 b I3ˆ3. The unimodularity condition on T
then implies that T is a unimodular 2ˆ 2 symmetric matrix and such a matrix can be parameterized in
terms of one complex field Φ. The same restriction on the gauge field implies Aij “ A2ˆ2 b I3ˆ3 and the
antisymmetric 2ˆ 2 matrix A is parameterized by one d.o.f. A.

14Here, SOp4q Ă SOp6q acts on the top left 4ˆ 4 minor matrix of the 6ˆ 6 matrix Tij .
15In the language of footnote 13, SOp2q Ă SOp6q acts on the top left 2 ˆ 2 minor matrix of the 3 ˆ 3

matrix Tij .
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discussed in this manuscript provides us with a good overview of the full phase space of
hairy solutions for the case with three arbitrary charged fields Φ1,2,3.

Before discussing the hairy solutions of our consistent truncations II) and III), it will
be useful to review the known static black hole solutions of the theory (2.8) without the
charged condensate: the “bald” BCS black holes. We do this in the next subsection.

2.2 Behrndt-Cvetič-Sabra black hole solutions of SOp6q gauged supergravity

When the charged scalar fields vanish, ΦK “ 0 pK “ 1, 2, 3q, the consistent truncation
of SOp6q gauged supergravity described by the action (2.8) reduces to Up1q3 gauged five-
dimensional N “ 2 supergravity coupled to two vector multiplets. The static black holes of
this theory have no scalar hair and are parameterized by an energy E and three electric
charges tQ1, Q2, Q3u associated to each of the three Up1q gauge fields AK of the theory.
These can be viewed as the “Reissner-Nordström-AdS5” (RNAdS) black holes of the theory
(although, in general, they also have non-trivial neutral scalar fields ϕ1 and ϕ2 supporting
them; the exception occurs when Q1 “ Q2 “ Q3 in which case they are exactly the
RNAdS family).

These static black holes with three arbitrary charges tQ1, Q2, Q3u were found by
Behrndt-Cvetič-Sabra (BCS) [27] (see also [28, 29]). The fields of the BCS black hole
solution are given by

ds2 “ ph1h2h3q
1{3

ˆ

´
f

h1h2h3
dt2 ` dr2

f
` r2dΩ2

3

˙

,

ϕ1 “
1
?

6
ln
ˆ

h1h2
h2

3

˙

, ϕ2 “
1
?

2
ln
ˆ

h1
h2

˙

;

AKp1q “ ´
r2

0
r2

1
hK

sinh δK cosh δK dt ;

where hK “ 1` r2
0
r2 sinh2 δK , pK “ 1, 2, 3q,

f “
r2

L2h1h2h3 ` 1´ r2
0
r2 ,

(2.14)

and dΩ2
3 is the line element of a unit radius S3 and we have chosen the gauge where

r2ph1h2h3q
1{3 measures the radius of the S3. Note that we can do a Up1q gauge transfor-

mation that takes us to a gauge where at the horizon H the gauge fields vanish, AK |H “ 0.
For example, rAK “ AK ´AK |H with AK given in (2.14) also describes the BCS black hole.
We will work in this latter gauge when presenting the thermodynamic properties of the
solution and when we discuss again the BCS black holes in the particular truncations of
sections 3.4 and 4.4.

It is also useful to note that when h1 “ h2 then ϕ2 “ 0 (this is the case of the
consistent truncations with a single charge or two equal charges we study in sections 3 and 4,
respectively). Moreover, if h1 “ h2 “ h3 then both neutral scalars vanish, ϕ1 “ ϕ2 “ 0
(this is the case of the theory with three equal charges studied in [53–55]). Because the
neutral scalars vanish in this special case, the BCS solutions literally reduce to the RNAdS
black holes (and to the Kerr-Newman´AdS5 black holes when we include rotation).
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It is important to describe the thermodynamic quantities of the BCS black hole in
order to study their competition with the hairy black holes we will find later.16 Defining
auxiliary quantities qK such that sinh δK “

?
2qK
r0

(the absence of a charged condensate and
angular momentum implies that the action has an AK Ñ ´AK symmetry which can be
used to set δK ě 0 and consequently, qK ě 0) one can use the condition fpr`q “ 0, that
defines the horizon location (r “ r`), to express r0 as a function of r` and qK as

r0 “
1
Lr`

b

r4
`

`

L2 ` 2q3 ` r2
`

˘

` 2q1
`

2q2 ` r2
`

˘ `

2q3 ` r2
`

˘

` 2q2r2
`

`

2q3 ` r2
`

˘

. (2.15)

The temperature T and the entropy S of the BCS black hole are then:

T “
1
L2

r4
`

“

L2 ` 2pq1 ` q2 ` q3q ` 2r2
`

‰

´ 8q1q2q3

2πr2
`

b

`

2q1 ` r2
`

˘ `

2q2 ` r2
`

˘ `

2q3 ` r2
`

˘

,

S “
N2

L3 π
b

`

2q1 ` r2
`

˘ `

2q2 ` r2
`

˘ `

2q3 ` r2
`

˘

. (2.16)

An important observation is that when at least one of the electric charges QK „ sinh δK „ qK
vanishes then the BCS does not have an extremal, T “ 0, configuration (since the numerator
of T in (2.16) cannot vanish when the second term q1q2q3 is zero).

Using the holographic renormalization method [60, 61] (which we will describe in detail
in section 3.2 and appendix A) we find that the energy E (after subtracting the Casimir
energy EAdS5 “

N2

L
3
16 of the dual N “ 4 SYM on Rt ˆ S3) and electric charges Q1, Q2, Q3

of the static BCS black hole are given by

E “
N2

L3
r2

0
4

3
ÿ

K“0

`

s2
K ` c

2
K

˘

, QK “
N2

L3
r2

0
2 sKcK ,

with sK ” sinh δK , cK ” cosh δK and K “ 1, 2, 3, (2.17)

while the chemical potentials µK (that source the operators dual to AK), charge densities
ρK (i.e. the VEVs of the operator dual to AK), and the VEVs of the scalar operators dual
to the neutral (xOϕK y) and charged (xOΦK y) scalar fields are given by:

µK “
r2

0sKcK
r2

0s
2
K ` r

2
`

, ρK “
r2

0sKcK
L4 ; (2.18a)

xOϕ1y “
r2

0?
6L4

`

s2
1 ` s

2
2 ´ 2s2

3
˘

, xOϕ2y “
r2

0?
2L4

`

s2
1 ´ s

2
2
˘

; (2.18b)

xOΦK y “ 0 pK “ 1, 2, 3q . (2.18c)

Note that xOΦK y “ 0 because the BCS solution has no charge condensate, ΦK “ 0. This
will not be the case for the hairy black holes that we find in sections 3 and 4 which will
have ΦK ‰ 0 and thus scalar hair with expectation value xOΦK y ‰ 0 (the sources will be
set to zero), at least for one of the K “ 1, 2, 3.

16The thermodynamics of BCS black holes with arbitrarily charges and two equal angular momenta was
studied in [63]. The phase diagram in the grand canonical ensemble of static BCS black holes with a single
charge and three equal charges was discussed in [64].
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We can explicitly check that the thermodynamic quantities (2.16)–(2.18a) obey the
first law of thermodynamics,

dE “ TdS `
3
ÿ

K“1
µK dQK . (2.19)

From (2.16)–(2.18a) we can also straightforwardly compute the Gibbs free energy which
is useful to study the grand-canonical ensemble

G “ E ´ TS ´ µQ . (2.20)

3 Consistent truncation with A1 “ A2 ” 0, A3 ” A

3.1 Setup the problem: Ansatzë and boundary conditions

We will denote this theory with A1
p1q “ A2

p1q ” 0, A3
p1q ” Ap1q and Φ1 “ Φ2 ” 0,Φ3 ” Φ as

the truncation with a single charge of action (2.8). Motivated by the ansatz (2.14) we used
for the BCS black hole, to find the static and spherically symmetric hairy solutions of this
sector we find convenient to use the ansatz:

ds2 “ h1{3
ˆ

´
f

h
dt2 ` dr2

g
` r2dΩ2

3

˙

;

ϕ1 “ ´

c

2
3 ln h , ϕ2 “ 0;

A1
p1q “ 0 , A2

p1q “ 0 , A3
p1q “ Ap1q “ Atdt ;

Φ1 “ 0 , Φ2 “ 0 , Φ3 “ Φ:3 “ Φ ;

(3.1)

where dΩ2
3 is the line element of a unit radius S3 and we have chosen the gauge where h1{3r2

measures the radius of the S3. Moreover, we have fixed the Up1q gauge freedom by taking
Φ3 “ Φ to be real, which implies that the gauge field vanishes on the horizon r “ r` (given
by the largest root of f), i.e. At|r“r`“ 0. Note that the neutral scalar is determined by h.
The full solution is determined in terms of five functions of the radial coordinate, namely
thprq, fprq, gprq, Atprq,Φprqu. Plugging this ansatz into the field equations (2.11)–(2.13) we
find that the system closes if the following equations are satisfied:

0“L2rgh
`

Φ2`4
˘`

rh1`6h
˘

f 1`h3r2 `Φ2`4
˘

´

ghL2 `A1t
˘2
´A2

tΦ2
¯

`fr2 `Φ2`4
˘

´

´gL2 `h1
˘2
´8h3`hΦ2

¯

`fh2
”

gL2
´

´r2 `Φ1
˘2
`12Φ2`48

¯

´4
`

Φ2`4
˘

´

3L2`2r2
a

Φ2`4
¯ı

,

0“L2rfh
`

Φ2`4
˘`

rh1`6h
˘

g1`h3r2 `Φ2`4
˘

”

A2
tΦ2´ghL2 `A1t

˘2
ı

fr
`

Φ2`4
˘

”

h1
´

gL2rh1`4pg´1qhL2´2hr2
a

Φ2`4
¯

´hr
`

16h2`Φ2˘
ı

`fh2
”

gL2
´

r2 `Φ1
˘2
`12Φ2`48

¯

´4
`

Φ2`4
˘

´

r3h1`3L2`r2
a

Φ2`4
¯ı

,
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0“h2´ph
1q

2

h
`

h1

L2rg

´

L2pg`2q`2hr2`r2
a

Φ2`4
¯

`
4h2´2h

?
Φ2`4`Φ2

L2g
`
h3 pA1tq

2

f
,

0“L2rfgh
`

Φ2`4
˘`

rh1`6h
˘

A2t`gh
4L2r2 `Φ2`4

˘`

A1t
˘3
´frΦ2 `Φ2`4

˘`

rh1`6h
˘

At

`A1t

"

fhr
`

Φ2`4
˘

„

2L2h1`r
´

r
a

Φ2`4h1`2hrh1`4h2´2h
a

Φ2`4`Φ2
¯



`L2fg

„

`

Φ2`4
˘

´

r2 `h1
˘2
`13hrh1`18h2

¯

´h2r2 `Φ1
˘2


´A2
th

3r2Φ2 `Φ2`4
˘

*

,

0“L2ghΦ2´L
2ghΦpΦ1q2

Φ2`4 `
hΦ1

r

ˆ

gL2`2hr2`2L2`
4r2

?
Φ2`4

`
r2Φ2
?

Φ2`4

˙

`

ˆ

1
f
A2
th

2 `Φ2`4
˘

`4h
a

Φ2`4´Φ2´4
˙

Φ. (3.2)

This is a system of two first order ODEs for tf 1, g1u plus three second order ODEs
for th2, A2t ,Φ2u.

To solve this coupled system of nonlinear ODEs we must impose relevant physical
boundary conditions. Consider first the asymptotic boundary at r “ 8. Since we have two
first order plus three second order ODEs we have, à priori, 2` 6 “ 8 free UV parameters,
some of which will be fixed by boundary conditions. Naturally, we demand that our
solutions are asymptotically AdS5 with the normalization for the Killing vector field Bt
chosen to be |Bt|rÑ8 “ ´1. This requires that we impose as boundary condition that
f |rÑ8 “

r2

L2 (it then follows from the EoM that g|rÑ8 “ r2

L2 ). The asymptotic value of
the gauge field is the chemical potential, At|rÑ8 “ µ, which we leave free. On the other
hand, the neutral and charged scalar fields, ϕ1 and Φ, both have mass m2L2 “ ´2 and
thus saturate the BF bound in AdS5. Therefore, ϕ1|rÑ8 „ sϕ

L2 log r
r2 ´

b

2
3h2

L2

r2 ` ¨ ¨ ¨ and

Φ|rÑ8 „ sΦ
L2 log r
r2 `εL

2

r2 `¨ ¨ ¨ where sϕ and sΦ are the sources for the operators (both with
conformal dimension ∆ “ 2) dual to ϕ1 and Φ, respectively, and h2 „ xOϕ1y and ε “ xOφy

are their VEVs. We are interested on solutions dual to CFT states that are not sourced,
so we set sϕ “ 0 and sΦ “ 0 as boundary conditions. After imposing these boundary
conditions, that fix 3 of the 8 UV parameters, a Frobenius analysis off the asymptotic
boundary yields the asymptotic expansion,

gprq »
r2

L2 ` p1` h2q ` f2
L2

r2 `O
`

L4r´4˘ ,

fprq »
r2

L2 ` p1` h2q ` f2
L2

r2 `O
`

L4r´4˘ ,

Atprq » µ` ρ
L2

r2 `O
`

L4r´4˘ ,

hprq » 1` h2
L2

r2 `O
`

L4r´4˘

Φprq » ε
L2

r2 `O
`

L4r´4˘ ,

(3.3)

where th2, f2, µ, ρ, εu are the 5 free UV parameters that are not fixed by boundary conditions
or by the EoM. Essentially, h2 and ε give the VEVs of ϕ1 and Φ, respectively, f2 is related
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to the mass of the solution and µ and ρ are the chemical potential and charge density of
the gauge field At.

In addition to the boundary conditions at the asymptotic boundary, we must also
impose boundary conditions in the interior of the spacetime. Consider first the case of
black holes with a Killing horizon generated by the Killing vector Bt (geometries without
horizons — namely solitons — are discussed later). In this case, the inner boundary of our
integration domain is the horizon which we will take to be located at r “ r` ą 0. Again, à
priori the number of free IR parameters is given by the order (i.e. 8) of the ODE system.
Some of these are however fixed by requiring regularity of the solution at the horizon. To
find the constraints imposed by this regularity, it is enlightening to note that our coupled
ODE system can effectively be rewritten as a system of 4 second order ODEs. And the
horizon is a regular singular point with degeneracy 2 (i.e. the indicial root is 2). Thus,
the 4 functions have a pair of independent solutions where one of them is proportional to
lnpr ´ r`q and the other is a regular power law of r ´ r`. Demanding regularity at the
horizon eliminates the logarithm terms and we are left with 4 free IR parameters. Since we
have a (non-extremal) horizon at r “ r`, f and g vanish linearly at the horizon. Moreover,
we work in the Up1q gauge where Φ is real and At vanishes linearly at r “ r`. Altogether
these conditions define the parameter r` and impose horizon regularity.

We will solve equations (3.2) with the above boundary conditions either numerically
(at full nonlinear level) or within perturbation theory. The details of the perturbative
construction is discussed in section 3.9. When solving the ODE system numerically, the
above boundary conditions can be imposed in practice if we introduce the field redefinitions

g “
r2

L2

ˆ

1´
r2
`

r2

˙

q1 , f “
r2

L2

ˆ

1´
r2
`

r2

˙

q1q2 ,

At “

ˆ

1´
r2
`

r2

˙

q3 , h “ q4 , Φ “ 2
r2
`

r2 q5

c

2`
r4
`

r4 q
2
5 , (3.4)

and look for solutions qj , (j “ 1, 2, ¨ ¨ ¨ 5) that are everywhere smooth (not to be confused
with the parameters qK in the BCS solution). Note that the peculiar redefinition of Φ in
terms of q5 was introduced to avoid square root terms of the form

?
4` Φ2 in the EoM;

see (3.2). For the numerical search of the hairy solutions it is also convenient to introduce
the compact coordinate and adimensional horizon radius,

y “ 1´
r2
`

r2 , y` “
r`
L
, (3.5)

where y ranges between y “ 0 (i.e. r “ r`) and y “ 1 (i.e. r Ñ8).
We can now specify the boundary conditions for the auxiliary fields qj . Demanding

that our solutions are asymptotically AdS5 at y “ 1 requires that q1p1q “ 1 “ q2p1q. The
EoM then require that q4p1q “ 1. We will find useful to construct lines of solutions that
have constant electric charge Q. Later, in (3.17), we will find that Q is a function of q3p1q
and q13p1q, Q “ N2

L
1
2y

2
`pq

1
3 ` q3q|y“1. To introduce Q in our numerical code as an input

parameter (that will allow us to run lines of constant Q) we thus use this condition to give
a mixed boundary condition for q3. Finally, the EoM require that q5 also satisfies a mixed
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boundary condition. Altogether, we impose the boundary conditions at the asymptotically
AdS5 boundary (y “ 1):

q1
ˇ

ˇ

y“1 “ 1 , q2
ˇ

ˇ

y“1 “ 1 , q13
ˇ

ˇ

y“1 “ ´q3
ˇ

ˇ

y“1 `
2Q
y2
`

L

N2 ,

q4
ˇ

ˇ

y“1 “ 1 , q15
ˇ

ˇ

y“1 “

ˆ

q2
3
y2
`

´ q14

˙

q5
ˇ

ˇ

y“1

(3.6)

On the other hand, at the horizon (y “ 0) the derived boundary conditions from the EoM
are that q1 must obey the Dirichlet q1

ˇ

ˇ

y“0 “ 1` 1
y2
`

`
`

q4 ` q
2
5
˘ ˇ

ˇ

y“0 and q2,3,4,5 must obey
mixed boundary conditions which are not enlightening to display.

We now discuss our numerical strategy to find the nonlinear solutions of our boundary-
value problem. As mentioned earlier, after imposing the asymptotic and horizon boundary
conditions we have 5 free UV parameters and 4 free IR parameters. It follows that our
black hole solutions depend on 5´ 4 “ 1 parameter plus the dimensionless horizon radius
y`, i.e. a total of 2 parameters. We can take these parameters to be e.g. the dimensionless
electric charge QL{N2 and the dimensionless radius y` “ r`{L (the latter is related to the
temperature and entropy of the solutions; see (3.18)).

We solve our boundary-value problem using a Newton-Raphson algorithm. For the
numerical grid discretization we use a pseudospectral collocation with a Chebyshev-Lobatto
grid and the Newton-Raphson linear equations are solved by LU decomposition. These
methods are reviewed and explained in detail in the review [65] and used in a similar
context e.g. [9, 11, 66–69]. Our solutions have analytical polynomial expansions at all the
boundaries of the integration domain and thus the pseudospectral collocation guarantees
that the numerical results have exponential convergence with the number of grid points.
We further use the first law to check our numerics. In the worst cases, our solutions satisfy
these relations with an error that is smaller than 0.1%. As a final check of our full nonlinear
numerical results, we compare them against the perturbative expansion results of section 3.9.

As usual, to initiate the Newton-Raphson algorithm one needs an educated seed. The
hairy black holes merge with the BCS black holes when the condensate Φpq5q vanishes (see
later section 3.6). Therefore, it is natural to expect that the BCS solution with a small q5
perturbation can be used as seed for the solution near the merger. Actually, in section 3.9,
we will find the hairy black hole solution in perturbation solution for small values of the
charged condensate q5p1q and of the horizon radius y`. This is an even better seed for the
Newton-Raphson code. To scan the 2-dimensional parameter space of hairy black holes we
can fix Q and run the numerical code for several values of y`. Alternatively, we can generate
lines of constant y` parametrized by Q. In practice, we will mainly use the former strategy
since this will allow us to densely fill the phase space along constant-Q families of solutions
that span between the two boundaries of the 2-dimensional triangular shaped Q-M phase
space where hairy black holes exist. Indeed, constant-Q families depart from the merger
line and end up at zero entropy E “ Q solutions with finite dimensionless temperature
TL. Once we have the numerical solutions qjpyq, the thermodynamic quantities are read
straightforwardly from the expressions (3.10)–(3.13) and (3.17)–(2.20) that we will find in
the next subsection.
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3.2 Thermodynamic quantities using holographic renormalization

To determine the thermodynamic quantities of the solutions we implement the holographic
renormalization procedure. Our solutions are asymptotically AdS5 solutions with scalar
fields ϕ1 and Φ that both have mass m2L2 “ ´4, i.e. they saturate the BF bound in
AdS5 and thus have conformal dimension ∆ “ 2. In these conditions, the holographic
renormalization procedure to find the holographic stress tensor Tµν , holographic current Jµ
(we use Greek indices µ, ν, . . . to denote the boundary coordinate indices), and expectation
values xOϕy and xOΦy of the operators dual to the scalar fields ϕ1 and Φ was developed
in [60, 61]. The details for this procedure applied to the Up1q3 gauged supergravity with
all sources turned on is presented in appendix A. In this section, we simplify the results of
that section to the single charge truncation.

We start by introducing the Fefferman-Graham (FG) radial coordinate z that is such
that the asymptotic boundary is at z “ 0 and gzz “ L2{z2 and gzµ “ 0 (with µ “ t, ξjq at
all orders in a Taylor expansion about z “ 0 (ξj being the 3 coordinates that parametrize
the S3). It follows that the radial coordinate y is given as a function of the FG coordinate
z as

y “ 1´ y2
`

z2

L2 ´
y2
`

6

´

3´ 2y2
`q
1
4p1q

¯ z4

L4 ´
y2
`

144

„

27´ 12y2
`

´

3` 2q14p1q
¯

` 4y4
`

ˆ

9q21p1q
2 ` 2q14p1q2 ` 9q14p1q ` 3q5p1q2 ´ 9

˙

z6

L6 `Opz8{L8q. (3.7)

The expansion of the gravitational around the boundary up to the order that contributes
to the thermodynamic quantities is then

ds2“
L2

z2

“

dz2`ds2
B`z

2 ds2
p2q`z

4 ds2
p4q`Opz6q

‰

, (3.8)

with

ds2
B“ g

p0q
µν dxµdxν “´dt2`L2dΩ2

3,

ds2
p2q“ g

p2q
µν dxµdxν “´ 1

2L2pdt
2`L2dΩ2

3q ,

ds2
p4q“ g

p4q
µν dxµdxν

“´
1

144L4

„

9´36y2
`

´

3´2q14p1q
¯

`4y4
`

ˆ

27
2 q21p1q´2q14p1q2`27q14p1q`21q5p1q2´27

̇

dt2

`
1

144L2

„

9`12y2
`

´

3´2q14p1q
¯

´4y4
`

ˆ

9
2 q

2
1p1q`2q14p1q2`9q14p1q`15q5p1q2´9

˙

dΩ2
3 ;

and the relevant expansion of the gauge and scalar fields around the boundary is

At “ ap0q ` ap2q z
2 `Opz4q , µ “ q3p1q, ap2q “ ´

y2
`

L2

´

q13p1q ` q3p1q
¯

; (3.9)

ϕ1 “ rϕp0q z
2 `Opz4q, rϕp0q “

c

2
3
y2
`

L2 q
1
4p1q ; (3.10)

Φ “ rΦp0q z2 `Opz4q, rΦp0q “ 2
?

2
y2
`

L2 q5p1q . (3.11)
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The remaining holographic quantities can now be computed using the holographic renor-
malization procedure of Bianchi-Freedman-Skenderis [60, 61] as done in appendix A (In
particular, see (A.33)–(A.35) and (A.30)–(A.32)).17 In short, one needs to compute the
renormalized on-shell action Sren (with all the source terms included) and then, the expecta-
tion value of an operator dual to a particular bulk field can be obtained taking the variation
of Sren w.r.t. the source while setting the sources to their Dirichlet value in the end.

Using (3.10)–(3.11), it is a simple exercise to compute the expectation values xOϕy and
xOΦy for the operators Oϕ and OΦ dual to the neutral scalar ϕ1 and charged scalar Φ

xOϕy “
N2

π2 rϕp0q and xOΦy “
N2

π2
rΦp0q , (3.12)

respectively. Recall that these operators have conformal dimension ∆ “ 2 and in our
solutions we have killed the sources of these operators; see discussion above (3.3). On the
other hand, the source µ (i.e. the chemical potential that is given by the boundary value of
At)18 and the charge density ρ “ ´ 1?

´gp0q

δSren
δap0q

“ ´ L
8πG5

ap2q of the dual operator to At are:

µ “ q3p1q , ρ “
N2

4π2L4 y
2
`

´

q13p1q ` q3p1q
¯

, (3.13)

where we use (2.3) to write G5 in terms of the SYM quantities. Finally, the expectation
value of the holographic stress tensor is given by:

xTµνy “
N2

2π2

„

gp4qµν ´
1
8g
p0q
µν

ˆ

tr
”

gp2q
ı2
´ tr

”

pgp2qq2
ı

˙

´
1
2

´

gp2q
¯2

µν

`
1
4g
p2q
µν tr

”

gp2q
ı

`
1
12g

p0q
µν rϕ

2
p0q `

1
48g

p0q
µν

rΦ2
p0q



,

(3.14)

where the metric components gp0qµν , gp2qµν , gp4qµν and xOϕy can be read directly from (3.8)–(3.9)
and, for the consistent truncation of (2.8) analysed in this section, one has xOΦ1y “ xOΦ2y “

0 and xOΦ3y ” xOΦy is given by (3.11).
The trace of the expectation value yields the expected Ward identity associated to the

conformal anomaly19

xT µ
µy “

N2

2π2L3
1
16

ˆ

Rp0qµνRp0qµν ´
1
3pR

p0qq2
˙

, (3.15)

17Note however that we use different conventions for the Riemann curvature, that is to say, with respect
to [60, 61] our action (2.8) has the opposite relative sign between the Ricci scalar R and the scalar fields’
kinetic terms p∇ϕq2 and pDΦq2. Further note that our relative normalization factor in the action (2.8)
between the Ricci scalar and the scalar kinetic terms differs from [60, 61]: compare e.g. our action (2.8) with
(2.1) of [60].

18The chemical potential associated to a gauge field Aa of a black hole is given by µ “ Aak
a
|8 ´Aak

a
|H

where k is the Killing horizon generator, i.e. |k|2|H “ 0.
19The trace anomaly in a theory with the field content of (2.8) has three possible sources of anomaly [60, 61]

(see appendix A for details). The first comes from terms of the type φp0qxOφy for a scalar field φ with source
φp0q and VEV xOφy. In our case such terms vanish because we set the sources of ϕ1 and Φ to zero. For the
same reason the holographic scalar field anomalies Aϕ and AΦ also vanish in our system. A second source
of the anomaly is the gauge field Agauge which has the form pF p0qq2. In our case, the gauge field on the
boundary has a vanishing field strength (it is pure gauge) so this contribution vanishes. We are left with the
gravitational conformal anomaly Agrav, given by the right-hand-side of (3.15) that is responsible for the fact
that the trace of the holographic stress tensor is non-vanishing.
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where Rp0qµν and Rp0q are the Ricci tensor and scalar, respectively, of the boundary metric
g
p0q
µν as defined in (3.8). Note that this gravitational conformal anomaly is a consequence of
the fact that the conformal boundary is the Einstein Static Universe Rt ˆ S3, i.e. that our
solutions are asymptotically global AdS5 (not planar AdS5). Furthermore, we can confirm
that the expectation value of the holographic stress tensor is conserved, i.e.20

p∇p0qqµx Tµν y “ 0 . (3.16)

From (3.14) we can read the energy of our solutions. This is done by pulling-back xTµνy
to a 4-dimensional spatial hypersurface Σt, with unit normal n and induced metric σµν “
gp0qµν ` nµnν , and contracting it with the Killing vector ξ “ Bt that generates time
translations. More concretely, the integral M “ ´

ş

Σt
?
σx Tµν yξµnν gives the desired

energy. This energy contains a contribution from the AdS5 background, EAdS5 “
N2

L
3
16 ,

which is the well known Casimir energy of the dual AdS5 N “ 4 SYM on Rt ˆ S3. We
define our final energy with this Casimir energy removed, E “M ´ EAdS5 , in which case
the BPS condition for the system reads E “ Q. On the other hand, from (3.13) we can
compute the electric charge of our solutions.21 We do the pulling-back of the holographic
current xJµ y “ pρ, 0, ¨ ¨ ¨ , 0q to the aforementioned 4-dimensional spatial hypersurface Σt

with normal n and integrate it, Q “
ş

Σt
?
σnµxJµ y. So, for our solutions (3.1) with the

field redefinitions (3.4), the energy and electric charge are given by

E “
N2

L

y2
`

4

„

3´ 2q14p1q ` 3y2
`

ˆ

1´ 1
2 q

2
1p1q ´ q14p1q ´ q5p1q2

˙

,

Q “
N2

L

y2
`

2

´

q13p1q ` q3p1q
¯

. (3.17)

The temperature T and the entropy S of the hairy black holes can be read simply from the
surface gravity and the horizon area of the solutions (3.1), respectively:

T “
1
L

y`
2π

q1p0qq2p0q
a

q4p0q
, S “ N2πy3

`

a

q4p0q . (3.18)

These thermodynamic quantities must obey the first law of thermodynamics (2.19)
where, for the theory of this subsection, one has Q1 “ Q2 “ 0, µ1 “ µ2 “ 0 and Q3 ” Q,
µ3 ” µ, and thus (2.19) reads simply dE “ TdS ` µdQ.

From (3.17)–(3.18) and (2.20) we can also straightforwardly compute the Gibbs free
energy G “ E ´ TS ´ µQ which is useful to study the grand-canonical ensemble.

3.3 Hairy supersymmetric solitons

So far we have discussed the setup of the boundary-value problem for black hole solutions (i.e.
solutions with horizons). However, the single charge sector of (2.8) also has supersymmetric

20The conservation of the holographic stress tensor is spoiled by the scalar and gauge field sources as
shown in appendix A. But in our case such terms vanish because we set the sources of ϕ and Φ to zero.

21Of course we can also compute the electric charge using the standard ADM formula associated to the
gauge field equation (2.13), namely QK “ 1

16πG5

ş

Σt

1
X2

K

‹ FKp2q. Note that the Chern-Simmons terms vanish
for the static solutions of our theory.
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solitonic solutions. Some of these have connections to hairy black holes in the limit where
the temperature of the latter reaches its minimum value. For this reason, it is important to
find these solutions before proceeding with further discussions of hairy black holes.

These solitons are still described by the field ansatzë (3.1) and thus satisfy the field
equations (3.2). However, because they are supersymmetric, instead of solving (3.2) one
can solve directly the Killing spinor equations, which are first order ODEs. At the end of
the day we find that any supersymmetric solution of the consistent truncation of (2.8) with
a single charge can be described by the ansatz (3.1) with the fields tf, g, At, ϕ1,Φu given as
a function of h as

g “ f “ 1` r2

L2 h ,

At “
1
h
,

ϕ1 “ ´

c

2
3 ln h ,

Φ “
a

p2h` rh1q2 ´ 4 ,

(3.19)

where hprq satisfies a second order ODE,

L2r

ˆ

1` r2

L2 h

˙

h2 ` r3 `h1
˘2
`
`

7hr2 ` 3L2˘h1 ´ 4r
`

1´ h2˘ “ 0. (3.20)

Doing a Frobenius analysis of this ODE at the asymptotic boundary we conclude that we
must have h|rÑ8 “ 1 which also ensures that the fields f and g are asymptotically AdS5
and ϕ1 and Φ are normalizable (i.e. the scalar field’s sources are zero); see also discussion
of (3.3). Next consider the behaviour of the soliton solutions of (3.20) at the origin, r “ 0.
Assuming that at r “ 0 these solutions behave as

h
ˇ

ˇ

rÑ0 “
hα
rα

, (3.21)

for arbitrary constants α and hα, a Frobenius analysis of (3.20) yields two possible solutions
for the exponent: α “ 0 and α “ 2. So, we have two distinct families of supersymmetric
solitons. The family with α “ 0 is clearly regular at the origin while the family with α “ 2
is irregular at r “ 0. Both solutions can be found analytically solving (3.20).

For α “ 0, the regular soliton is a 1-parameter family of solutions (parametrized by q)
described by (3.1) with

h “

c

1` 2p1` 2qqL
2

r2 `
L4

r4 ´
L2

r2 ,
(3.22)

where Q “ N2

L q is the electric charge of the solution and, as required by the BPS condition,
its energy is E “ Q (after subtracting the Casimir contribution). Both are computed from
the holographic stress tensor x Tµν y using holographic renormalization [60, 61] as described
for the hairy black hole in section 3.2. The chemical potential µ, charge density ρ, and
expectation values of the operators dual to ϕ1 and Φ are similarly determined by

µ “ 1 , ρ “
N2

L4
q

2π2 ;

xOϕ y “ ´
2
L2

c

2
3q

N2

π2 ;
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xOΦ y “
1
L2 4

a

qpq ` 1qN
2

π2 . (3.23)

Note in particular that µ “ 1 as expected for a supersymmetric solution. It is also easy to
verify that the soliton satisfies the first law dE “ µdQ “ dQ as it should.

For α “ 2, the singular soliton is a 2-parameter family of solutions (parameterized by
C1 and C2) as

h “

c

1` C2
L2

r2 ` p1` C1q
L4

r4 ´
L2

r2 . (3.24)

Doing holographic renormalization one finds that

E “ Q “
N2

L

1
4 pC2 ´ 2q ;

µ “ 1 , ρ “
N2

L4
C2 ´ 2

8π2 ;

xOϕ y “ ´
1
L2

C2 ´ 2
?

6
N2

π2 ;

xOΦ y “
1
L2

b

C2
2 ´ 4pC1 ` 1qN

2

π2 .

(3.25)

Again, as expected for a supersymmetric soliton one has E “ Q and µ “ 1. The regular
soliton is obtained from this solution by setting C1 “ 0 and C2 “ 2p1` 2qq.

It is enlightening to compare our soliton spectrum of the consistent truncation of (2.8)
with a single charge (Q1 “ Q2 “ 0, Q3 “ Q) with the one for the consistent truncation
of (2.8) with three equal charges, Q1 “ Q2 “ Q3 ” Q that was studied in [53, 54]. In
the latter case, there are four (not two) families of solitons. We still have the regular
1-parameter soliton with α “ 0 and a singular 2-parameter soliton with α “ 2. But, unlike
the current single charge truncation, the regular soliton of [53, 54] has a Chandrasekhar
limit. That is, it exists from E “ Q “ 0 all the way up to a critical E “ Q “ Qc where
the central density hα“0 Ñ 8, with hα defined in (3.21). There is then a third singular
soliton family with α “ 1 that departs from E “ Q “ Qc where hα“1 Ñ 0 and extends all
the way to E “ QÑ8. Finally, precisely at E “ Q “ Qc (and only at this point) there is
a fourth soliton with α “ 2{3 and hα“2{3 “ 1. So this is a singular 0-parameter solution
that exists at the merger of the regular 1-parameter soliton family with α “ 0 with the
singular 1-parameter soliton with α “ 1. Returning back to the single charge case, we can
view the absence of the singular solitons with α “ 1 and α “ 2{3 as due to the fact that
the regular 1-parameter soliton with α “ 0 now extends from E “ Q “ 0 to arbitrary large
E “ QÑ8 without a Chandrasekhar limit.

Although we have not attempted to prove this, we believe that whenever the three
charges Q1, Q2, Q3 are non-zero, the solitonic spectrum of the system should be similar to
the one of the case Q1 “ Q2 “ Q3 just reviewed. That is, we should have a total of 4 soliton
families with physical properties and relations between them in the phase diagram that are
similar to the ones described above for Q1 “ Q2 “ Q3. On the other hand, when at least one
of the electric charges is zero, there should exist only 2 families of supersymmetric solitons:
a regular 1-parameter soliton without Chandrasekhar limit, and a singular 2-parameter
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soliton. This is certainly true in the case Q1 “ Q2 “ 0 discussed in this section. It will also
be the case of the theory with Q3 “ 0 that we will describe in section 4.3.

3.4 Behrndt-Cvetič-Sabra black holes

In section 2.2 we have presented the most general static BCS black hole with three different
charges QK pK “ 1, 2, 3q. When Q1 “ Q2 “ 0 and Q3 ” Q, this is a solution of the
consistent truncation (2.8) with A1 “ A2 ” 0, A3 ” A and no charged condensate, ΦK “ 0
pK “ 1, 2, 3q. For our physical discussions of the hairy black holes of the theory with
Φ1 “ Φ2 ” 0,Φ3 ” Φ it will be enlightening to rewrite the BCS black hole (2.14) for the
particular case with A1 “ A2 ” 0, A3 ” A (and thus δ1 “ δ2 “ 0, δ3 ‰ 0 ñ h1 “ h2 “ 1
and ϕ2 “ 0) in the form of the ansatz (3.1) with the field redefinitions (3.5) and compact
radial coordinate (3.4). This is because the hairy black hole family merges with the BCS at
the onset of the scalar condensation instability (section 3.6).

Without further delay, set

δ1 “ δ2 “ 0, sinh δ3 ”
2q
r0

(3.26)

in (2.14), where from (2.15) r0 can be written as a function of the horizon radius r` and
the charge parameter q as r0 “

r`
L

b

r2
` ` L

2 ` 2q. Further introduce the dimensionless
quantities y` “ r`{L and rq “ q{L2 and choose a Up1q gauge such that the gauge field
vanishes at the horizon H. Then one finds that the BCS black hole with a single charge
sourced by A3 is described ´ via (3.1), (3.5) and (3.4) ´ by the functions

q1 “ 1` p1´ yq
y2
` ` 2rq ` 1

y2
`

,

q2 “ 1 ,

q3 “

?
2
?
rq y2
`

b

y2
` ` 1

“

2rqp1´ yq ` y2
`

‰

b

y2
` ` 2rq

,

q4 “ 1` p1´ yq 2rq
y2
`

, q5 “ 0 .

(3.27)

With (3.27), the thermodynamic quantities for the BCS black hole with a single charge can
now be read directly from the expressions (3.10)–(3.13) and (3.17)–(2.20) that were found
in the previous subsection. We find that the energy (after subtracting the Casimir energy),
electric charges, chemical potentials and expectation values of the scalar fields are given by:

E “
N2

L

1
4

”

3y2
`p1` y2

`q ` 2rq
`

2` 3y2
`

˘

ı

,

Q1 “ Q2 “ 0 , Q3 “
N2

L

?
rq

?
2

b

y2
` ` 1

b

y2
` ` 2rq ; (3.28)

µ1 “ µ2 “ 0 , µ3 “

?
2
?
rq
b

y2
` ` 1

b

y2
` ` 2rq

; (3.29)

xOϕ1y “ ´
2
L2

c

2
3 rq

N2

π2 ; xOϕ2y “ 0 ; xOΦK y “ 0 pK “ 1, 2, 3q ; (3.30)
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and the temperature T and the entropy S of the single charged BCS black hole are:

T “
1
L

2y2
` ` 2rq ` 1

2π
b

y2
` ` 2rq

,

S “ N2 πy2
`

b

y2
` ` 2rq . (3.31)

As it could not be otherwise, these quantities agree with (2.17)–(2.16) in the appropriate
limit. An important conclusion that follows from (3.31) is that there is no extremal
configuration (i.e. with T Ñ 0) in the single charged BCS family.

3.5 The scalar condensation instability of Behrndt-Cvetič-Sabra black holes

Having introduced all the necessary machinery to compute thermodynamic quantities, we
now turn our attention to the issue of dynamical stability of the single charged BCS with
respect to charged scalar field condensation. This is a question that can be addressed by
analysing linear perturbations of the sixth equation in (2.13) about the single charged BCS
background. The resulting linear equation takes the following form:

DaD
aΦ` 4 e

ϕ1?
6

´

2´ e3 ϕ1?
6

¯

Φ “ 0 . (3.32)

We expect the dominant instability to be in the s-wave channel, so we take Φ to be
spherically symmetric. Since the single charged BCS is static, we can further expand
perturbations into Fourier modes of the form

Φpt, rq “ pΦωprq e
´iωt , (3.33)

which introduces the frequency ω of the modes. We now solve for the eigenpair tpΦω, ωu

subject to appropriate boundary conditions that we discuss next.
At the horizon, we demand regularity in ingoing Eddington-Finkelstein coordinates pv, rq,

dv “ dt` dr
fprq

, (3.34)

which in turn imposes

pΦωprq «
´

1´ r`
r

¯´ihpr`q
1{2

f 1pr`q
ω ”

C`0 ` C
`
1

´

1´ r`
r

¯

` . . .
ı

, (3.35)

near r “ r` (where C`0 and C`1 are constants). At the conformal boundary, we choose
standard quantisation for the scalar field Φ, which fixes the asymptotic behaviour of pΦω to be

pΦω “

´r`
r

¯2
„

C´0 ` C
´
1

´r`
r

¯2
` . . .



(3.36)

as r Ñ `8 (where C´0 and C´1 are constants).

– 23 –



J
H
E
P
0
5
(
2
0
2
3
)
0
5
3

To solve for pΦω we change to a variable qω which is regular everywhere (and thus also
at r “ r` and near the conformal boundary),

pΦωprq “
´

1´ r`
r

¯´ihpr`q
1{2

f 1pr`q
ω ´r`

r

¯2
qωprq , (3.37)

and introduce a compact coordinate

r “
r`

?
1´ y (3.38)

so that the conformal boundary is located at y “ 1 and the black hole event horizon at
y “ 0. The boundary conditions for qωpyq that follow from imposing standard boundary
conditions at the conformal boundary and smoothness across the future event horizon are
of the Robin type. They can be read (as derived boundary conditions) from the equation
for qωpyq assuming that qωpyq admits a regular Taylor expansion at y “ 0 and y “ 1. These
turn out to be too lengthy to present here.

In figure 1 we plot the real (blue disks) and imaginary (orange squares) parts of
the frequency ω as a function of the energy LE{N2 for LQ{N2 “ 0.75 (left panel) and
LQ{N2 “ 1 (right panel). The inverted red triangles show the supersymmetric bound for
the given value of LQ{N2 and the black disk describes the onset of the instability, which
was determined using a strategy that we will outline in section 3.6. The agreement between
the code that searches for the onset directly, and our calculation of the quasinormal mode
spectrum tpΦω, ωu is reassuring. Note that in order for an onset to exist for a static solution,
it must be the case that Repωq “ Impωq “ 0 at the onset. Figure 1 shows that the BCS
black hole is unstable (since ImpωLq ą 0) in the region ESUSYpQq ă EpQq ă EonsetpQq

for fixed Q. This is the region of moduli space where we expect the hairy black holes to
play a role. We will confirm this picture shortly. Finally, we note that Repωq is really not
a gauge invariant quantity. Indeed, under Up1q transformations A Ñ A ` dχ, with χ a
smooth function, the charged scalar transforms as Φ Ñ e

2 i
L
χ Φ. In particular, if we choose

Φ as in (3.33) and consider a class gauge transformations of the form χ “ χp0qt with χp0q

constant and real, these induce a change in ω as ω Ñ ω´ 2
Lχ

p0q . We often choose to regard
A as a smooth one-form, in which case this gauge freedom is chosen to that At “ 0 at the
black hole event horizon. This is the gauge we used when computing ω shown in figure 1.

3.6 Onset of scalar condensation instability

Having shown that the scalar is unstable, we now turn out attention to the systematic
study of the instability onset as a function of the BCS energy E and charge Q. Our starting
point is still (3.32)), but we now choose Φ to be spherically symmetric and exhibit no time
dependence. We still perform the same change of variable as in (3.37) (with ω “ 0) and
introduce a compact coordinate as in (3.38). The resulting equation can be written as

L2
`

y; rλ
˘

q20pyq ` L1
`

y; rλ
˘

q10pyq ` L0
`

y; rλ
˘

q0pyq “ 0 , (3.39a)

with

L2
`

y; rλ
˘

“ p1´ yqy
´

1` 2 rQ
¯ ”

rλ
´

2p1´ yq rQ´ y ` 2
¯

´ y ` 1
ı2
, (3.39b)
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Figure 1. The real (blue disks) and imaginary (orange squares) of ω as a function of the energy
LE{N2 for LQ{N2 “ 0.75 (left panel) and LQ{N2 “ 1 (right panel). The inverted red triangle
pinpoint the supersymmetric bound for given value of LQ{N2 and the black disk describes the onset
of the instability.

L1
`

y; rλ
˘

“

´

1` 2 rQ
¯!

rλ
”

2p1´ yq rQ´ y ` 2
ı

´ y ` 1
)

"

2rλ
´

1` rQ
¯

´ y
”

rλ
´

8 rQ´ 6y rQ´ 3y ` 6
¯

´ 3y ` 4
ı

` 1
*

, (3.39c)

and

L0
`

y;rλ
˘

“´rλ2
„

y2
´

1`2 rQ
¯3
´y

´

3`4 rQ
¯´

1` rQ
¯2
`2

´

1` rQ
¯´

4 rQ2`2 rQ`1
¯



´rλ

„

2y2
´

1`2 rQ
¯2
´2y rQ

´

9`8 rQ
¯

`8 rQ
´

1` rQ
¯

´5y`3


´p1´yq2
´

1`2 rQ
¯

,

(3.39d)

where we defined rλ “ y2
` and rQ “ rq{y2

`. Equation (3.39a) appears to be a quadratic
eigenvalue problem in rλ for a given value of rQ. However, in order to show that this is the
case, boundary conditions have to be supplied for q0pyq. These can be obtained around
the regular singular points y “ 0, 1 by demanding that q0 is smooth there. The boundary
condition at y “ 0 turns out to be

´

1` 2 rQ
¯ ”

1` 2
´

1` rQ
¯

rλ
ı

q10p0q ´
!

1` rλ` 2 rQ
”

1` rλ
´

1` 2 rQ
¯ı)

q0p0q “ 0 , (3.40a)

while for y “ 1 we find

rλ
´

1` 2 rQ
¯

q10p1q ´ 2 rQ
”

1` 2
´

1` rQ
¯

rλ
ı

q0p1q “ 0 . (3.40b)

In figure 2 (solid blue line) we will show the onset curve QonsetpEq, which was determined
by the procedure outlined above.
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3.7 Phase diagram in the microcanonical ensemble

We will start by discussing the microcanonical ensemble. Here the state variables are
the energy E and charge Q and the relevant thermodynamic potential is the entropy S.
Dominant phases have the largest S at fixed E and Q. The system we will study will
involve two phases: the hairy black holes and the BCS black hole. At the onset of the BCS
condensation instability (analyzed in the previous subsection), the BCS and hairy black
holes have the same E, Q and S and the transition between the two families is second
order22 (see solid blue line curve in figure 2).

In figure 2 we plot the phase diagram of the solutions we found. The horizontal axis
is LE{N2, whereas the vertical axis is labeled by LQ{N2. We draw the supersymmetric
bound Q “ E as a thick black dashed line. The regular 1-parameter supersymmetric
soliton (3.22) is described by this line, starting at Q “ E “ 0 and extending for arbitrarily
large values. The singular 2-parameter supersymmetric soliton is also described by this line
but we can choose one of its parameters ´ namely, C2 “ 4 in (3.25) ´ to have it starting
at pLE{N2, LQ{N2q “ p1{2, 1{2q (the red inverted triangle) and extending for arbitrarily
large E “ Q. The BCS black holes exist for any 0 ď Q ă E i.e. below the supersymmetric
thick black dashed line (at the BPS line the BCS black hole approaches a singular solution
with S “ 0 that, in the E ´ Q diagram of figure 2 coincides with the supersymmetric
solitons). It is important to note that single charge BCS black holes can get arbitrarily close
to saturating the BPS bound. This is unlike the two charge BCS black holes that we will
analyse later in section 4. The limiting single charge BCS black hole family that saturates
the BPS bound is, of course, singular. Still in figure 2, the scalar condensation onset curve
(determined using the method outlined in section 3.6) is represented as a solid blue line;
BCS black holes above this line are unstable. Hairy black holes exist in the dark red region
between the supersymmetric bound and the onset curve, which is precisely where the BCS
black holes are unstable (see section 3.5). Unlike the two charge case that we will discuss
later in section 4, in the single charge system the hairy solutions always coexist with the
BCS black holes, i.e. the dark red region is on top of a green region in figure 2.

Interestingly enough, the hairy black holes do not exist for arbitrarily small values of
Q or E (unlike the two equal charge case of section 4). Indeed, we find that all hairy single
charged black hole solutions must have LQ{N2 ą 1{2 and LE{N2 ą 1{2; see the inverted
red triangle with pLE{N2, LQ{N2q “ p1{2, 1{2q in figure 2. This peculiarity along with
the fact that the supersymmetric limit of the BCS black hole is a singular soliton makes
the perturbative scheme presented in section 3.9 considerably more intricate than the two
charge case (that will be discussed in section 4.9).

We now address the issue of phase dominance in the microcanonical ensemble. In
figure 3 we show a three-dimensional plot of the entropy S{N2 as a function of LQ{N2 and
LE{N2 using the same colour coding as in figure 2. We find that in E ´Q region where
the hairy black holes coexist with the BCS black holes, the hairy black holes always have a
larger entropy and are thus dominant in the microcanonical ensemble. This suggests that,

22That is to say, the entropy (or Gibbs free energy) has continuous first derivative across the transition,
but the second derivative jumps discontinuously.

– 26 –



J
H
E
P
0
5
(
2
0
2
3
)
0
5
3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

▼

Figure 2. Phase diagram of singly charged solutions. The supersymmetric bound E “ Q is
represented as a black dashed curve. The regular 1-parameter supersymmetric soliton is described
by this curve. The BCS black holes exist below this BPS line in the 0 ď Q ă E region. The inverted
red triangle at the BPS curve marks the point pLE{N2, LQ{N2q “ p1{2, 1{2q. The onset curve of
the scalar condensation instability of the BCS is represented as the solid blue line that starts at
the inverted red triangle. The hairy black holes exist in the dark red region between the onset
and the BPS curves. This phase diagram is also reproduced analytically (for small E and Q) by a
non-interacting model discussed in section 3.9.2.

as expected, the hairy black holes should be the endpoint of the dynamical instability of
BCS black holes uncovered in section 3.5.

It is important to investigate the hairy black hole solutions near the BPS bound Q “ E.
This is the region of moduli space where our numerical schemes struggle the most to find
solutions. We have managed to reach y` “ 0.1, but found very hard to lower y` below this
(solutions should exist all the way down to y` Ñ 0). Nevertheless, with enough resolution,
there are a number of striking features that we can infer. First, we find that the hairy black
hole temperature tends to LT “ 1{π as one approaches the supersymmetric bound Q “ E.
This is best seen in figure 4 where we plot the hairy black hole temperature as a function
of E and Q. To aid the reader we also plot the plane LT “ 1{π in purple. Actually, the
temperature LT “ 1{π also plays an important role in the singly charged BCS black hole.
Namely, one can ask what is the smallest temperature one can reach with the BCS black
holes. This minimum temperature can be reached by letting rq “ 1{2 and y` “ 0 and it
turns out to be LT “ 1{π. In this limit, one approaches the supersymmetric singular soliton
discussed earlier.

We also monitored the charged and neutral scalar field expectation values xOΦy and
xOϕy, as defined in (3.12), for the line of solutions closest to the supersymmetric bound
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Figure 3. Microcanonical phase diagram for the single charged system: the entropy S{N2 as a
function of LQ{N2 and LE{N2 using the same colour coding as in figure 2. Although not easy to
see, the dark red surface is always above the green surface in the E ´Q region where they coexist
except at the BPS bound (dashed black line) and at the solid blue line (onset curve), where the two
families merge in a second order phase transition.

(these have y` “ 0.1). Perhaps surprisingly, we find that this curve is very well fit by
that of a singular soliton given in (3.25) with C1 “ 3 and C2 ě 4. At the moment we
have no understanding why this is the case. Note that in principle we could have C1pC2q,
but it turns out that our best fit yields C1 “ 3. To back our claim, in figure 5 we plot
xOΦy (left panel) and xOϕy (right panel) as a function of LE{N2. The blue disks are the
numerical data, and the solid red lines are given by (3.25) with C2 ě 4 and C1 “ 3. The
agreement is striking (specially if we remember that y` “ 0.1 for the hairy solutions, and we
expect the agreement to improve as y` gets smaller). At the moment we have no analytic
understanding of why the solution with C1 “ 3 is preferred over other possible choices.

3.8 Phase diagram in the grand-canonical ensemble

We now turn out attention to the grand-canonical ensemble. The state variables are now
the temperature T and chemical potential µ. The relevant thermodynamic potential is the
Gibbs free energy G, and dominant solutions have the lowest free energy. There is now a
competition between three phases: thermal AdS, BCS solutions and the hairy black holes.
We expect large enough black holes to eventually dominate the ensemble. The question is
then which of the black holes will dominate in a given window of T and µ.

We first discuss the thermodynamic properties of the BCS black hole in the grand-
canonical ensemble. This has been previously discussed in [64] but the presentation here is
more detailed. We first note that for fixed temperature TL ą 1

π and fixed µ ‰ 1 there are
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Figure 4. The temperature LT of the single charge hairy black holes as a function of LQ{N2 and
LE{N2 using the same colour coding as in figure 2. For reference, we also plot the plane LT “ 1{π
in purple: the hairy black hole temperature approaches it in the supersymmetric limit (dashed
black line).
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Figure 5. Expectation values L2xOΦy{N
2 (left panel) and L2xOϕy{N

2 (right panel) as a function
of LE{N2 for the family of single charged hairy black holes with y` “ 0.1 (the closest family we
have to the supersymmetric limit). The blue disks are the numerical data, and the solid red lines
are given by (3.25) with C2 ě 4 and C1 “ 3.
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Figure 6. Entropy S{N2 as a function of the temperature LT for singly charged BCS black holes
for four different values of µ. Using lexicographic ordering, we have µ “ 0, 0.9, 1, 1.1, respectively.
The solid blue (dashed red) line describes large (small) BCS black holes.

two black hole solutions. These two solutions have distinct entropies. We coin the one with
larger entropy the “large” BCS black hole, and the one with smaller entropy the “small”
BCS black hole. Large BCS black holes have an entropy that scales as S{N2 » π4pLT 3q at
large T , while small BCS black holes have an entropy that approaches zero as T Ñ `8 for
|µ| ă 1 (see top panels of figure 6), and diverge linearly in T as S{N2 » 2π2LT pµ2 ´ 1q for
µ2 ą 1 (see bottom-right panel of figure 6). For µ “ 1 there is a degeneracy, and the small
and large black hole branch merge and form a single black hole family (see bottom-left
panel of figure 6). Figure 6 shows a set of snapshots of the entropy S{N2 as a function of
the temperature LT computed for different values of µ that illustrate the aforementioned
properties. Using lexicographic ordering, we have µ “ 0, 0.9, 1, 1.1, respectively.

The small BCS black hole is always locally thermodynamically unstable in the grand-
canonical ensemble. To see this, start by recalling that local thermodynamic stability in
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the grand-canonical ensemble is equivalent to demanding that minus the Hessian of the
entropy with respect to the energy E and charge Q,

Sij “ ´
1
L2

B2S

BQiBQj
where Q “ tE,Qu and i “ 1, 2, (3.41a)

is positive definite.23 We find

S11 “ ´
4π

b

2rq ` y2
`

“

4 prq ´ 3q rq ´ 10y2
`rq ´ 2y4

` ´ y
2
` ` 1

‰

“

2rq ` 2y2
` ` 1

˘3 ``6y2
` ` 8

˘

rq ` 3
`

y4
` ` y

2
`

˘‰

,

S12 “ ´
4
?

2π
b

`

y2
` ` 1

˘

rq
“

6
``

y2
` ` 2

˘

rq ´ 2rq2 ` y4
`

˘

` 7y2
` ` 1

‰

`

2rq ` 2y2
` ` 1

˘3 “`6y2
` ` 8

˘

rq ` 3
`

y4
` ` y

2
`

˘‰

, (3.41b)

S22 “ ´
4π

b

2rq ` y2
`

“

4
`

6y2
` ` 5

˘

rq2 ´ 2
`

6y4
` ` 13y2

` ` 6
˘

rq ´ 3
`

y2
` ` 1

˘ `

2y2
` ` 1

˘ 2‰

`

2rq ` 2y2
` ` 1

˘3 `“6y2
` ` 8

˘

rq ` 3
`

y4
` ` y

2
`

˘‰

.

It is a simple exercise to compute the eigenvalues of S and verify that they are both positive
for large BCS black holes, while at least one is negative for small BCS black holes. This
shows that small BCS black holes are locally thermodynamically unstable, while large BCS
black holes are locally thermodynamically stable in the grand-canonical ensemble.

Large charged AdS black holes can undergo Hawking-Page transitions [8] so it should
not come as a surprise that the same is true for the large BCS black holes. To confirm this,
first note that thermal AdS, by definition, has zero Gibbs free energy. Thus, all we need to
do is to inspect the sign of G for large AdS black holes (small BCS black holes are always
sub-dominant). We summarise our findings in figure 7. The light brown region indicates
regions where BCS black holes do not exist, and thus the only available phase is thermal
AdS. The light red region represents a region of the pT, µq phase where thermal AdS and
large BCS black holes coexist, but nevertheless thermal AdS dominates. The dot-dashed
magenta line (the right boundary of the light red region) indicates a Hawking-Page transition
similar to the one reported in [72] for standard five-dimensional Reissner-Nordström black
holes with AdS asymptotics. In the green region, large BCS black holes dominate the
grand-canonical ensemble. Note that the Hawking-Page phase transition from the red region
to the green region (along the dot-dashed magenta line) is first order, but the transition from
brown to green, along the dashed black line, is zeroth order. However, zeroth order phase
transitions cannot occur in thermodynamically stable systems and are often an artefact of
the thermodynamic approximation. Indeed, recall that in any thermodynamically stable
phase in the grand-canonical ensemble, ´G must be a convex function of T and µ [73], and
this is not possible for zeroth order phase transition away from the strict thermodynamic
limit. We interpret the presence of this “forbidden” zeroth order transition as indicating
that we are missing a novel phase altogether for the single charge case. We will leave the
construction of this new phase for future investigations.

23One could have equally well investigate positivity of the Hessian of the Gibbs free energy G with respect
to T and µ. See for instance [70, 71] for details.
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Figure 7. Phase space of singly charged BCS black holes in the grand-canonical ensemble. The
light brown region indicates regions where BCS black holes do not exist (thermal AdS dominates
the ensemble); the light red region is a region where thermal AdS and large BCS black holes coexist,
but nevertheless thermal AdS dominates; the dot-dashed magenta line indicates a Hawking-Page
transition; and in the green region large BCS black holes dominate the ensemble. The blue disks are
the onset of scalar condensation; hairy black holes exist below this onset line and above the line
µ “ 1 but they are always sub-dominant. Finally, the dashed black line shows the location of the
0-th order phase transition briefly discussed in the main text.

To complete our discussion of the grand-canonical phase diagram, one might wonder
where the hairy solutions fit in figure 7. The blue solid disks in figure 7 represent the onset
of the condensation instability of BCS black holes and we find that hairy solutions extend
from this curve down to the µ “ 1 line. Computing the Gibbs free energy of the hairy
solutions, we find it is always larger than that of large BCS black holes, making the new
hairy solutions subdominant in the grand-canonical ensemble.

3.9 Perturbative construction of hairy black holes

In this section, we describe the basic strategy used to construct the single charged hairy
black hole solutions (of sections 3.1, 3.2, 3.7 and 3.8) in perturbation theory. It turns out
that the equations of motion (3.2) in the gauge (3.1) are difficult to solve analytically. It is
more convenient to work in a slightly different gauge defined by the ansatz

ds2 “ h
1
3

ˆ

´
f

h
dt2 ` dr2

f
` r2dΩ2

3

˙

,

ϕ1 “
?

6ϕ, ϕ2 “ 0,
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A1 “ 0, A2 “ 0, A3 “ Atdt,

Φ1 “ 0, Φ2 “ 0, Φ3 “ Φ:3 “ Φ, (3.42)

where all the quantities above are functions of r only. In (3.1), grr is an independent
function and ϕ is fixed in terms of h whereas in this gauge, grr is fixed in terms of f and ϕ is
an independent function. The ansatz (3.42) has a leftover coordinate freedom r Ñ

?
r2 ` a

and we use this to fix24

ϕ`
1
3 ln h “ Opr´4q at large r. (3.43)

Plugging the ansatz (3.42) into equations (2.11)–(2.13), we find the equations

0 “ ´3A2hΦ2

f2 `
2h12

h2 ´
3 prh2 ` 3h1q

rh
´

3Φ12

Φ2 ` 4 ´ 18ϕ12, (3.44)

0 “
3r2 `h5{3e´4ϕA12 ` f 1h1 ` h4{3 `Φ2e4ϕ ´ 8

?
Φ2 ` 4eϕ ´ 8e´2ϕ˘˘

h
` 18rf 1

´
3r2A2hΦ2

f
` f

ˆ

r2
ˆ

´
h12

h2 ´
3Φ12

Φ2 ` 4 ´ 18ϕ12
˙

` 36
˙

´ 36, (3.45)

0 “ fe´4ϕ p3rhA2 `A1 p2rh1 ` h p9´ 12rϕ1qqq
3rh4{3 ´AΦ2, (3.46)

0 “ ´h
1
3 e´5ϕA12 `

3e´ϕ pprf 1 ` 3fqϕ1 ` rfϕ2q
rh

1
3

` 2
a

Φ2 ` 4´ pΦ2 ` 4qe3ϕ, (3.47)

0 “ 4A2h
2
3 Φ

f
´

Φ pΦ1 prΦf 1 ` f prΦ1 ` 3Φqq ` rfΦΦ2q
rh

1
3 pΦ2 ` 4q

`
prf 1 ` 3fqΦ1 ` rfΦ2

rh
1
3

`
fΦ3Φ12

h
1
3 pΦ2 ` 4q2

´ 4Φ
ˆ

e4ϕ ´
4eϕ

?
Φ2 ` 4

˙

. (3.48)

These are 5 coupled differential equations for 5 functions. The differential equations for
h, A, ϕ and Φ are second order whereas the one for f is first order. The equations can
then be solved up to 9 integration constants. Four of these are fixed by the AdS boundary
conditions at r “ 8 and five are fixed by imposing regularity in the interior (either on the
horizon r “ r` or the origin r “ 0).

24For completeness we note that the radial coordinate used here is related to the radial coordinate
in (3.1) by

r2
here “

ż

dpr2
thereq

d

fthereprthereq

gthereprthereq
` a.

The integration constant a is fixed by (3.43). The metric functions are related by

r6
herehhere “ r6

therehthere, r4
herefhere “ r4

therefthere,

pAtqhere “ pAtqthere, Φhere “ Φthere, ϕhere “
1
?

6
ϕthere.
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The asymptotic expansion of the fields in this gauge has the form

fprq “
r2

L2 ` 1` ch ` cf
L2

r2 `OpL4r´4q,

hprq “ 1` ch
L2

r2 `OpL4r´4q,

Atprq “ µ` cA
L2

r2 `OpL4r´4q,

ϕprq “ ´ch
L2

3r2 `OpL4r´4q,

Φprq “ ε
L2

r2 `OpL4r´4q.

(3.49)

Using holographic renormalization as described in section 3.2, we find that the energy and
electric charge are given by

E “
N2

L

ˆ

1
2ch ´

3
4cf ´

3
32ε

2
˙

, Q “
N2

L

ˆ

´
1
2cA

˙

. (3.50)

Black hole solutions have a Killing horizon at r “ r` where fpr`q “ Atpr`q “ 0 (r` is
the largest root of f). We will construct solutions which are regular on the horizon. The
temperature, entropy and chemical potential of a regular black hole solution is given by

T “
f 1pr`q

4πL
a

hpr`q
, S “ N2πr3

`

a

hpr`q, µ “ lim
rÑ8

Atprq. (3.51)

These thermodynamic quantities must satisfy the first law of thermodynamics dE “

TdS ` µdQ.
In the rest of this section, we will set the AdS radius to unity, L “ 1.

3.9.1 Hairy supersymmetric soliton

In this subsection, we describe the perturbative construction of the hairy supersymmetric
soliton. This solution is of course known exactly and is described in section 3.3. The
purpose of this section then is to describe the qualitative features of the general perturbative
construction in a simple setting where we can compare the perturbative approximation
with the exact analitical result. The techniques introduced here can and will be generalized
to the more complicated construction of hairy black hole solution in section 3.9.2.

To initiate the perturbative construction, we expand the solitonic fields as

fpr, εq “
8
ÿ

n“0
ε2nfp2nqprq,

hpr, εq “
8
ÿ

n“0
ε2nhp2nqprq,

Atpr, εq “
8
ÿ

n“0
ε2nAp2nqprq,

ϕpr, εq “
8
ÿ

n“0
ε2nϕp2nqprq,

Φpr, εq “
8
ÿ

n“0
ε2n`1Φp2n`1qprq,

(3.52)
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where the leading order solution is vacuum AdS5 given by

fp0qprq “ 1` r2, hp0qprq “ Ap0qprq “ 1, ϕp0qprq “ 0. (3.53)

The expansion parameter of the perturbation theory is ε “ π2

N2 xOΦ y which is the expectation
value of the operator dual to the scalar field Φ. In terms of the bulk geometry, it is fixed as
the leading coefficient of r´2 in the near boundary expansion of Φ as

Φpr, εq “ ε

r2 `Opr´4q. (3.54)

We plug (3.52) into the equations (3.44)–(3.48) and expand them in a power series in ε. At
each order in ε, we have a set of linear differential equations, which we solve subject to AdS
boundary condition (3.54) at r “ 8 and regularity at the origin r “ 0.25

At Opε2n`1q, only equation (3.48) is non-trivial and we obtain a single differential
equation for Φp2n`1qprq which has the form

d

dr

„

r3

1` r2
d

dr

“

p1` r2qΦp2n`1qprq
‰



“ S Φ
p2n`1qprq. (3.55)

where the source S Φ
p2n`1qprq is completely fixed by lower orders in perturbation theory

and it should be thought of as a known function in terms of which we wish to determine
Φp2n`1qprq. This equation is easily integrated and a solution for Φp2n`1qprq can be obtained
up to two integration constants which denote the source for the dual scalar operator and
its response (expectation value). We are interested in solutions without any sources for the
scalar field and the expectation value is defined by the boundary condition (3.54). These
two conditions fix both the integration constants.

At Opε2nq, (3.48) is trivial but the remaining equations (3.44)–(3.47) take the form

d

dr

„

1` r2

r

d

dr

“

r2ϕp2nqprq
‰



“ S ϕ
p2nqprq,

d

dr

„

r3 d

dr
Ap2nqprq



“ S A
p2nqprq,

d

dr

„

r3 d

dr
hp2nqprq



“ S h
p2nqprq,

d

dr

“

r2fp2nqprq
‰

“ S f
p2nqprq ´

1
3r

8 d

dr
rr´4hp2nqprqs.

(3.56)

As before, the source terms are all determined by lower orders in perturbation theory and
known functions when we arrive at Opε2nq. These equations are easily integrated and the
solutions are determined up to 7 integration constants. One of the integration constants in
the first equation is fixed by regularity of ϕ at r “ 0 and the other is fixed by AdS boundary
conditions (namely, requiring that the source for dual operator Oϕ is zero.). One of the
integration constants in the second equation is fixed by regularity of A at r “ 0. The other

25For the construction of the soliton solution, it is convenient to use the coordinate freedom r Ñ
?
r2 ` a

to set the origin of the spacetime at r “ 0 instead of imposing (3.43).
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is fixed at the next order in perturbation theory Opε2n`1q by requiring regularity of Φ at
r “ 0. One of the integration constants in the third equation is fixed by AdS boundary
conditions and the other is fixed by regularity at r “ 0. Finally, the integration constant in
the last equation is fixed by regularity at r “ 0.

Explicit construction of the solution to Opε3q is described in detail in appendix B.1
and the full solution to Opε15q is presented in the Mathematica file in the supplementary
material attached to this paper. It is easily verified that the solution so constructed is
supersymmetric and it satisfies equations (3.19) and (3.20). The energy (after removing
the Casimir contribution) and charge of the soliton is given by

E “ Q “ N2
„

ε2

16 ´
ε4

256 `
ε6

2048 ´
5ε8

65536 `
7ε10

524288 ´
21ε12

8388608 `
33ε14

67108864 `Opε16q



.

(3.57)
It is also easy to verify the regular solution constructed here is precisely the perturba-
tive expansion of the excat analytic soliton solution described in (3.22) once we identify
ε “ 4

a

qpq ` 1q.

3.9.2 Hairy black hole
The perturbative procedure described in the previous subsection can be generalized to
construct hairy solutions with horizons as well, although we must introduce a second
expansion parameter (the horizon radius in AdS radius units) and resort to a matched
asymptotic expansion. So, in this section, we shall construct the single charge hairy black
hole (BH) solution of sections 3.1, 3.2, 3.7 and 3.8 in a double perturbative expansion about
the base BCS black hole (3.27). But before doing so, we start by deriving heuristically
the leading order thermodynamic properties of such hairy solutions using a simple non-
interacting thermodynamic model that does not make use of the equations of motion.

Hairy BH as a noninteracting mix of BCS BH and supersymmetric soliton
Before discussing the details of the perturbative construction, it is instructive to consider a
toy model in which the hairy BH is treated as a non-interacting mix of the BCS black hole
and the hairy supersymmetric soliton in thermodynamic equilibrium. That is to say, as a
first approximation, the hairy BH can be found by placing a small bald BH (here, the BCS
BH) on top of the soliton of the theory. Although à priori crude, this model already proved
to capture the correct leading order thermodynamic of many charged and/or rotating hairy
black systems [49, 50, 52–54, 74–76], and this will also be the case in the present system.

The model assumes that, at leading order (and certainly only at this order), the energy
(charge) of the non-interacting mix is given simply as a sum of the bald black hole energy
(charge) and the soliton energy (charge). Using the energy and charge (3.28) of the bald
BCS BH we can write in these conditions:

E “
N2

4
“

3r2
`p1` r2

`q ` 2rqp2` 3r2
`q
‰

` Esol ,

Q “
N2

2

b

2rqp1` r2
`qp2rq ` r2

`q ` Esol ,

(3.58)

where we have also used the fact that the soliton is supersymmetric so Qsol “ Esol.
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The soliton carries no entropy, Ssol “ 0, so the entropy S of the hairy BH is simply the
BCS BH entropy (3.31):

S “ SBCSpEBCS, QBCSq ` SsolpEsol, Qsolq “ SBCSpE ´ Esol, Q´Qsolq. (3.59)

The hairy BH can partition its mass E and charge Q between the BCS BH and soliton
components of the mixture. On physical grounds one expects this distribution to be such
that, for fixed mass E and charge Q, the entropy S is maximised, dS “ dSBCS “ 0,
while respecting the first law of thermodynamics dE “ TdS ` µdQ. Not surprisingly,
the maximisation of the entropy turns out to imply [76] that the two mixed constituents
of the system (and thus the hairy BH) must be in thermodynamic (i.e. in chemical and
thermal) equilibrium:

µ ” µBCS “ µsol “ 1 ùñ

d

2rqp1` r2
`q

2rq ` r2
`

“ 1 ùñ rq “
1
2 ,

T ” TBCS ùñ T “
1` 2rq ` 2r2

`

2π
b

2rq ` r2
`

“
1
π

b

1` r2
` ,

(3.60)

where we used (3.31) for the chemical potential and temperature of the BCS BH and the
fact that the supersymmetric soliton has µsol “ 1.

We can now plug (3.60) into (3.58) and solve for r` and Esol in terms of E and Q,

r2
` “

2
3

˜

„

1` 3
ˆ

E ´Q

N2

˙
1
2
´ 1

¸

,

Esol “ Q´
N2

6

˜

2
„

1` 3
ˆ

E ´Q

N2

˙
1
2
` 1

¸

.

(3.61)

Since we must have r2
` ě 0 and Esol ě 0, we find bounds on the total mass and charge of

the mix,

N2

2 ď Q ď E ď
3Q2

N2 ´
N2

4 . (3.62)

It follows that the hairy black hole solution (to the extent that it can be modeled as a
non-interacting mix) can exist only in the parameter regime described above. This domain
of existence of the hairy black hole can be understood as follows. In one extremum, the
BCS BH constituent is absent in the mixture and the supersymmetric soliton component
with E “ Q ě 1

2 carries all the mass and charge of the solution (this is the black dashed
line above the red triangle in figure 2). On the opposite extremum configuration, the soliton
constituent is absent and all the mass and charge of the hairy BH is carried by the BCS
component. This describes the hairy BH that merges with the BCS BH at the onset of the
linear instability of the latter (this is the blue solid line in figure 2). At leading order in
tE,Qu (i.e. in r2

`) this is given by the upper bound in (3.62). So this is indeed a very good
approximation to the exact phase diagram shown in figure 2.

– 37 –



J
H
E
P
0
5
(
2
0
2
3
)
0
5
3

Basic setup for perturbation theory

In this subsection, we construct the hairy black hole of the single charge truncation using a
matched asymptotic expansion procedure that is a double expansion perturbation theory in
the charged scalar condensate amplitude ε and on the adimensional horizon radius r`{L.

As with the perturbative construction of the soliton, we start by expanding all the
fields of the theory in a power series in the charged scalar condensate ε,

fpr, ε, r`q “
8
ÿ

n“0
ε2nfp2nqpr, r`q,

hpr, ε, r`q “
8
ÿ

n“0
ε2nhp2nqpr, r`q,

Atpr, ε, r`q “
8
ÿ

n“0
ε2nAp2nqpr, r`q,

ϕpr, ε, r`q “
8
ÿ

n“0
ε2nϕp2nqpr, r`q,

Φpr, ε, r`q “
8
ÿ

n“0
ε2n`1Φp2n`1qpr, r`q,

(3.63)

where the leading order solution is now the single charge BCS black hole of section 3.4,

fp0qpr, r`q “

ˆ

1´
r2
`

r2

˙

rr2 ` 1` 2rqpε, r`q ` r2
`s,

hp0qpr, r`q “ expr´3ϕp0qpr, r`qs “ 1` 2rqpε, r`q
r2 ,

Ap0qpr, r`q “

d

2rqpε, r`qp1` r2
`q

2rqpε, r`q ` r2
`

ˆ

1´
2rqpε, r`q ` r2

`

2rqpε, r`q ` r2

˙

.

(3.64)

The parameter rq, defined in (3.26), is essentially related to the energy, charge and chemical
potential of the solution; see (3.28). Thus, we expect that it also receives corrections as we
climb the perturbation ladder. Therefore, we should also expand it in powers of ε,

rqpε, r`q “
8
ÿ

n“0
ε2nrqp2nqpr`q . (3.65)

We must define precisely the expansion parameter ε. As for the soliton, we take it to
be defined by the boundary condition

Φpr, ε, r`q “
ε

r2 `Opr´4q . (3.66)

We substitute (3.63) into the equations (3.44)–(3.48) and expand in a power series in ε. At
each order in ε, we obtain linear differential equations for each of the coefficient functions
in (3.63). Given the complicated structure of the base solution (3.64), these differential
equations cannot be solved exactly. One might hope, however, that, at each order in ε, they
can be solved if we further do a power series expansion in r` (as done in [49]).
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There is, however, an issue that arises immediately. The non-interacting model discussed
earlier in this section clearly suggests that at leading order in ε and r` (i.e. as ε, r` Ñ 0), we
expect that rq Ñ 1

2 ; see (3.60). In this limit, the background BCS black hole solution (3.64)
reduces to the singular soliton solution described in (3.24) with C1 “ 4rqprq ` 1q Ñ 3 and
C2 “ 2p2rq` 1q Ñ 4. It follows that the proposed double perturbative expansion in ε and r`
is actually an expansion around a singular soliton solution. Perturbative expansions around
singular backgrounds are typically ill-defined and this is also the case here. Indeed, the first
signal of this problem arises at Opε2r4

`q. The precise nature of the problem is discussed
in appendix B.3. Given these intricacies in the perturbative construction, we will limit
ourselves here to perturbation theory at Opεq. This will give us the linearized correction (in
ε) to the thermodynamics and we find a very good fit with the numerical results displayed in
figures 2–5; see, in particular, the later figure 8. We leave a complete analysis of the solution
for future work. It is perhaps worth noting that the complications described here arise
strictly for static singly charged solutions. Rotating single-charge supersymmetric solitons
are perfectly regular at r “ 0 and the corresponding hairy black holes can be constructed
in the usual way. The issues are also non-existent in the two-charge case discussed in
section 4.9 where the hairy BH can be constructed to all orders in perturbation theory
without issue.

At Opεq, the only non-trivial equation is (3.48) (i.e. the backreaction of the charged
scalar field on the other fields only kicks in at higher order in ε) and this implies a second
order differential equation for Φp1qprq,

0 “ p2rq0pr`q ` r
2qrpr2 ´ r2

`qp2rq0pr`q ` r
2
` ` r

2 ` 1qΦ2p1qpr, r`q

` p2rq0pr`q ` r
2qrr2p6rq0pr`q ` 3q ´ r2

`p2rq0pr`q ` r
2
` ` 1q ` 5r4sΦ1p1qpr, r`q

`

„

4r3 `4rq0pr`q ` r
2˘`

8pr2 ´ r2
`qpr

2
` ` 1qr3

rq0pr`q

p2rq0pr`q ` r2
`qp2rq0pr`q ` r2

` ` r
2 ` 1q



Φp1qpr, r`q ,

(3.67)

where 1 denotes derivative w.r.t. r. As mentioned previously, this equation cannot be solved
exactly. Solutions might however be constructed by expanding the scalar field further
in r2

` as26

Φp1qpr, r`q “
8
ÿ

n“0
r2n
` Φp1,2nqprq, rq0pr`q “

8
ÿ

n“0
r2n
` rqp0,2nq. (3.68)

Plugging this back into (3.67), we find ODEs order-by-order in r` that we must solve for
Φp1,2nqprq and rqp0,2nq. However, typically we cannot solve these ODEs analytically unless
we resort to a matched asymptotic expansion, whereby we divide the outer domain of
communications of our black hole into two regions. Restoring factors of L for a moment, this
is a near-field region where r` ď r ! L (where we impose the horizon boundary condition),
and a far-field region where r " r` (and we impose the asymptotic boundary condition).
Restricting the analysis to small black holes that have r`{L ! 1 (which is certainly the

26The equation (3.67) is an analytic function of r2
` so it is clear that the perturbative expansion is one in

r2
` and not r`.
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case since this quantity is one of our expansion parameters), the two regions then have an
overlapping zone, r` ! r ! L. In this overlapping region, we can match/relate the set of
independent parameters that are generated by solving the perturbative ODEs in each of
the two regions and that were not yet fixed by the two boundary conditions. (Onwards we
set again L ” 1).

In this matched asymptotic expansion context, consider first the far-field region, r " r`.
At Opr2n

` q, the equation for Φp1,2nqprq and rqp0,2nq takes the form27

d

dr

„

r3

2` r2
d

dr
rp2` r2qΦp1,2nqprqs



“ S Φ
p1,2nqprq , (3.69)

where, as stated before, the source S Φ
p1,2nqprq is a known function of the solutions at lower

orders Oprk`q, with k ď 2n´ 2. This ODE is easily integrated at any order and the solution
for Φp1,2nqprq can be obtained up to two integration constants; typically, one which is fixed
by AdS boundary condition (3.66), alike in the soliton construction, and the other by the
matching procedure (if the boundary condition does not fix it also). For the latter, one
needs to analyse the small r behaviour of the far-field solution. It turns out that for small
r, the scalar field Φp1,2nqprq diverges as a power of r`

r . This indicates that the far-field
analysis breaks down at r „ r`, which justifies why it is valid only for r " r`. It also
follows from this observation that in the far-field region we can safely do a Taylor expansion
in the expansion parameters r` ! 1 and ε ! 1 since the large hierarchy of scales between
the solution parameters tr`, εu and the distance r guarantees that they do not compete.

Let us now move down to the near-field region, r` ď r ! L ” 1. This time, we should
proceed with some caution when doing the Taylor expansion in r` ! 1 and ε ! 1 since
these small expansion parameters can now be of similar order as the radius r. This is
closely connected with the fact that the far-field solution breaks down when r{r` „ Op1q.
This suggests that, to proceed with the near-field analysis, we should define a new radial
coordinate as

z “
r

r`
. (3.70)

The near-field region now corresponds to 1 ď z ! 1
r`

. If we further require that r` ! 1 (as
we are doing in our double expansion) one sees that the near-field region corresponds to
z ě 1 " r` (and z " ε). In particular, we can now safely do Taylor expansions in r` ! 1
and ε ! 1 since the radial coordinate z and the black hole parameters tr`, εu have a large
hierarchy of scales. At the heart of the matched asymptotic expansion procedure, note that
a factor of r` (one of the expansion parameters) is absorbed in the new coordinate z!

To proceed with the near-field analysis further redefine the wavefunction as (onwards,
we use the superscript near to represent a near-field quantity)

Φnear
p1q pz, r`q ” Φp1qpzr`, r`q. (3.71)

The near-field expansion is performed by expanding Φnear
p1q in a power series in r2

`,

Φnear
p1q pz, r`q “

8
ÿ

n“0
r2n
` Φnear

p1,2nqpzq. (3.72)

27The initial equation is written in terms of rqp0,0q in (B.7) or (B.9) but after the matching asymptotic
analysis at Opr2

`q we find that rqp0,0q “
1
2 ´ see (B.17) ´ thus yielding the ODE (3.69) at any order in r`.
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We now plug in (3.71) and (3.72) into (3.67) and then extract the equations order-by-order
in r2

`. At Opr2n
` q, the equation takes the form

d

dz

„

zpz2 ´ 1q d
dz

Φnear
p1,2nqpzq



“ S Φ,near
p1,2nq pzq. (3.73)

This ODE can easily be integrated and the solution for Φnear
p1,2nqpzq is fixed up to two

integration constants. One of the integration constants is fixed by requiring regularity at
the horizon z “ 1, and the other is fixed by matching the near-field solution to the far-field
one as follows. At large z, the scalar field Φnear

p1,2nqpzq blows up as O
`

z2n˘. Consequently,
the near-field expansion breaks down when Opzq „ Opr´1

` q and thus it is valid only when
1 ď z ! 1

r`
or equivalently r` ď r ! 1, as we have claimed at the begin of our matched

asymptotic analysis.
Since our expansion parameter satisfies r` ! L ” 1, there is a overlapping region

r` ! r ! L ” 1 where both the near-field and far-field solutions are equally valid. Any
near-field and far-field integration constants that were not yet determined by the horizon
and the asymptotic boundary conditions are now fixed by the matching procedure of the
near and far wavefunctions in this overlapping region. Typically, this matching procedure
in the overlapping region also fixes rqp0,2n´2q.

The details of the perturbative construction including the matching process is described
in appendix B.2 up to Opr2

`q. Moreover, explicit results to Opr10
` q are presented in the

accompanying Mathematica file in the supplementary material attached to this paper. In
the end of the day, we find that

rq “
1
2 `

r2
`

4 ` r4
`

ˆ

´
3
16 ´

1
4 ln

r2
`

2

˙

` r6
`

ˆ

7
16 `

5
16 ln

r2
`

2 `
1
8 ln2 r

2
`

2

˙

` r8
`

ˆ

´
ζp3q

8 ´
203
256 ´

29
32 ln

r2
`

2 ´
5
16 ln2 r

2
`

2 ´
1
24 ln3 r

2
`

2

˙

`Opr10
` q.

(3.74)

The thermodynamics of the hairy black hole at leading order in the charged scalar condensate
is obtained by substituting the above expansion for rq into the thermodynamic quantities of
the BCS black hole (3.28) and (3.31),

EL

N2 “
1
2 `

7r2
`

4L2 `
r4
`

16L4

ˆ

´4 ln
r2
`

2L2 ` 15
˙

`
r6
`

32L6

ˆ

4 ln2 r2
`

2L2 ´ 2 ln
r2
`

2L2 ` 5
˙

`
r8
`

768L8

ˆ

´32 ln3 r2
`

2L2 ´ 96 ln2 r2
`

2L2 ´ 336 ln
r2
`

2L2 ´ 96ζp3q ´ 105
˙

`O
ˆ

r10
`

L10

˙

,

QL

N2 “
1
2 `

3r2
`

4L2 `
r4
`

16L4

ˆ

´4 ln
r2
`

2L2 ´ 1
˙

`
r6
`

32L6

ˆ

4 ln2 r2
`

2L2 ` 6 ln
r2
`

2L2 ` 11
˙

`
r8
`

768L8

ˆ

´32 ln3 r2
`

2L2 ´ 192 ln2 r2
`

2L2 ´ 576 ln
r2
`

2L2 ´ 96ζp3q ´ 453
˙

`O
ˆ

r10
`

L10

˙

,
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µ “ 1`
r4
`

4L4 `
r6
`

16L6

ˆ

´4 ln
r2
`

2L2 ´ 9
˙

`
r8
`

32L8

ˆ

4 ln2 r2
`

2L2 ` 26 ln
r2
`

2L2 ` 43
˙

`O
ˆ

r10
`

L10

˙

,

S

N2 “
πr2
`

L2 `
3πr4

`

4L4 ´
πr6
`

32L6

ˆ

8 ln
r2
`

2L2 ` 15
˙

`
πr8
`

128L8

ˆ

16 ln2 r2
`

2L2 ` 64 ln
r2
`

2L2 ` 101
˙

`O
ˆ

r10
`

L10

˙

,

TL “
1
π
`

r2
`

2πL2 ´
3r4
`

32πL4 ´
r6
`

64πL6

ˆ

4 ln
r2
`

2L2 ` 3
˙

`
r8
`

2048πL8

ˆ

128 ln2 r2
`

2L2 ` 544 ln
r2
`

2L2 ` 611
˙

`O
ˆ

r10
`

L10

˙

, (3.75)

where we have reinstated the AdS5 radius L in this final result. It is easy to verify that
these quantities satisfy the first law of thermodynamics, dE “ TdS ` µdQ, for the single
charge system.

Recall that the thermodynamics (3.75) captures only the Opεq contributions. Therefore,
it should be a good approximation when the scalar condensate is small, i.e. in the region
where the hairy black hole merges with the single charge BCS black hole. This occurs
at the onset of the scalar condensation instability of the BCS black hole. In figure 8, we
confirm that (3.75) is indeed a good approximation. In this plot, we compare the analytic
approximation (3.75) for the onset (depicted as a red solid line) with the output of numerical
procedure outlined in section 3.6 (blue disks). The match for small r`{L is reassuring and
is a consistency test for both the numerical and matched asymptotic expansion analyses.

In addition to matching the numerical results, the expressions (3.75) are also consistent
with the non-interacting model of 3.9.2 at leading order in r`. Using (3.75), the r.h.s.
of (3.61) evaluates to

2L2

3

˜

„

1` 3
ˆ

EL´QL

N2

˙
1
2
´ 1

¸

“ r2
` `

r4
`

4L2 ´
r6
`

16L4

ˆ

9` 4 ln
r2
`

2L2

˙

`O
ˆ

r8
`

L6

˙

(3.76)

which precisely matches the non-interacting model (3.61) to leading order in r`. Using (3.61),
we can also determine the mass of the BCS black hole in the non-interacting mix as

EBCSL “ EL´ EsolL

“ EL´QL`
N2

6L

˜

2
„

1` 3
ˆ

EL´QL

N2

˙
1
2
` 1

¸

“
1
2 `

3r2
`

2L2 `
9r4
`

8L4 ´
3r6
`

32L6

ˆ

5` ln
r2
`

2L2

˙

`O
ˆ

r8
`

L8

˙

.

(3.77)

This also matches — to leading order in r` — the energy of the “bald” BCS black hole (3.28)
at rq “ 1

2 .
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Figure 8. Comparing the analytic approximation given by (3.75) (represented as a solid red line)
with the numerical output of section 3.6, given by the blue disks.

4 Consistent truncation with A1 “ A2 ” A,A3 ” 0

4.1 Setup the problem: Ansatzë and boundary conditions

We will denote this theory with A1 “ A2 ” A,A3 ” 0 and Φ1 “ Φ2 ” Φ,Φ3 ” 0 as the
truncation with two equal charges. Again motivated by the ansatz (2.14) we used for the
BCS black hole, to find the static and spherically symmetric hairy solutions of this sector,
we find convenient to use this time the ansatz:

ds2 “ h2{3
ˆ

´
f

h2 dt2 ` dr2

g
` r2dΩ2

3

˙

;

ϕ1 “

c

2
3 ln h , ϕ2 “ 0;

A1 “ Atdt , A2 “ Atdt , A3 “ 0;

Φ1 “ Φ:1 “ Φ , Φ2 “ Φ:2 “ Φ, Φ3 “ 0 ;

(4.1)

where dΩ2
3 is again the line element of a unit radius S3 and we have selected the gauge where

h2{3r2 measures the radius of the S3. Moreover, we have fixed the Up1q gauge freedom by
taking Φ1 “ Φ2 “ Φ to be real, which implies that At “ 0 at the horizon location, r “ r`.
Inserting this ansatz into the field equations (2.11)–(2.13) we find that the system closes if
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the following five equations for thprq, fprq, gprq, Atprq,Φprqu are satisfied:

0“L2rgh
`

Φ2`4
˘`

rh1`3h
˘

f 1`pΦ2`4qr2h4
´

L2g
`

A1t
˘2
´A2

tΦ2
¯

´f
`

Φ2`4
˘

”

L2r2g
`

h1
˘2
`h2 `6L2`4r2˘

ı

`fh2
”

L2g
´

24´r2 `Φ1
˘2
`6Φ2

¯

´4hr2 `Φ2`4
˘3{2

ı

,

0“L2rfh
`

Φ2`4
˘`

rh1`3h
˘

g1`r2h4 `Φ2`4
˘

”

A2
tΦ2´L2g

`

A1t
˘2
ı

`f
`

Φ2`4
˘

”

L2r2g
`

h1
˘2
`4L2rpg´1qhh1`h2

´

4r2´6L2´4r3
a

Φ2`4h1
¯ı

`fh2
”

L2g
´

r2 `Φ1
˘2
`6Φ2`24

¯

´8r2h
`

Φ2`4
˘3{2

ı

,

0“h2´ph
1q

2

h
`

h1

L2rg

´

L2pg`2q`2hr2
a

Φ2`4
¯

`
2h
L2g

´

h
a

Φ2`4´2
¯

`
h3 pA1tq

2

f
,

0“L2rfgh
`

Φ2`4
˘`

rh1`3h
˘

A2t`L
2r2gh4 `Φ2`4

˘`

A1t
˘3
´rAtfhΦ2 `Φ2`4

˘`

rh1`3h
˘

`A1t

"

r
`

Φ2`4
˘

„

f
´

L2rg
`

h1
˘2
`L2p7g`2qhh1`2h2r

´

r
a

Φ2`4h1´2
¯¯

´rA2
th

4Φ2


`fh2
„

L2g
´

36`9Φ2´r2 `Φ1
˘2
¯

`2hr2 `Φ2`4
˘3{2

*

,

0“L2gfΦ2´L
2gfΦpΦ1q2

Φ2`4 `

ˆ

L2

r
fpg`2q`2rfh

a

Φ2`4
˙

Φ1

`h
´

A2
th

`

Φ2`4
˘

`2f
a

Φ2`4
¯

Φ. (4.2)

This is a system of two first order ODEs for tf 1, g1u plus three second order ODEs for
th2, A2t ,Φ2u very similar to the one discussed in the case (3.2) of the previous section. As
before we want to impose boundary conditions such that the solutions are asymptotically
AdS5 with normalizable fields. In particular, this requires that we set the sources of ϕ1
and Φ to zero. After imposing these UV boundary conditions, a Frobenius analysis still
yields the asymptotic expansion displayed in (3.3), with the same 5 free UV parameters
th2, f2, µ, ρ, εu not fixed by boundary conditions neither by the EoM. For the same reasons
as in section 3.1, we require that at the horizon r “ r`, the functions f , g and At vanish
linearly. As for the consistent truncation sector of section 3.1, we will solve (4.2) with
the above boundary conditions numerically or within perturbation theory. When solving
the ODE system numerically, the above boundary conditions can be imposed efficiently
if we introduce the same field redefinitions displayed in (3.4) and look for solutions qj ,
(j “ 1, 2, ¨ ¨ ¨ 5) that are everywhere smooth. To find the numerical solutions it is again useful
to introduce the compact coordinate y and dimensionless horizon radius y` defined in (3.5).

The auxiliary fields qj must satisfy boundary conditions that follow straightforwardly
from the ones for the original fields tg, f, h,At,Φu and from the field redefinitions (3.4).
The boundary conditions at the asymptotic boundary y “ 1 (r Ñ8) are the same as those
already presented in (3.6), where Q (this time Q ” Q1 “ Q2) is again the conserved electric
charge of the solution (but this time associated to the gauge fields A1

p2q and A
2
p2q; see (4.8)

later). As before, the associated boundary condition effectively introduces Q as an input
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parameter in our numerical code (which will allow us to run lines of constant Q). On the
other hand, at the horizon (y “ 0) the derived boundary conditions from the EoM are that
q1 must obey the Dirichlet q1

ˇ

ˇ

y“0 “
1
y2
`

` 2q4
`

1` q2
5
˘ ˇ

ˇ

y“0 and q2,3,4,5 must obey mixed
boundary conditions which are not enlightening to display.

4.2 Thermodynamic quantities using holographic renormalization

To find the thermodynamics of our solutions we implement mutatis mutandis the holographic
renormalization procedure of [60, 61], as applied to our theory in appendix A28 and already
discussed in section 3.2. The relation between the compact radial coordinate y and the
Fefferman-Graham radial coordinate z is this time

y “ 1´ y2
`

z2

L2 ´
y2
`

6

´

3´ 4y2
`q
1
4p1q

¯ z4

L4 ´
y2
`

144

„

27´ 12y2
`

´

3` 2q14p1q
¯

` 4y4
`

ˆ

9
2 q

2
1p1q ` 5q14p1q2 ` 18q14p1q ` 6q5p1q2 ´ 9

˙

z6

L6 `OpL´8z8q. (4.3)

Expanding the Up1q gauge fields in FG coordinates off the boundary z “ 0, we find
that the chemical potential µ and holographic current xJay “ pρ, 0, ¨ ¨ ¨ , 0q (where ρ is the
charge density) are given by

µ “ q3p1q , ρ “
N2

4π2L4 y
2
`

´

q13p1q ` q3p1q
¯

, (4.4)

where recall that this is the common source and common VEV of the dual operators of the
fields A1 “ A2 ” Atdt.

Similarly, a FG expansion of the scalar fields ϕ1 and Φ1 “ Φ2 ” Φ away from the
boundary yields the expectation values for the operators dual to these fields,

xOϕy “ ´

c

2
3
y2
`

L2 q
1
4p1q

N2

π2 , (4.5)

xOΦy “ 2
?

2
y2
`

L2 q5p1q
N2

π2 . (4.6)

Recall that these scalar fields have mass m2L2 “ ´4, i.e. they saturate the BF bound in
AdS5, and we have set their sources to zero.

Finally, the relevant expansion of the gravitational field about the conformal boundary is

ds2“
L2

z2

“

dz2`ds2
B`z

2 ds2
p2q`z

4 ds2
p4q`Opz6q

‰

(4.7)

with

ds2
B“ g

p0q
ab dxadxb“´dt2`L2dΩ2

3,

ds2
p2q“ g

p2q
ab dxadxb“´ 1

2L2

`

dt2`L2dΩ2
3
˘

,

28See, in particular, expectations values, their conservation laws and associated anomalies in (A.30)–(A.32)
and (A.33)–(A.35).
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ds2
p4q“ g

p4q
ab dxadxb

“´
1

144L4

„

9´36y2
`

´

3´4q14p1q
¯

`4y4
`

ˆ

27
2 rq

2
1p1q´2s´29q14p1q2`54q14p1q`42q5p1q2

˙

dt2

`
1

144L2

„

9`12y2
`

´

3´4q14p1q
¯

´4y4
`

ˆ

9
2 q

2
1p1q´7q14p1q2`18q14p1q`30q5p1q2´9

˙

dΩ2
3 ;

from which we can compute the expectation value xTaby of the holographic stress tensor
using (3.14), this time with xOΦ1y “ xOΦ2y ” xOΦy and xOΦ3y “ 0. We confirm that it
is conserved, ∇axTaby “ 0, and its trace xT a

a y yields the expected Ward identity (3.15)
associated to the gravitational conformal anomaly.

From (4.7) and (4.4) we can compute the energy E and electric charges Q1 “ Q2 ” Q

of our solutions:

E “
N2

L

y2
`

4

„

3´ 4q14p1q ` 3y2
`

ˆ

1´ 1
2 q

2
1p1q ´ 2q14p1q ` q14p1q2 ´ 2q5p1q2

˙

,

Q “
N2

L

y2
`

2

´

q13p1q ` q3p1q
¯

, (4.8)

where in E we have already subtracted the Casimir energy EAdS5 “
N2

L
3
16 .

The temperature T and the entropy S of the hairy black holes with two equal Up1q
charges can be read simply from the surface gravity and the horizon area of the solu-
tions (4.1), respectively:

T “
1
L

y`
2π

q1p0qq2p0q
q4p0q

,

S “ N2πy3
`q4p0q . (4.9)

These thermodynamic quantities must obey the first law of thermodynamics (2.19)
where for the theory of this subsection one has Q1 “ Q2 ” Q, µ1 “ µ2 ” µ and Q3 “ 0,
µ3 “ 0 and thus it reads

dE “ TdS ` 2µdQ.

From (4.8)–(4.9) and (2.20) we can also straightforwardly compute the Gibbs free
energy G “ E ´ TS ´ 2µQ which is useful to study the grand-canonical ensemble.

4.3 Hairy supersymmetric solitons

In this subsection we describe the supersymmetric solitons of the consistent truncation
of (2.8) with two equal charges. As for the single charge case of section 3.3, the simplest way
to find these solitons is to solve the first order Killing spinor equations. But these solutions
are still described by the ansatzë (4.1) and obey the associated equations of motion (4.2).

The fields tf, g, At, ϕ1,Φu of supersymmetric solitons are given by

g “ f “ 1` r2

L2 h
2 , At “

1
h
, ϕ1 “

c

2
3 ln h , Φ “ 2

d

ˆ

h`
1
2 rh

1

˙2
´ 1 ,

(4.10)
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i.e. they are all a function of hprq which must solve the ODE

L2r

ˆ

1` r2

L2 h
2
˙

h2 ` r3h
`

h1
˘2
`
`

7hr2 ` 3L2˘h1 ´ 4rh
`

1´ h2˘ “ 0. (4.11)

A Frobenius analysis of this ODE at the asymptotic boundary requires that h|rÑ8 “ 1
which also ensures that the fields f and g are asymptotically AdS5 and ϕ1 and Φ are
normalizable (i.e., the scalar field sources are zero). On the other hand, assuming that at
the origin h behaves as

h
ˇ

ˇ

rÑ0 “
hα
rα

, (4.12)

a Frobenius analysis of (4.11) yields two distinct solutions: α “ 0 and α “ 2. The family
with α “ 0 is a regular supersymmetric soliton while the family with α “ 2 is clearly an
irregular supersymmetric soliton.

Unfortunately, unlike in the single charged case of section 3.3, it does not seem possible
to solve (4.11) analytically. Therefore we resort to a full nonlinear numerical analysis
to find the regular soliton with α “ 0. The soliton is also constructed perturbatively in
section 4.9.1.

We start by analysing the behaviour of h at the origin and asymptotic boundary. A
series expansion of (4.11) about the origin yields

h
ˇ

ˇ

r“0 »
h2
r2 ` h0 `O

`

r2˘ , (4.13)

where h2 and h0 are two arbitrary constants and all other coefficients of this expansion are
fixed as a function of these two by the EoM. We want the regular soliton so we impose
h2 “ 0 as a Dirichlet boundary condition. We are left with a single IR free parameter h0.
A similar series expansion of (4.11) but this time about the asymptotic boundary yields

h
ˇ

ˇ

rÑ8
» 1` c2

r2 `
c4
r4 `O

`

r´6˘ , (4.14)

where c2 and c4 are the two arbitrary parameters, with all other coefficients of the expansion
fixed as a function of these two by the EoM. There is no physical motivation to fix any of
these two parameters with a boundary condition since the solution is asymptoticaly AdS5
and normalizable no matter their value. On way to conclude this is to note that, as it stands,
we have 2 free UV parameters tc2, c4u and 1 free IR parameter h0 (after imposing regularity
at origin). This is what we need to have for a 1-parameter soliton family since the difference
between the number of UV and IR free parameters is 1. Before further discussions, we find
convenient to introduce the following compact coordinate and field redefinition:

y “

ˆ

1` r2

L2

˙´1
,

h “ 1`
ˆ

1` r2

L2

˙´1
H “ 1` yH .

(4.15)

Now, the asymptotic AdS5 boundary is at y “ 0 and the origin r “ 0 is at y “ 1.
To justify these choices first note the behaviour (4.13) of h at the origin translates to
H
ˇ

ˇ

y“1 »
h2

L2p1´yq`h0´1`¨ ¨ ¨ . The numerical code can only capture smooth functions H so
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the boundary condition h2 “ 0 that kills the divergence is automatically implemented. Next,
note that the factor of 1 in the redefinition of h absorbs the leading behaviour in (4.14),
and the UV expansion (4.14) for hprq translates into the following UV expansion for Hpyq:

H
ˇ

ˇ

yÑ0 » η0 ` η1y `O
`

y2˘ (4.16)

with the information of the free UV parameters tc2, c4u of (4.14) now effectively transferred
into tη0, η1u. The latter have the advantage that they can be read straightforwardly by
evaluating Hpyq and H 1pyq at y “ 0, respectively.

The strategy to find the 1-parameter soliton is now much clear. We have a well-posed
elliptic problem if at the origin y “ 1 we impose a derived (because it follows directly
from the EoM) mixed boundary condition. On the other hand, at y “ 0 we can impose a
inhomogeneous Dirichlet boundary condition where we give the value η0 of the function H.
Concretely, the boundary conditions for the boundary-value problem are:

Hp0q “ η0 ,

H 1p1q “ 1
2Hp1q

2
´

3`Hp1q
¯

.
(4.17)

η0 is an input parameter in our numerical code that fixes H at y “ 0, and we let the EoM
evolve subject to the IR condition to find the function H. We can then read the second
UV parameter η1 “ H 1p0q. Then, we repeat the process, i.e. we run the numerical code for
several values of η0 since this is the quantity that parametrizes the soliton.

Finally, we can reconstruct the other functions from (4.10) and compute the relevant
thermodynamic quantities using holographic renormalization [60, 61]. In the end of the day
we find that the energy E (after removing the Casimir energy), electric charges QK , the
chemical potential µ, charge density ρ, and expectation values of the operators dual to ϕ1
and Φ are, respectively, given by

E “
N2

L
η0 , Q1 “ Q2 “

1
2
N2

L
η0 Q3 “ 0 ;

µ1 “ µ2 “ 1, µ3 “ 0 ; ρ1 “ ρ2 “
N2

4π2L4 η0 , ρ3 “ 0;

xOϕ1y “
1
L2

c

2
3η0

N2

π2 ; xOϕ2y “ 0 ;

xOΦ1y “ xOΦ2y “
2
?

2
L2

a

η0 ´H 1p0q
N2

π2 , xOΦ3y “ 0 ;

(4.18)

where recall that we have set to zero the sources of the operators dual to ϕ1 and ΦK . Note
that, as expected for our supersymmetric solution, E “ Q1 ` Q2, µ1 “ µ2 “ 1 and the
soliton satisfies the first law dE “

ř3
K“1 µKdQK “ 2dQ.

The singular 2-parameter soliton (with α “ 2) plays no role on the discussion of the
hairy black hole solutions of the theory. Therefore we do not attempt to find it.

4.4 Behrndt-Cvetič-Sabra black holes with A1 “ A2 ” A,A3 ” 0

The most general static Behrndt-Cvetič-Sabra black hole (2.14) with three different charges
QK pK “ 1, 2, 3q was presented in section 2.2. Here, we consider its special two charged
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case with Q1 “ Q2 ” Q and Q3 “ 0, which is a solution of the consistent truncation (2.8)
with A1 “ A2 ” A,A3 ” 0 and no charged condensate, ΦK “ 0 pK “ 1, 2, 3q. The reason
why we revisit this solution is because for our physical discussions of the hairy black holes
with Φ1 “ Φ2 ” Φ,Φ3 “ 0 it will be useful to display the two charged BCS black hole
using the ansatz (3.1) with the field redefinitions (3.5) and compact radial coordinate (3.4),
i.e. to present the auxiliary fields qj pj “ 1, ¨ ¨ ¨ , 5q for BCS. It will be useful because the
hairy black hole family ultimately bifurcates from the BCS family at the onset of the scalar
condensation instability.

To study the properties of BCS black holes of the truncation with two charges set

sinh δ1 “ sinh δ2 ”
2q
r0
, δ3 “ 0 (4.19)

in (2.14), where r0 is a function of the horizon radius r` and the charge parameter q
that follows from (2.15): r0 “

1
L

b

pr2
` ` 2qq2 ` L2r2

`. Further introduce y` “ r`{L and
rq “ q{L2 and choose a Up1q gauge such that A1 “ A2 ” A vanish at the horizon H. In
these conditions the BCS black hole with two equal charges sourced by A1 “ A2 ” A is
described ´ through (3.1), (3.5) and (3.4) ´ by the functions

q1 “ 1` p1´ yq
y2
` ` 4rq ` 1

y2
`

, q2 “ 1 , q3 “

?
2
?
rq y2
`

b

y2
` ` 2rq ` 1

“

y2
` ` 2rqp1´ yq

‰

b

y2
` ` 2rq

,

q4 “ 1` p1´ yq 2rq
y2
`

, q5 “ 0 .

(4.20)

Using (4.20), the thermodynamic quantities for the BCS black hole with two equal charges
can now be read straightforwardly from (4.6)–(4.4) and (4.8) determined in the previous
subsection. We conclude that the energy (after subtracting the Casimir energy), electric
charges, chemical potentials and expectation values of the scalar fields are given by:

E “
N2

L

1
4

”

3y2
`p1` y2

`q ` 4rq
`

2` 3y2
`

˘

` 12rq2
ı

,

Q1 “ Q2 “
N2

L

?
rq

?
2

b

y2
` ` 2rq ` 1

b

y2
` ` 2rq , Q3 “ 0 ; (4.21)

µ1 “ µ2 “

?
2
?
rq
b

y2
` ` 2rq ` 1

b

y2
` ` 2rq

, µ3 “ 0 ; (4.22)

xOϕ1y “
2
L2

c

2
3
N2

π2 rq ; xOϕ2y “ 0 ; xOΦK y “ 0 pK “ 1, 2, 3q ; (4.23)

and the temperature T and the entropy S of the single charged BCS black hole are:

T “
1
L

2y2
` ` 4rq ` 1

2π
`

y2
` ` 2rq

˘ ,

S “ N2 πy2
`

`

y2
` ` 2rq

˘

. (4.24)

These quantities, of course, agree with (2.17)–(2.16) in the appropriate limit. It follows
from (4.24) that there is no extremal configuration (i.e. with T Ñ 0) in the Q1 “ Q2,
Q3 “ 0 BCS family.
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4.5 The scalar condensation instability of Behrndt-Cvetič-Sabra black holes

Just as we did for the single charge BCS solution, we first investigate the linear stability of
the two charge BCS black hole with respect to the condensation of the charged scalar Φ.
The equation to solve turns out to be given by

DaDaΦ`
4
L2 e

ϕ1?
6 Φ “ 0 . (4.25)

Since the BCS backgrounds are static, we expand Φ in Fourier modes. Additionally, we
will take the s-wave channel. All in all, we take Φ to be given by

Φpt, rq “ e´iωtΦωprq , (4.26)

where ω is the frequency of the perturbation mode.
At the horizon, we demand regularity in ingoing Eddinghton-Finkelstein coordinates

pv, rq,
dv “ dt` dr

fprq
, (4.27)

which in turn imposes

pΦωprq «
´

1´ r`
r

¯´ihpr`q
1{2

f 1pr`q
ω ”

C`0 ` C
`
1

´

1´ r`
r

¯

` . . .
ı

, (4.28)

near r “ r` (where C`0 and C`1 are constants). At the conformal boundary, we choose
standard quantisation for the scalar field Φ, which in turn fixes the asymptotic behaviour
of pΦω to be

pΦω “

´r`
r

¯2
„

C´0 ` C
´
1

´r`
r

¯2
` . . .



(4.29)

as r Ñ `8 (where C´0 and C´1 are constants).
To solve for pΦω we change to a variable qω which is regular at r “ r` and near the

conformal boundary,

pΦωprq “
´

1´ r`
r

¯´i hpr`q
f 1pr`q

ω ´r`
r

¯2
qωprq , (4.30)

and introduce a compact coordinate just as in (3.38). We now solve for the eigenpair tω, qωu
using familiar methods [65]. Our results are presented in figure 9 where we plot the real
(blue disks) and imaginary (orange squares) parts of the frequency ω as a function of the
energy E for two fixed values of Q. On the left panel we have QL{N2 “ 0.5 whereas on the
right panel we have QL{N2 “ 1. Unlike the single charged BCS case of section 3.5, for the
double charged case we find that ImpωLq and RepωLq are non-zero at extremality. However,
just like for the single charged case we also find that, for fixed charged, the instability
(ImpωLq ą 0) exists for E P rEsingpQq, EonsetpQqs. We shall see this is the range where
hairy black holes coexist with two charged BCS black holes and thus the latter provide a
candidate for the instability endpoint (because for a given tE,Qu they have higher entropy
than the BCS) we just uncovered.
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Figure 9. Scalar condensation instability growth rate for the two charged BCS. The real (blue
disks) and imaginary (orange squares) parts of the frequency ω as a function of the energy LE{N2

for LQ{N2 “ 0.5 (left panel) and LQ{N2 “ 1 (right panel). The dashed red lines show the singular
extremal limit of the two charged BCS black hole for a given value of LQ{N2 and the black triangle
describes the onset of the instability with ω “ 0.

4.6 Onset of scalar condensation instability

Just as we did for the single charge case in section 3.6, we now proceed to determine the onset
of the scalar condensation instability of the two charged BCS black hole directly, instead of
computing ω and determine the onset a posteriori as the configuration where ω “ 0.

We take ω “ 0 and rewrite (4.25) just as in (3.39a), but this time with

L2py; rλq “
´

1` 2 rQ
¯

p1´ yqy
”

1` 2
´

1` 2 rQ
¯

rλ´ y
´

1` rλ` 4 rQrλ
¯ı2

, (4.31a)

L1py; rλq “
´

1` 2 rQ
¯ ”

1` 2
´

1` 2 rQ
¯

rλ´ y
´

1` rλ` 4 rQrλ
¯ı

"

1` 2
´

1` 2 rQ
¯

rλ

` 3y2
´

1` rλ` 4 rQrλ
¯

´ 2y
”

2`
´

3` 8 rQ
¯

rλ
ı

*

, (4.31b)

and

L0py; rλq “ ´16 rQ3p1´ yqp1´ 2yqrλ2 ´ p1´ yqp1` rλq
”

1´ y ` p2´ yqrλ
ı

´ 4 rQ2
rλ
”

3` 6rλ´ y
´

7´ 4y ` 8p2´ yqrλ
¯ı

´ 2 rQ
"

r1` 6rλp1` rλq

` y2p1` rλqp1` 5rλq ´ y
”

2` 13rλp1` rλq
ı

*

, (4.31c)

where we again defined rλ “ y2
` and rQ “ rq{y2

`. The above provides a quadratic eigenvalue
problem in rλ for a given value of rQ. Again, boundary conditions can be found at y “ 0 and
y “ 1 by demanding that q0pyq admits a regular Taylor expansion at such regular singular
points. The onset curve presented as a solid blue line in the figures of the subsections that
follow is computed following the approach outlined in this section.
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Figure 10. Expectation value xOΦ1y “ xOΦ2y as a function of LE{N2 for the supersymmetric
solitonic solution of the two charged system, with the numerical data being given by the blue disks
and the dashed red line showing a linear best fit (4.32) detailed in the main text.

4.7 Phase diagram in the microcanonical ensemble

We now discuss the phase diagram of the two charged system in the microcanonical ensemble.
We find convenient to start by discussing the supersymmetric solution of section 4.3.

Unlike the single charge case, we were not able to find a closed form solution for the
supersymmetric soliton, so we resort to numerical work. It turns out that solving the
EoM (4.11) for the soliton numerically is harder than it might first appear. Naturally, the
supersymmetric soliton will satisfy M “ 2Q. For this reason we plot instead xOΦ1y as a
function of LE{N2 in figure 10, where the exact numerical data is represented by the blue
dots and the dashed red line shows a best fit to a linear function

L2

N2 xOΦ1y “ a0 `
b0
π2
LE

N2 (4.32)

in the range LE{N2 ą 3 and we find a0 “ 0.10746˘ 0.00005 and b0 “ 1.9935˘ 0.0001 from
the numerical fit, where the error is estimated using a standard χ2 procedure. In particular,
we see that there is no upper bound on the energy, that is to say, no Chandrasekhar limit,
unlike in the three equal charge system of [53]. Figure 10 will be important later on when
we discuss the microcanonical phase space of solutions. In particular, it will provide an
excellent norm to understand whether our finite temperature hairy black hole solutions
approach the soliton in the limit of vanishing temperature and area.

We now turn our attention to the full phase diagram of static solutions in the two
charge system. We first note that, unlike the single charge case, in the two charge system
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Figure 11. Phase diagram in the microcanonical ensemble for the two equal charge system. The
green region indicates where BCS black holes with two equal charges exist, with the limiting upper
boundary (the black solid thin curve) being the extremal line (where BCS black holes become
singular); the black dashed line shows the supersymmetric bound, along which the supersymmetric
solitons exist with no apparent upper bound on E; the blue disks describe the onset of the hairy
black holes and the red disks (region) that extends from this onset all the way up to the BPS dashed
black line represent the hairy black holes of the system.

the extremal limit of the BCS black holes does not saturate the supersymmetric bound
E “ 2Q. Instead, we find that two equal charge extremal BCS black holes obey to29

LE

N2 “
1
12

"

2
„

2 cos
ˆ

XpQq

3

˙

` cos
ˆ

2XpQq
3

˙

´ 1
*

ą 2LQ
N2 (4.33a)

with
XpQq “ arccos

ˆ

54LQ
N2 ´ 1

˙

. (4.33b)

This parametrizes the black solid thin line in figure 11.
In figure 11 we plot the microcanonical phase diagram for the two equal charge system.

In the microcanonical ensemble, the entropy is the relevant thermodynamic potential and
the state variables are the charge Q and energy E. Dominant solutions will maximise the
energy S at fixed Q and E. The green region in figure 11 shows the region in moduli space
where two charged BCS black holes exist. As anticipated this region ends well before the
supersymmetric bound E “ 2Q is saturated. The extremal curve (black solid thin line)

29It might first appear that for LQ{N2
ě 1{p3

?
3q the energy of extremal BCS black holes as given

by (4.33a) becomes complex. However, note that X becomes purely imaginary in that limit, which then
changes the cos in (4.33a) to cosh, so that (4.33a) remains real for all Q ě 0.
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Figure 12. Expectation value xOΦ1y “ xOΦ2y as a function of EL{N2 computed for a hairy black
hole with fixed QL{N2 “ 0.5. The solitonic red inverted triangle was retrieved from figure 10 and
the blue disks were computed directly using our novel hairy black holes. Clearly, the hairy black
holes approach the supersymmetric soliton when the BPS limit is approached.

where this occurs has zero temperature, zero entropy and is singular. The black dashed
curve with Q “ E{2 represents the supersymmetric bound and the suspersymetric solitons
exits along this curve for any value of E “ 2Q. Finally, the red disks are the hairy black
holes we have determined numerically in this work. They exist in a region that extends
from the blue curve (onset curve determined using the numerical method briefly outlined
in section 4.6) all the way up to the supersymmetric dashed black bound, possibly for
arbitrarily large E (and Q ď E{2).

As the hairy black holes approach the supersymmetric bound, the geometry approaches
that of the soliton. Perhaps the best way to see this is to plot the condensate xOΦ1y “ xOΦ2y

as a function of EL{N2 for a fixed value of QL{N2. We do this in figure 12, where the
inverted red triangle was obtained from figure 10 and the blue disks were computed using
our hairy black holes. The agreement between the two methods as we approach the
supersymmetric point backs up our claim.

Next, we plot the entropy of the new hairy black hole solutions as a function of E and
Q in figure 13 where we use the same colour coding as in figure 11. In particular, this plot
shows that the entropy of the hairy solutions is always larger than that of a BCS black hole
with the same E and Q, where the two families of black holes coexist. This fact, together
with the results for the linear stability in section 4.5 provide very strong evidence that
the hairy solutions we just found are should be the endpoint of the scalar condensation
instability of the two charge BCS black hole uncovered in section 4.5.
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Figure 13. Microcanonical phase diagram for the two charged system: the entropy S{N2 as a
function of EL{N2 and QL{N2. The colour coding used in this figure is the same as the one used
in figure 11. The red surface is always above the green surface in the E ´ Q region where they
coexist except at the solid blue line (onset curve) where the two families merge in a second order
phase transition.

Finally, we discuss the fate of the temperature of the hairy solutions as we approach
the supersymmetric bound. One might think that the temperature will drop to zero as we
approach this boundary. However, this turns out not to be the case. Indeed, we observe
that, irrespectively of E “ 2Q, the temperature approaches the value LT “ 1{p2πq when we
approach the supersymmetric bound E “ 2Q. At the moment, we have no understanding
why this is the case.30 To back up our claim, we plot in figure 14 the temperature of the
hairy solutions as a function of their energy, for a particular value of LQ{N2 “ 1{10. We can
clearly see the temperature reaching TL “ 1{p2πq (represented as the dashed black line) as
we approach the supersymmetric bound. We should also note that the perturbative scheme
detailed in section 4.9 also predicts such a limiting value for the temperature: see (4.55)
and (4.74).

4.8 Phase diagram in the grand-canonical ensemble

Having discussed the microcanonical ensemble, we now turn out attention to the grand-
canonical ensemble. The relevant thermodynamic potential is now the Gibbs free energy

30Static supersymmetric solutions in four dimensions exhibit a similar property wherein by taking two
supercharges to zero simultaneously, it is possible to obtain a supersymmetric solution with finite temperature
and zero entropy [77]. Our result seems to be the five dimensional analogue of this phenomenon. We hope
to explore this further in future work.
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Figure 14. The temperature TL as a function of EL{N2 for a two charged hairy black hole
family with fixed QL{N2 “ 0.1. For reference, the horizontal dashed line marks the temperature
TL “ 1{p2πq and the hairy black hole temperature approaches this value in the BPS limit E “ 2Q.

G “ E ´ TS ´ 2µQ, and the state variables are µ and T . Dominant phases will minimise
the Gibbs free energy at constant µ and T .

Just like for the single charge case (discussed in section 3.8), we find that for the two
charged system the hairy solutions are also never dominant in the grand-canonical ensemble.
We are thus left with discussing the two equal charge BCS black holes, a discussion that is
missing in the literature. We will shortly argue that the two equal charge BCS black holes
exhibit a critical point, similar to that of water!

For each value of µ2 ď 1, there are two BCS black hole solutions at fixed temperature T .
This is illustrated in figure 15 where we plot the temperature of the two equal charge BCS
black holes as a function of their entropy for several fixed values of µ. Using lexicographic
ordering, we have µ “ 0.1, 0.9, 1, 1.1. It is clear that for each value of µ2 ă 1 and
T ą Tminpµq with

Tminpµq “
1´ µ2 ` 3ys`pµq2 `

a

µ4 ` 2µ2rys`pµq
2 ´ 1s ` r1` ys`pµq2s2

4πys`pµq
(4.34a)

and

ys`pµq “

g

f

f

e

a

1` 8µ2 cos
#

1
3 arccos

«

1´ 20µ2 ´ 8µ4

p1` 8µ2q3{2

ff+

´
1
2 ´ µ

2 . (4.34b)

there are two BCS black hole solutions. The one with larger entropy we coin as “large” BCS
black holes (solid blue curves), whereas the one with smaller entropy we label as the “small”
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Figure 15. The temperature TL as a function of entropy S{N2 for two equal charged BCS black
holes with several fixed values of µ. Using lexicographic ordering, we have µ “ 0.1, 0.9, 1, 1.1. The
solid blue (dashed red) line describes large (small) BCS black holes. In the bottom-left plot, the red
dot on the left has S “ 0 and LT “ 1{p2πq.

BCS black holes (dashed red curves). The entropy of the large black hole scales as S{N2 »

π4pLT q3, whereas for the small black hole branch we have S{N2 » p1´ µ2q2{r8π2pLT q3s

(at large T ).
Note that for µ2 ą 1 there is only one black hole solution at fixed T and µ, with

Tmin “ 0 and S{N2 “ 0 (bottom-right panel of figure 15). For µ2 “ 1, we find that
LTmin “ 1{p2πq (bottom-left plot in figure 15). Note that the behaviour when µ2 ą 1 is
markedly different from the single charged BCS black hole. Indeed, in the single charge
case (recall figure 6), two solutions existed for fixed T and µ ą 1, whereas in the two charge
case a single black hole solution exists for fixed µ ą 1 and T ą 0.

The small black hole branch turns out to be locally thermodynamically unstable,
whereas the large black hole branch is locally thermodynamically stable. To see this we
could again study the Hessian of the Gibbs free energy G as a function of T and µ, just
like we did in section 3.8. Here, instead, we will follow [70] where the local thermodynamic
stability of charged black holes in the grand-canonical ensemble was shown to be equivalent
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to the positivity of the specific heat CQ at constant charge Q, defined as

CQ “ T

ˆ

BS

BT

˙

Q

(4.35)

and positivity of the isothermal permittivity (or capacitance) εT defined as

εT “

ˆ

BQ

Bµ

˙

T

. (4.36)

These quantities can be readily computed in terms of rq and y` defined in (4.20) and turn
out to be given by

CQ{N
2 “

π
`

2rq ` y2
`

˘ `

y` ` 4rqy` ` 2y3
`

˘ “

12rq2 ` 4rq
`

1` 3y2
`

˘

` 3y2
`

`

1` y2
`

˘‰

48rq3 ` 28rq2
`

1` 2y2
`

˘

` y2
`

`

2y4
` ` y

2
` ´ 1

˘

` 4rq
`

1` 4y2
` ` 5y4

`

˘ (4.37a)

and

εT {N
2 “

`

2rq ` y2
`

˘ “

48rq3 ` 28rq2 `1` 2y2
`

˘

` y2
`

`

2y4
` ` y

2
` ´ 1

˘

` 4rq
`

1` 4y2
` ` 5y4

`

˘‰

2L
“

16rq3 ` 4rq2
`

1` 6y2
`

˘

` y2
`

`

2y4
` ` y

2
` ´ 1

˘

` 4rqy2
`

`

1` 3y2
`

˘‰ .

(4.37b)
It is a simple exercise to show that the product CQεT is negative on the small BCS black
hole branch, thus indicating a local thermodynamic unstable phase. On the other hand
both CQ and εT are positive on the large BCS black hole branch, thus indicating a local
thermodynamically stable phase. For µ2 ě 1, where only one BCS black hole phase exists
at fixed T and µ, both CQ and εT are positive, thus indicating a local thermodynamically
stable phase.

We now turn to the issue of global thermodynamic stability in the grand-canonical
ensemble, i.e. which phase has lower Gibbs free energy at fixed T and µ. The associated
phase diagram appropriated for this discussion is plotted in figure 16 where we investigate
the phase space of solutions in the grand-canonical ensemble. The light brown region
indicates regions where two charge BCS black holes do not exist neither hairy black holes
(thermal AdS dominates here); the light red region is a region where thermal AdS and large
BCS black holes coexist, but nevertheless thermal AdS dominates; the dot-dashed magenta
line (on the right boundary of the red region) indicates a Hawking-Page transition between
thermal AdS and large BCS; and in the green region large BCS black holes dominate the
ensemble. The blue disks are the onset of scalar condensation of the BCS black hole. The
black disk, where the solid black line and the blue disk onset line merge at TL “ 1{p2πq
and µ “ 1, marks the location of a critical point, similar to the critical point of water
(ending the phase transition between vapor and liquid water). We reiterate that the hairy
black holes numerically constructed in this manuscript never dominate the grand-canonical
ensemble. They exist below the blue disk onset line and µ “ 1.

The existence of a critical point at pLT, µq “ p1{p2πq, 1q — the black point in figure 16
— is intriguing. One might ask what happens to the capacitance εT and specific heat CQ
as one approaches that point along the dot-dashed magenta Hawking-Page transition line.
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Figure 16. Phase space of the two equal charge BCS black holes in the grand-canonical ensemble.
The light brown region indicates regions where only thermal AdS exists; the light red region is a region
where thermal AdS and large BCS black holes coexist, but nevertheless thermal AdS dominates; the
dot-dashed magenta line indicates a Hawking-Page transition; and in the green region large BCS
black holes dominate the ensemble. The blue disks are the onset of scalar condensation. The black
disk at pLT, µq “ p1{p2πq, 1q marks the location of a critical point, similar to the critical point of
water (ending the phase transition between vapor and liquid water). Hairy black holes exist below
the blue disk onset line and above µ “ 1 but they never dominate the garnd-canonical ensemble.

This is similar to finding the critical exponents for water around the critical point ending
the phase transition between vapor and liquid water. For our system we find

CQ » π3
ˆ

LT ´
1

2π

˙2
`O

«

ˆ

LT ´
1

2π

˙3
ff

(4.38a)

and

εT »
1

2πL
ˆ

LT ´
1

2π

˙ `
1
L
`O

«

ˆ

LT ´
1

2π

˙3
ff

. (4.38b)

4.9 Perturbative construction of hairy solitons and black holes

In this section, we describe the basic strategy used to construct the hairy black hole solutions
in perturbation theory with two expansion parameters and using matched asymptotic
expansion. This is largely identical to the one described in section 3.9 for the one-charge
hairy black hole so we shall be brief and only highlight the differences. The equations of
motion (4.2) in the gauge (4.1) are difficult to solve analytically. It is more convenient to
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work in a different gauge defined by

ds2 “ h
2
3

„

´
f

h2 dt2 ` dr2

f
` r2dΩ2

3



,

ϕ1 “
?

6ϕ, ϕ2 “ 0,

A1 “ Atdt, A2 “ Atdt, A3 “ 0,

Φ1 “ Φ:1 “ Φ, Φ2 “ Φ:2 “ Φ, Φ3 “ 0.

(4.39)

where all the quantities above are functions of r. In (4.1), grr and ϕ1 is fixed in terms
of h whereas in this gauge, grr is fixed in terms of f and ϕ1 is an independent field. We
can consistently set A3 “ 0 only in the static case considered here. More generally, A3 is
sourced by the angular momentum of the black holes and is generically non-vanishing for
rotating black holes. The ansatz (4.39) has a residual coordinate freedom r Ñ

?
r2 ` a and

we use this to fix31

ϕ´
1
3 ln h “ OpL4r´4q at large r. (4.40)

Plugging the ansatz (4.39) into the equations (2.11)–(2.13), we find the equations

0 “ h12 ´
3h prh2 ` 3h1q

r
` h2

ˆ

´
3Φ12

Φ2 ` 4 ´ 9ϕ12
˙

´
3A2h4Φ2

f2 , (4.41)

0 “ r2h
4
3 e2ϕA12 `

r2f 1h1

h
` 3rf 1 ´ 4r2h

2
3 e´2ϕ

´

e3ϕ
a

Φ2 ` 4` 1
¯

´ 6

´
r2A2h2Φ2

f
` f

ˆ

´
2r2h12

3h2 ´
r2Φ12

Φ2 ` 4 ´ 3r2ϕ12 ` 6
˙

, (4.42)

0 “ fh´
2
3 e2ϕ `3rhA2 `A1

`

4rh1 ` h
`

6rϕ1 ` 9
˘˘˘

´ 3rAhΦ2, (4.43)

0 “ h
4
3 e2ϕA12 ` 3f 1ϕ1 ` 3f

ˆ

ϕ2 `
3ϕ1

r

˙

` h
2
3

´

2eϕ
a

Φ2 ` 4´ 4e´2ϕ
¯

, (4.44)

0 “ A2h2Φ
f

rpΦ2 ` 4q2 ` Φ1ppΦ2 ` 4qprf 1 ` 3fq ´ rfΦΦ1q

` rfpΦ2 ` 4qΦ2 ` 2rh
2
3 ΦpΦ2 ` 4q

3
2 eϕ. (4.45)

These are 5 coupled differential equations for 5 functions. The equations for h, A, ϕ and
Φ are second order whereas the one for f is first order. The equations can then be solved

31The radial coordinate used here is related to the one in (4.1) by

r2
here “

ż

dpr2
thereq

d

fthereprthereq

gthereprthereq
` a.

The integration constant a is fixed by (4.40). The metric functions are related by

r3
herehhere “ r3

therehthere, r4
herefhere “ r4

therefthere,

pAtqhere “ pAtqthere, Φhere “ Φthere, ϕhere “
1
?

6
ϕthere.

– 60 –



J
H
E
P
0
5
(
2
0
2
3
)
0
5
3

up to 9 integration constants. Four of these are fixed by the AdS boundary conditions at
r “ 8 and five are fixed by imposing regularity in the interior (either on the horizon r “ r`
or the origin r “ 0).

The asymptotic expansion of the fields in this gauge has the form

fprq “
r2

L2 ` 1` 2ch ` cf
L2

r2 `OpL4r´4q,

hprq “ 1` ch
L2

r2 `OpL4r´4q,

Atprq “ µ` cA
L2

r2 `OpL4r´4q,

ϕprq “ ch
L2

3r2 `OpL4r´4q,

Φprq “ ε
L2

r2 `OpL4r´4q.

(4.46)

Using the holographic renormalization procedure described in section 4.2, we find that the
mass and charge is then given by

E “
N2

L

ˆ

ch ´
3
4cf `

3
4c

2
h ´

3
16ε

2
˙

, Q “
N2

L

ˆ

´
1
2cA

˙

. (4.47)

Black hole solutions have a Killing horizon at r “ r` where fpr`q “ Atpr`q “ 0. The
temperature, entropy and chemical potential of the black hole is

T “
f 1pr`q

4πLhpr`q
, S “ N2πr3

`hpr`q, µ “ lim
rÑ8

Atprq. (4.48)

The thermodynamic quantities must satisfy the first law of thermodynamics,
dE “ TdS ` 2µdQ.

In the rest of this section, we will set the AdS radius to unity, L “ 1.

4.9.1 Hairy supersymmetric soliton

Unlike in the single charge case, the two equal charge hairy supersymmetric soliton is not
known exactly and we must construct it in perturbation theory. The process is identical to
the one described in section 3.9.1. We expand the metric functions as

fpr, εq “
8
ÿ

n“0
ε2nfp2nqprq,

hpr, εq “
8
ÿ

n“0
ε2nhp2nqprq,

Atpr, εq “
8
ÿ

n“0
ε2nAp2nqprq,

ϕpr, εq “
8
ÿ

n“0
ε2nϕp2nqprq,

Φpr, εq “
8
ÿ

n“0
ε2n`1Φp2n`1qprq,

(4.49)
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The base solution is taken to be empty AdS,

fp0qprq “ r2 ` 1, hp0qprq “ Ap0qprq “ 1, ϕp0qprq “ 0. (4.50)

The perturbative parameter is the charged scalar condensate VEV ε “ π2

N2 xOΦ y. We
plug (4.49) into equations (4.41)–(4.45) and solve the equations so obtained order-by-order
in ε with AdS boundary conditions at r “ 8 and regularity at r “ 0.

At Opε2n`1q, only (4.45) is non-trivial and the equation takes the form

d

dr

„

r3

1` r2
d

dr
rp1` r2qΦp2n`1qprqs



“ S Φ
p2n`1qprq. (4.51)

where S Φ denotes a source term that is fixed by lower orders in perturbation theory (we will
continue to use this notation for the rest of this section). The equation is easily integrated
and the solution for Φp2n`1qprq up to two integration constants which are fixed using AdS
boundary conditions.

At Opεp2nqq, the differential equations for fp2nq, hp2nq, ϕp2nq and Ap2nq take the form

rr3h1p2nqprqs
1 “ S h

p2nqprq,

rr3rr2fp2nqprqs
1s1 “ S f

p2nqprq ` 16r5hp2nqprq,

rr3A1p2nqprqs
1 “ S A

p2nqprq,
ˆ

1` r2

r
rr2ϕp2nqprqs

1

˙1

“ S ϕ
p2nqprq.

(4.52)

These equations are easily fixed up to 7 integration constants. Two of these are fixed by
the AdS boundary conditions and five are fixed by regularity at r “ 0 (one of these is fixed
at Opε2n`1q).

The explicit construction of the solution to Opε3q is described in appendix C.1 and
the explicit solution to Opε13q can be found in the accompanying Mathematica file in the
supplementary material attached to this paper. It is easily verified that the solution is
supersymmetric and satisfies (4.10) and (4.11). The mass and charge of the soliton is

E “ 2Q “ N2
ˆ

ε2

8 ´
ε4

384 `
11ε8

4423680 ´
47ε12

8918138880 `Opε13q

˙

. (4.53)

4.9.2 Hairy black hole

In this section, we construct analytically the hairy black hole (BH) solution of sections 4.1,
4.2, 4.7 and 4.8 in a double perturbative expansion (in the scalar condensate ε and in the
adimensional horizon radius r`{L) about the base BCS two charge black hole (4.20). This
requires that we also resort to a matched asymptotic expansion analysis with three zones.

But before doing so, we first find heuristically the leading order thermodynamic
properties of such hairy solutions using a simple non-interacting thermodynamic model
that does not make use of the equations of motion.
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Hairy BH as a noninteracting mix of BCS BH and supersymmetric soliton

Alike for the single charge case of section 3.9.2, the leading order thermodynamics of
the two charge hairy BH can be obtained if we take the latter to be a non-interacting
mixture (in thermodynamic equilibrium) of the two charge BCS black hole and the hairy
supersymmetric soliton.

The non-interacting model assumes that the total energy (charge) of the mixture is
simply a linear sum of the bald black hole mass (charge) and soliton mass (charge). Using
the energy and charge (4.21) of the bald BCS BH, we can thus write the energy and charge
of the hairy BH as

E “
N2

4 rrq ` 3prq ` r2
`qp1` rq ` r2

`qs ` Esol ,

Q “
N2

2

b

rqprq ` r2
`qp1` rq ` r2

`q `
1
2Esol ,

(4.54)

where we have also used the fact that the soliton is supersymmetric so Qsol “
1
2Esol.

Naturally, the model further assumes that the BCS BH and soliton are in chemical and
thermal equilibrium and thus the chemical potential and temperature of the hairy BH and
of its BCS and soliton constituents must be the same

µ ” µBCS “ µsol “ 1 ùñ rq “
r`
2

ˆ

b

4` r2
` ´ r`

˙

,

T ” TBCS ùñ T “
r`
2π

ˆ

2` 1
rq ` r2

`

˙

“
1` r`

b

4` r2
` ` r

2
`

π
´
b

4` r2
` ` r`

¯ ,

(4.55)

where we used (4.24) for the chemical potential and temperature of the BCS BH and the
fact that the supersymmetric soliton has µsol “ 1.

Actually, these conditions also follow from requiring that the system distributes the
energy and charge among the two components in such a way that the entropy of the system
is maximized while respecting the first law of thermodynamics dE “ TdS ` 2µdQ. The
entropy of the hairy BH is simply the entropy (4.24) of the BCS BH since the soliton
is horizonless.

Substituting (4.55) into (4.54), we find

E “ N2
ˆ

r2
` `

3r4
`

8 `
r`
8 p3r

2
` ` 4q

b

4` r2
`

˙

` Esol,

Q “
N2r`

4

ˆ

r` `
b

4` r2
`

˙

`
1
2Esol.

(4.56)

Next, we wish to solve for Esol and r` in terms of E and Q. This is difficult to do exactly,
but we can find a solution in a perturbative expansion in x “ 1

N

a

2pE ´ 2Qq,

r` “ x´
3x2

4 `
33x3

32 ´
57x4

32 `
7119x5

2048 ´
3741x6

512 `Opx7q,

Esol “
2Q
N2 ´ x`

x2

4 ´
13x3

32 `
3x4

4 ´
3095x5

2048 `
207x6

64 `Opx7q.

(4.57)
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Since we must have r` ě 0 and Esol ě 0, we find bounds on x

0 ď x ď
2Q
N2 `

Q2

N4 ´
9Q3

4N6 `
41Q4

8N8 ´
757Q5

64N10 `
3543Q6

128N12 `OppQ{N2q8q. (4.58)

We can recast this into a bound for E,

2Q ď E ď 2Q
ˆ

1` Q

N2 `
Q2

N2pN2 ` 2Qq

˙

. (4.59)

The lower bound describes the energy E “ 2Q of the two charge hairy soliton, i.e. the energy
and charge partition of the mixture in which they are all stored in the soliton component.
On the other extremum, the energy and charge partition is such they are stored in the BCS
BH constituent of the mixture. This happens when the hairy BH merges with the BCS
BH at the onset of the instability of the latter. To leading order in a small perturbation
in E and Q this merger/onset is described by the upper bound of (4.59). That is to say,
the lower bound of (4.59) describes the dashed black line (the supersymmetric soliton) in
figure 11, while the upper bound of (4.59) describes, within a good approximation valid for
small E and Q, the solid blue curve of figure 11.

Basic setup for perturbation theory

We are ready to construct analytically the hairy black hole of the two charge truncation
using a double expansion perturbation theory (in the charged scalar condensate amplitude
ε and on the adimensional horizon radius r`{L), supplemented with a matched asymptotic
expansion procedure with three zones (not with the two zones used in the single charge case).

Given the intricacy of the discussion and analysis that will follow it is perhaps better
to first give a panoramic overview of the matched asymptotic expansion procedure we will
employ. To be able to solve analytically the inhomogeneous ODEs of the problem at each
order in perturbation theory, we need to employ a matched asymptotic expansion (at each
order) whereby we divide the outer domain of communications of our hairy black hole into
three regions, namely the near-field, intermediate and far-field regions (we leave the reasons
that justify them for later and next we simply introduce/define them). The far-field region
is the zone r " ?r` where the fields are expanded around global AdS5 and we impose the
asymptotic boundary conditions. The intermediate-region spans the range r` ! r ! L ” 1
where the fields are essentially expanded around a neutral BH (4.69) (with perturbatively
weak Up1q gauge fields) written in isotropic coordinates tτ “ t{

?
r`, y “ r{

?
r`u. Finally,

the near-field region covers the domain r` ď r !
?
r` where the fields are expanded

around the AdS2 ˆ S3 near-horizon geometry (4.73) of the two charge BCS BH (moduli
a conformal factor), we use the radial coordinate z “ r{r` and we impose the horizon
boundary conditions. Restricting the analysis to small black holes that have r`{L ! 1
(which is necessarily the case by construction since this is one of our expansion parameters),
we see that the intermediate and far-field regions overlap in the zone ?r` ! r ! L ” 1,
while the near-field and intermediate regions have an overlapping zone in r` ! r !

?
r`.

In each of the 3 zones we have a ODE system of order 8 which means that, at each
order Opε2nrkq we have 8 integration constants in each of the three zones, i.e. a total
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of 24 integration constants plus the parameter ηp2n,2kq to determine. These are all fixed
by the horizon and asymptotic boundary conditions and by the matching conditions in
the near-intermediate and intermediate-far overlapping zones. It is worth emphasizing
two important aspects of this perturbation method. Firstly, note that when moving
along the farÑintermediateÑnear regions we work successively with the radial coordinates
tru Ñ ty “ r?

r`
u Ñ tz “ y

?
r`
“ r

r`
u, i.e. at each step we absorb a factor of r´1{2

` in the
new radial coordinate. This is keystone of the matched asymptotic expansion. This choice
of radial coordinate redefinitions is not arbitrary; instead it is selected unequivocally by
the system as we shall see later. Secondly, this is also a systematic unambiguous matched
asymptotic expansion in the sense that the only quantities that are taken to be small are the
expansion parameters ε and r`{L of the double perturbation theory and thus, at each order
in the expansion, we keep all contributions in the perturbative equations of motion (with no
single exception). Nowhere at any stage of the analysis do we make any further assumption
neither do we neglect some contribution in the perturbative equations of motion.32

After these introductory remarks, we are ready to initiate the perturbative construction
of the hairy BH solution, we first expand all the fields in the charged scalar condensate
amplitude ε as

fpr, ε, r`q “ fp0qpr, ε, r`q `
8
ÿ

n“1
ε2nfp2nqpr, r`q,

hpr, ε, r`q “ hp0qpr, ε, r`q `
8
ÿ

n“1
ε2nhp2nqpr, r`q,

Atpr, ε, r`q “ Ap0qpr, ε, r`q `
8
ÿ

n“1
ε2nAp2nqpr, r`q,

ϕpr, ε, r`q “ ϕp0qpr, ε, r`q `
8
ÿ

n“1
ε2nϕp2nqpr, r`q,

Φpr, ε, r`q “
8
ÿ

n“0
ε2n`1Φp2n`1qpr, r`q,

(4.60)

where the leading order solution is the two charge BCS black hole of section 4.4,

fp0qpr, ε, r`q “

ˆ

1´
r2
`

r2

˙

pr2 ` 1` 2rqpε, r`q ` r2
`q,

hp0qpr, ε, r`q “ expr3ϕp0qpr, ε, r`qs “ 1` rqpε, r`q

r2 ,

Ap0qpr, ε, r`q “

d

rqpε, r`qp1` rqpε, r`q ` r2
`q

rqpε, r`q ` r2
`

ˆ

1´
rqpε, r`q ` r

2
`

rqpε, r`q ` r2

˙

.

(4.61)

32Note that when studying linear perturbations about black holes there are many studies in the literature,
starting in the 70’s, that use a less systematic matched asymptotic expansion where, besides taking the
expansion parameter to be small, it is also assumed that some other quantity (usually the frequency of the
perturbation mode in horizon radius units) is small and it is argued that some contributions in the near-field
and far-field regions can then be neglected when compared with other terms. In this sense, such an analysis
has approximations that are not implied by the smalleness of the expansion parameter and as such it less
systematic, robust and accurate. Typically, any such problems (although time dependent) can be solved
using the systematic exact approach we employ here after identifying the natural novel radial coordinates of
the system (which absorb powers of r`) in each matched asymptotic region.
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Based on our preliminary analysis in the previous section, we see that in the hairy BH
solution rq “ Opr`q, where q is originally defined in (4.19) and recall that rq “ q{L2 ” q

(since L “ 1 in this section). Consequently, we are invited to write

rqpε, r`q “ r`ηpε, r`q , (4.62)

where ηpε, r`q is also expected to get corrections at each order in perturbation theory (since
it determines the chemical potential, energy and charge of the solution). Thus, we also
expand ηpε, r`q in powers of ε,

ηpε, r`q “
8
ÿ

n“0
ε2nηp2nqpr`q. (4.63)

The perturbative parameter ε is unambiguously defined to be the expectation value of the
dual scalar operator ε “ xOΦ y.

We substitute (4.60) into the equations (4.41)–(4.45) and obtain differential equations
at each order in ε. These are too complicated to solve exactly. We proceed by introducing a
second expansion parameter (the adimensional horizon radius). That is we further expand
the functions in powers of r`,

fp2nqprq “
8
ÿ

k“0
rk`fp2n,kqprq,

hp2nqprq “
8
ÿ

k“0
rk`hp2n,kqprq,

Ap2nqprq “
8
ÿ

k“0
rk`Ap2n,kqprq,

ϕp2nqprq “
8
ÿ

k“0
rk`ϕp2n,kqprq,

Φp2n`1qprq “
8
ÿ

k“0
rk`Φp2n`1,kqprq,

(4.64)

and

ηp2nqpr`q “
8
ÿ

k“0
rk`ηp2n,2kq. (4.65)

Note that in the limit r` Ñ 0, the background two charge BCS black hole (4.61) (with rq “

ηr`) reduces to empty global AdS5. Consequently, the perturbative expansion constructed
here is actually an expansion around vacuum AdS5. This is in stark contrast with the one
charge case where the perturbative expansion was around a singular soliton solution (with
associated issue).

At each order Opεmrn`q, we obtain differential equations for the component functions
which are exactly off the form (4.51) and (4.52) (the soliton solution is also constructed in
a perturbative expansion around global AdS5 so we get the same set of equations). Four of
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the nine integration constants are fixed by AdS boundary conditions at r “ 8. The leftover
constants are to be fixed by matching conditions with the interior region. To define the
latter, start by noting that at small r, all the fields at Oprk`q blow up as 1

r2k which implies
that the expansion (4.64) is really an expansion in r`{r2 and the far-field analysis breaks
down at Op?r`{rq „ 1. Consequently, the expansion is valid only for r " ?r`. We refer
to this region as the far-field region.

This discussion also indicates unequivocally that, to move further down towards the
horizon, we should introduce an intermediate-field region governed by the new radial
coordinate (and time coordinate rescaled to have the same dimensions as y)

y “
r
?
r`

, τ “
t

?
r`
. (4.66)

The intermediate-field region is the region spanned by ?r` ! y ! L?
r`
” 1?

r`
or equivalently

by r` ! r ! L ” 1, for reasons that will be understood soon. To construct the solution
in the intermediate-field region one introduces the intermediate-fields (denoted by the
superscript int) that are now a function of y:

f int
p2nqpy, r`q ” fp2nqpy

?
r`, r`q,

hint
p2nqpy, r`q ” hp2nqpy

?
r`, r`q,

Aint
p2nqpy, r`q ” Ap2nqpy

?
r`, r`q,

ϕint
p2nqpy, r`q ” ϕp2nqpy

?
r`, r`q,

Φint
p2n`1qpy, r`q ” Φp2n`1qpy

?
r`, r`q,

(4.67)

and expand each of these fields in powers of r` keeping y fixed,

f int
p2nqpy, r`q “

8
ÿ

k“0
rk`f

int
p2n,kqpyq,

hint
p2nqpy, r`q “

8
ÿ

k“0
rk`h

int
p2n,kqpyq,

Aint
p2nqpy, r`q “

8
ÿ

k“0
rk`A

int
p2n,kqpyq,

ϕint
p2nqpy, r`q “

8
ÿ

k“0
rk`ϕ

int
p2n,kqpyq,

Φint
p2n`1qpy, r`q “

8
ÿ

k“0
rk`Φint

p2n`1,kqpyq.

(4.68)

In this intermediate region, we are zooming closer to the horizon of the black hole (but
not too close!) and the perturbative expansion is no longer around global AdS5. Indeed,
introducing the intermediate coordinates (4.66) into the two charge BCS background (4.61)
and taking r` Ñ 0, we find that the metric and Up1q gauge fields of the base solution in
this intermediate region are

r´1
` ds2

p0q “ V
´ 4

3
0 r´dτ2 ` V 2

0 pdy2 ` y2dΩ2
3qs, V0pyq “ 1` 1

y2 ,

A1 “ A2 “
?
r`Ap0qdτ ,

(4.69)
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where we have used the fact that η Ñ 1 as r` Ñ 0. So, in the intermediate-field region
the Up1q gauge fields A1 “ A2 have now an explicit factor of ?r` ! 1 (also relative to the
gravitational fields), and thus they are weak (i.e. negligible when compared with the mass
scale set by the horizon radius and thus with the gravitational fields) and are to be seen as
a small perturbation around a neutral bald BH whose geometry is described in isotropic
coordinates by (4.69).

We substitute (4.68) into the equations of motion to obtain differential equations at
each Opεmrk`q. It turns out that the solutions at Opεmrk`q behave as y2k at large y and as
y´2k at small y. Consequently, at small y the expansion (4.68) is really an expansion in
r`{y

2 (and thus breaks dow at Opyq „ Op?r`q), and at large y it is really an expansion in
y2r` (and thus breaks down at Opyq „ O

` 1?
r`

˘

). This justifies why the intermediate-field
perturbative expansion is valid only for ?r` ! y ! 1?

r`
or equivalently when r` ! r ! 1,

as we have been claiming. The intermediate-field region overlaps with the far-field region
when ?r` ! r ! 1 and the intermediate and far solutions may be matched here which
fixes the far-field region integration constants that were not fixed by the asymptotic
boundary conditions.

As stated above, the intermedate-field expansion breaks down at Opyq „ Op?r`q. This
unequivocally suggests that, to move further towards the horizon, we should introduce an
near-field region spanning the zone ?r` ď y ! 1 (i.e. r` ď r !

?
r`, for reasons that will

be understood soon) governed by the new radial and time coordinates

z “
y
?
r`
“

r

r`
, rτ “

?
r`τ “ t. (4.70)

That is to say, the near-field region is described by 1 ď z ! 1?
r`

.
To construct the solution in the near-field region, one introduces the near-fields (denoted

by the superscript near) that are a function of z:

fnear
p2nq pz, r`q ” fp2nqpzr`, r`q,

hnear
p2nqpz, r`q ” hp2nqpzr`, r`q,

Anear
p2nqpz, r`q ” Ap2nqpzr`, r`q,

ϕnear
p2nqpz, r`q ” ϕp2nqpzr`, r`q,

Φnear
p2n`1qpz, r`q ” Φp2n`1qpzr`, r`q,

(4.71)

and expand each of these fields in powers of r`. Looking at the base solution (4.61) in the
limit r` Ñ 0 (keeping z “ r{r` fixed), we find that fp0q, ϕp0q “ Op1q, hp0q “ Op 1

r`
q and

Ap0q “ Opr`q. We must therefore expand the near-field functions in powers of r` as

fnear
p2nq pz, r`q “

8
ÿ

k“0
rk`f

near
p2n,kqpzq,

hnear
p2nqpz, r`q “

1
r`

8
ÿ

k“0
rk`h

near
p2n,kqpzq,

Anear
p2nqpz, r`q “ r`

8
ÿ

k“0
rk`A

near
p2n,kqpzq,
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ϕnear
p2nqpz, r`q “

8
ÿ

k“0
rk`ϕ

near
p2n,kqpzq,

Φnear
p2n`1qpz, r`q “

8
ÿ

k“0
rk`Φnear

p2n`1,kqpzq. (4.72)

In this near-region, we are zooming extremely close to the horizon of the black hole. The
background geometry for the perturbative expansion in this region is given by

ds2 “ r
4
3
`z

2
3

„

´pz2 ´ 1qdrτ2 `
dz2

z2 ´ 1 ` dΩ2
3



, (4.73)

We see that up to the conformal factor this is precisely the AdS2 ˆ S3 geometry which
describes the near-horizon geometry of the two charge BCS black hole.

We substitute (4.72) into the equations of motion and obtain ODEs at each order in
Opεmrk`q. We can solve them analytically, and some of its integration constants are fixed by
regularity on the horizon z “ 1. The leftovers are fixed by the matching conditions with the
intermediate-field region. For that note that at large z, the solutions at Opεmrk`q diverge
as z2k and thus perturbation theory in this near-region breaks down at Opzq „ O

` 1?
r`

˘

which implies that the near-field perturbative expansion is valid only for 1 ď z ! 1?
r`

or
equivalently for r` ď r !

?
r`, as claimed before (4.70). Since our expansion parameter is

r``1, this near-field region overlaps with the intermediate-field region when r` ! r !
?
r`

and the matching of the near-field and intermediate-field solutions provide conditions to fix
the near-field integration constants that were not fixed by the horizon boundary conditions.

The detailed forms of all the differential equations, their solutions and the matching
process is described in appendix C.2. Explicit results are shown in the appendix to
leading order in r`. The full explicit solution can be found in the Mathematica file in the
supplementary material attached to this paper. We can extract all the thermodynamic
quantities from the full solution and they are given by

EL

N2 “

„

r`
L
`
r2
`

L2 `
11r3

`

8L3 `
r4
`

8L4

”

´16 ln r`
L
´ 3

ı

`
r5
`

128L5

”

512 ln2 r`
L
` 768 ln r`

L
` 483

ı

`O
ˆ

r6
`

L6

˙

` ε2
„

1
8 `

r2
`

48L2
`

15´ π2˘`
r3
`

32L3

´

´8 ln r`
L
´ 12ζp3q ` 3π2 ´ 26

¯

`
r4
`

8640L4

´

4320 ln2 r`
L
` 16560 ln r`

L
` 18780ζp3q ´ 87π4 ´ 3405π2

`32980q `O
ˆ

r5
`

L5

˙

` ε4
„

´
1

384 ´
r`

288L `
r2
`

69120L2 p´6965` 300π2

`42π4q `O
ˆ

r3
`

L3

˙

`Opε6q,

QL

N2 “

„

r`
2L `

r2
`

4L2 `
5r3
`

16L3 `
r4
`

2L4

´

´2 ln r`
L
´ 1

¯

`
r5
`

256L5

”

512 ln2 r`
L
` 896 ln r`

L
` 519

ı

`O
ˆ

r6
`

L6

˙
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` ε2
„

1
16 `

r2
`

96L2
`

15´ π2˘`
r3
`

192L3

´

´24 ln r`
L
´ 36ζp3q ` 11π2 ´ 111

¯

`
r4
`

17280L4

´

4320 ln2 r`
L
` 20880 ln r`

L
` 22020ζp3q ´ 87π4 ´ 4170π2

`39550q `O
ˆ

r5
`

L5

˙

` ε4
„

´
1

768 ´
r`

576L `
r2
`

138240L2 p´6965` 300π2

`42π4q `O
ˆ

r3
`

L3

˙

`Opε6q,

µ “

„

1`
r3
`

2L3 `
r4
`

4L4

´

´8 ln r`
L
´ 7

¯

`
r5
`

16L5

´

64 ln2 r`
L
` 160 ln r`

L
` 101

¯

`O
ˆ

r6
`

L6

˙

` ε2
„

r3
`

12L3 `
r4
`

288L4

´

´168 ln r`
L
´ 9π2 ´ 103

¯

`O
ˆ

r5
`

L5

˙

` ε4
„

O
ˆ

r3
`

L3

˙

`Opε6q, (4.74a)

TL “

„

1
2π `

3r`
4πL ´

3r2
`

16πL2 `
r3
`

πL3

´

ln r`
L
` 1

¯

`
r4
`

256πL4

´

´512 ln2 r`
L
´ 1408 ln r`

L
´ 905

¯

`O
ˆ

r5
`

L5

˙

` ε2
„

3r`
32πL `

r2
`

192πL2

´

´96 ln r`
L
´ 3π2 ´ 89

¯

`
r3
`

576πL3

´

720 ln2 r`
L

`2364 ln r`
L
´ 162ζp3q ` 63π2 ` 1366

¯

`O
ˆ

r4
`

L4

˙

` ε4
„

3r`
512πL `O

ˆ

r2
`

L2

˙

`Opε6q,

S

N2 “

„

πr2
`

L2 `
πr3
`

2L3 `
5πr4

`

8L4 ´
πr5
`

2L5

´

4 ln r`
L
` 3

¯

`
πr6
`

128L6

´

512 ln2 r`
L
` 1152 ln r`

L
` 711

¯

`O
ˆ

r7
`

L7

˙

` ε2
„

´
πr3
`

48L3
`

2π2 ´ 27
˘

`
πr4
`

96L4

´

´48 ln r`
L
´ 72ζp3q ` 23π2 ´ 185

¯

´
πr5
`

4320L5

´

´6480 ln2 r`
L
´ 13140 ln r`

L
´ 22830ζp3q ` 87π4 ` 4710π2

´34840q `O
ˆ

r6
`

L6

˙

` ε4
„

πr3
`

5760L3
`

´1070` 50π2 ` 7π4˘``O
ˆ

r4
`

L4

˙

`Opε6q. (4.74b)

Here, we have reinstated the AdS radius L. It can be verified that these quantities satisfies
the first law of thermodynamics, dE “ TdS` 2µdQ, for the two charge system. As it could
not be otherwise, when we set r` “ 0 in these expressions we recover the thermodynamic
expansion (4.53) for the two charge supersymmetric soliton (i.e. the dashed black curve of
figures 11 and 13). On the other hand, when we set ε “ 0, (4.74) yields the scalar onset
curve where the hairy black hole family merges with the two charge BCS black hole family

– 70 –



J
H
E
P
0
5
(
2
0
2
3
)
0
5
3

0.200 0.205 0.210 0.215 0.220

0.16

0.17

0.18

0.19

0.20

0.200 0.205 0.210 0.215 0.220

1.000

1.001

1.002

1.003

1.004

0.200 0.205 0.210 0.215 0.220
0.00

0.02

0.04

0.06

0.08

0.10

Figure 17. Comparison between the analytic expressions given by (4.74) (depicted as the solid
red lines) and the exact numerical results (represented by the blue disks). All data in these three
figures was collected at fixed LQ{N2 “ 0.1. The horizontal dashed line on the left most plot
represents LT “ 1{p2πq.

(i.e. the perturbative description of the solid blue curve of figures 11 and 13). For finite ε
and r`{L, (4.74) gives the perturbative description of the hairy black holes (red surface of
figures 11 and 13 for small E and Q).

In figure 17, we compare the perturbative expressions (4.74) ´ represented by the solid
red curves ´ for the adimensional temperature, chemical potential and entropy with our
exact numerical calculations (described by the blue disks). For small energy and charge,
the agreement is striking and reassures that both our analytic expansions and numerical
methods are working as expected. These plots where generated at fixed LQ{N2 “ 0.1.

As in the single charge case, it can be verified that the exact expressions (4.74) are
consistent with the non-interacting model of 4.9.2 at leading order in the perturbative ex-
pansion. To see this, we first note that the perturbative expansion of x “ 1

N

a

2pEL´ 2QLq
in terms of r` and ε is

x “

„

r`
L
`

3r2
`

4L2 `
11r3

`

32L3 `O
ˆ

r4
`

L4

˙

` ε2
„

r2
`

L2
33´ 2π2

96

`
r3
`

384L3

´

´192 ln r`
L
´ 144ζp3q ` 40π2 ´ 391

¯

`O
ˆ

r4
`

L4

˙

` ε4
„

´
p33´ 2π2q2r3

`

18432L3 `O
ˆ

r4
`

L4

˙

`Opε6q.

(4.75)

Comparing the expansions, we find that x and QL
N2 are perturbatively of the same order.

Using this, we can invert the expansions and determine r` and ε in terms of Q and x,

r`
L
“ x´

3x2

4 `O

˜

x3, x2QL

N2 , x

ˆ

QL

N2

˙2
,

ˆ

QL

N2

˙3
¸

,

ε2 “ 8
ˆ

2QL
N2 ´ x

˙

`
2
3

«

8
ˆ

QL

N2

˙2
´ 8xQL

N2 ` 5x2

ff

`O

˜

x3, x2QL

N2 , x

ˆ

QL

N2

˙2
,

ˆ

QL

N2

˙3
¸

. (4.76)
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These results are consistent with those of the non-interacting model at leading order in
x and Q. The match with the expression for r` in (4.57) is clear. To match to Esol, we
use (4.53) which to leading order in x implies

EsolL

N2 “
2QL
N2 ´ x`

x2

4 `O

˜

x3, x2QL

N2 , x

ˆ

QL

N2

˙2
,

ˆ

QL

N2

˙3
¸

. (4.77)

which matches the expression for Esol in (4.57). Using the fact that r` ě 0 and ε2 ě 0, we
obtain a bound for x

0 ď x ď
2QL
N2 `

ˆ

QL

N2

˙2
´

34
8

ˆ

QL

N2

˙3
`O

˜

ˆ

QL

N2

˙4
¸

, (4.78)

which matches (4.58) to leading order.

5 Summary and outlook

In this manuscript, we have studied Up1q3 gauged supergravity in five dimensions, i.e. for the
truncation of SOp6q gauged supergravity that retains a Up1q3 – SOp6q{Z3

2 gauge symmetry
(associated to the Cartan subgroup of SOp6q) and associated chemical potentials. In the
absence of sources for the scalar and gauge fields, solutions are described by 6 conserved
asymptotic charges — energy E, two angular momenta J1 and J2 and three Up1q charges
Q1, Q2 and Q3. We constructed new static (J1 “ J2 “ 0) hairy solutions in two different
consistent truncations of this theory, adding to the solutions already known for a third
truncation [53–55].

The truncation with a single non-vanishing Up1q charge has Q1 “ Q2 “ 0 and Q3 ” Q.
In the microcanonical ensemble (figures 2 and 3), solutions are parameterized by the energy
E and charge Q and satisfy the BPS bound E ě Q. Previously known solutions in this
truncation were the supersymmetric soliton (E “ Q) and the static single charge BCS
black hole (without charged scalar fields) which exists for all energies E ě Q ě 0. We
have shown that these black holes are unstable to (charged) scalar condensation when
N2

2L ă Q ă E ď EonsetpQq. The endpoint of this instability are the hairy black holes which
have been constructed in this manuscript both numerically and to first order in perturbation
theory. The single charge hairy solutions exist precisely in the region where the single charge
BCS black holes are unstable and are the dominant phase in this region (i.e. have higher
entropy for a given E and Q). In contrast, the hairy black holes are never the dominant
phase in the grand canonical ensemble, where the ensemble is dominated either by the
“large” BCS black holes or by the thermal AdS5 bath of gravitons.

The truncation with two equal non-vanishing Up1q charges has Q1 “ Q2 ” Q and
Q3 “ 0. In the microcanonical ensemble (see figures 11 and 13), solutions are parameterized
by energy E and charge Q and satisfy the BPS bound E ě 2Q. Previously known solution
in this truncation is the (bald) static two-charge BCS black hole family which exists
when E ě EminpQq ą 2Q. Note that in contrast to the single charge case, the regime
of existence of two charge BCS black holes in an E ´ Q phase diagram does extend up
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to the BPS line (see figure 11). This truncation also admits a supersymmetric solution
(E “ 2Q) which we constructed numerically and in perturbation theory. We have shown
that the two charge BCS black holes are unstable to (charged) scalar condensation when
EminpQq ď E ď EonsetpQq and as in the single charge case, the hairy black holes constructed
in this manuscript should be the endpoint of the instability. The hairy solutions exist in
the region 2Q ď E ď EonsetpQq. Note that this region overlaps with the instability region
of the two charge BCS black holes but (unlike BCS) extends all the way up to the BPS
bound (see figure 11). In the region where they coexist, the hairy black holes are always
the dominant phase over the two BCS black holes (i.e. they have higher entropy for given
E and Q). In the grand canonical ensemble, the hairy black holes are never dominant.
the grand-canonical ensemble is dominated either by the “large” BCS black holes or by
thermal AdS5.

In addition to the phase diagrams of the two SOp6q truncations studied in this
manuscript, we also know the phase diagram of the truncation with three equal non-
vanishing Up1q charges with has Q1 “ Q2 “ Q3 ” Q [53–55]. The (static) microcanonical
phase diagram of the equal three charge truncation is qualitatively very similar to the phase
diagram of the two equal charge case of figures 11 and 13 (so we crudely borrow these figures
to complement the summary of the results of [53, 54] that we give next). Namely, static
three charge BCS solutions (which are literally described by the Reissner-Nordström´AdS5
black hole since in this case the neutral scalars ϕ1,2 vanish) exist for E,Q ě 0 in the E ´Q
phase diagram all the way up to the extremal regular configuration where their temperature
vanishes (the equivalent of the black solid thin line in figure 11). Three charge BCS black
holes are however unstable to charged scalar condensation of Φ1 “ Φ2 “ Φ3 when they are
in between this extremal configuration and the instability onset curve (the equivalent of the
solid blue line in figure 11). Three charge hairy black holes merge with the BCS black hole
along this onset curve and exist all the way up to the supersymmetric line E “ 3Q (the
equivalent of the black dashed curve in figure 11). This BPS line E “ 3Q, in its totality,
also describes collectively the four hairy supersymmetric solitons of the theory (here, the
three equal charge case differs significantly from the two equal charge truncation since the
latter has a single regular soliton). In short, for the three charge truncation, the system has
a regular supersymmetric soliton family that has a Chandrasekhar limit in the sense that it
exists from E “ Q “ 0 all the way up to a critical E “ Q “ Qc ‰ 0 (where the central scalar
density blows up). Then there is a singular supersymmetric soliton family that departs from
E “ Q “ Qc and extends all the way to E “ QÑ8 (for a detailed account of the solitons
of this truncation, including the other two, see discussion below (3.25)).33 When the hairy
black holes terminate on the BPS line below the critical point Qc they do so smoothly and
at T Ñ 0, while when they terminate at the BPS line above Qc they do approach a singular
configuration with T Ñ8. Altogether, the three charge hairy black holes are described by
surfaces similar to those displayed in the red region/surface of figures 11 and 13. Three
charge hairy black holes dominate the microcanonical ensemble; in particular for values

33Although we have not attempted to prove this, we believe that whenever the three charges Q1, Q2, Q3

are non-zero, the solitonic spectra of the system should be similar to the three charge case reviewed
here (3.25). However, when at least one of the Up1q charges vanishes, the regular solitons of the system have
no Chandrasekhar limit, i.e. they extend to arbitrarly large energy and charges obeying the BPS relation.
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of E,Q where they coexist with the BCS black hole, hairy black holes always have higher
entropy than BCS (very much like for the single charge and two equal charge truncations
studied in this manuscript). Finally, for the three charge truncation the hairy black holes
also never dominate the grand-canonical ensemble (alike for the two truncations studied
here). The phase diagram in this ensemble is qualitatively similar to the one for the two
charge case but with a fundamental difference: the analogue of the point of figure 16 where
the three curves meet is at T “ 0 (and µ “ 1).

Altogether, the supergravity solutions that we found and those of [53–55], permit a
good understanding of the full phase space of hairy solutions with three arbitrary Up1q
charges Q1,2,3. Via the original AdS5/CFT4 correspondence [1–4], this phase diagram of
hairy black holes is dual to the phase space o thermal states at finite chemical potential of
N “ 4. In future work [59], we plan to extend the present study of the supergravity system
to include rotation J1, J2 along the two independent rotation planes of AdS5 with SOp4q
symmetry. In the dual CFT, these will describe thermal states at finite chemical potential
with weights JL ” J1 ` J2 and JR ” J1 ´ J2 of SOp4q „ SUp2qL ˆ SUp2qR [26].

Our discovery of new solutions to gauged supergravity with OpN2q entropy and which
are dominant in the microcanonical ensemble is particularly fascinating in light of recent
developments in the microstate counting of the entropy of supersymmetric black holes via
a twisted index computation on the CFT side (see [58] and references therein). These
calculations have reproduced exactly the entropy of the general supersymmetric Kunduri-
Lucietti-Reall black holes [26]. The hairy black holes constructed in this manuscript do
not have a (smooth) BPS limit with OpN2q entropy. However, we expect such a limit to
exist when rotations are turned on J1, J2 ‰ 0 and give rise to new supersymmetric hairy
black holes. Further, we also expect such black holes to dominate (in the microcanonical
ensemble) over their bald counterparts in the region of phase space where they overlap.
Existence of such dominant hairy black hole solutions has already been established in the
equal charge and equal angular momentum case Q1 “ Q2 “ Q3, J1 “ J2 [55] and it is
important to explore the phase space of such solutions in the single and two-charge case
as well [59].

Additionally, given the new machinery that has been established in the microstate
counting of supersymmetric black holes, it is important to understand the interpretation of
such new hairy solutions on the CFT side. Indeed, a key puzzle here is that since the hairy
solutions are often the dominant phase in the regions of phase space where they exist, the
index should be computing the entropy of these black holes and not the bald ones. A second
related puzzle is regarding the existence of supersymmetric 1{8-BPS black holes. It has long
been established that in the absence of charged scalar hair (ΦK “ 0), all supersymmetric
black holes are 1{16-BPS. However, recent computations of a twisted SYM index in the
so-called Macdonald limit (Q3 ` J2 “ 0) suggest an OpN2q entropy for 1{8-BPS states [78].
It is unclear what solutions this index corresponds to in gauged supergravity. We leave such
explorations for future work.
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A Holographic renormalization of Up1q3 gauged supergravity

In this appendix, we present all the details of holographic renormalization (following [60, 61]
for a similar theory; see convention discussion of footnote 17) for Up1q3 gauged supergravity,
i.e. for the truncation of SOp6q gauged supergravity that retains a Up1q3 – SOp6q{Z3

2 gauge
symmetry (associated to the Cartan subgroup of SOp6q) with associated gauge fields tAK

p1qu.
We applied the results of this appendix in sections 3.2 and 4.2 (among others). Up1q3 gauged
supergravity is described by the bulk action (2.8), which we can rewrite in differential
form as

S “
1

16πG5

ż

M

„

pR´ V q ‹ 1´ 1
2

3
ÿ

K“1

1
X2
K

FK ^ ‹FK ´
1
2

2
ÿ

r“1
dϕr ^ ‹dϕr

´
1
8

3
ÿ

K“1

ˆ

DΦK ^ ‹DΦ:K ´
dλK ^ ‹dλK

4p4` λKq

˙

´
1
6

3
ÿ

I,J,K“1
CIJKF

I ^ F J ^AK


` Sbdy,

(A.1)

where tI, J,Ku “ 1, 2, 3; tr, su “ 1, 2, ‹ is the Hodge dual and d is the exterior derivative
(we use the differential form conventions listed in appendix of [62]), Sbdy is a boundary
term that we add to (2.8), and

FK “ dAK , DΦK “ dΦK ´ i
2
L
AKΦK , λK “ |ΦK |

2, CIJK “ |εIJK |. (A.2)

The scalar potential V is

V “
1

2L2

ÿ

I

ˆ

X2
I λI ´

ÿ

JK

CIJKXJXK

a

4` λJ
a

4` λK
˙

. (A.3)

where

X1 “ exp
ˆ

´
ϕ1
?

6
´
ϕ2
?

2

˙

,

X2 “ exp
ˆ

´
ϕ1
?

6
`
ϕ2
?

2

˙

,

X3 “ exp
˜

c

2
3ϕ1

¸

.

(A.4)
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Again, note that the action (A.1) is completely equivalent to (2.8) up to boundary terms. The
boundary action Sbdy will be determined via holographic renormalization in this appendix.

Varying the action (A.1) and keeping careful track of the boundary terms, we find

δS “
1

16πG5

ż

M
pEoMqδpfieldsq ` 1

16πG5

ż

BM
rΘGRpδq `ΘM pδqs ` δSbdy. (A.5)

where the equations of motion (EoM) are given explicitly in (2.11)–(2.13). The boundary
terms in δSbulk are the integral (

ş

BM) over the symplectic potential current density Θ which
has the form
r‹ΘGRpδqs

a “ ∇bδg
ab ´ gbc∇aδgbc,

‹ΘM pδq “
3
ÿ

K“1
‹

„

1
X2
K

‹ FK ^ δAK `
1
3

3
ÿ

I,J“1
CIJKF

I ^AJ ^ δAK


`

2
ÿ

r“1
dϕrδϕr `

1
8

3
ÿ

K“1

„

δΦ:KDδΦK ` δΦKDΦ:K ´
δλK

2p4` λKq
dλK



,

(A.6)

In this manuscript, we impose Dirichlet boundary conditions on all the fields. This implies
that in the variational principle (A.5), we require

δΦK |BM “ δϕr|BM “ δAK |BM “ δh|BM “ 0 , (A.7)

where h is the induced metric on BM. It is clear that under these conditions ΘM vanishes
identically. However, ΘGR does not vanish since it depends both on δh (which vanishes
under Dirichlet boundary conditions) and its normal derivative £nδh. This can be resolved
by adding to this action the famous Gibbons-Hawking-York boundary term namely

Sbdy “
1

16πG5

ż

BM
d4y
?
´hp2Kq ` Sct, (A.8)

where K is the extrinsic scalar curvature on BM and yµ are intrinsic coordinates on BM.
The proof that this boundary term precisely cancels the contribution of ΘGR is standard
and will not be repeated here.

Of particular interest to us is the counterterm action Sct. This term is needed to make
the on-shell action finite. However, it must not affect the cancellation of the boundary
terms in the variational principle so it must satisfy

δSct|Dirichlet b.c. “ 0 (A.9)

It follows that Sct can depend only on quantities which are intrinsically defined on BM.
The precise counterterm action needed can be determined via the method of holographic
renormalization [61].

A.1 Asymptotic expansions

To renormalize the on-shell action, we need to determine the asymptotic structure of
solutions in the theory. To do this, it is convenient to work in Fefferman-Graham (FG)
gauge where the metric and gauge fields take the form

ds2 “
L2

z2 dz2 ` gµνpz, yqdyµdyν , AK “ AKµ pz, yqdyµ. (A.10)
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To regulate the divergences which arise due to the infinite volume of AdS, we set the
boundary at z “ ε. Once all the divergences are cancelled, we will take ε Ñ 0. The
outward-pointing unit normal vector on BM is

n “ ´
1
L
zBz. (A.11)

In these coordinates, the induced metric (first fundamental form) on BM is hµνpyq “
gµνpε, yq. The extrinsic curvature (second fundamental form) on BM is given by

Kµν “ ∇µnν |BM “ ´
1

2LεBεgµν .
(A.12)

In Up1q3 gauged supergravity, all five scalar fields have m2L2 “ ´4. It follows that the
asymptotic behavior (near z “ 0) of the scalars is34

ΦKpz, yq “
z2

L2

´

rΦp0qK pyq ` Φp0qK pyq ln z

L

¯

`O
ˆ

z4

L4

˙

,

ϕrpz, yq “
z2

L2

´

rϕp0qr pyq ` ϕ
p0q
r pyq ln z

L

¯

`O
ˆ

z4

L4

˙

.

(A.13)

Φp0qK and ϕp0qr are the sources (free data) for the scalar fields. As we will see shortly, under
the AdS/CFT dictionary the sources couple to the dual operators in the CFT. In the main
text of this manuscript, we have set these sources to zero but in this section, we consider
the most general case.

The gauge field is massless and admits the following asymptotic expansion35

AKµ pz, xq “ Ap0qKµ pyq `
z2

L2

”

Ap2qKµ pyq ` rAp2qKµ pyq ln z

L

ı

`O
ˆ

z4

L4

˙

, (A.14)

The scalar and gauge fields source the metric through Einstein’s equations and the induced
metric hµν has the following asymptotic expansion36

gµνpz, xq “
L2

z2 g
p0q
µν pxq ` g

p2q
µν pxq `

z2

L2

”

gp4qµν pxq ` rgp4qµν pxq ln z

L
` r

rgp4qµν pxq ln2 z

L

ı

`O
ˆ

z4

L4

˙

,

(A.15)

We now substitute these expansions (A.13)–(A.15) into the equations of motion (2.11)–
(2.13) and solve order-by-order in small z{L. This is a tedious exercise and we only reproduce

34In AdSd`1, a scalar field with mass m2 has the behaviour φ “ zd´∆
p¨ ¨ ¨ q ` z∆

p¨ ¨ ¨ q near z “ 0 where
∆ “ d

2 `

b

d2
4 `m

2L2 is the dimension of the dual operator. There are additional log terms in the expansion
if ∆ P d

2 ` Z which is the case here.
35In AdSd`1, a vector field with mass m2 has the behaviour Aµ “ zd´1´∆

p¨ ¨ ¨ q ` z∆´1
p¨ ¨ ¨ q near z “ 0

where ∆ “ d
2 `

b

p d´2
2 q2 `m2L2 is the dimension of the dual operator. There are additional log terms

when ∆ “ d
2 ` Z. In the case of a massless gauge field, m2

“ 0 ùñ ∆ “ d´ 1 and the dual operator is a
conserved current.

36Note that the definitions of FG coordinate z in the main text and in this appendix differ slightly by a
power of L: compare (3.8) or (4.7) with (A.10) and (A.15). The two agree when we set L ” 1.
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the final results here. At each order in z, we obtain algebraic equations which fixes most
of the coefficients of the fields in the small z expansion in terms of the sources Φp0qK , ϕp0qr ,
A
p0qK
µ and gp0qµν .

More precisely, rΦp0qK and rϕ
p0q
r are not fixed by all subleading terms in the expansion are.

Similarly, Ap2qKµ is not fixed but rA
p2qK
µ and all further subleading terms in the expansion are,

rAp2qKµ “ ´
L2

2 p∇
p0qqνF p0qKνµ , F p0qK “ dAp0qK . (A.16)

Here, ∇p0q is the covariant derivative w.r.t. gp0qµν . The equations of motion also fix the
divergence of Ap2qKµ ,

p∇p0qqµAp2qKµ “ ´
L

16pε
p0qqµνρσ

ÿ

IJ

CIJKF
p0qI
µν F p0qJρσ ´

1
4L Im

”

Φp0q:K
rΦp0qK

ı

. (A.17)

Here and in the rest of this appendix, Greek indices are raised and lowered w.r.t. the
metric gp0qµν .

Finally all coefficients in the metric expansion apart from g
p4q
µν are fixed by the equations

of motion as

gp2qµν “ ´
L2

2

ˆ

Rp0qµν ´
1
6g
p0q
µνR

p0q
˙

,

rgp4qµν “
1
4pT

p0qgrav
µν ` T p0qgauge

µν q ´
1
24g

p0q
µν

„ 3
ÿ

K“1
Re

”

pΦp0qK q
:
rΦp0qK

ı

` 4
2
ÿ

r“1
ϕp0qr rϕp0qr



,

r

rgp4qµν “ ´
1
48g

p0q
µν

„ 3
ÿ

K“1
|Φp0qK |

2 ` 4
2
ÿ

r“1
pϕp0qr q

2


.

(A.18)

Here, T p0qgauge
µν and T p0qgrav

µν are the gauge and gravity anomaly stress tensors respectively,

T p0qgrav
µν “ L4

„

Rp0qµρνσpR
p0qqρσ ´

1
4g
p0q
µν pR

p0q
ρσ q

2 ´
1
3R

p0qpRp0qqTF
µν

´
1
6p∇

p0q
µ ∇p0q

ν Rp0qqTF `
1
2p∇

p0qq2pRp0qqTF
µν



,

T p0qgauge
µν “ ´L2

3
ÿ

K“1

„

F p0qKµρ pF p0qKqν
ρ ´

1
4g
p0q
µν pF

p0qK
ρσ q2



.

(A.19)

The superscript TF denotes the trace-free part of the tensor. Both of these stress tensors
can be obtained by varying an action

T p0qgrav
µν ` T p0qgauge

µν “
2

a

´gp0q
δ

δpgp0qqµν

ż

BM
d4y

b

´gp0q

ˆ

„

L4

4

ˆ

pRp0qµν q
2 ´

1
3pR

p0qq2
˙

´
L2

4

3
ÿ

K“1
pF p0qKµν q2



.

(A.20)

This action is Weyl invariant so both the stress tensors are traceless (this can be checked
explicitly as well). This also implies that T p0qgrav is conserved whereas T p0qgauge satisfies

p∇p0qqνT p0qgauge
µν “ ´L2

3
ÿ

K“1
F p0qKµρ ∇p0q

ν pF
p0qKqνρ. (A.21)
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In addition to (A.18), the equations of motion also fix the trace and divergence of gp4q.

trrgp4qs “ 1
4pg

p2q
µν q

2 `
L2

48

3
ÿ

K“1
pF p0qKµν q2

´
1
96

«

3
ÿ

K“1

´

|Φp0qK |
2 ` 8|rΦp0qK |

2
¯

` 4
2
ÿ

r“1

´

pϕp0qr q
2 ` 8prϕp0qr q2

¯

ff

,

p∇p0qqνpgp4qqTF
µν “ p∇p0qqν

„

1
2 rpg

p0qq2sTF
µν ´

1
4trrg

p2qspgp2qqTF
µν



´
1
16Bµ

„

L4

4

˜

Rp0qµν q
2 ´

1
3pR

p0qq2
˙

´
L4

4

3
ÿ

K“1
pF p0qKρσ q2

ff

´
1

128Bµ
„ 3
ÿ

K“1
|Φp0qK |

2 ` 4
2
ÿ

r“1
pϕp0qr q

2


`
1
8

3
ÿ

K“1
F p0qKµν

”

4pAp2qKqν ` p rAp2qKqν
ı

´
1
32

«

3
ÿ

K“1
Re

”

prΦp0qK q
:
ÐÝÑ
Dp0qµ Φp0qK

ı

` 4
2
ÿ

r“1
rϕp0qr

ÐÑ
Bµϕ

p0q
r

ff

.

(A.22)

A.2 Counterterm action

As mentioned previously, the counterterm action must cancel all the divergences in the
on-shell action and at the same time not spoil the variational principle. This is done by
taking the counterterm action to depend only on quantities which are intrinsically defined
on BM. In the present case, it turns out that the following counterterm action does the job:

Sct “
1

16πG5

ż

BM
d4y
?
´h

«

´
6
L
´
L

2 R´
1

4L

ˆ

1` 1
2 log ε

L

˙ˆ 3
ÿ

K“1
|ΦK |

2 ` 4
2
ÿ

r“1
ϕ2
r

˙

`
1
L

log ε

L

„

L4

4

ˆ

pRµνq
2 ´

1
3R2

˙

´
L2

4

3
ÿ

K“1
pFKµνq

2


ff

,

(A.23)

where Rµν is the Ricci tensor of BM and Fµν is the induced field strength on BM. Note
that Sct explicitly depends on log ε

L (note that the boundary is located at z “ ε) which is
not covariant. The presence of such terms breaks conformal symmetry and are responsible
for the conformal anomaly.

In this section, instead of showing that the full on-shell action is finite with this choice
of counterterm action, we will show that the on-shell variation is finite. Importantly, in this
calculation, we are no longer imposing Dirichlet boundary conditions on the variations and
all divergences must cancel out for all on-shell variations.

Varying the action and imposing equations of motion (and not imposing Dirichlet
boundary conditions), we find

δSon-shell “ δSgrav ` δSgauge ` δSscalar, (A.24)
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where

δSgrav “
1

16πG5

ż

BM
d4y
?
´hδhµν

ˆ

Kµν ´ hµνK `
3
L
hµν ´

L

2 Rµν `
L

4 hµνR

`
1

8Lhµν
„

1` 1
2 log ε

L

„ 3
ÿ

K“1
|ΦK |

2 ` 4
2
ÿ

r“1
ϕ2
r



`
1

2L log ε

L

“

T grav
µν ` T gauge

µν

‰

˙

,

δSgauge “
1

16πG5

ż

BM
d4y
?
´h

3
ÿ

K“1

„ˆ

1
X2
K

pFKqabnb `
1
6

3
ÿ

I,J“1
CIJKε

abcdeF IbcA
J
dne

˙

δAKa

` L log ε

L
∇µpF

KqµνδAKν



,

δSscalar “
1

16πG5

ż

BM
d4y
?
´h

2
ÿ

r“1

„

´

ˆ

naBa `
2
L

˙

ϕr ´
ϕr

L log ε
L



δϕr

`
1

16πG5

ż

BM
d4y
?
´h

3
ÿ

K“1

„

´
1
4Re

„

δΦ:K
ˆ

naDa `
2
L

˙

ΦK



`

ˆ

naBaλK
16p4` λKq

´
1

8L log ε
L

˙

δλK



. (A.25)

Plugging in the asymptotic expansions (A.13)–(A.15) into the above, one can explicitly
check that all the divergences cancel on-shell and each of these variations are independently
finite in the εÑ 0 limit. Explicitly, these limits work out to be

δSscalar “
1

16πG5

ż

BM
d4y

b

´gp0q
ˆ

´
1

4L

„ 3
ÿ

K“1
Re

´

rΦp0q:K δΦp0qK
¯

` 4
2
ÿ

r“1
rϕp0qr δϕp0qr

˙

,

δSgauge “
1

16πG5

ż

BM
d4y

b

´gp0q
3
ÿ

K“1

„

1
L

”

2pAp2qKqµ ` p rAp2qKqµ
ı

´
1
6

3
ÿ

I,J“1
CIJKpε

p0qqµνρσF p0qIνρ Ap0qJσ



δAp0qKµ ,

δSgrav “
1
2

ż

d4y

b

´gp0qx T µν yδgp0qµν , (A.26)

where

x Tµν y “ ´ lim
zÑ0

1
8πG5

L2

z2

„

Kµν ´ hµνK `
3
L
hµν ´

L

2 Rµν `
L

4 hµνR

`
1

8Lhµν
„

1` 1
2 log ε

L

„ 3
ÿ

K“1
|ΦK |

2 ` 4
2
ÿ

r“1
ϕ2
r



`
1

2L log ε

L

“

T grav
µν ` T gauge

µν

‰



“
1

4πG5L

„

pgp4qqTF
µν `

3
16T

p0qgrav
µν `

1
16T

p0qgauge
µν ´

1
2ppg

p2qq2qTF
µν

`
1
4trrg

p2qspgp2qqTF
µν ´ g

p0q
µν

ˆ

1
16trrg

p2qs2 ´
1
16trrpg

p2qq2s `
L2

64

3
ÿ

K“1
pF p0qKµν q2

´
1

128

„ 3
ÿ

K“1
|Φp0qK |

2 ` 4
2
ÿ

r“1
pϕp0qr q

2


`
1
32

„ 3
ÿ

K“1
Re

´

rΦp0q:K Φp0qK
¯

` 4
2
ÿ

r“1
rϕp0qr ϕp0qr

˙

.

(A.27)
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A.3 VEV of dual CFT operators

AdS/CFT duality conjectures that the bulk partition function with boundary conditions
determined by the sources (classically, this is given by the on-shell action) is equal to the
CFT partition function where sources couple to their dual operators,

e
iSon-shell

”

gp0q,Ap0qK ,Φp0qK ,ϕ
p0q
r

ı

“

C

e
i
ş

d4y
?
´gp0q

«

3
ř

K“1
A
p0qK
µ J µ

K´
1

64L2

3
ř

K“1

ˆ

Φp0q:K OΦK`Φp0qK O
Φ:
K

˙

´ 1
8L2

2
ř

r“1
ϕ
p0q
r Oϕr

ff

G

CFT

.

(A.28)

The metric source gp0q describes the background geometry to which the CFT couples. Note
also the unusual normalization for the scalar operators.

Differentiating both sides of (A.28) w.r.t. the sources, we can find the VEV of all
the operators

xJ µ
KyCFT “

1
a

´gp0q
δ

δA
p0qK
µ

Son-shell

”

gp0q, Ap0qK ,Φp0qK , ϕp0qr

ı

,

xOϕryCFT “ ´8L2 1
a

´gp0q
δ

δϕ
p0q
r

Son-shell

”

gp0q, Ap0qK ,Φp0qK , ϕp0qr

ı

,

xOΦK yCFT “ ´64L2 1
a

´gp0q
δ

δΦp0q:K

Son-shell

”

gp0q, Ap0qK ,Φp0qK , ϕp0qr

ı

,

A

OΦ:K

E

CFT
“ ´64L2 1

a

´gp0q
δ

δΦp0qK
Son-shell

”

gp0q, Ap0qK ,Φp0qK , ϕp0qr

ı

.

(A.29)

Using (A.26), we can determine the VEV for the Up1q currents as

xJ µ
KyCFT “

1
16πG5L

„

2pAp2qKqµ ` p rAp2qKqµ ´ L

6

3
ÿ

I,J“1
CIJKpε

p0qqµνρσF p0qIνρ Ap0qJσ



.

(A.30)

The equations of motion (A.17) imply a divergence constraint for the current

∇p0q
µ xJ µ

KyCFT “ ´
1

32πG5L2

„

Im
”

Φp0q:K
rΦp0qK

ı

`
5L2

12 pε
p0qqµνρσ

ÿ

IJ

CIJKF
p0qI
µν F p0qJρσ



.

(A.31)

The VEVs of the scalar operators are

xOϕryCFT “
L

2πG5
rϕp0qr ,

xOΦK yCFT “
L

2πG5
rΦp0qK ,

A

OΦ:K

E

CFT
“

L

2πG5
rΦp0q:K .

(A.32)
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Finally, differentiating the partition function w.r.t. the background metric gp0q we
obtain the VEV of the CFT stress tensor (a.k.a. the holographic stress tensor),

x Tµν yCFT “
1

4πG5L

„

pgp4qqTF
µν `

3
16T

p0qgrav
µν `

1
16T

p0qgauge
µν ´

1
2ppg

p2qq2qTF
µν

`
1
4trrg

p2qspgp2qqTF
µν ´ g

p0q
µν

ˆ

1
16trrg

p2qs2 ´
1
16trrpg

p2q
ρσ q

2s

`
L2

64

3
ÿ

K“1
pF p0qKρσ q2 ´

1
128

„ 3
ÿ

K“1
|Φp0qK |

2 ` 4
2
ÿ

r“1
pϕp0qr q

2


`
1
32

„ 3
ÿ

K“1
Re

´

rΦp0q:K Φp0qK
¯

` 4
2
ÿ

r“1
rϕp0qr ϕp0qr

˙

.

(A.33)

Using (A.22), we can fix the divergence and trace of the stress tensor

p∇p0qqνx Tµν yCFT “
1

16πG5L

„ 3
ÿ

K“1
F p0qKµν

”

2pAp2qKqν ` p rAp2qKqν
ı

´
1
4

3
ÿ

K“1
Re

”

prΦp0qK q
:Dp0qµ Φp0qK

ı

´

2
ÿ

r“1
rϕp0qr Bµϕ

p0q
r



,

(A.34)

and

x T µ
µ yCFT “

L3

64πG5

„

pRp0qµν q
2 ´

1
3pR

p0qq2 ´
1
L2

3
ÿ

K“1
pF p0qKµν q2



´
1

32πG5L

„

1
4

3
ÿ

K“1
|Φp0qK |

2 `
2
ÿ

r“1
pϕp0qr q

2


`
1

32πG5L

„ 3
ÿ

K“1
Re

´

rΦp0q:K Φp0qK
¯

` 4
2
ÿ

r“1
rϕp0qr ϕp0qr



.

(A.35)

The last equation is precisely the conformal anomaly in a holographic CFT (with a “ c).
This receives contributions from three sources — one from the background metric, one from
the gauge field and one from the scalar fields. The latter is due to the fact that the dual
operators have dimension ∆ “ 2 so their squares have dimension ∆ “ 4`Op1{N2q. In this
manuscript, we have turned off all the sources and the background geometry is Rˆ S3 so
all the anomaly contributions vanish and the stress tensor is exactly conserved. That is
to say, with vanishing sources and the holographic dictionary entry (2.3), (A.30)–(A.32)
and (A.33)–(A.35) reduce to (3.13), (3.12) and (3.14)–(3.15) in the single charge truncation
of section 3.2, and also give the VEVs of the two charge truncation of section 4.2.

B Perturbative construction of hairy solitons and black holes with
A1 “ A2 ” 0, A3 ” A

In this appendix, we present the explicit solutions for the supersymmetric soliton and hairy
black holes obtained in perturbation theory for the single charge truncation. Additional
details of the construction which are omitted in section 3.9 of the main text are also
presented here.
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B.1 Hairy supersymmetric soliton

Recall that we initiate the perturbative construction with the field expansion (3.52). The
equation for the scalar field Φp1q at Opεq is given by

d

dr

„

r3

1` r2
d

dr

“

p1` r2qΦp1qprq
‰



“ 0. (B.1)

The general solution to this equation is

Φp1qprq “ c1
1

1` r2 ` c2
2r2 ln r ´ 1
r2p1` r2q

. (B.2)

c1 (c2) denotes the source (response) for the dual scalar operator OΦ. The AdS boundary
condition (3.54) implies that c1 “ 1 and c2 “ 0.

At Opε2q, the differential equations for ϕp2q, Ap2q, hp2q and fp2q take the form

d

dr

„

1` r2

r

d

dr

“

r2ϕp2qprq
‰



“
r

6p1` r2q2
,

d

dr

„

r3 d

dr
Ap2qprq



“
r3

p1` r2q3
,

d

dr

„

r3 d

dr
hp2qprq



“ ´
r3

p1` r2q3
,

d

dr

“

r2fp2qprq
‰

“
r3

3p1` r2q2
´

1
3r

8 d

dr
rr´4hp2qprqs.

(B.3)

These equations are solved to

ϕp2qprq “
c3
r2 ` c4

lnp1` r2q

r2 ´
1

24p1` r2q
,

Ap2qprq “ µp2q `
c5
r2 ´

1
8p1` r2q

,

hp2qprq “ c6 `
c7
r2 `

1
8p1` r2q

,

fp2qprq “
c8
r2 `

c6r
2

3 ` c7 `
r2

8p1` r2q
.

(B.4)

AdS boundary conditions (3.49) fixes c4 “ c6 “ 0 and regularity at r “ 0 fixes c3 “ c5 “

c7 “ c8 “ 0. The integration constant µp2q is unfixed at this order. It will be fixed by
imposing regularity at r “ 0 at Opε3q.

At Opε3q, the equation for Φp3q is

d

dr

„

r3

1` r2
d

dr

“

p1` r2qΦp3qprq
‰



“ ´
r3p2´ 5r2 ` r4q

2p1` r2q5
´

8µp2qr3

p1` r2q3
. (B.5)

Its solution is

Φp3qprq “ c9
1

1` r2 ` c10
2r2 ln r ´ 1
r2p1` r2q

´
r2

8p1` r2q3
´ µp2q

1` r2 lnp1` 1
r2 q

r2p1` r2q
. (B.6)

The AdS boundary condition (3.54) fixes c9 “ c10 “ 0 and regularity at r “ 0 fixes µp2q “ 0.
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Proceeding in this fashion, we can construct the solution to all orders in ε. The explicit
solution to Opε15q can be found in the Mathematica file in the supplementary material
attached to this paper.

B.2 Hairy black hole at Opεq

Recall that we initiate the black hole double expansion perturbative construction with the
field expansion (3.63), (3.65) and (3.68). At Opr0

`q, the differential equation for Φp1,0qprq is
given by

d

dr

„

r3

1` 2rqp0,0q ` r2
d

dr
rp1` 2rqp0,0q ` r2qΦp1,0qprqs



“ 0. (B.7)

The solution satisfying the AdS boundary condition (3.66) is given by

Φp1,0q “
1

1` 2rqp0,0q ` r2 . (B.8)

Using this and moving to Opr2
`q, we find the differential equation

d

dr

„

r3

1` 2rqp0,0q ` r2
d

dr
rp1` 2rqp0,0q ` r2qΦp1,2qprqs



“
r

rqp0,0qp2rqp0,0q ` 1` r2q4
“

2r4prqp0,0qp4rqp0,2q ` 2q ´ 1q

´2r2p2rqp0,0q ` 1qprqp0,0qp8rqp0,2q ` 2q ` 1q ` 4rqp0,0qp2rqp0,0q ` 1q2
‰

.

(B.9)

The solution satisfying the AdS boundary condition (3.66) is given by

Φp1,2qprq “
1

4rqp0,0qr2p2rqp0,0q ` 1` r2q2

„

´ 2rqp0,0qp2rqp0,0q ` p4rqp0,2q ` 3qr2q

` r2p2rqp0,0q ` 1` r2q ln
ˆ

1`
2rqp0,0q ` 1

r2

˙

` r2 ` 1


.

(B.10)

This describes the solution in the far-field region to Opr2
`q.

Recalling the near-region radial coordinate (3.70), z “ r{r`, the leading order near-field
equation is

d

dz

„

zpz2 ´ 1q d
dz

Φnear
p1,0qpzq



“ 0. (B.11)

The general solution to this equation is given by

Φnear
p1,0qpzq “ c1 ` c2 ln z2

z2 ´ 1 .
(B.12)

Regularity at the horizon z “ 1 requires that c2 “ 0. Using this and moving to Opr2
`q, we

find the equation

d

dz

„

zpz2 ´ 1q d
dz

Φnear
p1,2qpzq



“ ´
8c1z

3

1` 2rqp0,0q
. (B.13)
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The general solution is

Φnear
p1,2qpzq “ c3 ` c4 ln z2

z2 ´ 1 ´
c1

1` 2rqp0,0q

ˆ

z2 ` ln
r2
`z

2

1` 2rqp0,0q

˙

. (B.14)

Regularity at z “ 1 sets c3 “ 0.
The integration constants c1 and c3 are fixed by matching the near- and far-field

solutions. Let us now describe this procedure. We start by setting r “ zr` in the far-field
solution and then expand the solution at small z and r`. We find

Φp1qpzr`, r`q “ Φp1,0qpzr`q ` r2
`Φp1,2qpzr`q `Opr4

`q

“

„ 1´ 2rqp0,0q
4rqp0,0qp2rqp0,0q ` 1qz2 `

1
2rqp0,0q ` 1 `Opz4q



` r2
`

»

–

´8rqp0,2qrqp0,0q ´ 2rqp0,0q ´ 1´ p2rqp0,0q ` 1q ln r2
`z

2

2rqp0,0q`1

4rqp0,0qp2rqp0,0q ` 1q2

´
z2

p2rqp0,0q ` 1q2 `Opz4q



`Opr4
`q.

(B.15)

We next expand the near-field solution at large z,

Φnear
p1q pz, r`q “ Φnear

p1,0qpzq ` r
2
`Φnear

p1,2qpzq `Opr4
`q

“ c1 ` r
2
`

»

–´
c1z

2

2rqp0,0q ` 1 ` c3 ´
c1 ln r2

`z
2

2rqp0,0q`1

2rqp0,0q ` 1 `Opz´4q

fi

fl`Opr4
`q.

(B.16)

The expansion (B.15) is valid when r ! 1 or z ! 1
r`

whereas the expansion (B.16) is valid
when z " 1. When r` ! 1, the two expansions have an overlapping region of validity and
we can match the expansions exactly in this region. It is clear that the matching requires
us to set

rqp0,0q “
1
2 , c1 “

1
2 , c3 “ ´

1
4p1` 2rqp0,2qq. (B.17)

Note that after this matching we can replace rqp0,0q “
1
2 back in (B.7) or (B.9) to get the

ODE (3.69) that we present in the main text (see also the associated footnote 27).
Proceeding in this fashion, we can construct the solution to all orders in r2

`. The
solution to Opr8

`q is given in the Mathematica file in the supplementary material attached
to this paper.

B.3 Hairy black hole at Opε2q

As mentioned in section 3.9.2, the perturbative construction of the single charge hairy black
hole solution is intricate due to the fact that the solution is constructed as a perturbation
around a singular solution, namely the singular supersymmetric soliton (3.24). The first
indication of these intricacies show up at Opε2q in perturbation theory and we describe these
in this section. We will find that this complicates the perturbative construction significantly.
We leave a resolution of the issues discussed here for future work.
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The issue arises since we are effectively perturbing around the singular soliton. To
understand this, we strip off all the complications of the BCS black hole solution and
consider a simpler perturbative expansion around the singular soliton. In the gauge (3.42),
the general singular soliton (3.24) is given by

f “ 1` r2h, At “
1
h
, Φ “

a

C2
2 ´ 4p1` C1q

1` r2h
, ϕ “ ´

1
3 ln h, (B.18)

where

h “

c

1` C2
r2 `

1` C1
r4 ´

1
r2 .

(B.19)

The regular solution occurs for C1 “ 0. The r` Ñ 0 limit of the BCS black hole is
the singular soliton satisfying C2 “ 2

?
1` C1 “ 2 ` 4rq ” 2η. The hairy BH solution is

a perturbation around this singular solution with rq “ 1
2 ñ η “ 2 whereas the regular

supersymmetric soliton solution is a perturbation around vacuum AdS with rq “ 0 ñ η “ 1.
We consider the perturbative expansion for arbitrary η to illustrate the key differences
between the two cases.

To initiate the perturbative expansion, we set

fpr, εq “
8
ÿ

n“0
ε2nfp2nqprq,

hpr, εq “
8
ÿ

n“0
ε2nhp2nqprq,

Atpr, εq “
8
ÿ

n“0
ε2nAp2nqprq,

ϕpr, εq “
8
ÿ

n“0
ε2nϕp2nqprq,

Φpr, εq “
8
ÿ

n“0
ε2n`1Φp2n`1qprq, (B.20)

where

fp0q “ 1` r2hp0q, Ap0q “
1
hp0q

, ϕp0q “ ´
1
3 ln hp0q, hp0q “ 1` η ´ 1

r2 . (B.21)

We plug this into the equations (3.44)–(3.48) and solve them order-by-order in ε. At
Opεq, only the scalar equation is non-trivial and the solution satisfying the AdS boundary
condition is given by

Φp1qprq “
1

η ` r2 . (B.22)

This precisely matches the solution (B.8) obtained at Opεr0
`q. We use this solution and

move on to Opε2q. Here, we find it convenient to define new functions

ϕp2qprq ” Xp2qprq `
r2pη ´ 1` 3r2qhp2qprq

6pη ´ 1qpη ´ 1` r2q
´
rr´1rr4fp2qprqs

1s1

16pη ´ 1qr ,
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hp2qprq ” Yp2qprq ´
rr4fp2qprqs

1

2r5 ,

Ap2qprq ” Zp2qprq `
r6pη ` 1` r2qYp2qprq

2pη ´ 1qpη ´ 1` r2q2
´

r4pη ` r2q

8pη ´ 1qpη ´ 1` r2q
f2p2qprq

´
r3r3η2 ` η ` r4 ` p4η ´ 1qr2 ´ 4s

8pη ´ 1qpη ´ 1` r2q2
f 1p2qprq

`
r2 `´2η ` r4 ` pη ` 1qr2 ` 2

˘

2pη ´ 1qpη ´ 1` r2q2
fp2qprq. (B.23)

Note that these definitions are valid only if η ‰ 1. The η “ 1 background is vacuum AdS5 and
the corresponding perturbative construction reproduces the regular hairy supersymmetric
soliton as described in 3.9.1. In any case, we are interested in the case η “ 2. The differential
equations for Xp2q, Yp2q and Zp2q take a particularly simple form,

Xp2qprq “
r2pr2 ` 2ηq

16pη ´ 1qpr2 ` ηq3
,

„

1
r
rr4Yp2qprqs

1

1

“ ´
r3

pη ` r2q3
´ 8pη ´ 1qX 1p2qprq,

Z 1p2qprq “
4rpη ´ 1qXp2qprq
pη ´ 1` r2q

´
2r2pη ` r2qX 1

p2qprq

η ´ 1` r2 ´
r5

4pη ´ 1qpη ` r2q3
.

(B.24)

Xp2q satisfies an algebraic equation which has already been solved above. The last two
differential equations are easily integrated up to 3 integration constants.

Yp2qprq “
c1
r2 `

c2
r4 `

η

8r2pη ` r2q2
,

Zp2qprq “ c3 `
pη ` 1qr4

8pη ´ 1qpη ` r2q2pη ´ 1` r2q
.

(B.25)

Using these solutions, we then find a 4th order differential equation for fp2q. It is convenient
to write

fp2qprq “ ´c1 ´
1

8pη ` r2q
` rfp2qprq. (B.26)

rfp2qprq satisfies a homogeneous differential equation

0 “ r3pη ` r2q rf4p2qprq ` 2r2p6r2 ` 5ηq rf3p2qprq ` rp29r2 ` 23η ´ 8q rf2p2qprq

` p´13r2 ` 9η ´ 24q rf 1p2qprq ´ 32r rfp2qprq.
(B.27)

The general solution to this equation is

rfp2qprq “
c4
r2 ` c5p2η ´ 2` r2q ` c6γ`prq ` c7γ´prq, (B.28)

where

γ˘prq ” r´1˘α
2F1

ˆ

1˘ α
2 ,

´3˘ α
2 ; 1˘ α;´r

2

η

˙

, α ”
a

1` 8{η. (B.29)
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We immediately notice a qualitative different structure for the solution depending on whether
α P N or not. When α P N, the hypergeometric reduces to a simple rational function of
r2. Consequently, in this case the solution for all ϕp2q, hp2q, Ap2q are all rational functions
of r2 and asymptotically AdS boundary conditions are easy to impose. Further, we recall
that the solutions constructed here are valid in the far-field region. To match the solutions
to the near-field expansion at small r, we set r “ r`z and expand in small z. Since, the
functions are rational functions of r2, only terms of the form Opr2nq appear in its small r
expansion. Such terms are matched to terms of the form Opr2n

` z
2nq in the large z expansion

of the near-field solution. This process is identical to the one described for the scalar field
Φp1q at Opεq in section B.2. Note that this is exactly what happens for η “ 1 ñ α “ 3 P N.

On the other hand, the hairy BH is a perturbation around the η “ 2 ñ α “
?

5 R N
singular soliton. In this case, γ˘prq have problematic terms in their expansion near r “ 8
and r “ 0. It’s expansion near r “ 8 is

γ˘prq 9
α2 ´ 1
α2 ´ 9r

2 ´ 2` 1
r2

„

3´ 4H 1
2 p˘α´1q ` 2 ln r

2

η



`Opr´4q. (B.30)

The log term in this expansion violates the AdS boundary conditions (3.49). The resolution
for this is simple — we simply choose the integration constants c6 and c7 so that the log
terms cancel out from fp2qprq.

Near r “ 0, the hypergeometric function admits an expansion of the form

γ˘prq “ r´1˘αr1`Opr2qs. (B.31)

Such terms are matched to terms of the form Opr´1˘α
` z´1˘αq in the large z expansion of

the near-field solution. However, this immediately implies that the near-field solution does
not admit an analytic expansion in r2

`, e.g. the scalar field at Opεq in (3.72). A possible
resolution to this is to set both c6 “ c7 “ 0. The problem is that choice may clash with the
imposition of AdS boundary conditions and this is indeed what happens at higher orders in
perturbation theory (in the construction of the hairy BH, this first shows up at Opε2r4

`q).
At this order in perturbation theory and beyond, AdS boundary conditions will force at
least one of c6 or c7 (or both) to be non-vanishing. This will then force us to introduce to
non-analytic terms in the near-field expansion of fp2q. A general small r` expansion for fp2q
then takes the form

fnear
p2q pz, r`q “

8
ÿ

m,n,p“0
r

2p`mp´1`αq`np´1´αq
` fnear

p2,2p,2m,2nqpzq. (B.32)

Similar expansions will also exist for hp2q, ϕp2q and Ap2q. However, now, the presence of
such terms in the near-field expansion will backreact and introduce similar non-analytic
terms in the far-field expansion as well so we will have to modify that expansion as well. Of
course, it will further backreact on to the scalar field at Opε3q.

Another complication arises due to the fact that α ` 1 “
?

5 ` 1 ą 2 which implies
that the far-field expansion actually breaks down when r „ r

1
2 p
?

5´1q
` which for small

r` is parametrically larger than r`. Consequently, we would need to introduce a new
intermediate-field expansion to construct the solution in this region.
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Based on the discussion in this section, it is clear that the construction of the hairy BH
solution is significantly more intricate than previously presumed. We hope to resolve these
issues in future work.

Explicit results for the hairy BH solution at Opε2q

Having the described the issue qualitatively in the previous section, we present explicit
results up to Opε2r4

`q at which point the perturbative construction breaks down.
We start by plugging in the expansion (3.63) into equations (3.44)–(3.47) and extracting

the equations at Opε2q. To solve these equations, we further expand in r`

fp2qpr, r`q “
8
ÿ

n“0
r2n
` fp2,2nqprq,

hp2qpr, r`q “
8
ÿ

n“0
r2n
` hp2,2nqprq,

Ap2qpr, r`q “
8
ÿ

n“0
r2n
` Ap2,2nqprq,

ϕp2qpr, r`q “
8
ÿ

n“0
r2n
` ϕp2,2nqprq.

(B.33)

The differential equations at each order in r2
` take a simpler form if we work instead with

the functions Xp2,2nq, Yp2,2nq and Zp2,2nq which are defined as in (B.23) with η “ 2. The
differential equations these functions and fp2,2nq have exactly the same form as (B.24)
and (B.27), now with η “ 2 and additional source terms. At Opr0

`q, the solutions are

Xp2,0qprq “
r2p4` r2q

16p2` r2q3
,

Yp2,0qprq “
c1
r2 `

c2
r4 ´

4` r2

16p2` r2q2
,

Zp2,0qprq “ c3 `
1` r2

2p2` r2q2
,

fp2,0qprq “ c4p2` r2q `
c5
r2 ´ c1 `

r2

16p2` r2q
.

(B.34)

Here we have set c6 “ c7 “ 0 as this is consistent with AdS boundary conditions. Using
this, we find

ϕp2,0qprq “
c2 ` c5

6r2 `

1
16 ` c1 ` c2 ´ c4 ` c5

3p1` r2q
´

1
24p2` r2q

,

hp2,0qprq “ 3c4 ´
c1 ´ 4c4
r2 `

c2 ` c5
r4 `

1
16p2` r2q

,

Ap2,0qprq “ c3 `
2r6 ` 7r4 ` 10r2 ` 4
16pr2 ` 1q2pr2 ` 2q

`
p2c1 ` 2c5 ` 3c2 ´ 4c4qr

2 ` pc2 ´ 2c4qr
4

2p1` r2q2
,
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fp2,0qprq “ c4p2` r2q `
c5
r2 ´ c1 `

r2

16p2` r2q
. (B.35)

AdS boundary conditions imply c4 “ 0. All other constants are fixed by matching with the
near-field solution.

To construct the solution in the near-field region, we define

fnear
p2q pz, r`q “ fp2qpzr`, r`q,

hnear
p2q pz, r`q “ hp2qpzr`, r`q,

Anear
p2q pz, r`q “ Ap2qpzr`, r`q,

ϕnear
p2q pz, r`q “ ϕp2qpzr`, r`q.

(B.36)

Note that as r` Ñ 0, the base solution has the behaviour

fnear
p0q pz, r`q “ Opr0

`q,

hnear
p0q pz, r`q “ Opr´2

` q,

Anear
p0q pz, r`q “ Opr2

`q,

ϕnear
p0q pz, r`q “ Opr0

`q.

(B.37)

Consequently, the small r` expansion of the fields are

fnear
p2q pz, r`q “

8
ÿ

n“0
r2n
` f

near
p2,2nqpzq,

hnear
p2q pz, r`q “

1
r2
`

8
ÿ

n“0
r2n
` h

near
p2,2nqpzq,

Anear
p2q pz, r`q “ r2

`

8
ÿ

n“0
r2n
` A

near
p2,2nqpzq,

ϕnear
p2q pz, r`q “

8
ÿ

n“0
r2n
` ϕ

near
p2,2nqpzq.

(B.38)

The differential equations at each order in r2
` takes a simpler form if we define

Xnear
p2,2nqpzq ” ϕnear

p2,2nqpzq `
1
8z

1{3rz´7{3rz8{3hnear
p2,2nqpzqss

1,

Y near
p2,2nqpzq ” hnear

p2,2nqpzq ´
1

2z5 rz
4fnear
p2,2nqpzqs

1,

Znear
p2,2nqpzq ” Anear

p2,2nqpzq `
1
2z rz

4fnear
p2,2nqpzqs

1.

(B.39)

The differential equations then take the form

S X,near
p2,2nq pzq “ rX

near
p2,2nqpzqs

1,

S Y,near
p2,2nq pzq “ rz

4Y near
p2,2nqpzqs

1 ´ 8yXnear
p2,2nqpzq,

S Z,near
p2,2nq pzq “ rz

´1rZnear
p2,2nqpzqs

1s1,
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S f,near
p2,2nq pzq “ z2pz2 ´ 1qrfnear

p2,2nqpzqs
3 ` 7ypz2 ´ 1qrfnear

p2,2nqpzqs
2

` 5pz2 ´ 1qrfnear
p2,2nqpzqs

1 ´ 8zfnear
p2,2nqpzq ` 4rZnear

p2,2nqpzqs
1

` 2rzpz2 ´ 1q
1
2 rz2pz2 ´ 1q

1
2Y near
p2,2nqpzqs

1s1

´ 16pz2 ´ 1q
1
2 rpz2 ´ 1q

1
2Xnear

p2,2nqpzqs
1. (B.40)

As always, the sources are fixed by lower orders in perturbation theory. It is easy to
integrate these differential equations and obtain the solution up to 7 integration constants.
The general solution has the form

ϕnear
p2,2nqpzq “

4b1 ´ b4
6 `

b2 ` b5
6z2 ` source,

hnear
p2,2nqpzq “

b2 ` b5
z4 `

2p2b1 ` b4q
z2 ` source,

Anear
p2,2nqpzq “ b3 ´ b5 ´ b4z

2 ` source,

fnear
p2,2nqpzq “

b5
z2 ´

b2 ` b5
z4 ` b4 ` b6ρ`pzq ` b7ρ´pzq ` source,

(B.41)

where the “source” terms are obtained by integration the sources S in (B.40) and

ρ˘pzq “ pz
2 ´ 1q´

1
2 p˘

?
5`1q

2F1

ˆ

1˘
?

5
2 ,

5˘
?

5
2 ; 1˘

?
5; 1

1´ z2

˙

. (B.42)

The hypergeometric functions ρ˘ are the near-field analogue of the far-field hypergeomet-
rics (B.29). Their presence in the near-field solution would imply non-analytic terms in the
small r` expansion of the far-field solution and this is precisely what we expect will happen
at a sufficiently high order.

At Opr0
`q, all the near-field sources are identically zero and we find the solution

ϕnear
p2,0qpzq “

4b1 ´ b4
6 `

b2 ` b5
6z2 ,

hnear
p2,0qpzq “

2p2b1 ` b4q
z2 `

b2 ` b5
z4 ,

Anear
p2,0qpzq “ b3 ´ b5 ´ b4z

2,

fnear
p2,0qpzq “ ´

b2
z4 ` b4 ` b5

z2 ´ 1
z4 .

(B.43)

Here, we have consistently set b6 “ b7 “ 0. f and A must vanish on the horizon z “ 1.
This implies b4 “ b2 and b5 “ b3 ´ b2. The remaining constants are fixed by matching
to the far-field solution (B.35) in the usual way. As a result of the matching, we have
c2 “ c5 “ b1 “ b2 “ 0 and c3 “ ´

1
8 . The remaining unfixed integration constants are c1

and b3. b3 “ xp2,0q will be fixed at Opr2
`q in perturbation theory. On the other hand, c1 is

a redundant integration constant. In the full solution this constant appears alongside rqp2,0q
in the combination c1 ´ 2rqp2,0q. Since only this combination appears in the final solution,
we can set c1 “ 0 without loss of generality.

The far- and near-field solution at Opr2
`q is given by

ϕp2,2qprq “ ´
r2 log

` 2
r2 ` 1

˘

48pr2 ` 1qpr2 ` 2q `
´r6 ` 5r4 ` 8r2

192pr4 ` 3r2 ` 2q2
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hp2,2qprq “
r2 ´ 4

64pr2 ` 2q2 `
log

` 2
r2 ` 1

˘

16pr2 ` 2q ,

Ap2,2qprq “ ´
r4 log

` 2
r2 ` 1

˘

16pr2 ` 1q2pr2 ` 2q `
´r8 ` 11r6 ` 24r4 ` 8r2

64pr2 ` 1q3pr2 ` 2q2 ,

fp2,2qprq “
pr2 ´ 4qr2

64pr2 ` 2q2 `
r2 log

` 2
r2 ` 1

˘

16pr2 ` 2q , (B.44)

ϕnear
p2,2qpzq “

xp2,2q
6z2 ´

z2

96 ,

hnear
p2,2qpzq “

xp2,2q
z4 `

1
32 ,

Anear
p2,2qpzq “ ´

1
32z

2 `z2 ´ 1
˘

,

fnear
p2,2qpzq “

`

z2 ´ 1
˘ `

32xp2,2q ` z4 ` z2˘

32z4 . (B.45)

The matching of solutions also sets xp2,0q “ 0.
Finally, we turn to the solution at Opr4

`q. The far-field solution has the form

Xp2,4q prq “
r2

384 pr2 ` 1q3 pr2 ` 2q5

„

55r10 ` 607r8 ` 2779r6 ` 5207r4 ` 4214r2

` 12
`

r2 ` 1
˘3 `

r2 ` 2
˘2 `

r2 ` 4
˘

ln2
ˆ

2
r2 ` 1

˙

` 4
`

r2 ` 1
˘ `

r2 ` 2
˘ `

2r6 ` 24r4 ` 39r2 ` 16
˘

ln
r2
`

2
´ 2

`

r2 ` 1
˘ `

r2 ` 2
˘ `

15r8 ` 148r6 ` 531r4

` 672r2 ` 272
˘

ln
ˆ

2
r2 ` 1

˙

` 1232


,

Yp2,4q prq “
c2
r2 ` c1 `

1
64r2 pr2 ` 2q4

„

r2
ˆ

`

r2 ` 2
˘

ln
ˆ

2
r2 ` 1

˙ˆ

5r6 ` 38r4

` 84r2 ´ 2
`

r4 ` 6r2 ` 8
˘

r2 ln
ˆ

2
r2 ` 1

˙

` 8
˙

´ 4
`

r4 ´ 4
˘

ln
r2
`

2

˙

´ r2 `10r6 ` 77r4 ` 192r2 ` 56
˘

´ 16


,

Zp2,4q prq “ c3 ´
1

192 pr4 ` 3r2 ` 2q4

„

46r14 ` 394r12 ` 1027r10 ` 1088r8

` 296r6 ´ 370r4 ´ 360r2 ` 12r4 `r2 ` 2
˘2 `

r2 ` 1
˘4 ln2

´ 2
r2 ` 1

¯

` 4
`

5r10 ` 30r8 ` 73r6 ` 94r4 ` 66r2 ` 20
˘

r4 ln
r2
`

2

´ 2
ˆ

15r14 ` 154r12 ` 600r10 ` 1190r8 ` 1337r6 ` 876r4

` 316r2 ` 48
˙

r2 ln
ˆ

2
r2 ` 1

˙

´ 96


. (B.46)
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Finally, the solution for fp2,4q is given by

fp2,4qprq “
c4
r2 ` c5pr

2 ` 2q ` c6γ`prq ` c7γ´prq ´ c1 ´
ln r2

`

2
16pr2 ` 2q2

`
r2 ln2 ` 2

r2 ` 1
˘

32pr2 ` 2q ´
pr6 ` 16r4 ` 48r2 ` 16q ln

` 2
r2 ` 1

˘

128pr2 ` 2q2

5r8 ` 38r6 ` 124r4 ` 194r2 ` 80
128pr2 ` 2q3

´
r4

320p2` r2q
3F2

ˆ

1, 1, 3; 7
2 ´

?
5

2 ,
7
2 `

?
5

2 ; r2

r2 ` 2

˙

.

(B.47)

The hypergeometric 3F2 has a logarithm in its large r expansion which must be cancelled
in order to impose asymptotically AdS boundary conditions. In particular, this implies that
we cannot consistently set c6 “ c7 “ 0 anymore which in turn implies non-analytic terms in
the near-field expansion as explained in the previous section.

C Perturbative construction of hairy solitons and black holes with
A1 “ A2 ” A,A3 ” 0

In this appendix, we present the details of the perturbative construction of the supersym-
metric soliton and hairy black holes that were omitted in section 4.9 of the main text and
the explicit solutions to the order that we have derived them.

C.1 Hairy supersymmetric soliton

Recall that we initiate the two charge soliton perturbative construction with the field
expansion (4.49). The equation for Φp1q at Opεq is

d

dr

„

r3

1` r2
d

dr
rp1` r2qΦp1qprqs



“ 0. (C.1)

The general solution this is

Φp1qprq “ c1
1

1` r2 ` c2
2r2 ln r ´ 1
r2p1` r2q

(C.2)

AdS boundary conditions (4.46) imply that c1 “ 1 and c2 “ 0.
At Opε2q, the differential equations are

rr3h1p2qprqs
1 “ ´

r3

p1` r2q2
,

rr3rr2fp2qprqs
1s1 “

2r5p2` r2q

p1` r2q3
` 16r5hp2qprq,

rr3A1p2qprqs
1 “

r3

p1` r2q3
,

ˆ

1` r2

r
rr2ϕp2qprqs

1

˙1

“ ´
r

6p1` r2q2
.

(C.3)
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The general solution is

hp2qprq “ c1 `
c2
r2 `

1
8p1` r2q

,

fp2qprq “
c3
r2 `

c4
r4 `

2c1r
2

3 ` 2c2 `
r2

4pr2 ` 1q ,

Ap2qprq “ µp2q `
c5
r2 ´

1
8pr2 ` 1q ,

ϕp2qprq “
c6
r2 ` c7

lnp1` r2q

2r2 `
1

24p1` r2q
.

(C.4)

AdS boundary conditions implies c1 “ c7 “ 0 and regularity at r “ 0 fixes c2 “ c3 “ c4 “

c5 “ c6 “ 0. µp2q is fixed at Opε3q.
At Opε3q, the differential equation for Φp3q is

d

dr

„

r3

1` r2
d

dr
rp1` r2qΦp3qprqs



“
r3p4´ 7r2 ` r4q

2p1` r2q5
´

8µp2qr3

p1` r2q3
. (C.5)

The general solution to this is

Φp1qprq “ c1
1

1` r2 ` c2
2r2 ln r ´ 1
r2p1` r2q

`
1´ 2r2

16p1` r2q3
´ µp2q

1` r2 lnp1` 1
r2 q

r2p1` r2q
. (C.6)

AdS boundary conditions sets c1 “ c2 “ 0 and regularity at the origin sets µp2q “ 0.
Proceeding in this fashion, we can construct the solution to all orders in ε. The solution

to Opε13q can be found in the Mathematica file in the supplementary material attached to
this paper.

C.2 Hairy black hole

Recall that we initiate the black hole double expansion perturbative construction with the
field expansion (4.60), (4.62), (4.63) and (4.64).

General structure of the differential equations at Opε2n`1rkq

At this order, the only non-trivial equation is for the scalar field. In the far-, intermediate-
and near-field regions, the equations take the form

„

r3

1` r2 rp1` r
2qΦp2n`1qprqs

1

1

“ S Φ
p2n`1,kqprq,

ry3rΦint
p2n`1,kqpyqs

1s1 “ S Φ,int
p2n`1,kqpyq,

rzpz2 ´ 1qrΦnear
p2n`1,kqpzqs

1s1 “ S Φ,near
p2n`1,kqpzq.

(C.7)

Each of these differential equations are easily solved up to two integration constants each
which are fixed by the AdS boundary condition, regularity on the horizon and matching.
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The general solutions for the scalar field at Opεr0
`q and Opεr`q is

Φp1,0qprq “
1

1` r2 ,

Φp1,1qprq “
1` r2 ´ p5r2 ` 1qη2

p0,0q ` r
2pr2 ` 1qpη2

p0,0q ` 1q ln
` 1
r2 ` 1

˘

2ηp0,0qr2pr2 ` 1q2 ,

Φint
p1,0qpyq “ a1 `

a2
y2 ,

Φint
p1,1qpyq “ ´a1y

2 `
a2
2y4 ` a3 `

a4
y2 ´

ˆ

a2 ` a1ηp0,0q ´
a2ηp0,0q
y2

˙

lnpr`y2q,

Φnear
p1,0qpzq “ b1,

Φnear
p1,1qpzq “ b2 ´ 2b1ηp0,0q lnpr`zq.

(C.8)

The integration constants in the far-field solution have been fixed by asymptotically AdS
boundary conditions and one of the integration constants in the near-field solution is fixed
by regularity on the horizon.

Consider now the matching of the far- and intermediate-field solutions. Setting r “
?
r`y into the far-field solution and expanding in small y, we find

Φp1qp
?
r`y, r`q “

„1´ η2
p0,0q

2ηp0,0qy2 ` 1`Opy2q



`

„

´
1` 3η2

p0,0q
2ηp0,0q

´
1` η2

p0,0q
2ηp0,0q

lnpr`y2q ´ y2 `Opy4q



r`

`Opr2
`q

(C.9)

Expanding the intermediate-field solution at large y, we find

Φint
p1qpy, r`q “

„

a1 `
a2
y2 `Opy´4q



`

„

´ a1y
2 ` ra3 ´ 2pa1ηp0,0q ` a2q ln ys `Opy´2q



r` `Opr2
`q.

(C.10)

Matching the expansions, we find

a1 “ 1, a2 “
1´ η2

p0,0q
2ηp0,0q

, a3 “ ´
1` 3η2

p0,0q
2ηp0,0q

. (C.11)

Next, we turn to the matching of the intermediate-field solution to the near-field solution.
To do this, we substitute y “ ?

r`z into the intermediate field solution and expand in
small z,

Φint
p1qp
?
r`z, r`q “

1
r`

„1´ η2
p0,0q

4ηp0,0qz4 `
1´ η2

p0,0q
2ηp0,0qz2 `Opz4q



`

„

a4 ` p1´ η2
p0,0qq lnpr`zq
z2 ` 1`Opz2q



`

„

´
1` 3η2

p0,0q ` 2p1` η2
p0,0qq lnpr`zq

2ηp0,0q
`Opz2q



r`

`Opr2
`q.

(C.12)
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Expanding the near-field solution at large z, we find

Φnear
p1q pz, r`q “ b1 `

„

b2 ´ 2b1ηp0,0q lnpr`zq `Opz´3q



r` `Opr2
`q. (C.13)

Matching the expansions, we find

ηp0,0q “ 1, b1 “ 1, b2 “ ´2, a4 “ 0. (C.14)

The rest of the solutions to higher orders is constructed in exactly the same way. The
explicit solutions are presented at the end of this section.

General structure of the differential equations at Opε2nrkq

At this order, we obtain non-trivial differential equations for fp2n,kq, hp2n,kq, Ap2n,kq and
ϕp2n,kq. The equations in the far-field region are

rr3h1p2n,kqprqs
1 “ S h

p2n,kqprq,

rr3rr2fp2n,kqprqs
1s1 “ S f

p2n,kqprq ` 16r5hp2n,kqprq,

rr3A1p2n,kqprqs
1 “ S A

p2n,kqprq,
ˆ

1` r2

r
rr2ϕp2n,kqprqs

1

˙1

“ S ϕ
p2n,kqprq.

(C.15)

The differential equations in the intermediate-field region take a simpler form if we set

ϕint
p2n,kqpyq “ X int

p2n,kqpyq `
y3

4 V0pyq
2{3 d

dy

ˆ

hint
p2n,kqpyq

V0pyq´2{3

˙

,

Aint
p2n,kqpyq “ Y int

p2n,kqpyq ´
X int
p2n,kqpyq

V0pyq
`
y5

8 V0pyq
2
ˆ

f int
p2n,kqpyq

y2V0pyq2

˙1

´
y3

4 V0pyq

ˆ

hint
p2n,kqpyq

V0pyq2

˙1

(C.16)

where V0pyq “ 1` y´2. The equations are then

rX int
p2n,2kqpyqs

1 “ S X,int
p2n,2kqpyq,

rY int
p2n,2kqpyqs

1 “ S Y,int
p2n,2kqpyq,

ry3ry2f int
p2n,2kqpyqs

1s1 “ S f,int
p2n,2kqpyq,

ry3ry3rhint
p2n,kqpyqs

1s1s1 “ S h,int
p2n,kqpyq `

1
2

ˆ

y7V0pyq
2
„

ry2f int
p2n,kqpyqs

1

y3V0pyq

1˙1

´
4

V0pyq2

´

y3V0pyq
2rX int

p2n,kqpyqs
1
¯1

`
4

V0pyq

´

y3V0pyq
2rY int

p2n,kqpyqs
1
¯1

.

(C.17)

– 96 –



J
H
E
P
0
5
(
2
0
2
3
)
0
5
3

Finally, the differential equations in the near-field region take on a simple form if we write

ϕnear
p2n,kqpyq “ Xnear

p2n,kqpyq `
z2

3 h
near
p2n,kqpyq `

z3

4 rh
near
p2n,kqpyqs

1,

hnear
p2n,kqpyq “ Y near

p2n,kqpyq ´
1
z4A

near
p2n,kqpyq.

(C.18)

The equations are then

rXnear
p2n,kqpzqs

1 “ S X,near
p2n,kq pzq,

rz3rz2Y near
p2n,kqpzqs

1s1 “ S Y,near
p2n,kq pzq,

rz3rz2fnear
p2n,kqpzqs

1s1 “ S f,near
p2n,kq pzq,

(C.19)

and

S A,near
p2n,kq pzq “

ˆ

zpz2 ´ 1q2
„

Anear
p2n,kqpzq

z2pz2 ´ 1q

1

´ 4pz2 ´ 1qXnear
p2n,kqpzq

`
z

2 rz
2fnear
p2n,kqpzq ´ 2z2pz2 ´ 1qY near

p2n,kqpzqs
1

˙1

.

(C.20)

All the differential equations above can be easily solved. Let us now describe the match-
ing process.

At Opε2r0
`q, the far-, intermediate- and near-field solutions are given by

hfar
p2,0qprq “

a1
r2 `

1
8p1` r2q

,

f far
p2,0qprq “

a2
r2 ` a1

ˆ

2` 4
r2

˙

`
r2

4p1` r2q
,

Afar
p2,0qprq “ a3 `

a4
r2 ´

1
8p1` r2q

,

ϕfar
p2,0qprq “

a1
3r2 `

1
24p1` r2q

,

X int
p2,0qpyq “ b1,

Y int
p2,0qpyq “ b2,

f int
p2,0qpyq “

b3
y2 `

b4
y4 ,

hint
p2,0qpyq “

b4
6y6 `

b5
y4 `

b6
y2 ` b7,

Xnear
p2,0qpzq “ c1,

Y near
p2,0q pzq “

c2
z2 `

c3
z4 ,

fnear
p2,0qpzq “ ´2p2c1 ` c2 ´ c3q

z2 ´ 1
z4 ,

Anear
p2,0qpzq “ ´

1
2pz

2 ´ 1qp4c1 ` 2c2 ` c4z
2q. (C.21)
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Here, we have used AdS boundary conditions and regularity at the horizon in addition
to the requirement fnearp1q “ Anearp1q “ 0 to fix some of the integration constants. The
remaining ones are fixed by matching.

Setting r “ ?r`y in the far-field solution and expanding at small r` and y, we find

fp2qp
?
r`y, r`q “

1
r`

„

4a1 ` a2
y2 `Opy2q



` 2a1 `Opr`q,

hp2qp
?
r`y, r`q “

1
r`

„

a1
y2 `Opy2q



`
1
8 `Opr`q,

Ap2qp
?
r`y, r`q “

1
r`

„

a4
y2 `Opy2q



` a3 ´
1
8 `Opr`q,

ϕp2qp
?
r`y, r`q “

1
r`

„

a1
3y2 `Opy2q



`
1
24 `Opr`q. (C.22)

We next expand the intermediate field solution at small r` and large y,

f int
p2qpy, r`q “ Opy´2q `Opr`q,

hint
p2qpy, r`q “ b7 `Opr`q,

Aint
p2qpy, r`q “ ´b1 ` b2 ´

b3
2 `

b6
2 ´ b7 `Opr`q,

ϕint
p2qpy, r`q “ b1 ´

b6
2 `

b7
3 `Opr`q.

(C.23)

Matching the two expansions, we find

a1 “ a2 “ a4 “ 0, a3 “ b2 ´
b3
2 , b6 “ 2b1, b7 “

1
8 .

(C.24)

To match the intermediate-field solution to the near-field one, we set y “ ?r`z in the
intermediate-field solution and expand at small r` and z and we find

f int
p2qp
?
r`z, r`q “

1
r2
`

„

b4
z4 `Opz2q



`
1
r`

„

b3
z2 `Opz2q



`Opr`q,

hint
p2qp
?
r`z, r`q “

1
r3
`

„

b4
6z6 `Opz2q



`
1
r2
`

„

b5
z4 `Opz2q



`
1
r`

„

2b1
z2 `Opz2q



`Opr0
`q,

Aint
p2qp
?
r`z, r`q “

1
r`

„

´
b4

6z2 `Opz2q



` b2 ´
5b4
12

`

„

1
4p´8b1 ´ 2b3 ` b4 ` 4b5qz2 `Opz4q



r` `Opr2
`q,

ϕint
p2qp
?
r`z, r`q “

1
r2
`

„

´
7b4

36z4 `Opz2q



`
1
r`

„

1
z2

ˆ

´
b4
18 ´

2b5
3

˙

`Opz2q



`
1
18p12b1 ` b4 ´ 6b5q `Opr`q. (C.25)
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Finally, we expand the near-field solution at small r` and large z,

fnear
p2q pz, r`q “

„

´
2p2c1 ` c2 ´ c3q

z2 `Opz´4q



`Opr`q,

hnear
p2q pz, r`q “

1
r`

„

c4
2 `

4pc1 ` c2q ´ c4
2z2 `Opz´4q



`Opr0
`q,

Anear
p2q pz, r`q “

„

´
c4z

4

2 `
1
2p´4c1 ´ 2c2 ` c4qz

2 ` p2c1 ` c2q `Opz´2q



r`

`Opr2
`q,

ϕnear
p2q pz, r`q “

„

c4
6 z

2 `
1
12p8c1 ´ 4c2 ` c4q `Opz´2q



`Opr`q.

(C.26)

The expansions are matched by setting

b1 “ c1, b2 “ b3 “ b4 “ b5 “ c2 “ c4 “ 0, c3 “ 2c1 ` xp2,0q. (C.27)

We find that the matching procedure fixes all constants except xp2,0q and c1. The former is
fixed by the matching procedure at Opr2

`q which sets

xp2,0q “ 0. (C.28)

On the other hand, c1 is a redundant parameter as the full hairy BH solution only depends
on the combination ηp2,0q ` 2c1. We can then set c1 “ 0 without loss of generality.

This procedure can be continued on to any order in perturbation theory. The explicit
solution can be found in the Mathematica file in the supplementary material attached to
this paper.
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