The University of Southampton
University of Southampton Institutional Repository

An adaptive motion segmentation for automated video surveillance

An adaptive motion segmentation for automated video surveillance
An adaptive motion segmentation for automated video surveillance

This paper presents an adaptive motion segmentation algorithm utilizing spatiotemporal information of three most recent frames. The algorithm initially extracts the moving edges applying a novel flexible edge matching technique which makes use of a combined distance transformation image. Then watershed-based iterative algorithm is employed to segment the moving object region from the extracted moving edges. The challenges of existing three-frame-based methods include slow movement, edge localization error, minor movement of camera, and homogeneity of background and foreground region. The proposed method represents edges as segments and uses a flexible edge matching algorithm to deal with edge localization error and minor movement of camera. The combined distance transformation image works in favor of accumulating gradient information of overlapping region which effectively improves the sensitivity to slow movement. The segmentation algorithm uses watershed, gradient information of difference image, and extracted moving edges. It helps to segment moving object region with more accurate boundary even some part of the moving edges cannot be detected due to region homogeneity or other reasons during the detection step. Experimental results using different types of video sequences are presented to demonstrate the efficiency and accuracy of the proposed method.

1687-6172
Dewan, M. Ali Akber
363af584-4a43-4a28-8f3c-25b78fbd5360
Hossain, M. Julius
bba1b875-7604-462b-a55b-ba0b54f728e8
Chae, Oksam
65c96d9d-fb4d-4e41-a009-bc829dc7757c
Dewan, M. Ali Akber
363af584-4a43-4a28-8f3c-25b78fbd5360
Hossain, M. Julius
bba1b875-7604-462b-a55b-ba0b54f728e8
Chae, Oksam
65c96d9d-fb4d-4e41-a009-bc829dc7757c

Dewan, M. Ali Akber, Hossain, M. Julius and Chae, Oksam (2008) An adaptive motion segmentation for automated video surveillance. EURASIP Journal on Advances in Signal Processing, 2008, [187413]. (doi:10.1155/2008/187413).

Record type: Article

Abstract

This paper presents an adaptive motion segmentation algorithm utilizing spatiotemporal information of three most recent frames. The algorithm initially extracts the moving edges applying a novel flexible edge matching technique which makes use of a combined distance transformation image. Then watershed-based iterative algorithm is employed to segment the moving object region from the extracted moving edges. The challenges of existing three-frame-based methods include slow movement, edge localization error, minor movement of camera, and homogeneity of background and foreground region. The proposed method represents edges as segments and uses a flexible edge matching algorithm to deal with edge localization error and minor movement of camera. The combined distance transformation image works in favor of accumulating gradient information of overlapping region which effectively improves the sensitivity to slow movement. The segmentation algorithm uses watershed, gradient information of difference image, and extracted moving edges. It helps to segment moving object region with more accurate boundary even some part of the moving edges cannot be detected due to region homogeneity or other reasons during the detection step. Experimental results using different types of video sequences are presented to demonstrate the efficiency and accuracy of the proposed method.

This record has no associated files available for download.

More information

Published date: 24 December 2008

Identifiers

Local EPrints ID: 470031
URI: http://eprints.soton.ac.uk/id/eprint/470031
ISSN: 1687-6172
PURE UUID: 51f4fb09-46e0-4256-a854-2b2dd5ffa7ef
ORCID for M. Julius Hossain: ORCID iD orcid.org/0000-0003-3303-5755

Catalogue record

Date deposited: 30 Sep 2022 16:50
Last modified: 17 Mar 2024 04:12

Export record

Altmetrics

Contributors

Author: M. Ali Akber Dewan
Author: M. Julius Hossain ORCID iD
Author: Oksam Chae

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×