The University of Southampton
University of Southampton Institutional Repository

Parametric equations to predict stress distributions along the intersection of tubular X and DT-joints

Parametric equations to predict stress distributions along the intersection of tubular X and DT-joints
Parametric equations to predict stress distributions along the intersection of tubular X and DT-joints
Accurate information on stress distributions along the intersection is required for fatigue strength assessment of tubular joints. However, there is no parametric equation currently available in the open literature to predict this information for tubular X and DT-joints. Systematic thin shell finite element (FE) analyses have been conducted for 330 different tubular X and DT-joints, typical of those used in offshore structures, subjected to six different modes of loading. A novel two dimensional regression methodology was developed to curve-fit all of the FE results from this work. A set of parametric equations was derived to predict the stress distributions along both chord and brace toes in tubular X and DT-joints under each mode of loading. These equations were assessed by comparing the predictions with available experimental data. Validation results show that they can be used to predict stress concentration factor (SCF) distributions along the intersection but also provide an alternative method for calculation of hot spot SCF.
0142-1123
619-635
Chang, E
ed33f9bb-7b6a-4905-90a8-0cc6853afcc0
Dover, W.D.
c05010f3-87ea-476f-ba27-62ba12e8c8b5
Chang, E
ed33f9bb-7b6a-4905-90a8-0cc6853afcc0
Dover, W.D.
c05010f3-87ea-476f-ba27-62ba12e8c8b5

Chang, E and Dover, W.D. (1999) Parametric equations to predict stress distributions along the intersection of tubular X and DT-joints. International Journal of Fatigue, 21 (6), 619-635. (doi:10.1016/S0142-1123(99)00018-3).

Record type: Article

Abstract

Accurate information on stress distributions along the intersection is required for fatigue strength assessment of tubular joints. However, there is no parametric equation currently available in the open literature to predict this information for tubular X and DT-joints. Systematic thin shell finite element (FE) analyses have been conducted for 330 different tubular X and DT-joints, typical of those used in offshore structures, subjected to six different modes of loading. A novel two dimensional regression methodology was developed to curve-fit all of the FE results from this work. A set of parametric equations was derived to predict the stress distributions along both chord and brace toes in tubular X and DT-joints under each mode of loading. These equations were assessed by comparing the predictions with available experimental data. Validation results show that they can be used to predict stress concentration factor (SCF) distributions along the intersection but also provide an alternative method for calculation of hot spot SCF.

This record has no associated files available for download.

More information

Published date: 1 July 1999

Identifiers

Local EPrints ID: 470039
URI: http://eprints.soton.ac.uk/id/eprint/470039
ISSN: 0142-1123
PURE UUID: 1f268a9d-9e0e-4ac2-87ab-a8d665124ebe
ORCID for E Chang: ORCID iD orcid.org/0000-0002-9548-3687

Catalogue record

Date deposited: 30 Sep 2022 16:51
Last modified: 17 Mar 2024 04:12

Export record

Altmetrics

Contributors

Author: E Chang ORCID iD
Author: W.D. Dover

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×