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Abstract. In many applications of small area estimation, dichotomous or categorical out-
comes are the targets of statistical inference. For example, in the analysis of labour mar-
kets, proportions of working-age people in the various labour market statuses are of in-
terest. In this paper, in line with recent literature, we consider a classification with more
than three statuses and estimate related population parameters for 611 local labour mar-
ket areas using data from the 2012 Italian Labour Force Survey, administrative registers
and the 2011 Census. As for the methodology, we propose multinomial expectile regres-
sion models. These models provide a means to utilise 𝑀-quantile type approaches, which
have been shown to be a useful alternative to mixed model approaches when paramet-
ric assumptions on the distribution of random effects cannot be met. Via a large scale
simulation study, we show how this novel approach is much faster and provides reliable
results when compared to multinomial mixed model approaches, and works for any num-
ber of categories rather than just a small number of categories as is more commonly the
case with existing methods. Furthermore, the proposed approach potentially provides a
framework for developing other methods for prediction with multicategory outcomes.

Keywords: 𝑀-quantile estimation; categorical data analysis; multinomial logistic regression

1. Introduction

In the analysis of survey data, estimates of relevant descriptive quantities may be needed for
small sub-populations defined by geography or other classification criteria. When the samples
specific to most sub-populations (labelled as areas) are too small to allow the direct application
of survey weighted estimators, small area estimation (SAE) methodologies are used instead.

These methodologies are often based on, or assisted by, models that link survey data to
auxiliary information available from external sources (see Pfeffermann, 2013; Rao and Molina,
2015, for a general introduction to the topic). More specifically, auxiliary variables are used
to predict the target variable, using linear or generalised linear models depending on the nature
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of the variable being predicted. In most of the cases, there is a need to improve predictions
accounting for area-specific unobserved heterogeneity. This can be done in different ways.

The most common solution is provided by mixed models in which random effects, in most
cases random intercepts, are used to model unobserved area level heterogeneity (see Rao and
Molina, 2015, Chapter 5). 𝑀-quantile models allow for an alternative approach to measuring
area heterogeneity. The impact of auxiliary variables is captured by means of a linear model (or
a generalisation of it) in which 𝑀-estimation is used also as an approach to ensuring outlier ro-
bustness. Unobserved heterogeneity is characterised by using quantile coefficients or 𝑞-scores,
which can be viewed as pseudo-random effects. The idea, in the linear case, is that each sample
data point lies on a regression plane associated with a specific quantile. If there is area-level
variation beyond that predicted by auxiliary variables, these unit-specific 𝑞-scores tend to be
similar (clustered) within the same area; area specific averages of these 𝑞-scores are used to
summarise unobserved area-level heterogeneity. See Chambers and Tzavidis (2006) for a more
detailed description of how 𝑞-scores are defined in the linear case and Section 4 of this paper
for their definition in the context of the analysis of multi-category responses.

In many applications of small area estimation, dichotomous or categorical variables are tar-
geted. For example, in the analysis of labour markets we can be interested in estimating propor-
tions or numbers of people in different labour market statuses at the small area level using labour
force surveys. Traditionally, a three-status classification is considered: employed, unemployed
and economically inactive. Recent literature highlights how a larger number of labour market
statuses should be considered to better describe flexible employment and the grey area between
unemployed and inactive people (Brandolini et al., 2006; Barbieri and Scherer, 2009).

In this paper we analyse data from the 2012 Italian Labour Force Survey (ILFS) with the aim
of estimating the proportions of working age people in respect to their labour market status split
into three and six categories for the 611 Local Labour Market Areas (LLMAs) using auxiliary
information from administrative registers and the Census 2011. The LLMAs are unplanned
domains of the ILFS obtained as clusters of municipalities in which the bulk of the labour
force lives and works, and where establishments can find the largest amount of the labour force
necessary to occupy the offered jobs. Several LLMAs are characterised by a very small sample
size that hinders reliability of direct estimates.

In the small area literature, at present, multicategory responses have received some attention.
The challenge is to develop a model that can accurately capture the category-specific unobserved
heterogeneity across the small areas. For example, some areas can have higher proportions
of unemployed than predicted using auxiliary variables while others can be characterised by
unexpected high proportions of economically inactive people. A good model should be flexible
enough to capture the area-specific characteristics in order to produce accurate estimates of
finite population parameters e.g. area-specific proportions. Several attempts at developing such
models for SAE have been proposed.

Dealing with a three-status labour market classification, Molina et al. (2007) proposed a
multinomial logistic mixed model where the same random effect is shared across multinomial
categories for each domain. In other words, the random effects are univariate despite the re-
sponse variable being multivariate. Saei and Taylor (2012) and López-Vizcaíno et al. (2013,
2015) propose a multinomial logistic mixed model for small area estimation of a multicategory
response that allows for category-specific (multivariate) area random effects. The methods pro-
posed by Molina et al. (2007) and Saei and Taylor (2012) were specifically for three categories
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and the generalisation to more categories is computationally not trivial. They used categorical
explanatory variables (e.g., sex-age by area counts), so individual values within each area can
be aggregated by category and predictions needed to obtain small area estimates do not require
access to census microdata provided that the full cross-classification structure and population
sizes of the cells are available. However, these models are unit-level in a strict sense. Whenever
the auxiliary information includes one or more unit-level covariate with values that vary within
a category by area group, access to census microdata would be required. The model by Molina
et al. (2007) is specified at the area level. However, this can also be expressed as a unit-level
model under certain covariate specifications. For example, this is the case when all the model
covariates are categorical and the population counts of the full cross-classification defined by
these covariates are available or when unit-level continuous covariates are available. In con-
trast, López-Vizcaíno et al. (2013) propose an area-level small area approach that imposes an
assumption of independence between the multivariate random effects but it is unclear how well
the method works with more than three categories. As noted by Verbeke et al. (2014), computa-
tional problems emerge for multivariate random-effects models due to increased dimensionality.
Random-effects models for multicategory responses are not as computationally efficient, as they
are for continuous or even binary outcomes (see James, 2017, for further discussion on compu-
tational difficulties).

SAE methods based on 𝑀-quantile regression models have been developed as viable alter-
natives and have been extended to the analysis of non-continuous responses, such as binary or
count data (Chambers et al., 2014; Tzavidis et al., 2015; Chambers et al., 2016) but not to multi-
category data. We propose a regression model based on a type of 𝑀-quantile called the expectile
(Newey and Powell, 1987), as an alternative to multinomial mixed models when interest is in
predicting finite population parameters e.g. the probability of belonging to a category within
certain geographic sub-populations. Regression expectiles allow for straightforward prediction
with multicategory response data. These multicategory expectiles exploit an elegant isotonic
relationship between the probability and the expectile under a multinomial assumption. This
allows for simple and computationally efficient predictions of 𝑞-scores and hence of small area
proportions and totals. Importantly, our proposed method also ensures that all predictions are
invariant to the choice of the reference category. Although this is not a problem for multinomial
models, empirical work we did with multinomial random-effects models indicate that changing
the reference category can impact on the small area estimates.

More specifically, the methodology we introduce in this article considers as a starting point
the work by Manski and Thompson (1989). These authors discuss several predictors for binary
responses under alternative loss functions, including tilted loss functions of the type used in ex-
pectile regression (later shown in equation (4)). We extend the proposal of Manski and Thomp-
son (1989) for binary data to both the regression case and to multicategory response variables.
While expectile regression has been widely explored for continuous responses (Sobotka and
Kneib, 2012; Sobotka et al., 2013; Yang and Zou, 2015), expectile regression for multicategory
responses is a contribution of the current research.

The rest of the paper is organised as follows. In Section 2 we introduce the ILFS dataset
that is the basis of the motivating application in this paper. In Section 3 we review 𝑀-quantile,
quantile and expectile regression and present the proposed approach for Bernoulli and multino-
mial expectile regression. In Section 4 we review the current mixed model approach to SAE for
multicategory data. In Section 5 we show how multinomial expectile models can be used for
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SAE and further propose a bootstrap estimator of the mean-squared error (MSE) of the small
area predictor. Section 6 includes results from a simulation exercise that was designed to assess
the performance of the proposed SAE methodology compared to existing methods. In Section 7
we use SAE methodologies to estimate labour market characteristics in the 611 LLMAs in Italy
in 2012. Section 8 summarises the main findings. The programs that were used to analyse the
data can be obtained from
http://wileyonlinelibrary.com/journal/rss-datasets.

2. The Italian Labour Force Survey data

The ILFS is designed to obtain quarterly estimates of the main aggregates regarding the labour
market which are important both at the local and the central government levels for the develop-
ment of labour market policies. A two-stage municipality-household sampling design is used
to collect data. The methodological notes released by the Italian National Institute of Statistics
(ISTAT) state that the institute has sound reasons to evaluate the LFS design as non-informative
with respect to unemployment. Primary sampling units are stratified by province (LAU1) and
population size. Secondary sampling units are selected with equal probabilities. All individuals
with usual residence in the dwelling are interviewed. See De Vitiis et al. (2018) and Eurostat
(2022) for details.

The ILFS provides quarterly estimates of the main aggregates for the labour market, such
as employment status, type of work and work experience by gender, age and region (NUTS2).
Direct estimates are reliable for large areas such as administrative regions, but not for those
we target in this application. The data set we consider in this article contains data from the
first quarter of 2012 which consist of measurements taken on 93,217 units aged 15-65 and dis-
tributed in 453 local labour market areas (LLMAs). They refer to unplanned domains obtained
as clusters of municipalities in which the bulk of the labour force lives and works, and where
establishments can find the largest amount of the labour force necessary to occupy the offered
jobs. Several LLMAs are characterised by a very small sample size: the sample size ranges
between 13 (Acqui Terme, Piedmont Region) and 3,301 (Milan, Lombardy Region). The mean
and the median values are equal to 205.8 and 122, respectively.

The labour market status variable can be defined in different ways, with a varying number
of categories, offering a more or less refined classification: (i) three categories: employed,
unemployed and inactive; (ii) six categories: employed, unemployed a (in active job search,
previous job experiences, formerly employed), unemployed b (in active job search, previous
job experiences, formerly inactive), unemployed c (in active search of their first job), reserve
workers, inactive.

Focusing on the six labour market categories we see that the precision for most direct es-
timates and especially those related to unemployment (rates for unemployed a, b, c) is poor.
Statistics Canada (2007) suggests that estimates with a coefficient of variation (CV) less than
16.6% are sufficiently reliable for general use and those with a CV between 16.6% and 33.3%
can be published but accompanied by a warning to users whereas those with an even larger CV
should be deemed completely unreliable and not published. This is not a good criterion when
the estimated proportions are very small (Eurostat, 2013, p. 13). For this reason the CVs in
Table 1 are not computed for areas with direct estimates below 0.02. Note that for a sizeable
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Table 1. Number of small areas with values of CV less than 16.6%, between 16.6% and
33.3% and over 33.3% for the direct estimators of the proportion of workers classified in
six categories. CV for estimated proportions below 0.02 are not computed (the number
of proportions not computed because of 0 count in the category within brackets).

CV employed unemployed a unemployed b unemployed c reserve workers inactive
< 16.7% 317 9 0 3 62 417
16.7% − 33.3% 125 105 8 22 175 36
> 33.3% 11 219 127 116 173 0
not computed 0 120 (42) 318 (107) 312 (130) 43 (7) 0

453 453 453 453 453 453

fraction of these latter areas, the direct estimates are exactly 0 despite these areas having units
in the sample (in this case standard errors are not computable with elementary methods).

The recourse to small area estimation methods is motivated by the large number of areas
characterised by overly imprecise direct estimates as displayed in Table 1 as well as the presence
of many out-of-sample LLMAs.

The following two explanatory variables are also available for fitting the models: age-sex,
a categorical variable with six categories corresponding to female or male (F/M) by three age
groups (15-24, 25-34 and 35-65) and 𝑈-count, a discrete variable measuring the number of
unemployed in a given gender-age group for each LLMA according to the 2011 Census. Note
that both explanatory variables used in this working model are categorical variables for which
age-sex by area counts are available. This corresponds to the situation that was considered by
Molina et al. (2007), and so model fitting does not require access to census microdata.

3. 𝑀-quantile, quantile and expectile estimation

Breckling and Chambers (1988) first introduced 𝑀-quantiles, which provided a general frame-
work for the pre-established quantiles and expectiles. For a univariate, continuous variable 𝑌

with density 𝑓 (·), the 𝑀-quantile, 𝑀𝑞, for a pre-selected 𝑞 is defined by:

𝐸
[
𝜓𝑞

(
𝑦 − 𝑀𝑞

) ]
=

∫ ∞

−∞
𝜓𝑞

(
𝑦 − 𝑀𝑞

)
𝑓 (𝑦)𝑑𝑦 = 0, (1)

where 𝜓𝑞 (·) is an influence function defined by:

𝜓𝑞 (𝑢) =
{

2(1 − 𝑞)𝜓(𝑢) 𝑢 6 0
2𝑞𝜓(𝑢) 𝑢 > 0, (2)

and 𝜓(·) is assumed to be a function that is bounded and monotone non-decreasing over the real
line with 𝜓(0) = 0. This 𝑀-quantile specification provides a general framework that includes
the mean when 𝑞 = 0.5 and 𝜓(𝑢) = 𝑢 and the median when 𝑞 = 0.5 and 𝜓(𝑢) = sgn(𝑢).
For general 𝑞, these two influence functions also determine the expectile and the quantile re-
spectively (Newey and Powell, 1987; Koenker and Bassett, 1978). While these two estimators
are scale invariant, not all specifications of 𝜓(·) ensure this, hence generally a nuisance scale
parameter should be added to equation (1). One such function of 𝜓(·) is the Huber function:
𝜓𝑘 (𝑢) = 𝑢𝐼 ( |𝑢 | ≤ 𝑘)+𝑘sgn(𝑢)𝐼 ( |𝑢 | > 𝑘), where 𝑘 ∈ (0, +∞) is the value of the tuning constant,
and is the suggested choice for the 𝑀-quantile approach to SAE in most publications (Chambers
and Tzavidis, 2006; Chambers et al., 2014, 2016).
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To extend to the regression case, the argument inside the influence function is replaced by
standardised residuals. For a linear 𝑀-quantile regression model, with 𝑀𝑞 (x𝑖) = x𝑇

𝑖
β𝑞, esti-

mators of the 𝑀-quantile regression coefficients β𝑞 can be obtained by solving the estimating
equations:

𝑛∑︁
𝑖=1

𝜓𝑞

(
𝑦𝑖 − 𝑀𝑞 (x𝑖)

𝜎𝑞

)
x𝑖 = 0, (3)

where 𝑦𝑖 is the continuous response variable of interest, x𝑖 represents a 𝑝-dimensional vector
of observed covariates, 𝑖 = 1, . . . , 𝑛, and 𝜎𝑞 is a scale parameter, which must also be estimated.
Again, note that if 𝑞 = 0.5 and 𝜓(𝑢) = 𝑢, then the estimating equations reduce to ordinary least
squares. For general 𝑞 and 𝜓(𝑢) = 𝑢, equation (3) allows for estimating regression coefficients
for the conditional expectiles rather than mean. Solutions to the estimating equations can be
found simply using iteratively reweighted least squares (IRLS), the Newton-Raphson algorithm
or linear programming (Bianchi et al., 2018; Koenker and Bassett, 1978).

3.1. Expectile regression models for binary data
In this section we focus specifically on the expectile estimator under a Bernoulli assumption.
For binary data, we take a result from Manski and Thompson (1989) as our starting point.

THEOREM 1. Let 𝑌 be a Bernoulli random variable with probability 𝜋, the expectile 𝑞 of 𝑌
is defined as:

`𝑞 =
𝑞𝜋

(1 − 𝑞) (1 − 𝜋) + 𝑞𝜋
. (4)

PROOF. If𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋), the expectile 𝑞 for a binary variable can be derived by solving
equation:

𝐸 [𝜓𝑞 (𝑌 − `𝑞)] = 0,

where 𝜓𝑞 (·) is the influence function for the expectile with 𝜓(𝑢) = 𝑢. Then:

1∑︁
𝑦=0

𝜓𝑞 (𝑦 − `𝑞)𝑝(𝑦) =
1∑︁

𝑦=0

{
2(1 − 𝑞) (𝑦 − `𝑞)𝐼𝑦≤`𝑞 + 2𝑞(𝑦 − `𝑞)𝐼𝑦>`𝑞

}
𝑝(𝑦)

= 2
{
(1 − 𝑞) (−`𝑞)𝑝(𝑦 = 0) + 𝑞(1 − `𝑞)𝑝(𝑦 = 1)

}
= 2

{
−`𝑞 (1 − 𝑞) (1 − 𝜋) + (1 − `𝑞)𝑞𝜋

}
= 0,

where 𝑝(𝑦) is the probability mass function. This formula can be rearranged to make `𝑞 the
subject.

Though this result is simple, it shows an elegant relationship between the probability (𝜋) and the
expectile (`𝑞) of any Bernoulli variable for a given 𝑞. Note that `𝑞 ∈ (0, 1) for any given 𝑞 or 𝜋,
and of course, `0.5 = 𝜋, the variable expectation. So if �̂� is a maximum likelihood estimate then
with the invariance property any monotone function of �̂�, such as the one in equation (4), must
be the maximum likelihood estimate of that function. Hence estimates of the binary expectiles
can be calculated directly from estimates of the probability and vice-versa:

𝜋 =
`𝑞 (1 − 𝑞)

`𝑞 (1 − 2𝑞) + 𝑞
. (5)
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Equation (5) lends itself naturally as the basis for an isotonic model of the binary response,
rather than a weaker single-crossing model which assumes a latent variable (see Manski and
Thompson, 1989).

Equation (4) can be easily extended to the regression case. For instance, by performing a
logistic regression on the binary response, estimates of 𝜋 conditional on x𝑖 can be obtained
and used to estimate `𝑞. For regression covariates x𝑖 and regression parameter vector β, the
probability can be modelled as:

𝜋(x𝑖) =
exp(x𝑇

𝑖
β)

1 + exp(x𝑇
𝑖
β)

. (6)

So given 𝜋(x𝑖), then the regression expectile `𝑞 (x𝑖) can be found by substituting into equa-
tion (4) giving:

`𝑞𝑖 =
𝑞𝜋(x𝑖)

(1 − 𝑞) (1 − 𝜋(x𝑖)) + 𝑞𝜋(x𝑖)

=
exp(x𝑇

𝑖
β + log 𝑞

1−𝑞 )
1 + exp(x𝑇

𝑖
β + log 𝑞

1−𝑞 )
.

Hence there is a simple relationship between the binary expectile and probability regression
parameters:

x𝑇
𝑖 β𝑞 = x𝑇

𝑖 β + log
𝑞

1 − 𝑞
, (7)

where β𝑞 is the expectile regression coefficient vector for a given 𝑞. This shows that the bi-
nary expectile regression coefficient β𝑞 is just an intercept adjustment of the logit of 𝑞 from
the logistic regression coefficient β. This property ensures that the regression expectiles will
not cross over, a common problem with any quantile-like regression model. To visualise this
property, Figure 1 (left panel) presents binary expectile regression lines in a simple example.

Chambers et al. (2016) show that their proposed binary expectile regression estimator is a
version of the asymmetric maximum likelihood estimator proposed by Efron (1992). This re-
gression estimator is exactly the same as the proposed estimator, except without the Bernoulli
distribution assumption. This stricter assumption provides the relationship between the bi-
nary probabilities and expectiles that make the generalisation to multicategory data relatively
straightforward.

3.2. Expectile regression models for multicategory data
Since it has been shown that binary expectiles are merely transformations of the probability of
a Bernoulli variable, the extension to multicategory response from binary response follows. By
estimating the probability vector of the multicategory response under a multinomial distribution
assumption the expectiles can be calculated similarly to the Bernoulli case.

THEOREM 2. Let Y be a 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (1,π) random variable for 𝐺 distinct categories
represented by an 𝑛 × 𝐺 matrix with π = (𝜋1, 𝜋2, . . . , 𝜋𝐺), the multinomial expectile is given
by:

`𝑞𝑔 =
𝑞𝜋𝑔

(1 − 𝑞) (1 − 𝜋𝑔) + 𝑞𝜋𝑔
, 𝑔 ∈ 1, 2, . . . , 𝐺. (8)
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Figure 1. Bernoulli and multinomial expectiles from a simple simulated data example with
𝑞 = 0.1, 0.5, 0.9. In these examples, 𝑋 is generated from a uniform distribution, and 𝛽 = 2 for the
first plot, and β1 = [−2 2]𝑇 and β2 = [−7 4]𝑇 for the second plot.

PROOF. The multinomial expectile (µ𝑞) can be derived from the multinomial probability
π = (𝜋1, 𝜋2, . . . , 𝜋𝐺) by solving 𝐸 [𝜓𝑞 (Y −µ𝑞)] = 0 in much the same way as in the Bernoulli
case.

Due to this direct relationship between expectiles and probabilities, the multinomial expectile
remains the same for any Y ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑚,π), regardless of 𝑚 > 0, hence the relationship
holds generally. For simplicity, the methods in the remainder of the article will focus on the
simple case of 𝑚 = 1. Extensions to the general multinomial response with 𝑚 > 1 are outlined
in Section S.1 of the supplementary material.

The extension from binary to multicategory expectile regression first requires regression
predictions of π(x𝑖), which can be found using multinomial logistic regression. Let β be
the 𝑝 × (𝐺 − 1) matrix of the multinomial logistic regression coefficients, then π(x𝑖) can be
expressed as:

𝜋𝑔 (x𝑖) =
exp(x𝑇

𝑖
β𝑔)

1 +∑𝐺−1
𝑔=1 exp(x𝑇

𝑖
β𝑔)

, 𝑔 = 1, . . . , 𝐺 − 1, (9)

𝜋𝐺 (x𝑖) =
1

1 +∑𝐺−1
𝑔=1 exp(x𝑇

𝑖
β𝑔)

, (10)

where β𝑔 is the 𝑔-th column of β, and 𝜋𝐺 (x𝑖) represents the probabilities of the reference cate-
gory, which is arbitrarily chosen to be the 𝐺-th or last category. Expressing the probabilities like
this ensures that the probabilities must sum to one which is obviously an important requirement.
This follows the standard multinomial logistic regression model.

With estimates of π(x𝑖) we can then calculate the estimates of the multinomial expectile
vector µ𝑞 (x𝑖) using equations (8), (9) and (10), from which we obtain:
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`𝑞𝑔 (x𝑖) =
exp(x𝑇

𝑖
β𝑔 + log 𝑞

1−𝑞 )

1 +∑𝐺−1
𝑔=1 exp(x𝑇

𝑖
β𝑔 + log 𝑞

1−𝑞 )
, 𝑔 = 1, . . . , 𝐺 − 1, (11)

`𝑞𝐺 (x𝑖) =
1

1 +∑𝐺−1
𝑔=1 exp(x𝑇

𝑖
β𝑔 + log 1−𝑞

𝑞
)
. (12)

Note that this simplifies down to the binary case when 𝐺 = 2, as required. The proposed method
is then computationally very simple due to the estimates coming from the multinomial logistic
regression, and then the predictions coming from the 𝑞-score derivations. To visualise these
multicategory expectiles Figure 1 (right panel) shows fitted lines in an example. Based on this
derivation, the choice of the reference category does not affect µ𝑞𝑔 (x𝑖).

It is worth noting that, unlike probabilities that sum to one, multinomial expectiles do not
sum up to a fixed constant. The sum of the expectiles does not even sum to a constant dependent
solely on 𝑞, but instead it is also dependent on x𝑖 hence this sum cannot simply be universally
integrated into the model structure, as is done for multinomial logistic regression.

Expectiles are often criticised for their lack of robustness and interpretability which is why
quantiles are the more natural option for continuous response. This criticism is relevant for con-
tinuous variables but much less so for binary and multicategory response variables. In fact, with
multicategory responses we cannot talk of heavy tails over-influencing parameter estimation, as
observations can only be a vector with elements of 0 or 1. Observations can still have high lever-
age however, which should be considered and assessed as with any regression model. In this
sense, robust estimates can still be sought by first robustly estimating the probability. Cantoni
and Ronchetti (2001) developed an approach to robust GLMs based on quasi-likelihood estima-
tion, naturally including binary responses. This approach down-weights observations that have
large Pearson residuals and high leverage. Hence predictions of binary expectiles can be made
from the robust predictions of the probabilities. This could similarly be done using robustly
estimated multinomial regression models such as that proposed by Tabatabai et al. (2014).

As for interpretability, with respect to ordinary quantiles, we note that there is no obvious
interpretation for the binary or multicategory case. As Manski and Thompson (1989) show, the
isotonic form of Bernoulli quantiles are either 0 or 1 for all 𝑞 determined simply by 𝐼 (𝜋 ≥ 1−𝑞).
This may be somewhat intuitive, though it is essentially trivial and not very interpretable. The
single-crossing models of binary quantiles, with a latent variable assumption, provide a more
useful conceptualisation for binary quantiles with a range within (0, 1). Bernoulli expectiles
naturally have this range even with the simpler isotonic model, where the higher 𝑞 is, the closer
the expectile is to one. The simple relationship, and the fact the model can remain isotonic
suggests that the expectile is perhaps more natural with binary and multicategory response data,
since the isotonic quantile is trivial and single-crossing quantiles have added complexity. 𝑀-
quantile models using a Huber influence function can also be expressed isotonically, which is in
Section S.2 of the supplementary material.

With the Bernoulli and multinomial expectile regression models now presented, we next
provide an introduction to SAE and how these models can be applied.
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4. Small area estimation for multicategory data

SAE models ‘borrow strength’ from the population (e.g. country) to infer about the sub-
population (e.g. regions or provinces), when sample sizes are too small for precise direct esti-
mation (Rao and Molina, 2015). We broadly focus on two general approaches to SAE models,
the mixed model approach and the 𝑀-quantile approach, see Dawber and Chambers (2019)
for a recent review and comparison of these two approaches. In this section we first present
the mixed model approach to SAE for multicategory data, before presenting the application of
multinomial expectile regression using the 𝑀-quantile approach.

To extend small area estimators to multicategory data it is necessary to extend the binary re-
sponse approaches to the multicategory case. In particular, to extend the small area estimators to
multicategory data requires a multinomial random-effects model. Hartzel et al. (2001) unified
multinomial logistic random-effects model methods and presented a model for multicategory
response data. Suppose there were 𝐺 categories and 𝐽 small areas and let y𝑖 𝑗 be the 𝐺-vector
of multicategory responses for unit 𝑖 in area 𝑗 , 𝑖 = 1, . . . , 𝑁 𝑗 and 𝑗 = 1, . . . , 𝐽 and 𝑁 𝑗 is the
population size of small area 𝑗 , with probabilities π𝑖 𝑗 = (𝜋𝑖 𝑗1, . . . , 𝜋𝑖 𝑗𝐺). Also let x𝑖 𝑗 be the
explanatory fixed-effect variables for each unit and z𝑖 𝑗 be the random-effect design matrix, let
β𝑔 be the fixed-effect parameter vector associated with the 𝑔-th category and 𝛾 𝑗𝑔 be a com-
ponent of the random-effect parameter vector γ 𝑗 , which is dependent on both the area and the
category. Finally, let ℎ(·) be a known invertible link function, µ𝑖 𝑗 = 𝐸 [y𝑖 𝑗 |γ 𝑗] such that ℎ(µ𝑖 𝑗)
can be expressed as a linear function of both β𝑔 and γ 𝑗 . Specifically, if category 𝐺 is arbitrarily
set to be the baseline category then the multinomial logistic random-effects model for the 𝑔-th
category is given by:

ℎ(`𝑖 𝑗𝑔) = log
(
𝜋𝑖 𝑗𝑔

𝜋𝑖 𝑗𝐺

)
= x𝑇

𝑖 𝑗β𝑔 + z𝑇𝑖 𝑗γ 𝑗 , (13)

where γ 𝑗 ∼ 𝑀𝑉𝑁 (0,𝚺) with γ 𝑗 = (𝛾 𝑗1, . . . , 𝛾 𝑗 (𝐺−1) ) and unconstrained covariance matrix
as recommended by Hartzel et al. (2001). The multinomial distribution has categories that
are correlated, and hence the random-effects structure should capture that correlation in the 𝚺
parameter. The random effects should be able to capture the between-category correlation, as
well as the different within-category variation across areas. This is why the random effects
structure must be considered multi-dimensionally and should not be constrained too much.

Small area estimates for the category 𝑔 are then obtained by:

�̂�𝐶𝐸𝑃
𝑗𝑔 = 𝑁−1

𝑗


∑︁
𝑖∈𝑠 𝑗

𝑦𝑖 𝑗𝑔 +
∑︁
𝑖∈𝑟 𝑗

ˆ̀𝑖 𝑗𝑔
 , 𝑔 = 1, . . . , 𝐺, (14)

where 𝑦𝑖 𝑗𝑔 is the observed value for unit 𝑖 in small area 𝑗 and for category 𝑔, 𝑠 𝑗 denotes the
set of 𝑛 𝑗 units sampled in area 𝑗 , and 𝑟 𝑗 the 𝑁 𝑗 − 𝑛 𝑗 remaining (i.e. non-sampled) units in this
area. Here ˆ̀𝑖 𝑗𝑔 = ℎ−1(x𝑇

𝑖 𝑗
β̂𝑔 + �̂� 𝑗𝑔), β̂𝑔 and �̂� 𝑗𝑔 are the estimates of the model coefficients and

predicted values of the random area effects, respectively. This small area estimator is known
in the literature as the conditional expectation predictor (CEP). See Chambers et al. (2016) for
details. One difficulty with such a model is ensuring that �̂�𝐶𝐸𝑃

𝑗𝑔
is the same regardless of the

choice of reference category. Our understanding is that changing the reference category will
affect �̂� 𝑗𝑔 because they are derived relative to that category. This then results in changes to ˆ̀𝑖 𝑗𝑔,
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which is not a desirable property. This is confirmed by our empirical investigations (see Section
5), and implies that the small area predictions vary depending on the choice of the reference
category. To the best of the authors’ knowledge this problem has not been solved for SAE using
multinomial mixed models.

Molina et al. (2007) used a multinomial logistic random-effects model for SAE on labour
force status. The model they used specifies that the random-effect variance across areas is the
same for each logit, which is a rather restrictive and unrealistic constraint. A less restrictive
random-effects structure was utilised in SAE by Scealy (2010) and Saei and Taylor (2012).
Fewer restrictions on the correlation were used in these cases, and were generally shown to yield
improved small area estimates compared to the constrained method by Molina et al. (2007).
However, the methods presented focussed on the particular case of three categories, and did not
provide methods more generally with more than three, presumably due to the added complexity
of the random effects structure. López-Vizcaíno et al. (2013) also utilised a multinomial logistic
random-effects regression for SAE but with constrained independence between the categories
of the random effects, which is not a realistic assumption.

Estimates are always accompanied by a measure of accuracy, the most common one being
the mean squared error (MSE). Molina et al. (2007) proposed an analytical MSE estimator based
on Taylor expansion based on methods by Prasad and Rao (1990) and a bootstrap for MSE
estimation on finite populations. This method works by generating bootstrap populations from
the multinomial model with probabilistic properties similar to the original model but conditional
on the initial sample, and then extracting samples from these populations. Saei and Taylor
(2012) proposed a MSE estimator based on an analytical approximation approach presented in
Saei and Chambers (2003).

The problem with this mixed model approach with multicategory response is twofold. First
the computation can be unstable and time-consuming due to the multi-dimensional integrals that
are calculated, and second the random-effects structure is difficult to realistically specify and
check in the model. Hence with mixed model approaches not offering a viable general solution
to SAE with a multicategory response, we turn to the alternative 𝑀-quantile approaches.

5. SAE using binary and multicategory expectile regression models

The 𝑀-quantile approach to SAE relies on so-called ‘𝑞-scores’ that are calculated for each ob-
served sample unit. Before the expectile small area estimator can be introduced for the binary
and multicategory responses we first introduce how the 𝑞-scores are derived for continuous re-
sponse variables (Chambers and Tzavidis, 2006). Mixed effects models assume that variability
associated with the conditional distribution of 𝑦 given 𝑥 can be at least partially explained by a
prespecified hierarchical structure, such as the small areas of interest. However, an alternative
approach to modelling the variability in this conditional distribution is via 𝑀-quantile regres-
sion, which does not depend on a hierarchical structure. In this approach the 𝑞-score conditional
on x𝑖 𝑗 , is the value of 𝑞 that yields regression predictions equal to the response 𝑦𝑖 𝑗 . More for-
mally the 𝑞-score, 𝑞∗

𝑖 𝑗
for the 𝑖-th unit in area 𝑗 is such that 𝑦𝑖 𝑗 = 𝑀𝑞∗

𝑖 𝑗
(x𝑖 𝑗) = x𝑇

𝑖 𝑗
β𝑞∗

𝑖 𝑗
. Hence,

if quantile regression is used, and the response is directly on the median regression line, then
the 𝑞-score will be 𝑞∗

𝑖 𝑗
= 0.5. If the response is in the upper tail, then the 𝑞-score will be close

to one, and if the response is in the lower tail, then the 𝑞-score will be close to zero.
Generally, the objective of a 𝑞-score is to assign each observation a score in (0, 1) where 𝑞-
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scores close to 0.5 are considered ‘typical’ and 𝑞-scores close to 0 or 1 are considered ‘extreme’
at each end of the conditional distribution. Furthermore, these 𝑞-scores should ideally distribute
across the full range of (0, 1), so the heterogeneity of each unit is suitably captured. Note that
an appropriately fitted quantile regression will yield 𝑞-scores that are approximately uniformly
distributed. An alternative way of conceptualising 𝑞-scores is to consider them like a residual,
except instead of being distributed on the real line about zero as is the case for Pearson residuals,
they are distributed in (0, 1), with the centre being close to 0.5 for symmetric distributions.

As stated above, the 𝑞-scores variability reflects the heterogeneity at the unit level. If clus-
tering exists, population units in the same cluster (or small area) will have similar 𝑞-scores and
these will be different from those of units that belong to other clusters (or areas). An area-
specific 𝑞-score can be then defined as 𝑞∗

𝑗
= 𝐸 [𝑞∗

𝑖 𝑗
| 𝑗], where the expectation is conditional on

the distribution of 𝑞∗
𝑖 𝑗

within area 𝑗 . Then, in mixed models the random part effectively accounts
for residual between-area variation beyond that explained by 𝑥. In contrast, a linear 𝑀-quantile
modelling approach captures this residual between-area variation by the deviation of the area-
specific 𝑀-quantile regression coefficient β𝑞∗

𝑗
from the ‘median’ 𝑀-quantile coefficient β0.5.

This allows Chambers and Tzavidis (2006) to write the small area predictor obtained fitting the
linear 𝑀-quantile regression model in a form that mimics that achieved fitting mixed effects
model, where x𝑇

𝑖 𝑗
β0.5 represents the fixed effect part of the predictor and x̄𝑇

𝑗
(β𝑞∗

𝑗
−β0.5) can be

interpreted as a pseudo-random effect for area 𝑗 with x̄ 𝑗 denoting the vectors of average values
of x𝑖 𝑗 of area 𝑗 . Therefore these 𝑞-scores are best thought of as 𝑀-quantile analogues to the
random effects in a mixed model approach.

The 𝑞-score definition for continuous response cannot be simply extended to the binary
response case. This is because binary responses of 0 and 1 will always be outside the (0, 1)
support of binary expectiles, hence 𝑦𝑖 𝑗 ≠ `𝑞∗

𝑖 𝑗
(x𝑖 𝑗) ∀𝑞∗𝑖 𝑗 . As such, different methods must be

used to acquire appropriate 𝑞-scores for these response types. For binary response, Chambers
et al. (2016) suggested three 𝑞-score definitions (the authors refer to 𝑞-scores as 𝑀-quantile
coefficients) and they use in the application their Definition 3 where the estimated 𝑞-score for
unit 𝑖 in area 𝑗 is 𝑞∗

𝑖 𝑗
, where �̂��̂�∗

𝑖 𝑗
(x𝑖 𝑗) = {�̂�0.5(x𝑖 𝑗) + 𝑦𝑖 𝑗}/2. However, we propose a new

𝑞-score definition, which can be used for binary and multicategory responses. To explain why,
first consider what desirable properties a binary 𝑞-score should have:

• The support of the 𝑞-scores should be (0, 1).

• For a fixed x𝑖 𝑗 , the 𝑞-score, 𝑞∗
𝑖 𝑗

, should be greater when 𝑦𝑖 𝑗 = 1 than 𝑦𝑖 𝑗 = 0.

• If 𝑞∗
𝑖 𝑗

is the 𝑞-score derived from 𝑦𝑖 𝑗 and x𝑖 𝑗 , then 1 − 𝑞∗
𝑖 𝑗

should be the 𝑞-score if 1 − 𝑦𝑖 𝑗
is used as response instead of 𝑦𝑖 𝑗 . This symmetry allows 𝑞-scores to be equidistant to 0.5,
regardless of how 𝑦𝑖 𝑗 is defined.

• For binary response, ‘typical’ observations occur in two scenarios: when 𝑦𝑖 𝑗 = 0 with 𝜋𝑖 𝑗
close to 0, and also when 𝑦𝑖 𝑗 = 1 with 𝜋𝑖 𝑗 close to 1. Then 𝑞∗

𝑖 𝑗
should be defined so that

𝑞∗
𝑖 𝑗
� 0.5 for ‘typical’ observations. Hence, when 𝑦𝑖 𝑗 = 0, then 𝑞∗

𝑖 𝑗
→ 0.5 as 𝜋𝑖 𝑗 → 0,

and similarly when 𝑦𝑖 𝑗 = 1, then 𝑞∗
𝑖 𝑗
→ 0.5 as 𝜋𝑖 𝑗 → 1.

• The ensemble of the 𝑞-scores should be as close to a uniform distribution on (0, 1) as
possible.
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The latter requirement is based on the uniformity of 𝑞-scores of continuous response derived
from quantile regression, and provides a degree of variability that will obtain 𝑞-scores that cap-
ture the required unit-level heterogeneity. Although a binary variable cannot simply be trans-
formed into a uniform variable, and since expectile rather than quantile regression is used, it
nevertheless provides useful properties for 𝑞-scores in practice. To ‘uniformalise’ a Bernoulli
variable we refer to randomised quantile residuals presented by Dunn and Smyth (1996).

THEOREM 3. Let 𝐹 (𝑦𝑖 𝑗 ; 𝜋𝑖 𝑗) be the distribution function of a Bernoulli variable, and 𝑈𝑖 𝑗 ∼
U(𝑎𝑖 𝑗 , 𝑏𝑖 𝑗), where 𝑎𝑖 𝑗 = lim𝑦→𝑦−

𝑖 𝑗
𝐹 (𝑦; 𝜋𝑖 𝑗) and 𝑏𝑖 𝑗 = 𝐹 (𝑦𝑖 𝑗 , 𝜋𝑖 𝑗), then 𝑈𝑖 𝑗 ∼ U(0, 1).

PROOF. We have that 𝑈𝑖 𝑗 | (𝑦𝑖 𝑗 = 0) ∼ U(𝑎𝑖 𝑗 = 0, 𝑏𝑖 𝑗 = 1 − 𝜋𝑖 𝑗) , and 𝑈𝑖 𝑗 | (𝑦𝑖 𝑗 = 1) ∼
U(𝑎𝑖 𝑗 = 1 − 𝜋𝑖 𝑗 , 𝑏𝑖 𝑗 = 1). The marginal distribution of 𝑈𝑖 𝑗 will be:

𝑓𝑈𝑖 𝑗
(𝑢) = (1 − 𝜋𝑖 𝑗) 𝑓𝑈𝑖 𝑗 |𝑦𝑖 𝑗=0(𝑢) + 𝜋𝑖 𝑗 𝑓𝑈𝑖 𝑗 |𝑦𝑖 𝑗=1(𝑢)

= (1 − 𝜋𝑖 𝑗) (1 − 𝜋𝑖 𝑗)−11(0,1−𝜋𝑖 𝑗 ] + 𝜋𝑖 𝑗 (𝜋𝑖 𝑗)−11(1−𝜋𝑖 𝑗 ,1] = 1(0,1] ,

where 1(0,1] is the density function of the standard uniform distribution.

Based on Theorem 3, we define 𝑞∗
𝑖 𝑗

conditional on 𝑦𝑖 𝑗 ,x𝑖 𝑗 any number generated from
U(𝑎𝑖 𝑗 , 𝑏𝑖 𝑗]. It can easily be shown that this definition of a binary 𝑞-score also captures all
the previously listed properties.

In empirical analyses 𝜋𝑖 𝑗 would be replaced by an estimate �̂�𝑖 𝑗 . Moreover to obtain a repli-
cable estimator we replace the uniformly distributed number in the definition of 𝑞∗

𝑖 𝑗
with the

midpoint between �̂�𝑖 𝑗 and �̂�𝑖 𝑗 defined replacing 𝜋𝑖 𝑗 with �̂�𝑖 𝑗 in the definitions of 𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 . The
empirical 𝑞-score 𝑞∗

𝑖 𝑗
will then be defined as

𝑞∗𝑖 𝑗 =
1 − �̂�𝑖 𝑗 + 𝑦𝑖 𝑗

2
. (15)

In fact if 𝑦𝑖 𝑗 = 0, then 𝑞∗
𝑖 𝑗

= (1 − �̂�𝑖 𝑗)/2, and if 𝑦𝑖 𝑗 = 1 then 𝑞∗
𝑖 𝑗

= (2 − �̂�𝑖 𝑗)/2; both can
be written as (15). We note that the 𝑞∗

𝑖 𝑗
score will not be exactly uniform, but will provide a

reasonable approximation to uniform in practice.
Consider a simple example, suppose �̂�𝑖 𝑗 = 0.99 and 𝑦𝑖 𝑗 = 1 is observed which is very much

expected, then the corresponding 𝑞-score would be 𝑞∗
𝑖 𝑗
= 0.505. Conversely, if the observation

was actually 𝑦𝑖 𝑗 = 0 then this would not typically occur hence the 𝑞-score should be close to 0,
which it is with 𝑞∗

𝑖 𝑗
= 0.005. Further intuitive properties arise from this definition also, suppose

�̂�𝑖 𝑗 = 0.5 then if 𝑦𝑖 𝑗 = 0 or 1 then the 𝑞-score is either 0.25 or 0.75, an intuitive outcome. Also
note that on average the 𝑞-score will be 0.5. So this proposed derivation of the 𝑞-scores offers
a new way of defining binary 𝑞-scores, and in practice estimates can be made very easily based
on estimates of 𝜋𝑖 𝑗 .

The three binary 𝑞-score definitions introduced by Chambers et al. (2016) do not meet all
of the proposed properties, are more complex and hence are not as adequate as the proposed
𝑞-score. Chambers et al. (2016) selected the third definition as most preferable, which we
compare to the proposed 𝑞-score approach in Figure 2 using straightforward simulated data. It
is clear how the proposed approach includes 𝑞-scores distributed all across (0, 1) and are very
close to 0.5 when the probability of the observed response is very high. The current approach by
Chambers et al. (2016) has no 𝑞-scores close to 0.5, and none even within the range of (0.4, 0.6).
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Figure 2. Simulated 𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋) data on the left figure where 𝜋 = (1+𝑒𝑥𝑝(−2𝑥))−1 fitted line
shown. On the right are the corresponding 𝑞-scores for the current and proposed approaches.

For binary response variables, individual units can be represented by a single 𝑞-score, where
the 𝑞-scores increase with the response for given covariates. To extend binary 𝑞-scores to the
multicategory case requires first conceptualising a multivariate 𝑞-score. In such cases, a 𝑞-score
vector is required to capture each dimension. So multicategory response variables with 𝐺 > 2
categories cannot be expressed by a single valued 𝑞-score, but instead a 𝑞-score vector of length
𝐺. The same occurs with the random-effects models, where each unit requires a random-effects
vector to specify how the unit varies across categories.

Calculating the 𝑞-score vector for each unit can be done very similarly to the binary case.
Suppose q̂∗

𝑖 𝑗
=

(
𝑞∗
𝑖 𝑗1, . . . , 𝑞

∗
𝑖 𝑗𝐺

)
is the empirical 𝑞-score vector for the 𝑖, 𝑗-th multinomial re-

sponse
(
𝑦𝑖 𝑗1, . . . , 𝑦𝑖 𝑗𝐺

)
, from one trial, then the 𝑔-th element of the vector can be defined simi-

larly to equation (15): 𝑞∗
𝑖 𝑗𝑔

= ((1 − �̂�𝑖 𝑗𝑔) + 𝑦𝑖 𝑗𝑔)/2. A useful property of this 𝑞-score definition
is that the sum of the 𝑞-score vector will be fixed, equal to 𝐺/2. Note that in the special binary
case this ensures the symmetric property of the 𝑞-scores, as is one of the listed properties. The
idea behind this method is that 𝑞∗

𝑖 𝑗𝑔
can now be inserted back into the multinomial expectile

regression equations (11) and (12), providing a conditional multinomial expectile prediction.
For this multicategory case a ‘typical’ 𝑞-score vector will have all elements close to 0.5,

which will occur when all marginal probabilities are close to the corresponding observation.
For example, suppose 𝐺 = 3, then the 𝑞-score vector of a ‘typical’ unit would be close to
(0.5, 0.5, 0.5) when π̂𝑖 𝑗 = (0.01, 0.98, 0.01) and y𝑖 𝑗 = (0, 1, 0).

With the 𝑞-scores now defined for the binary and multicategory case, as well as the expectile
regression estimators, the SAE estimators can now also be defined. Chambers et al. (2016) de-
fined the 𝑀-quantile SAE estimator for binary data which remains unchanged for the proposed
expectile SAE estimator. The binary small area estimator based on expectile (E) regression
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model for area 𝑗 is calculated using:

𝑝𝐸𝑗 = 𝑁−1
𝑗


∑︁
𝑖∈𝑠 𝑗

𝑦𝑖 𝑗 +
∑︁
𝑖∈𝑟 𝑗

ˆ̀�̂�∗
𝑗
(x𝑖 𝑗)

 (16)

where 𝑞∗
𝑗

is an aggregate of all 𝑞-scores in area 𝑗 (typically the average) and ˆ̀�̂�∗
𝑗
(x𝑖 𝑗) =

exp(x𝑇
𝑖 𝑗
β̂�̂�∗

𝑗
)/(1 + exp(x𝑇

𝑖 𝑗
β̂�̂�∗

𝑗
)). So essentially the estimate ˆ̀�̂�∗

𝑗
(x𝑖 𝑗) serves as an estimate

of the proportion at area 𝑗 given x𝑖 𝑗 . The further the aggregated 𝑞-score 𝑞∗
𝑗

is from 0.5, the
greater the area effect.

Multicategory 𝑞-score vectors can be simply applied to calculate the expectile-based small
area estimates. This is very similar to the binary case in equation (16), except done marginally.
In the binary case the expectile estimator is ˆ̀�̂�∗

𝑗
(x𝑖 𝑗). This expectile estimate represents the pro-

portion at area 𝑗 . In the multicategory case, expectile 𝑞-scores are a vector where each category
represents an element, hence the 𝑔-th element of q̂∗

𝑗
is aggregated within each category, e.g. for

the mean 𝑞-scores of area 𝑗 and category 𝑔: 𝑞∗
𝑗𝑔

= 𝑛−1
𝑗

∑𝑛 𝑗

𝑖=1 𝑞
∗
𝑖 𝑗𝑔

. Hence, the expectile estimate
for the 𝑖-th unit in category 𝑔 and area 𝑗 is ˆ̀�̂�∗

𝑗𝑔
𝑔 (x𝑖 𝑗) using equation (11). The multinomial

expectile (ME) small area estimates of the ‘pseudo-proportion’ for area 𝑗 in category 𝑔 can then
be calculated using:

𝑝𝑀𝐸′
𝑗𝑔 = 𝑁−1

𝑗


∑︁
𝑖∈𝑠 𝑗

𝑦𝑖 𝑗𝑔 +
∑︁
𝑖∈𝑟 𝑗

ˆ̀�̂�∗
𝑗𝑔
𝑔 (x𝑖 𝑗)

 , 𝑔 = 1, . . . , 𝐺, (17)

where ˆ̀�̂�∗
𝑗𝑔
𝑔 (x𝑖 𝑗) =

exp(x𝑇
𝑖 𝑗
β�̂�∗

𝑗𝑔
𝑔)

1+∑𝐺−1
𝑔=1 exp(x𝑇

𝑖 𝑗
β�̂�∗

𝑗𝑔
𝑔)
, 𝑔 = 1, . . . , 𝐺−1 and ˆ̀�̂�∗

𝑗𝐺
𝐺 (x𝑖 𝑗) = 1

1+∑𝐺−1
𝑔=1 exp(x𝑇

𝑖 𝑗
β�̂�∗

𝑗𝑔
𝑔)

,

𝑔 = 𝐺. The value x𝑇
𝑖 𝑗
β�̂� 𝑗𝑔

can be written as x𝑇
𝑖 𝑗
β𝑔 +x𝑇

𝑖 𝑗
(β̂�̂�∗

𝑗𝑔
− β̂𝑔). Note that, in view of (11),

(12), the difference β̂�̂�∗
𝑗𝑔
− β̂𝑔 is a vector whose first entry is log

�̂�∗
𝑗𝑔

1−�̂�∗
𝑗𝑔

while all the rest is 0;

log
�̂�∗
𝑗𝑔

1−�̂�∗
𝑗𝑔

can then be thought as a pseudo random effect specific to both area and category.

Moreover, note that the marginal residual x𝑇
𝑖 𝑗
(β̂�̂�∗

𝑗𝑔
− β̂𝑔) can be decomposed in two pseudo-

effects: (i) an area pseudo-random effect of area 𝑗 defined as x̄𝑇
𝑗
(β̂�̂�∗

𝑗𝑔
−β̂𝑔) and (ii) an individual

pseudo-random effect of unit 𝑖 in area 𝑗 denoted as (x𝑖 𝑗−x̄ 𝑗)𝑇 (β̂�̂�∗
𝑗𝑔
−β̂𝑔). This ME predictor is

very similar to the CEP in equation (14), where the only difference is how `𝑔 is estimated. The
CEP uses random-effects to characterise area-level differences, while the ME predictor uses the
proposed expectile 𝑞-scores. Chambers et al. (2016) develop some empirical evidence for the
relationship between the random effects of a generalised linear mixed models (GLMM) and the
pseudo-random effects obtained by 𝑀-quantile models for binary data conducting a simulation
experiment. The results suggest that estimated pseudo-random effects are comparable with
predicted area effects computed by using standard GLMM fitting procedures as far as capturing
intra-area (domain) variability is concerned.

From a practical implementation point of view, we note that all the x𝑖 𝑗 , 𝑖 ∈ 𝑟 𝑗 need to be
known in order to compute (17). The information requirement is decreased when the covariates
are categorical: in this case only the totals at the area level need to be known.
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The pseudo-proportions 𝑝𝑀𝐸′
𝑗𝑔

cannot act as an estimate of a proportion because they are
not guaranteed to sum to one. Hence the multinomial expectile proportion estimates 𝑝𝑀𝐸

𝑗𝑔
for

each category 𝑔 within area 𝑗 should be normalised such that the pseudo-proportions sum to one
across categories. An important property of the proposed method is that the choice of reference
category does not affect the predictions. In contrast, the choice of the reference category is an
issue for the random-effects models, since the multivariate random-effects structure would have
to be constrained to ensure consistency. We have run a small simulation study and it shows that
the random-effects models produce predictions that change considerably when the reference
category changes. On average it changes by 6% and for some instances up to 39%. Using
the expectile regression models there are no differences in predictions changing the reference
category.

5.1. Bootstrapped estimates of mean squared error
A bootstrap-based method for estimating the MSE of estimator 𝑝𝑀𝐸

𝑗𝑔
can be implemented fol-

lowing Chambers et al. (2016). This is based on the random-effects block (REB) bootstrap of
Chambers and Chandra (2013). The method is a robust alternative to the parametric bootstrap
for clustered data. The REB bootstrap is free of both the distribution and the independence
assumptions of the parametric bootstrap and is consistent when the mixed model assumption
is valid. In particular, it preserves area effects by bootstrap resampling within areas. Here we
adapt this procedure to estimate the distribution of the predictor based on expectile regression
models. The steps in the REB bootstrap are as follows.

Step 1: Calculate 𝐽 × (𝐺 − 1) vectors of marginal residuals r𝐸
𝑗𝑔

= (𝑟𝐸
𝑖 𝑗𝑔

) = x𝑇
𝑖 𝑗
(β̂�̂�∗

𝑖 𝑗𝑔
− β̂𝑔),

𝑖 = 1, . . . , 𝑛 𝑗 , 𝑗 = 1, . . . , 𝐽, 𝑔 = 1, . . . , 𝐺 − 1, where β̂�̂�∗
𝑖 𝑗𝑔

is the estimate of β̂𝑔 with

intercept adjusted by log
�̂�∗
𝑖 𝑗𝑔

1−�̂�∗
𝑖 𝑗𝑔

as per equation (11). Rescale the elements of the vector

r𝐸
𝑗𝑔

so they have mean equal to 0.

Step 2: Construct the individual bootstrap errors for the 𝑁 𝑗 population units in area 𝑗 for category
𝑔 as r𝐸∗

𝑗𝑔
= (𝑟𝐸∗

𝑖 𝑗𝑔
) = 𝑠𝑟𝑠𝑤𝑟 (r𝐸

𝑓 ( 𝑗)𝑔, 𝑁 𝑗) where 𝑓 ( 𝑗) = 𝑠𝑟𝑠𝑤𝑟 ({1, . . . , 𝐽}, 1). Here we use
the notation 𝑠𝑟𝑠𝑤𝑟 (𝐴, 𝑚) to denote sampling with replacement 𝑚 times from the set 𝐴.

Step 3: Generate a bootstrap population 𝑈∗ of 𝑁 independent bootstrap multinomial realisations
made up of 𝐽 areas with area 𝑗 of size 𝑁 𝑗 , and with bootstrap multinomial realisation 𝑦∗

𝑖 𝑗𝑔

in area 𝑗 taking the value 1 with probability

𝜋∗𝑖 𝑗𝑔 =
exp(x𝑇

𝑖 𝑗
β𝑔 + 𝑟𝐸∗

𝑖 𝑗𝑔
)

1 +∑𝐺−1
𝑔=1 exp(x𝑇

𝑖 𝑗
β𝑔 + 𝑟𝐸∗

𝑖 𝑗𝑔
)
, 𝑔 = 1, . . . , 𝐺 − 1 (18)

𝜋∗𝑖 𝑗𝐺 =
1

1 +∑𝐺−1
𝑔=1 exp(x𝑇

𝑖 𝑗
β𝑔 + 𝑟𝐸∗

𝑖 𝑗𝑔
)
, 𝑖 = 1, . . . , 𝑁 𝑗 . (19)

Step 4: Calculate the bootstrap population parameters 𝑝∗
𝑗𝑔

, 𝑗 = 1, . . . , 𝐽 and 𝑔 = 1, . . . , 𝐺.

Step 5: Extract a sample 𝑠∗ of size 𝑛 from the bootstrap population 𝑈∗ by using the same sample
design as that used to obtain the original sample and calculate the bootstrap expectile
predictor 𝑝𝑀𝐸∗

𝑗𝑔
, 𝑗 = 1, . . . , 𝐽 and 𝑔 = 1, . . . , 𝐺.
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Step 6: Repeat steps 2 − 5 𝐵 times. In the 𝑏th bootstrap replication, let 𝑝∗(𝑏)
𝑗𝑔

, be the quantity of

interest for area 𝑗 and category 𝑔 and let 𝑝𝑀𝐸∗ (𝑏)
𝑗𝑔

be its corresponding estimate.

Step 7: The REB bootstrap estimator of the MSE of 𝑝𝑀𝐸
𝑗𝑔

is

𝑚𝑠𝑒𝑅𝐸𝐵 (𝑝𝑀𝐸
𝑗𝑔 ) = 𝐵−1

𝐵∑︁
𝑏=1

(𝑝𝑀𝐸∗ (𝑏)
𝑗𝑔

− 𝑝
∗(𝑏)
𝑗𝑔

)2. (20)

The performance of the REB bootstrap has been evaluated in a simulation study in the next
section.

6. Simulation study for multicategory data in SAE

The purpose of this simulation study is to assess how well multinomial expectile regression
works in SAE of multicategory proportions and how it compares to the method proposed by
Molina et al. (2007) that assume common random effects across categories and to that pro-
posed by Saei and Taylor (2012) with unconstrained random effects. For simplicity, these will
respectively be referred to as the constrained and unconstrained random-effects (RE) methods
respectively. To highlight the benefits of modelling area-level unobserved heterogeneity by
means of random effects or 𝑞-scores, we consider also SAE predictions based on a fixed effects
multinomial logistic regression (FE). Moreover, the performance of the small area predictors
based on multinomial 𝑀-quantile estimation presented in Section S.2 of the supplementary ma-
terial is also considered. Altogether, the following six methods will be evaluated: (a) Direct
estimator (sample proportion); (b) FE method; (c) Constrained RE method; (d) Unconstrained
RE method; (e) Expectile method; (f) 𝑀-quantile method.

For the simulation study, a population of 𝑁 = 5, 000 is generated in 𝐽 = 50 small areas each
with population size 𝑁 𝑗 = 100, 𝑗 = 1, . . . , 𝐽. Values for the single explanatory variable 𝑥𝑖 𝑗 are
simulated from U(−1, 𝑗/4), 𝑗 = 1, . . . , 𝐽, 𝑖 = 1, . . . , 𝑁 𝑗 , and x𝑖 𝑗 = (1, 𝑥𝑖 𝑗). A multicategory
response variable with 𝐺 = 3 categories was simulated from 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛𝑖 = 1,π𝑖 𝑗) where
π𝑖 𝑗 = (𝜋𝑖 𝑗1, 𝜋𝑖 𝑗2, 𝜋𝑖 𝑗3) and 𝜋𝑖 𝑗𝑔 = exp([𝑖 𝑗𝑔)/(1 + ∑2

𝑔=1 exp([𝑖 𝑗𝑔)) when 𝑔 = 1, 2. For the
reference category 𝑔 = 3, 𝜋𝑖 𝑗1 = 1/(1 + ∑2

𝑔=1 exp([𝑖 𝑗𝑔)), and [𝑖 𝑗𝑔 = x𝑇
𝑖 𝑗
β𝑔 + 𝛾 𝑗𝑔 where β𝑔 is

the column of β corresponding with category 𝑔, and β =
( 0 −0.5

1 −0.5
)
.

The small area effects 𝛾 𝑗𝑔 are simulated in two different ways. In one case they are in line
with the assumptions in Molina et al. (2007) with 𝛾 𝑗1 generated from N(0, 0.15) and 𝛾 𝑗1 = 𝛾 𝑗2.
In the other, based on the assumptions of Hartzel et al. (2001) random effects are simulated
from a bivariate normal 𝑀𝑉𝑁 (0,𝚺), with 𝚺 =

( 0.15 −0.05
−0.05 0.15

)
. These settings for the variance

components are close to those obtained as estimates in the application of the Molina et al.
(2007) and Saei and Taylor (2012) models in the ILFS application with three categories. We
also note that the expected values of the target variable are close to the prevalence of the labour
force statuses with three categories (0.73, 0.17 and 0.10) in the application of Section 7.

Moreover, as the magnitude of area-specific heterogeneity is rather small using these vari-
ance components, we consider an alternative setting with values increased to 0.5 in the con-
strained scenario and to 𝚺 =

( 0.5 −0.2
−0.2 0.5

)
in the unconstrained one. We label this latter scenario

as large variance components, as opposed to small for the previous one.
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After a population of 𝑁 = 5, 000 is generated, samples of size equal to either 𝑛 𝑗 = 10 or
𝑛 𝑗 = 20 are drawn by simple random sampling from each area , yielding a total sample size of
𝑛 = 500 and 𝑛 = 1, 000 respectively.

Moreover, a second scenario with samples perturbed by a combination of misclassification
and measurement errors, denoted 𝑀𝑀 , is considered. Specifically, 1% of the overall sample
are randomly selected and the 𝑥𝑖 𝑗 values replaced with 20 and the corresponding y𝑖 𝑗 values set
to be from category 𝑔 = 3. This category is highly improbable for large values of 𝑥𝑖 𝑗 . This
scenario is added to assess the performance of the different estimators when model assumptions
are violated.

To sum up, the experimental factors we consider are: random effects generation (uncon-
strained, constrained), area-specific sample sizes (10, 20), variance components (small, large),
presence of misclassification and measurement errors (no, yes). Each scenario is replicated
𝑅 = 1000 times and the predicted small area proportions 𝑝 𝑗𝑔 are estimated using the different
estimating methods. The performance of the estimators are evaluated for each of the three cat-
egories within each of the 50 small areas with the bias, 𝑅−1 ∑𝑅

𝑟=1(𝑝 𝑗𝑔𝑟 − 𝑝 𝑗𝑔𝑟 ), and root MSE

(RMSE),
√︃
𝑅−1 ∑𝑅

𝑟=1(𝑝 𝑗𝑔𝑟 − 𝑝 𝑗𝑔𝑟 )2, where 𝑝 𝑗𝑔𝑟 is the estimate of the proportion of category 𝑔

in small area 𝑗 at iteration 𝑟 and 𝑝 𝑗𝑔𝑟 is the corresponding true value.
Results for all the scenario with small variance components are shown in Table 2, while

those with large variance components can be found in section S3 of the supplementary material.
As the data is simulated to fit the constrained RE model it is expected that it should perform
well without misclassification and measurement error. However, in regard to both bias and
RMSE for all models without misclassification and measurement error, all modelling methods
perform very similarly. While there are no notable differences in bias, except for the 𝑀-quantile
predictor, only on very close inspection can it be seen that the FE method generally performs
the best in terms of RMSE, with the expectile method having the only instance where one of
the three categories is slightly better than the FE method. In this scenario all methods, except
the 𝑀-quantile method, as expected, have negligible bias, and generally perform comparably
without misclassification and measurement error.

When misclassification and measurement error are introduced, larger differences among the
methods emerge. The FE and constrained RE method are generally the most adversely affected
by the presence of misclassification and measurement error in regard to bias. The 𝑀-quantile
method performs best with respect to bias while the expectile and 𝑀-quantile methods generally
have the lowest RMSE when misclassification and measurement error are present, but again the
FE method performs quite well in comparison to constrained and unconstrained RE.

The results of the unconstrained 𝚺 simulation are also shown in Table 2. In the scenarios with
no misclassification and measurement error all the methods again have small and comparable
biases, except the 𝑀-quantile method that shows larger bias values. As for the RMSE, the
unconstrained RE, expectile and 𝑀-quantile are noticeably performing better than the other
methods. This is expected for the unconstrained RE method since the simulated data have
random effects for each category in concordance with this method. We also note that there is a
substantial difference between the RMSE for the direct estimates compared to the five model-
based estimates which is expected.

In the unconstrained 𝚺 simulation, the unconstrained RE and expectile methods also per-
form well in the presence of misclassification and measurement error in terms of both bias and
RMSE, but the 𝑀-quantile approach shows the best results especially in terms of efficiency. It
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Table 2. Results for constrained and unconstrained 𝚺 simulations: Bias and RMSE of three-
category predicted small area proportions.

Median values of Bias×1000
Constrained 𝚺 simulation Unconstrained 𝚺 simulation

No MM MM No MM MM
𝑛 𝑗 = 10 𝑔1 𝑔2 𝑔3 𝑔1 𝑔2 𝑔3 𝑔1 𝑔2 𝑔3 𝑔1 𝑔2 𝑔3
Direct 0.6 -0.4 0.6 0.2 -1.3 1.1 0.1 -0.6 -0.2 -0.6 -0.6 -0.1
FE 0.2 -0.0 0.1 0.6 -32.5 31.5 0.5 -0.5 0.2 1.0 -33.1 31.7
Constrained RE -0.0 -0.0 0.0 0.2 -32.0 31.5 0.3 -0.4 0.3 0.6 -32.6 31.8
Unconstrained RE -0.0 -0.2 0.0 0.9 -22.6 21.2 0.4 -0.3 -0.0 0.3 -18.3 18.0
Expectile 0.6 -1.1 0.4 1.5 -28.1 26.9 0.9 -1.3 0.7 1.5 -28.0 26.8
𝑀-quantile -5.3 11.0 -5.8 -5.3 -1.1 8.1 -5.5 11.6 -6.0 -5.4 -0.8 7.3
𝑛 𝑗 = 20
Direct 0.1 -0.4 0.1 -0.1 -0.7 0.9 0.1 0.6 -0.5 -0.4 -0.3 -0.2
FE -0.0 -0.1 0.1 0.3 -28.4 27.9 0.7 -0.2 -0.4 0.8 -28.8 27.6
Constrained RE 0.4 -0.2 0.1 0.2 -28.4 28.0 0.4 -0.2 -0.4 0.6 -28.2 27.6
Unconstrained RE 0.3 -0.3 0.1 1.3 -15.9 15.0 0.6 -0.1 -0.5 0.0 -12.8 12.6
Expectile 0.4 -0.8 0.3 0.9 -24.2 23.9 0.6 -0.6 -0.2 1.1 -24.0 23.4
𝑀-quantile -4.8 10.1 -5.5 -4.9 0.1 7.0 -4.6 10.8 -6.1 -4.8 0.4 6.3
Median values of RMSE×1000

Constrained 𝚺 simulation Unconstrained 𝚺 simulation
No MM MM No MM MM

𝑛 𝑗 = 10 𝑔1 𝑔2 𝑔3 𝑔1 𝑔2 𝑔3 𝑔1 𝑔2 𝑔3 𝑔1 𝑔2 𝑔3
Direct 102.0 120.7 79.7 102.0 120.7 79.8 101.9 122.5 80.7 101.9 122.5 80.7
FE 45.5 40.4 25.2 45.6 55.5 42.1 38.0 50.2 35.1 38.2 61.7 48.8
Constrained RE 45.7 40.2 25.4 46.1 54.8 42.2 39.9 49.8 35.8 40.5 61.4 49.3
Unconstrained RE 44.8 42.7 28.7 45.1 53.9 43.7 38.6 50.6 36.4 39.6 59.2 47.6
Expectile 44.4 40.7 26.5 44.8 53.5 41.6 39.4 48.3 34.1 40.1 57.3 45.7
𝑀-quantile 45.2 42.8 27.5 45.6 43.8 31.9 40.7 50.7 35.1 41.2 50.1 37.6
𝑛 𝑗 = 20
Direct 69.7 82.5 51.1 69.7 82.6 51.1 68.7 80.9 53.6 68.7 80.9 53.6
FE 40.8 36.7 22.9 40.9 48.9 37.4 34.7 44.7 31.2 34.8 54.8 43.4
Constrained RE 39.2 35.7 22.6 39.4 47.2 37.1 35.7 43.9 32.0 35.8 53.9 43.8
Unconstrained RE 39.4 37.1 24.2 39.8 46.4 35.7 35.0 42.7 30.7 35.7 48.0 38.3
Expectile 38.3 35.7 23.2 38.4 45.4 35.2 34.5 41.7 29.7 34.7 49.1 38.6
𝑀-quantile 38.9 37.7 24.1 39.1 37.5 26.5 35.6 43.8 30.4 35.8 41.9 31.6
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Table 3. Computation time in seconds for one iteration of the
constrained and unconstrained 𝚺 simulations.

Time (s) Constrained RE Unconstrained RE Expectile
Constrained 𝚺 10.50 12.95 4.53
Unconstrained 𝚺 9.10 17.08 4.65

is evident that in some iterations the constrained RE and expectile methods return very high
bias when misclassification and measurement error are present. In general this shows that the
unconstrained RE, but especially expectile and 𝑀-quantile methods are both viable options in
regard to performance in bias and RMSE when 𝚺 is unconstrained.

The good performance of the FE, especially for constrained 𝚺 simulations, can be explained
by the small values of the variance components in this setting, even if they are realistic as
proved in the ILFS application. Actually, if we consider results with large variance components
(results are reported in Section S.3 of the supplementary material) we find patterns similar to
those displayed in table 2 but, as expected, results show that the efficiency of the FE decreases
as the values of the variance components increase.

It is important to point out that in practice it might be difficult to determine whether 𝚺 should
be assumed to be constrained or not. Hence, with this uncertainty the expectile method provides
a desirable choice, since it performs very close to the estimator that is most suitable under
both conditions. Both the RE and expectile methods assume a multinomial distribution, but the
expectile method has no additional distributional assumptions, whereas the RE methods must
impose an assumption on the distribution of the random effects and whether they are univariate
(constrained) or multivariate (unconstrained).

The computation times for the models are also assessed based on the scenarios without
misclassification and measurement error. The estimation time refers to optimised R codes on
a laptop with a 2.6 GHz Intel Core i7 and 32 Gb RAM. There are considerable differences in
computation times between methods, as shown in Table 3 that shows the time in seconds to
compute one iteration for the four scenarios (two sample sizes, and both the constrained and
unconstrained 𝚺 simulations). Hence in practice the computation time would be approximately
a quarter of these times, if using a similar data set. The expectile method was the fastest and
took less than 5 seconds to carry out one iteration in both simulations. The constrained RE
method was the second fastest and took over 9 seconds for both simulations. This left the
unconstrained RE method as the slowest method with 17 seconds that is 4 times longer than the
expectile method. Hence the expectile approach turns out to be much faster than the constrained
RE and unconstrained RE approaches suggesting it is preferable with larger datasets or when
there are time constraints. Note that the starting points for the estimation of constrained RE
and unconstrained RE were selected fairly close to the true values of the parameters used in the
simulation experiments. For this reason we have also compared the computational time of the
three methods in the application of Section 7.

To assess the performance of the bootstrap MSE estimator proposed in the previous section
we use the same simulation scenario (variance components) with 𝐽 = 50 and sample sizes
𝑛 𝑗 = 10, but with small differences. The small area effects 𝛾 𝑗𝑔 are generated as in the scenario
simulated for the evaluation of the performance of the small area estimators: the first approach
is based on Molina et al. (2007) where 𝛾 𝑗1 is simulated from N(0, 0.15) and then 𝛾 𝑗1 = 𝛾 𝑗2.
The second approach based on Hartzel et al. (2001) where the random effects are simulated
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Table 4. Results for constrained and unconstrained 𝚺 ap-
proaches in the two scenarios (no MM and MM): Relative
Bias (×100) and empirical coverage rates for nominal 95%
confidence intervals (CR95) of REB for the 𝐺 = 3 categories.

Median values of Relative Bias×100
No MM MM

𝑔 = 1 𝑔 = 2 𝑔 = 3 𝑔 = 1 𝑔 = 2 𝑔 = 3
constrained 𝚺 -14.1 -1.8 -3.8 -7.1 11.6 17.5
unconstrained 𝚺 -6.4 -12.0 -11.4 -5.9 14.7 17.5
Median values of CR95×100

No MM MM
𝑔 = 1 𝑔 = 2 𝑔 = 3 𝑔 = 1 𝑔 = 2 𝑔 = 3

constrained 𝚺 91.2 94.7 95.4 93.5 97.4 95.9
unconstrained 𝚺 93.0 91.8 92.3 93.4 97.2 95.8

from a bivariate normal 𝑀𝑉𝑁 (0,𝚺), with 𝚺 =
( 0.15 −0.05
−0.05 0.15

)
.

In this case, 𝑅 = 100 Monte Carlo populations were generated and for each generated pop-
ulation a simple random sample without replacement of size 𝑛 𝑗 was drawn from each area 𝑗 ,
which was then used to calculate the small area predictors and their REB bootstrap MSE es-
timators. The performance of these MSE estimators for each scenario is presented in Table 4
where we show the medians of the area-specific relative bias and of the empirical coverage rates
(×100) for nominal 95% confidence intervals (CR95). In this case, the intervals were defined
by the small area estimates plus or minus twice the value of the square root of MSE estima-
tors of equation (20). Examination of the results in Table 4 shows that both MSE estimation
method tends to be biased low, especially in the unconstrained case, but all generate nominal
95% confidence intervals with acceptable coverage.

Simulation experiments were also replicated with different variance-covariance matrices and
the results show that the performance of the MSE estimators improve when the variance and/or
the covariance values decrease. To be concise, they are not reported here, but are available from
the authors upon request. A conditional MSE estimator based on the linearisation approach that
was set out in Chambers et al. (2016) could be developed and compared with the proposed REB
bootstrap estimator. This is an aim for future research.

7. Application to Italian labour force data

The aim of this section is to present estimates of proportions of working age people in various
labour market statuses at the LLMA level, considering either the classification into three and six
categories as illustrated in section 2.

Small area estimates for the three categories classification are computed for the constrained
random effects (RE), unconstrained RE and multinomial expectile methods, all using age-sex
and number of registered unemployed individuals as explanatory variables. The multinomial ex-
pectile estimation method is in this case compared in terms of estimates and computation times
with the methods by Molina et al. (2007) with common category or constrained random effects
and Saei and Taylor (2012) with unconstrained random effects to estimate the proportions of
employed, unemployed and inactive in each LLMA in Italy. For the six categories classification
of labour market statuses the comparison is limited to the Molina et al. (2007) method as its ex-
tension to more than three categories is straightforward because the model is based on common
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random effects across categories. In contrast, the extension of Saei and Taylor (2012) is com-
plex. In particular, as this model uses unconstrained random effects, in the case of six response
categories the model requires the estimation of five different random effects for each small area
and fifteen variance components.

To assess the quality of predictions, we used a set of diagnostic tools based on the require-
ment that model-based small area estimates should be coherent with, in the sense of being close
to, the corresponding direct estimates, albeit more precise. Figure 3 shows the differences be-
tween the unweighted direct estimates and the model-based estimates of the total number of
unemployed for LLMA in the three categories scenario. We report these values for the unem-
ployed category because it represents the most difficult category to predict with the expected
proportion of unemployed across areas approximately equal to 0.1. We note that the multino-
mial expectile-based estimates show high correlation with the direct estimates, with an average
coefficient of 0.79. The corresponding correlations between the direct estimates and the esti-
mates obtained by Molina et al. (2007) and Saei and Taylor (2012) are lower.

It can be noted that, none of the three predictors being considered make use of sampling
weights so, although converging to the (unweighted) direct estimator, they are not design con-
sistent unless the design is self-weighting within areas. The extension of the expectile regression
model for multicategory to include sampling weights and the derivation of a design consistent
multinomial expectile-based estimator is an area of current research.

To assess the potential gain in precision we obtain by using the proposed expectile approach,
we compare in Figure 4 the empirical cumulative density functions (ECDFs) of the estimated
coefficients of variation (CV) of both estimators for the three categories (employed, inactive,
unemployed). Consistently with the computation of direct estimates, also the CVs are computed
using a standard, unweighted formula. In each row, the first panel uses CVs from all areas, while
the second (third) one focuses on small areas with sample sizes smaller (larger) than 100. In the
first panel, the ECDFs corresponding to expectile-based approach almost always dominates the
one for the direct estimates, highlighting that CV values for the former approach are lower than
those estimated with the latter. This is more evident in the second panel related to the presence
of some areas with a small sample size (𝑛𝑖 < 100). The plots of the empirical cumulative
density functions (ECDFs) of the estimated coefficients of variation (CV) of the predictor based
on the constrained random effect model (Molina et al., 2007) are reported in the Supplementary
Material. The squared root of the MSE of the predictor based on the constrained random effect
model for each area has been computed using the parametric bootstrap proposed in Molina
et al. (2007). The ECDFs corresponding to expectile-based approach in Figure 4 almost always
dominate the one for the estimates obtained by the constrained random effect model reported in
Figure S.3 confirming the results of the simulation experiments.

With respect to the estimation exercise with six categories, Figure 5 maps the estimated lev-
els of employed, unemployed a, unemployed b, unemployed c, reserve workers, inactive for
LLMAs in Italy in 2012 by using expectile approach. The patterns of employment, unemploy-
ment and inactive produced by the proposed approach are consistent with those obtained by
all the other methods (Marino et al., 2019). As expected, relatively larger values for unem-
ployment incidences are mainly located in the south of Italy and in the islands. These results
confirm the existence of the so-called North-South divide in Italy. Although not clearly apparent
from the maps (Figure 3) results confirm that the regional divide is largest for unemployment c
(those actively searching for their first job) and reserve workers; both facts are in line with the
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Figure 3. Difference values between direct estimates and of model-based estimates of the total
number of unemployed for LLMA in Italy in 2012: (a) multinomial expectile-based estimates, (b)
constrained RE-based estimates, (c) unconstrained RE-based estimates.

difficult conditions of the labour market in Italian Southern regions, especially for the young
(Mussida and Sciulli, 2018). From Figure 5 we also note how the patterns of the different rates
are not spatially smooth with large variations even between neighbouring LLMAs. This is in
line with insights from the economic literature: differences between core metropolitan centres
and peripheral areas can be as big as long range regional divides (Ghignoni and Verashchagina,
2016).

We note that the estimates obtained with the expectile approach appear to closely correlated
with the direct estimates, with the average correlation between the two sets of estimates be-
ing 0.78. The corresponding correlation between the direct estimates and the constrained RE
estimates is 0.40. The gain in terms of correlation obtained by the expectile method is high espe-
cially in the categories with small proportions such as for unemployed b, unemployed c, reserve
workers. This is confirmed in Figure 6 where the differences of the direct and of expectile-based
estimates are reported.

To evaluate the potential gains in precision from using expectile-based estimates instead of
the direct estimates, we examine the distribution of the ratios of the estimated CVs of the direct
and the expectile-based estimates for the ILFS data for six categories. A value greater than 1
for this ratio indicates that the estimated CV of the model-based estimate is smaller than that
of the direct estimate. Figure 7 shows the relationship between these ratios and the number of
employed, unemployed a, unemployed b, unemployed c, reserve workers, inactive in the ILFS
sample in each LLMA. Figure 7 shows that the estimated CVs of the expectile-based estimates
are generally much lower than those of the direct estimates and the differences between the
direct and the multinomial expectile-based estimates become more evident as the number of
observations for each category in the sample decreases.

The time to estimation refers to optimised R codes on a laptop with a 2.6 GHz Intel Core i7
and 32 Gb RAM. The expectile method is the fastest as it takes less than 5 seconds to produce
small area estimates, whereas the Molina et al. (2007) and Saei and Taylor (2012) method take
105.3 and 1171.1 seconds, respectively. The difference in computation time increases when
the methods are used to estimate the proportions of workforce participation for six categories.
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Figure 4. CVs empirical cumulative density functions for the multinomial expectile-based esti-
mator and the direct estimator for the three categories (employed, inactive, unemployed).
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Figure 5. Maps of estimated levels of employed, unemployed a (in active job search, previous
job experiences, formerly employed), unemployed b (in active job search, previous job expe-
riences, formerly inactive), unemployed c (in active search of their first job), reserve workers,
inactive for each LLMA in Italy in 2012.
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Figure 6. Difference between direct and expectile-based proportion estimates of working-age
people in the six-category labour market statuses for LLMA in Italy in 2012.
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Figure 7. Ratio of estimated CVs for direct estimates and expectile-based proportion estimates
of working-age people in the six-category labour market statuses for LLMA in Italy in 2012.
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The expectile method remains the fastest taking only 7.1 seconds while the Molina et al. (2007)
method needs approximately 873 seconds to complete small area estimation, that is a 125 times
longer operation time than that needed by the expectile method. In this application the expectile
approach is much faster than the constrained RE and unconstrained RE approaches suggest-
ing that, when working with larger data sets this advantage can become very relevant from a
practical point of view.

According to the simulation results in Section 6 of the paper, the expectile approach is a po-
tentially useful approach as: (i) it performs better than the other considered predictors in terms
of bias and efficiency; (ii) it shows that estimates are generally consistent with the direct esti-
mates and more accurate; and (iii) it decreases the computational complexity of the estimators
under the constrained and unconstrained RE.

8. Final remarks

Constructing SAE models for a multicategory response has proven to be a challenge, with major
shortfalls with pre-established methods based on mixed models. However, by exploiting a sim-
ple, yet elegant, relationship between the binary expectile and the probability, a SAE approach
based on expectile regression can be constructed. Such an approach provides a method that is
straightforward to generalise to multicategory responses. This provides the first quantile-like
estimator for multicategory response data known to the authors.

A new approach to binary 𝑞-scores was also introduced which we argue has better properties
than those defined by Chambers et al. (2016). And again this 𝑞-score method can easily be
extended to the multicategory case. Therefore we suggest that the proposed 𝑞-score derivation
be used for not only the proposed models in this article but any 𝑀-quantile model with binary
or multicategory responses.

This novel approach to SAE using multinomial expectile regression and 𝑞-scores is the first
of its kind. Consequentially, 𝑀-quantile approaches to SAE can now be applied to multicate-
gory data. The simulation studies showed that the multinomial expectile SAE models perform
relatively well compared to pre-existing methods that utilise multinomial random-effects mod-
els. Even under ideal conditions for these other models, the expectile method performed compa-
rably or only slightly worse. More importantly, the simulation studies showed that the expectile
method can perform better than random-effects models when the assumptions of multinomial
random-effects models are violated, when the random-effects structure is unknown, and ad-
ditionally requires considerably less computation time. Thus making this proposed expectile
method an effective approach to SAE with multicategory response data.

The bootstrap method proposed for estimating the MSE of the expectile predictor provides
acceptable bias and coverage performance in our simulations, but it is computationally slow. For
this reason, a MSE estimator based on a linearisation approach is an area of current research.
We also suggest extending the proposed expectile model to ordinal responses, perhaps under an
ordered logit model with proportional odds this may be feasible. However it would require a new
derivation for ordinal 𝑞-scores that account for the ordinal rather than nominal categorisation.

A limitation of our proposal is that it does not make use of survey weights. This choice is
consistent with the one underlying the competing methods we consider and allows us to illus-
trate our ideas in a very simple form. Nonetheless, for official statistics agencies the property
of design consistency is fundamental because it is a general purpose form of protection against
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model failures, as it guarantees that, at least for large domains, estimates make sense even if
the assumed model fails. The expectile-based estimators using multinomial expectile models
do not make use of survey weights and, in general, the derived estimator is not design consis-
tent unless the sampling design is self-weighting within area. In the presence of complex and
potentially non-ignorable (informative) sampling designs, ignoring the sampling weights could
lead to biased estimates (Pfeffermann, 1993). Extensions of the expectile approach to account
for this e.g. following Fabrizi et al. (2014) is an area of current research.

Finally, we identify the potential for the multinomial expectile SAE models for analysing
political polling data. The proposed method is similar to models using multilevel regression and
post-stratification and a comparison between the two methods would be interesting, specifically
in applications to national elections with sub-regional constituencies.

Acknowledgment: The authors thank Dr Natalia Tejedor Garavito of the WorldPop group at
the University of Southampton for her expert input mapping the small area estimates.
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