The University of Southampton
University of Southampton Institutional Repository

Gravitational Fluctuations as an Alternative to Inflation

Gravitational Fluctuations as an Alternative to Inflation
Gravitational Fluctuations as an Alternative to Inflation
The ability to reproduce the observed matter power spectrum P(k) to high accuracy is often considered as a triumph of inflation. In this work, we explore an alternative explanation for the power spectrum based on nonperturbative quantum field-theoretical methods applied to Einstein’s gravity, instead of ones based on inflation models. In particular, the power spectral index, which governs the slope on the P(k) graph, can be related to critical scaling exponents derived from the Wilson renormalization group analysis. We find that the derived value fits favorably with the Sloan Digital Sky Survey telescope data. We then make use of the transfer functions, based only on the Boltzmann equations, which describe states out of equilibrium, and Einstein’s general relativity, to extrapolate the power spectrum to the Cosmic Microwave Background (CMB) regime. We observe that the results fit rather well with current data. Our approach contrasts with the conventional explanation, which uses inflation to generate the scale-invariant Harrison–Zel’dovich spectrum on CMB scales and uses the transfer function to extrapolate it to the galaxy regime. The results we present here only assume quantum field theory and Einstein’s gravity, and hence provide a competing explanation of the power spectrum, without relying on the assumptions usually associated with inflationary models. At the end, we also outline several testable predictions in this picture that deviate from the conventional picture of inflation and which hopefully will become verifiable in the near future with increasingly accurate measurements.
2218-1997
Hamber, Herbert W.
e83c2362-977b-44cf-8cee-102c4242befd
Yu, Lu Heng Sunny
ef5bc4e3-409d-455e-a808-f5da5f3d1416
Hamber, Herbert W.
e83c2362-977b-44cf-8cee-102c4242befd
Yu, Lu Heng Sunny
ef5bc4e3-409d-455e-a808-f5da5f3d1416

Hamber, Herbert W. and Yu, Lu Heng Sunny (2019) Gravitational Fluctuations as an Alternative to Inflation. Universe, 5 (1), [31]. (doi:10.3390/universe5010031).

Record type: Article

Abstract

The ability to reproduce the observed matter power spectrum P(k) to high accuracy is often considered as a triumph of inflation. In this work, we explore an alternative explanation for the power spectrum based on nonperturbative quantum field-theoretical methods applied to Einstein’s gravity, instead of ones based on inflation models. In particular, the power spectral index, which governs the slope on the P(k) graph, can be related to critical scaling exponents derived from the Wilson renormalization group analysis. We find that the derived value fits favorably with the Sloan Digital Sky Survey telescope data. We then make use of the transfer functions, based only on the Boltzmann equations, which describe states out of equilibrium, and Einstein’s general relativity, to extrapolate the power spectrum to the Cosmic Microwave Background (CMB) regime. We observe that the results fit rather well with current data. Our approach contrasts with the conventional explanation, which uses inflation to generate the scale-invariant Harrison–Zel’dovich spectrum on CMB scales and uses the transfer function to extrapolate it to the galaxy regime. The results we present here only assume quantum field theory and Einstein’s gravity, and hence provide a competing explanation of the power spectrum, without relying on the assumptions usually associated with inflationary models. At the end, we also outline several testable predictions in this picture that deviate from the conventional picture of inflation and which hopefully will become verifiable in the near future with increasingly accurate measurements.

This record has no associated files available for download.

More information

Accepted/In Press date: 9 January 2019
Published date: 16 January 2019
Additional Information: © 2019 by the authors

Identifiers

Local EPrints ID: 470160
URI: http://eprints.soton.ac.uk/id/eprint/470160
ISSN: 2218-1997
PURE UUID: a7c4bc50-9159-4f7a-8b13-5a8b21a8bdcd
ORCID for Lu Heng Sunny Yu: ORCID iD orcid.org/0000-0003-2207-4214

Catalogue record

Date deposited: 04 Oct 2022 16:38
Last modified: 17 Mar 2024 04:09

Export record

Altmetrics

Contributors

Author: Herbert W. Hamber

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×