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Optimization of Multicarrier-Division Duplex Wireless Systems

by Bohan Li

Owing to the potentials of enabling to double spectral efficiency (SE) and reduce net-
work latency, in-band full duplex (IBFD) has drawn a lot of research so as to substi-
tute the conventional half duplex (HD) of time-division duplex (TDD) and frequency-
division duplex (FDD). However, the self-interference (SI) problem has hindered IBFD
from practical deployment. Inspired by the principles of full duplex (FD), in this the-
sis, a multicarrier-division duplex (MDD) scheme is introduced, which is capable of
combining the advantages of IBFD and HD, while simultaneously circumventing their
drawbacks.

Firstly, in order to make MDD feasible for the operation in large-scale multiple-input
multiple-output (MIMO) systems, the thesis commences with addressing the SI prob-
lem in propagation-domain with considering the SI cancellation (SIC) requirement of
practical analog-to-digital converter (ADC) at receiver. Then, the channel estimation
(CE) in MDD MIMO systems is proposed by exploiting the reciprocity and correlation
existing between the uplink (UL) and downlink (DL) subchannels. Secondly, the poten-
tial of MDD with resource allocation (RA) is first demonstrated, when an unfair greedy
algorithm is applied for RA in the multiuser single-input single-output (MU-SISO) sys-
tems. Then, a suboptimal algorithm is proposed for MDD millimeter-wave (mmWave)
MIMO systems to jointly maximize the sum-rate and achieve the proportional fairness
among DL and UL mobile stations (MSs). Two mainstream hybrid precoding strate-
gies are evaluated in the proposed RA scheme and the impact of insufficient SIC on
RA is also studied. Thirdly, upon taking the advantages of the flexible time-frequency
resource scheduling provided by MDD, two types of frame structures are designed to
relieve the channel aging problem in high-mobility communication scenarios. Corre-
spondingly, two Wiener-filtering based predictors (WPs) are introduced under the pro-
posed frame structures for comparing the performance between MDD and TDD, when
both CE and residual SI errors are invoked. Moreover, the closed-form expressions
for approximating the lower bounded average sum rates of both MDD and TDD sys-
tems are derived, when the zero-forcing (ZF) precoding and maximal ratio combining
(MRC) are respectively assumed for DL transmission and UL detection.
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Following the above studies in the context of cellular systems, the synergies between
MDD and cell-free massive MIMO (CF-mMIMO) networks are focused. Firstly, a dis-
tributed MDD-CF scheme is introduced to enable the FD-style operation but with re-
duced inter-AP (access point) interference (IAI) and inter-MS interference (IMI). Then,
two optimization cases of MDD-CF systems are analyzed by considering simultane-
ously AP-selection, power- and subcarrier-allocation, under the constraints of individ-
ual MSs’ quality of services (QoSs). Specifically, in the first optimization case consid-
ering one coherence time (CT) interval, a quadratic transform with successive convex
approximation (QT-SCA) algorithm is proposed to achieve the SE maximization. By
contrast, in the second optimization case on the basis of one radio frame, a two-phase
CT (TPCT) interval is designed for MDD-CF systems to guarantee the robust perfor-
mance over time-varying channels. Correspondingly, a two-step iterative optimization
algorithm aided by bisection method is proposed for SE maximization.

Our studies show that the proposed QT-SCA algorithm is capable of converging and
achieving reliable performance within a few of iterations. However, its complexity in-
creases exponentially with the sizes of CF networks, determined by the numbers of
APs, UL/DL users, subcarriers, etc. With this regard and to attain the dynamic power
allocation at reduced overhead, a heterogeneous graph neural network (HGNN) is
specifically designed for CF networks, which is named as CF-HGNN. The CF-HGNN
consists of the adaptive node embedding layer, message passing layer, attention layer
and the downstream power allocation layer. Our studies show that CF-HGNN is scal-
able to the MDD-CF networks with various numbers of nodes and subcarriers. Fur-
thermore, when assisted by the proposed user clustering, the CF-HGNN trained based
on a small CF network can be applied to the large-scale MDD-CF networks, which may
cover large area, have a big number of subcarriers and/or simultaneously support a
big number of nodes.
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Chapter 1

Introduction

In the last few years, the revolution of mobile devices and applications have been stim-
ulating the unprecedented demands on data rates. With this regard, correspondingly,
wireless networks have evolved from the fourth generation (4G) to the current fifth
generation (5G) with the aid of several key techniques, such as massive multi-input
muliti-output (mMIMO), millimeter-wave (mmWave), etc. Specifically, mMIMO can
provide large beamforming gain and spatial multiplexing gain, thereby enabling more
users to simultaneously transmit or receive signals at large signal-to-interference-plus-
noise ratio (SINR). On the other hand, mmWave exploits high frequency band to sup-
port communications, where available bandwidth is abundant. However, although the
peak rate of 5G can theoretically reach to 10 Gigabits per second (Gbps), the average
rate in practice is usually well below par, due to the fact that the prevalently commercial
base stations (BSs) can rarely be equipped with tens of antennas and the mmWave can
only cover short range communiocation. The 5G performance report provided by Root-
Metrics [1] showed that the 5G median download rate in central London varies from
operator to operator in terms of BS deployment and bandwidth usage. In particular,
Vodafone has the highest data rate, clocking at 180 Megabits per second (Mbps), while
Everything Everywhere (EE) only provides rate of 110 Mbps. We should mention that
these measurements were based on a fact that only eight percent of smartphone users
had 5G service in the UK until March 2021 [2]. Hence, it can be predicted that with the
significant increase of 5G users in the next few years, the existing techniques will hardly
achieve the goals of Gbps coverage and less than 1 ms end-to-end latency, especially, in
the high-density spots like stadiums and concert halls. To this end, several techniques
originally expected to be exploited in the early-stage 5G, such as reconfigurable intel-
ligent surfaces (RIS), machine learning (ML), in-band full duplex (IBFD), etc., are still
the potential candidates for the evolution of the 5G and beyond systems.

Among the aforementioned potential techniques, IBFD, as a promising duplex mode
leveraging whole-time/frequency resources, explicitly has a high priority for applica-
tion in any scenarios for the sake of high special efficiency and low latency. However,
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FIGURE 1.1: The comparison diagram of TDD, FDD and IBFD

IBFD has been presented and researched since 1990’s, but has not been widely used
in the current wireless networks due to the paucity of efficient and low-complexity
self-interference cancellation (SIC) techniques. According to [3, 4], IBFD systems are
extremely susceptible to the SIC capability. Insufficient SIC can cause significant degra-
dation of system performance, rendering IBFD to lose its advantages over the conven-
tional half duplex (HD) counterparts modes. Therefore, although the HD modes of
time-division duplex (TDD) and frequency-domain duplex (FDD) are unable to exploit
the full time-frequency resources, they are still the two mainstream duplexing modes
introduced in 5G networks. Naturally, some questions arise as to whether the hard-
ware/software technologies fail to provide the desired SIC for the practical implemen-
tation of IBFD in near future, is there a transitional alternative from HD to IBFD, which
can not only inherit the main merits of IBFD but also relieve the stringent SIC requirements of
IBFD? Before answering these questions, let us briefly introduce the research develop-
ment of TDD, FDD and IBFD and their unique characteristics.

1.1 Overview of Mainstream Duplex Modes

As shown in Fig. 1.1, TDD and FDD are two fundamental HD modes in wireless com-
munication systems, relying on separate time slots and frequency bands, respectively,
to achieve bidirectional communications. To avoid cross-link interference (CLI), guard
time period is required by TDD, while guard band is required by FDD. By contrast,
IBFD mode supports simultaneous downlink (DL) and uplink (UL) transmissions over
the same band under no constraint of guard limitation, but it suffers from the serious
CLI problem caused by the own transmitter or neighbor transmitters.

1.1.1 Time-Division Duplex and Frequency-Division Duplex

Looking back in history, FDD dominated in the first generation (1G) and second gen-
eration (2G) wireless networks, while TDD was initially applied in 2G in 1990s as the
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digital local loop [5]. Followed by 2G, the third generation (3G) wireless networks
were standardized in the early 2000s, and the FDD-relied code division multiple access
(CDMA) and wideband CDMA (WCDMA) were defined in two major standards and
the TDD-relied time division-synchronous code division multiple access (TD-SCDMA)
was only suggested in China and received little interest elsewhere [6]. However, it was
TD-SCDMA that showed the potential advantages of the TDD mode, including large
frequency spectrum, flexible resource allocation (RA), supporting adaptive antennas,
etc. [7]. After the successful application of TD-SCDMA, in the 4G long-term evolu-
tion (LTE) era, TDD has become equally important as FDD in the commercial wireless
communication networks, as the rise of orthogonal frequency division multiplexing
(OFDM) and MIMO techniques [8]. Then, TD-SCDMA has been gradually substituted
by TD-LTE. Table 1.1 summarizes the evolution of the standards from 1G to 4G wireless
networks.

Wireless Networks
Standards

TDD FDD
1G × AMPS
2G × GSM, IS95
3G TD-SCDMA WCDMA, CDMA2000
4G TD-LTE LTE FDD

TABLE 1.1: History development of TDD and FDD

When wireless communications come to 5G and towards 5G beyond (5G+), mMIMO
and ultra-dense networks have been widely considered, and TDD has shown the su-
periority to FDD [9, 10]. The most important reason pushing this to happen is that
compared with FDD, TDD has much less overhead of channel state information (CSI)
acquisition by exploiting channel reciprocity existing between UL and DL, or outgoing
and incoming channels [7]. More specifically, in TDD systems, since the same frequency
band is used, UL and DL channel impulse responses (CIRs) are reciprocal to each other.
Hence, once the CSI is estimated from UL pilots, it can be directly exploited for assisting
DL transmission. By contrast, in FDD systems, as DL and UL transmissions are on dif-
ferent frequency bands that are far apart, the channels need to be estimated at both di-
rections, and the estimated CSI has to be quantized and feedback to the transmitters for
implementing pre-processing [9]. Moreover, the advantage of TDD in channel estima-
tion (CE) can be extended to benefit mMIMO systems, where the number of antennas
equipped at BSs is assumed to be much larger than the number of users supported [11].
To elucidate this point, let us make a brief example of the CSI acquisition overhead. We
assume that the length of the mutually orthogonal UL pilot sequences in a TDD system
is equal to the number of users D, and the channel hardening eliminates the needs for
DL pilots. Then, if one coherence time (CT) period can accommodate Tc number of
symbols, the pilot overhead in this TDD system is D

Tc
. By contrast, the training pilots of

two directions are necessary in a corresponding FDD system, leading to the (D + Nt)
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length of pilots and the pilot overhead is hence (D+Nt)
Tc

, where Nt is the number of an-
tennas employed at BSs. In mMIMO systems, Nt can be very large, which may result in
that FDD fails to provide a desirable spectral efficiency with a huge amount of resource
for CE [9]. Recently, there are some researches having focused on the management of
the CSI acquisition overhead in FDD mMIMO systems, such as [12,13]. However, these
proposed FDD-based schemes are only feasible, when the channels are sparse with a
strong direct or specular path, which may be possibly satisfied at high frequencies like
mmWave.

However, we should mention that although TDD systems can leverage the channel
reciprocity to obtain CSI without invoking any feedback, the estimated CSI may be
outdated due to the UL training, guard period and long-lasting DL transmission, espe-
cially when communication happens over fast time-varying channels. For example, the
rapid development of unmanned aerial drones and autonomous vehicles requires fu-
ture wireless networks to support low-latency connection and provide sufficient spec-
tral efficiency in high-mobility scenarios. For this sake, to mitigate the channel aging
problem in TDD systems, several techniques of channel prediction have been presented
in the literature, like Wiener filter, Kalman filter and deep learning methods [14–16].
However, subject to the structure of TDD, where DL and UL transmissions have to be
sequentially implemented, these methods are unable to provide stable performance.
Hence, more advanced duplexing mode that are feasible for supporting communica-
tions in high-mobility scenarios is demanded. We will analyze the channel aging issue
more deeply in Chapter 5.

It is well-recognized that TDD has another advantage over FDD, which is that TDD can
support dynamic asymmetrical communications [7]. This is also paramount in future
wireless communication systems. Unlike the FDD systems operated on predetermined
DL/UL bands, TDD systems can redistribute the resources between UL and DL by
altering their time slots. For example, when the demand of DL transmission increases
while that of UL traffic remains low, more time slot resources can be reallocated for DL
transmissions until the UL traffic is increased.

1.1.2 In-Band Full Duplex

IBFD has been proposed to significantly increase the spectral efficiency, and resolve the
sore points of the traditional HD modes, such as the inefficiency of time-frequency re-
source usage and the high latency in both physical and network layers [17]. The concept
has been first introduced to radar systems since the 1940s at least [18], but it was rarely
mentioned in wireless communications until 2000s [19]. Since then, there have been
growing research on the potential applications of IBFD in cellular networks. However,
to date, IBFD has still not been introduced to the standards for commercial use. The
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most obvious reason is self-interference (SI) problem, which refers to the interference
that a transmitting IBFD BS or AP causes significant interference to itself.

1.1.2.1 Self-Interference Problem

Generally, SI signal, leaking out from a transmitter to a receiver at the same side, in-
cludes mainly three components [20], namely the linear components, non-linear com-
ponents and the transmitter noise. The linear components include the combination of
the various delayed copies of the transmit signal. The non-linear part accounts for the
non-linearly distorted components of the transmit signal due to the radio frequency
(RF) imperfection. The transmitter noise consists of the channel noise and phase noise
generated by local oscillators [21]. In order to mitigate SI, we usually resort to three
types of SIC methods operated respectively in the propagation, analog and digital do-
mains, all of which are indispensable to enable an IBFD system to work efficiently. For
instance, as shown in Fig. 1.2, let us assume that a femto BS operated in the IBFD mode
transmits at 30 dBm with a receiver noise floor of -90 dBm. Let us further assume a
30 dB of passive propagation-domain SIC, which can be achieved in practical wireless
systems by the path-loss, antenna separation, cross polarization, etc [21]. Suppose that
the 12-bit analog-to-digital converter (ADC), whose effective number of bits (ENOB) is
9, are used by receiver, yielding an effective dynamic range of 6.02(ENOB− 2) ≈ 42
dB [22]. Then, to allow the ADCs work in an efficient way and avoid large quantiza-
tion noise, the maximum input power to the ADCs is limited to −48 dBm. In other
words, the digital-domain SIC can only suppress SI up to the effective range of the
ADCs. As shown in Fig. 1.2, once the passive propagation- and digital-domain SIC are
fixed, which are assumed to be 30 dB and 42 dB, respectively, the demand on the active
propagation- and analog-domain SIC can be obtained, which is 48 dB in this example.

In order to meet the aforementioned SIC requirements, various methods have been
proposed and investigated in recent years. Below are some mainstream propagation-,
analog- and digital-domain methods.

• Propagation-domain SIC. The Propagation-domain SIC can be divided into pas-
sive and active methods [23]. Antenna separation is the simplest passive SIC
mechanism and some researchers have explored antenna placement as a practi-
cable cancellation technique. Antenna separation uses the fact that the distance
between transmit and receive antennas naturally provides SI reduction due to
signal attenuation [24]. However, the authors of [25] found that the system can
benefit from antenna separation (>40 dB) only when the distance between Tx/Rx
is above 150 mm. Obviously, this is impractical for the size of current devices like
mobile phones. To address the SIC in small devices, a method of using nulling
transmit antenna was proposed in [26]. The nulling direction can be controlled,
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FIGURE 1.2: Overall SIC requirements

and we can position this direction to match the position of the receive antenna.
It was shown that this method allows 25 dB-30 dB of interference in the nulling
direction. However, it may result in the reduction of the desired signal upto 25
dB lower, which arises from the nulling direction. Another antenna design for
SIC was presented in [25]. Different from the other references using at least two
antennas [27–29], they applied a dual-port polarized antenna combined with a
self-tunable cancellation circuit, which can provide nearly 75 dB of SI reduction
over a bandwidth of 10 MHz at 2.45 GHz. This kind of antenna only occupies
about 90mm × 90mm space. In order to further reduce the dimension of anten-
nas, they proposed a design by applying a tunable electrical balance isolator in
combination with a single-port antenna, which offers 50 dB of SI mitigation.

In the context of active cancellation, beamforming technique is the mainstream
SIC method in separate-antenna MIMO systems. Beamforming SIC, at the ex-
pense of degree-of-freedom in design precoding/combining vector for desired
transmission, can null the radiation pattern at the receive antennas. However, it
potentially has two challenges: 1) the exact channel knowledge is required for
beamforming and 2) the desired communication may be affected by the process
of SI suppression. Considering that the antenna arrays are separated, the authors
of [30] presented a digital beamforming scheme, which is called SoftNull method,
to suppress SI in mMIMO networks. Based on the measurements obtained from a
72-element antenna array in both indoor and outdoor environment, the IBFD with
SoftNull was shown to perform better than the TDD in small cells. Furthermore,
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in [31], the SoftNull method was optimized to propose a new method called the
JointNull. There are two significant differences between SoftNull and JointNull.
The first one is that the JointNull combines beamforming with circuitry rather
than totally getting rid of the SIC at RF level. The second one is that the Soft-
Null decouples the SI suppression precoder design from the DL precoding, while
the JointNull jointly optimizes SI suppression along with the DL precoding. In
addition to the precoding approach, the authors of [32] also studied the SIC in
the mMIMO FD systems, and presented a new method to suppress SI, named as
the beam-domain SIC. With this method, a low-dimension beam-domain chan-
nel matrix was substituted for the traditional mMIMO channel matrix, based on
which a SIC strategy was proposed.

• Analog-domain SIC. Analog-domain SIC has also received a lot of research at-
tention. Bozidar et al [33] built a prototype to implement the analog-domain SIC
based on the Quellan QHx220 noise cancellers, which can handle a dynamic range
of up to 30 dB. Another promising method is using the knowledge about the
transmission to cancel SI in the RF signal, before it is digitized [24, 34, 35]. For ex-
ample, the authors of [24] used a second transmit chain to create an analog cancel-
lation signal from a digital estimate of the SI, canceling 33 dB of SI over a 625 KHz
bandwidth signal. However, this approach increases the cost of system, since it
requires extra transmit chain. In addition, the authors of [36] proposed a novel
mechanism, called as the balun cancellation, which is depended on the signal in-
version implemented by a balun circuit. The studies show that this approach can
cancel an arbitrarily high transmit power. Melissa et al. in [37] designed a FD ana-
log cancellation architecture consisting of one digital-to-analog converter (DAC),
one transmitter radio, one RF attenuator, and one RF adder. The SIC formula can
be expressed as

ySI[n, f ] = (hSI[ f ]− hz[ f ]k̂[ f ])x[n, f ] (1.1)

where x[n, f ] denotes the n-th symbol transmitted from BS during frame f , hSI[ f ]
denotes the SI channel, which is assumed to remain constant during the transmis-
sion of frame f , hZ[ f ] denotes the magnitude and phase change generated when
a signal passes through an attenuator and a wire to the RF adder, while k̂[ f ] is the
estimate of (hSI[ f ]/hz[ f ]), including both the estimation errors of hSI[ f ] and hz[ f ].
They also studied the SI channel modeling, which is supposed to follow a Ricean
distribution with an appropriate K-factor. They found that the K-factor for the SI
channel reduces due to active cancellation and the amount of reduction increases
as the capability of SIC increases. In [38], the authors proposed a two-stage analog
cancellation architecture with the aid of the conventional RF-tapping and digital-
tapping approaches. According to their experiments, the proposed method may
find different applications, by flexibly reconstructing and canceling the multi-
path SI signals and the transmitter noise. Note that the above-mentioned three
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methods belong to the single-tap RF SIC. The key drawback to these approaches
is that they are only suitable to narrowband systems.

In order to mitigate SI in wideband domain, multi-tap RF cancelers were pro-
posed, for example, in [21, 39, 40]. Specifically, in [21], the authors designed the
dynamic algorithms to estimate the distortions introduced by analog circuits and
to accurately model the SI being experienced by the received signal. Then, they
designed a novel programmable analog cancellation circuit using off-the-shelf
components, which implement the algorithm in analog domain to dynamically
cancel SI. According to their experiments, this analog circuit and tuning algo-
rithm can provide at least 60 dB of SI cancellation. In [39], a four-tap RF canceler
with non-uniform pre-weighted taps was presented. It was shown that in OFDM
systems, the scheme can achieve 78 dB and 70 dB of analog-domain SIC over the
20 MHz and 120 MHz bandwidths, respectively. In [40], the authors firstly devel-
oped a closed-form expression to calculate the residual power after analog SIC
under the assumption of imperfect CSI. They found that the optimal number of
taps should be equal to the least number of taps that covers the bandwidth of the
received SI. In [41], a novel method, namely the self-mixed analog SIC method,
was proposed by taking the advantage of the characteristics of SI signal, which
is obtained by multiplying the transmitted signal with the received composite
signal.

• Digital-domain SIC. The objective of digital SIC is to sweep away possibly all the
remaining SI after propagation-domain and analog-domain SIC [42]. In general,
the digital-domain SI consists of both linear component and non-linear compo-
nent. The linear SI component is attributed to the residual SI signal after the
analog domain SIC, as well as to the delayed reflections of the transmitted signal.
To implement the digital domain SIC, CE is the first and also the most essential
step [21, 36, 43, 44]. Since all the channel fading matrices can be obtained through
the proper CE and feedback methods [45–47], below we assume that perfect CSI
can be obtained before signal transmission. Then, the final received signal for
data detection can be expressed as

yyy = HHHULxxxUL + (HHHSI −HHĤSI)xxxDL + nnn (1.2)

where HHHUL, HHHSI and HHĤSI represent UL channel, SI channel and the estimated
SI channel respectively, xxxUL is the UL signal vector, while xxxDL is the DL signal
vector. In (1.2), HHHSI includes not only the wired channel between transmitter
and receiver, but also the transceiver impairments, such as ADC quantization
noise, transceiver phase noise, etc. [43, 48]. In [49], several SIC algorithms were
proposed to mitigate transceiver phase noise based on the separate oscillators.
In [50], the closed-form expressions for digital SIC were derived in terms of the
common phase error, which shows that the FD-based systems with either lower
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transmission power or stronger analog-domain SIC capability is less vulnerable
to phase noise. In [43], ADC’s quantization noise was modeled in detail, and
an algorithm was presented to mitigate the impact of quantization noise in FD
systems.

By contrast, the suppression of the non-linear SI component is much more com-
plicated [51–53]. The experimental and analytical results in [54–56] indicated that
the nonlinearities play an important role for the achievable performance of the
FD-based systems. In practical wireless systems, the main sources of nonlinearity
are the power amplifier at the transmitter side, and the low-noise amplifier (LNA)
at the receiver side. In principle, for any nonlinear block, the output signal y can
be written as a polynomial function of the input signal g in digital domain as [43]

y =
M

∑
m=1,3,...

αmg |g|m−1 (1.3)

where g and y denote the digital-domain input signal and the output of the non-
linear block, respectively. Note that in (1.3), a limited number of orders contribute
to the major distortion and the higher orders could be neglected. In practical
systems, the nonlinearity is typically characterized by the third-order intercept
point [57], which is defined as the point at which the power of the third harmonic
is equal to the power of the first harmonic. In order to cancel the non-linear part
of the digital-domain SI, the authors of [58] used least squares (LS) estimator to
obtain the nonlinearity coefficients, based on which the nonlinear SI signal is re-
constructed and subtracted from the received signal. In [43], the authors pro-
posed the nonlinearity estimation and suppression technique based on the model
(1.3), and the simulation results show that the proposed method is able to achieve
upto 23 dB SI reduction.

1.1.2.2 Cross-link Interference Problem

In TDD- or FDD-based systems, the interference is only from the same type of signals,
i.e., DL only experience interference from DL signals and UL only experience interfer-
ence from UL signals, provided that the synchronization among APs or the guard band
for DL/UL separation is appropriately implemented. This can in general guarantee the
interference power to be significantly lower than the signal power and enable wireless
communications in low interference scenarios. By contrast, the IBFD-based systems
have the severe inter-AP interference (IAI) and inter-MS interference (IMI), which are
known as the CLI, as shown in Fig. 1.3. The CLI may become even worse, when many
APs and MSs form an ultra dense network or cell-free network.

The methods of suppressing the CLI in IBFD systems can be mainly classified into
beamforming and power control. The most challenging problem of the beamforming
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FIGURE 1.3: The IBFD system with different types of links.

method is to attain a good trade-off between interference suppression and the perfor-
mance of the desired signal transmissions. Specifically, for the IAI cancellation, in [59],
the authors demonstrated that when APs are featured with a large number of antennas,
the IAI can be suppressed to a very low level. In [60], two IAI suppression methods,
namely the centralized and decentralized beamfoming, were proposed, which aim to
minimize the AP’s transmit power to make IAI below an acceptable level, while meet-
ing the QoS required by DL MSs. In [61], the authors proposed the interference align-
ment to point the interfering signals from different APs to a signal subspace, so that the
desired signals can be received from another subspace without much interference. By
contrast, the cancellation of IMI is much harder than that of IAI, as MSs can not accom-
modate large-scale antenna arrays and often change their positions. To this end, the
authors of [62] proposed a table showing the IMI range based on the transmitter/re-
ceiver beam index of the AP. Through sharing the table between APs, scheduling and
RA can be carried out to efficiently manage the IMI.

In comparison with the beamforming method, the power-control is a more straight-
forward method, which mitigates CLI via adjusting the transmit power of interfering
sources. A side effect of this method is that, reducing the transmission power may also
decrease the power of the desired signal. Hence, the implementation of the power-
control methods should consider trade-off between the performance degradation of
the desired signal and the CLI suppression. In literature, a range of methods have been
proposed. For example, in [63], the authors applied an adaptive DL power-control to
adjust the AP’s transmit power by dividing the distance between the serving AP and
the interfering AP into multiple sections. In [64], the authors proposed the joint DL and
UL power-control, with the aim to mitigate the impact of IAI. On top of power-control,
user scheduling can also be used for CLI mitigation. In [65], the authors proposed
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a scheduling strategy to suppress IMI, showing that the new designed reverse frame
structure can be used to manage IMI. In [66], the authors introduced a joint schedul-
ing and transceiver design-based CLI mitigation method to avoid the APs transmitting
signal to the DL MSs, which experience severe interference from the UL MSs in the
neighboring cells.

1.2 Multicarrier-Division Duplex

1.2.1 Characteristics of MDD

According to [3,4], IBFD systems are extremely susceptible to the SIC capability. Insuf-
ficient SIC can cause significant degradation of system performance, rendering IBFD
to lose its advantages over the conventional HD counterparts. Moreover, the applica-
tions of ultra-mMIMO and terahertz (THz) communications in 6G may impose further
burden on SIC, resulting in new challenges for the practical deployment of IBFD. Ad-
ditionally, the authors of [67] demonstrated that even when SI is perfectly canceled,
the IAI and IMI problem may still hinder IBFD from outperforming HD. To this end,
the multicarrier-division duplex (MDD), an out-of-band FD (OBFD) scheme originally
proposed in [68] and recently studied in [4, 69], is capable of enabling the concurrent
DL and UL transmissions within the same time slot and the same frequency band, but
on different subcarriers. To achieve these, in MDD systems, the subcarriers of one band
are divided into two mutually exclusive subsets, namely a DL subcarrier subset and a
UL subcarrier subset, to support DL and UL transmissions, respectively, as shown in
Fig. 1.4.

Due to this feature, the MDD is suitable for operation with different multicarrier schemes,
including orthogonal frequency-division multiple access (OFDMA), filter-bank multi-
carrier, single-carrier frequency-division multiple access (SC-FDMA), etc. It is flexible
for integration of different multicarrier schemes, which makes it highly feasible for
the evolution of the 4G LTE/LTE-A systems to the 5G and beyond systems. In ad-
dition, MDD can aggregate the resources for UL and DL communications, which are
conventionally separately used. Hence, in the MDD systems, joint RA can be imple-
mented among all the users communicating on the UL and DL. By operation in such a
way, the MDD can not only improve the efficiency of resource usage, but also signifi-
cantly enhance the efficiency of communications via multiuser diversity and frequency
diversity, and hence, substantially increase the capacity of wireless systems. Further-
more, the MDD is convenient for implementation of the non-orthogonal transmission
schemes [70], which have been demonstrated to have the spectral and energy efficiency
advantages over the orthogonal transmission schemes, and have been considered for
the 5G deployment. The MDD is also flexible for implementation of the sparsely spread
CDMA, in order for the 5G systems to aggregate and exploit the discontinues spectrum
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resources, maximize the spectral and energy efficiency, and achieve near-optimum de-
tection performance with the relatively low-complexity detection algorithms, such as,
the brief propagation algorithm developed along with the low-density parity-check
(LDPC) codes [71].

In a nutshell, the MDD is capable of overcoming some drawbacks of the IBFD and
conventional HD modes without compromising their key benefits. The comparison of
MDD, HD and IBFD are summarized in the following subsections.

1.2.1.1 MDD Vs IBFD

Since IBFD fully exploits the spectral resources, the spectral efficiency achieved by IBFD
can be twice as much as that achieved by MDD in ideal scenarios, where SI is perfectly
canceled in both analog and digital domains [72]. However, in practice, suppressing
all SI is complex and power-consuming, which impede the implementation of IBFD
in commercial networks. In order to keep the key advantages of IBFD, such as, the
improved bandwidth efficiency and no use of guard interval or band, and lower the
overhead of SIC at the same time, MDD constitutes a promising choice to make a good
trade-off between IBFD and HD.

Fig. 1.5 illustrates the SIC process in MDD systems. From this figure, it can be ob-
served that the DL/UL transmissions relying on different sets of subcarriers within
one band can occur simultaneously within the same OFDM symbol duration. How-
ever, as the receiver is very close to the transmitter at BS side, the UL signal at receiver
antennas is overwhelmed by the DL signal, the power of which may significantly ex-
ceed the available dynamic ranges of the ADCs. Hence, in order to enable ADCs to
work efficiently and avoid large quantization noise, MDD systems have to resort to the
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FIGURE 1.5: Illustration of SIC processing in MDD systems.

propagation/analog-domain SIC, which are similar to the IBFD systems, so that the sig-
nal prior to entering ADCs is limited within their efficient dynamic ranges. After the
ADC processing, the conventional IBFD systems have to further mitigate the residual
digital-domain SI by first reconstructing the digital-domain signal between BS’s DAC
and ADC, and then subtracting it from the received signal [23]. As mentioned pre-
viously in Section 1.1.2.1, the performance of the existing digital-domain SIC largely
depend on the estimation of SI channel and the reconstruction of SI signal, which are
power-consuming and infeasible for implementation in the green communication net-
works. Furthermore, they are impractical to the small access points (APs) powered
by batteries, such as, unmanned aerial vehicle (UAV), Internet of things (IoT) gateway,
etc. By contrast, as its counterpart, MDD systems only rely on fast Fourier transform
(FFT) operation to easily remove the residual SI in digital domain. In [73], the simula-
tion results show that, subject to the higher power consumption caused by the imple-
mentation of more data streams and digital-domain SIC, IBFD was demonstrated to be
defeated by MDD in terms of energy efficiency.

Besides, it is noteworthy that the IMI imposed by the UL MSs on the DL MSs in MDD
systems can be significantly mitigated, as seen in Fig. 1.5. This is because the IMI and
the desired signal received by a DL MS are on the mutually orthogonal subcarriers,
which is similar to the SI at BS. Hence, as the result of the large-scale fading of the MS-
MS link and of the MS’s relatively low transmit power, the IMI in MDD systems belongs
to the low-power SI. Consequently, when all MSs and BS are assumed to be synchro-
nized within an allowable time-window, the residual IMI can be ideally canceled with
the aid of the FFT operation in digital domain. Analogously, in the dense networks
with multiple APs, e.g., in the cell-free networks, the APs operated in MDD mode can
also be largely free from IAI in digital domain. By contrast, IBFD systems suffer from
severe CLI in both analog and digital domains, as mentioned in Section 1.1.2.2.
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1.2.1.2 MDD Vs HD

Straightforwardly, IBFD employs the capability of integrating the time/frequency re-
sources for supporting simultaneous DL/UL transmissions. However, as analyzed
above, before IBFD is made practically implementable with low power consumption
and low complexity SIC mechanisms, MDD can be a promising transitional technique
from HD to IBFD. Nevertheless, people may argue that MDD system separates the spec-
trum into two groups of subcarriers to render FD operation. However, it is unable to double the
SE as IBFD system can potentially do. Instead, it experiences SI in analog domain, leading to
the extra complexity burden when compared with TDD or FDD-based HD systems. Whether is
it worth the effort? To address this concern, next we will briefly present several potentials
of MDD over HD of the FDD/TDD modes.

In comparison of MDD and FDD, both of them can be categorized into the OBFD
schemes, but the difference is that the DL and UL transmissions occur in the same
band in MDD mode, while different bands are provided to support DL and UL in FDD
mode. This feature makes CE distinctive between these two modes. It is well-known
that TDD outperforms FDD in mMIMO networks, as the cost of UL training in TDD
systems is much smaller than that in FDD systems, due to the reciprocity between the
DL and UL channels in TDD systems [9]. In FDD systems, DL training is indispensable
and the overhead of training is proportional to the size of the antenna arrays at BS.
Although the method like beamsteering codebooks can reduce the complexity of CE
in FDD systems, the requirement of CSI feedback from MSs to BS still costs significant
system resources. By contrast, MDD can leverage the reciprocity and correlation be-
tween DL and UL channels to make CE more efficiently. Furthermore, as shown in Fig.
1.4, a sufficiently wide guard band is required in FDD systems for the sake of avoid-
ing power leakage between the DL and UL, which results in a waste of the valuable
spectral resources.

Similar to the FDD, TDD also requires a guard interval in the time domain to separate
the UL and DL, leading to the decrease of data symbols in one frame. By comparison,
MDD can retain the IBFD’s advantages of eliminating the guard interval and hence can
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transmit more symbols in the same time slot. TDD has the same feature as IBFD and
MDD, where the DL channel information can be obtained by UL training owing to the
UL/DL reciprocity. However, with the rapidly growing demand for high-mobility ser-
vices in, such as, ground vehicles, high-speed trains, UAVs, etc., the reliability of CSI
is no longer dominated by pilot contamination but by channel aging. That is to say
that in high-mobility scenarios, as the result of fast time-varying, the channel estimated
during UL training may become outdated at the time when it is applied, resulting in
significant performance degradation. Moreover, in the future wireless systems, both BS
and MS terminals are expected to be equipped with the large-scale antenna arrays for
attaining the required capacity, which pose further challenges on the CSI acquisition,
especially, in the fast time-varying communication environments. As the only feasible
duplex mode considered so far for practical mMIMO systems, TDD can perform well
in low-mobility scenarios. However, it deteriorates quickly with the increase of mobil-
ity even when highly efficient channel prediction approaches are introduced [16, 74].
The main reason behind is that in TDD-based systems, the pilots transmitted via UL
at the beginning of a transmission period are used to serve the subsequent detection
of UL data and DL transmission. Under this design, if channel varies fast, it becomes
increasingly difficult to be predicted with an acceptable accuracy, when DL/UL sym-
bols are far away from pilots. To overcome this problem, more pilots may be inserted
during data transmission so as to renew the CSI. However, doing so would introduce
more switching intervals and also increases system complexity, leading to the decrease
of both SE and EE. Due to the above-mentioned issues, it has been recognized that
TDD is not suitable for supporting high-mobility wireless communications, especially,
in mMIMO systems [16].

By contrast, in MDD systems, DL/UL data and pilots can be simultaneously trans-
mitted within one OFDM symbol duration. Hence, the CSI for UL detection and DL
transmission can be refreshed whenever needed. Owing to this feature, MDD can be a
promising alternative for supporting wireless communications over fast time-varying
channels. We may argue that in MDD systems, pilots are transmitted at the sacrifice
of the available subcarriers for DL transmissions. In this regard, IBFD can be a better
option if sufficient SI suppression can be provided by low-cost and low-complexity SIC
methods. However, to date, the existing SIC approaches for IBFD are unable to meet the
demand. Needless to mention that in the high-mobility scenarios, SIC becomes even
more challenging. Therefore, when taking the trade-off among all the related factors
into account, MDD may be the best option for the near-future wireless systems, before
a practical IBFD system is available for high-mobility communications.

Moreover, in multicarrier OFDM systems, pilots are usually equally distributed in the
frequency band, as shown in Fig. 1.6, and the estimated CSI is then used to serve for a
coherence block, whose size is about BcTc, where Bc and Tc denote the coherence band-
width and coherence time, respectively. Currently, the TDD mode, which leverages the
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channel reciprocity between DL and UL, dominates in mMIMO systems. However, as
shown in Fig. 1.6, the requirement of switching periods may largely limit the system
performance of TDD-relied systems. This can be seen that when either Bc or Tc de-
creases due to environment changing, it causes the size of coherence block to shrink.
As the result, the CE needs to be operated more frequently to update CSI, which in-
creases the switching frequency and hence reduces the sum rate in the long run. In the
extreme case when channel varies too fast, making BcTc be too small, TDD mode may
even become invalid to provide reliable CSI for the operation of mMIMO systems. As
for the FDD mode, although DL/UL can be operated concurrently, the channel reci-
procity is hard to achieve, since DL band is usually separated far away from UL band.
Hence, in FDD systems, using CSI for DL transmission imposes a large burden on the
MSs for CE and the backhaul resources for feeding back CSI to BS. Due to these consid-
erations, the feasibility of FDD in mMIMO and ultra-mMIMO based systems is highly
dubious [10].

On the other side, the MDD mode can take the advantages of the correlation existing
among the DL/UL subcarriers to implement CE like TDD. Moreover, it enables DL,
UL and pilots to be located within one OFDM symbol duration but on different sub-
carriers, as shown by the example in Fig. 1.6. Owing to this configuration, the CSI for
data transmission is possible to be updated whenever it is needed, at no expense of
increasing the switching period, as the TDD mode. Furthermore, at the network level,
a MDD-relied node is allowed to receive signals from user plane and control plane con-
currently, which is capable of decreasing the access latency and boosting the operation
speed of the overall network.

Additionally, we can know from Fig. 1.6 that the asymmetric communications can be
easily achieved in MDD systems by allocating different numbers of subcarriers to DL
and UL. In comparison with the TDD systems that control the DL/UL capacity ratio
through time-slot allocation, MDD systems may attain a more stable capacity ratio, as
its asymmetry is implemented at the OFDM symbol level and not affected by the time-
varying channels. By contrast, FDD systems are usually more suitable for supporting
symmetrical UL/DL traffics, whereas it cannot be dynamically configured for obtain-
ing different capacity ratios, due to the fixed assignment of UL/DL frequency bands.

The overall comparison of aforementioned duplex modes are presented in Table 1.2,
where the explicit advantages are highlighted in green.

1.2.2 Implementation Challenges

MDD employs a range of merits, as analyzed above, which provide us opportunities
to meet the requirements of the 5G+ and 6G wireless systems. However, opportunities
often lead to challenges in practical implementation. MDD is specifically designed for
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TDD FDD IBFD MDD
Simultaneous DL/UL None Exist Exist Exist
Guard interval/band Required Required None None

UL/DL spectrum Combined Separated Combined Combined
UL/DL channel reciprocity Exist None Exist Exist

Synchronization Required None Required Required
Asymmetric traffic Flexible Symmetric Symmetric Flexible

OFDM PAPR Classic Classic Classic Reduced
Time-frequency efficiency Low Low Very high High

High-mobility communications Classic Classic Improved Improved
SIC × × Hard Easy

SIC overhead × × High Low
CLI suppression Easy Easy Hard Easy

TABLE 1.2: Comparison of duplexing modes.

multicarrier systems. Hence, depending on the specific multicarrier scheme employed,
such as, OFDM, SC-FDMA, FBMC, time-frequency-packed multicarrier (TFPMC), etc.,
it may have the common technical challenges, such as the effect of frequency offset,
time offset, etc. Furthermore, as MDD is an OBFD scheme for multicarrier communi-
cations, the following direct challenges should be addressed in implementation.

First, similar to the TDD systems, the MDD systems are also expected to have a strin-
gent time synchronization of all the terminals, including all BSs and other wireless
terminals. Otherwise, the relative delays existing between the signals sent by different
terminals may generate intercarrier interference (ICI) or/and multiuser interference
(MUI), which need to be handled by the employment of advanced signal processing
approaches. However, future wireless systems are expected to be ultra-dense deploy-
ment and in these ultra-dense wireless systems, communication terminals are expected
to be close to each other in order to maximize the spectral- and energy efficiency. When
MDD is operated in the ultra-dense wireless systems, synchronization may be achieved
in a geographically distributed way, to make the wireless terminals close to each other
be well synchronized. In this way, the interference from nearby wireless terminals
may be efficiently avoided, while the interference from the far away wireless terminals
may not generate noticeable effect. The demand on synchronization in the MDD sys-
tems may be relaxed, when the techniques robust to synchronization are introduced.
For example, if time-domain direct-sequence spreading is introduced to form the mul-
ticarrier DS-CDMA [68], the interference generated by the non-ideal synchronization
may be significantly reduced after the despreading operation at receiver. Furthermore,
when the estimations of relative delays and other CSI are available, the employment of
advanced multiuser detection (MUD) can also relax the constraint on synchronization.

Second, although MDD is free from SI in digital domain with appropriate synchroniza-
tion, it still experiences severe SI in propagation- and analog-domain like IBFD. These
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interference may significantly degrade the achievable performance of MDD-based mul-
ticarrier systems, if they are not efficiently mitigated. Fortunately, with the research and
development of the multicarrier systems and the IBFD schemes, many approaches, as
introduced in Section 1.1.2.1, have now been in place for mitigation of the expected
interference in the MDD-based multicarrier systems.

1.3 Cell-Free Massive MIMO

1.3.1 Introduction of Cell-Free Massive MIMO

In the current cellular networks where a BS is located at the center of a cell, the cell-
center users can usually obtain much higher data rates than the cell-edge users. This
performance variation causes the unreliable service quality, which is devastating to the
real-time high-demanding services, such as the extended reality and autonomous ve-
hicles. Hence, in order to guarantee the stable and consistent data rates in most of the
geographical coverage area, the user-centric cell-free (CF)-mMIMO, blending the ad-
vantages of cellular mMIMO, coordinated multipoint (CoMP) transmission and ultra-
dense network [75], has attracted significant research interests in wireless communica-
tions.

The conception of CF was firstly presented in [76], where the CF large-scale antenna
systems (LSAS), as a special example of LSAS (The conception LSAS in [76] consists
of three types, i.e., single cell, multi cell and CF LSAS), was studied. The combina-
tion of CF and mMIMO was initially researched in [77], and the authors demonstrated
that CF-mMIMO systems can significantly outperform the small-cell mMIMO systems
in terms of the 95%-likely per-user throughput. Similar to the conventional mMIMO,
where BS has more antennas than the number of MSs to be served, the ’massive’ in
CF systems refers to the wireless scheme, where the number of APs is larger than that
of MSs. In general, a CF-mMIMO system includes L geographically distributed APs
jointly serving D geographically distributed MSs, where L ≫ D. Each AP equipped
with N ≥ 1 antennas is connected with a central processor unit (CPU) through fron-
thaul links, which are used to transmit/receive the DL/UL data to/from APs. Alter-
natively, all APs can be connected together via fronthaul links so as to share CSI and
conduct synchronization.

According to the operation manner of CPU and APs, CF-mMIMO systems can be clas-
sified into the centralized and distributed CF-mMIMO systems. Specifically, in central-
ized CF-mMIMO, CPU is expected to conduct CE, beamforming and signal detection,
while APs only need to transmit the coded signal received from the CPU to MSs, or pass
the received UL signal from MSs to the CPU. In this case, the system behaves like a co-
located mMIMO with a large number of distributed antennas, where the coordinated
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beamforming can be implemented among APs. To date, most of the existing research
in open literature is about the centralized CF-mMIMO systems [78–82]. For instance,
in [78], the centralized CF system implementing the coordinated conjugate beamform-
ing can achieve a better SE performance and is also more robust to shadow fading cor-
relation than the corresponding small-cell systems. In [79], the authors demonstrated
that the centralized CF-mMIMO with optimal minimum mean square error (MMSE)
processing can not only achieve a better SE performance but also largely reduce the
fronthaul signaling, compared with the distributed implementation.

However, the centralized implementation inevitably increases the computational com-
plexity at CPU, especially when the APs employing multiple anntennas are densely
distributed. In this regard, if each AP is equipped with a powerful baseband pro-
cessor and multiple antennas, the distributed approach can be a better option for the
implementation of CF-mMIMO systems, when considering the scalability and system
overhead [75]. In [83], the authors proposed a user-centric distributed CF-mMIMO
systems, where each AP uses the locally estimated CSI to send data only to a subset
of MSs. In [84], by considering the significant amounts of control signaling and the
limited capacity of fronthaul links, the authors presented a distributed CF-mMIMO
systems, which is capable of achieving full scalability at the cost of a modest perfor-
mance loss, when compared with the fully-centralized CF-mMIMO systems. In [85], a
reduced-complexity distributed CF-mMIMO system was proposed, where the MMSE-
based combining was derived relying only on the locally estimated CSI at APs. It is
shown that the proposed scheme can provide unbounded capacity with linear-growing
complexity in the high-pilot-contaminated scenarios.
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1.3.2 FD-Style Cell-Free Massive MIMO

In order to fully exploit the time-frequency resource and decrease the system latency,
it is not too far-fetched to integrate IBFD technique into CF-mMIMO systems, named
IBFD-CF mMIMO, as shown in Fig. 1.7, where both APs and MSs are assumed to
operate in FD mode. It is expected to reap all the merits of IBFD and CF-mMIMO,
thereby enabling a paradigm shift in the future wireless systems. Despite the obvious
benefits of the IBFD-CF mMIMO, there are some critical challenges on practical imple-
mentation. First, as previously mentioned, SI problem is still the blockage in any of
IBFD-relied systems, as DL and UL signals reside in the same resource block. How-
ever, thanks to the fact that the AP-MS links are relatively short and LoS-dominant in
CF systems, the transmit power of APs is not as large as that of BS in the co-located
mMIMO systems, which leads to the reduced requirement for SIC. Second, the densely
distributed APs concurrently transmit and receive signals, and therefore cause the se-
rious CLI problem by the IAI and IMI. According to [67], if SI can be appropriately
mitigated, CLI becomes the most important limiting factor in multi-cell systems, which
is unfortunately also the case in CF systems. Third, the large numbers of APs and
MSs result in the extremely complicated optimization problem, which involves AP-MS
association, power allocation (PA) and subcarrier assignment.

In [86], the authors studied the centralized IBFD-CF mMIMO systems. With the aid of
the coordinated precoding and successive interference cancellation at APs’ receivers,
the IBFD-CF was shown to outperform the TDD-CF in terms of SE and EE. How-
ever, the proposed digital-domain IAI cancellation methods can only provide a small
amount of mitigation at APs’ receiver. In this case, the AP have to cut down its transmit
power to decrease the influence of IAI on neighboring APs, which may lower the sys-
tem performance. In fact, in comparison with the propagation/analog-domain IAI mit-
igation, the digital-domain IAI suppression is much harder to achieve in IBFD-CF sys-
tems. This is because the former can be achieved with the aid of the power-control and
some passive approaches, such as path-loss, cross-polarization, antenna-directionality,
etc. [20,23], while the latter for cell-based systems, such as MMSE and successive inter-
ference cancellation, is usually not efficient for mitigating the interference generated by
a large number of APs and coming from various directions. Noticeably, in comparison
with IAI, the IMI problem is even more difficult to handle, as the baseband proces-
sors in MSs are not as powerful as those in APs. On the bright side, since the transmit
power of MSs is relatively small, the IMI can be largely mitigated in analog domain by
power-control and user scheduling [87].

Aiming at relieving SI and IAI, the authors of [88, 89] proposed a network-assisted FD
(NAFD)-CF mMIMO system, where IAI and SI can be significantly mitigated at CPU by
assuming that the CPU knows all the transmitted symbols and the channel knowledge
of IAI among APs. Simulation results show that the NAFD-CF can offer a higher SE
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than both the TDD-CF and the IBFD-CF. However, we should mention that the suppres-
sion of the digital-domain IAI and SI in NAFD-CF is heavily relied on the centralized
processing and relatively precise CSI or the IAI channels, which unavoidably impose a
heavy burden on the fronthaul and CPU overhead. On top of that, the analog-domain
CLI was not appropriately considered in [88,89]. As we elaborated in Fig. 1.2, when two
APs or MSs locate close to each other, the CLI in analog domain must be canceled to a
certain level. Otherwise, the dominant interference may overwhelm the desired signal
at receiver and exceed the effective dynamic range of ADC, leading to the unprece-
dented quantization error. In this case, the following digital-domain suppression can
not obtain the desired signal [72]. Furthermore, a dynamic TDD (DTDD)-CF mMIMO
system was proposed in [90], where the majority of interference is also suppressed at
CPU relying on the estimation of interference channels. Hence, it confronts with all the
aforementioned challenges met in NAFD- and IBFD-CF systems.

Against the background, as seen in Fig. 1.5, since the subcarriers of IAI/IMI are orthog-
onal to that of the desired UL/DL signal in MDD systems, after the CLI is sufficiently
mitigated in the analog domain by the large-scale fading and power-control, the resid-
ual digital-domain CLI can be efficiently suppressed with the aid of FFT operation at
nearly no extra expense. In this regard, integrating MDD with CF-mMIMO to form
the MDD-CF mMIMO may envisage a potential application in the future wireless net-
works. The comparison of TDD-CF and the other FD-style CF schemes is presented in
Table 1.3, where the advantages are highlighted in green. In this thesis, the MDD-CF
mMIMO systems will be comprehensively explored in Chapter 6.

1.3.3 Resource Allocation in Cell-Free Massive MIMO

Feasible and practical RA is paramount to achieve the desired performance in CF-
mMIMO systems, considering that the densely distributed APs may introduce a large
number of variables and cause severe IAI. The optimization of RA can target different
QoS metrics, such as the maximization of SE/EE under a power budget constraint, or
the minimization of total power under the required sum rate constraint.

In [81], the max-min PA was investigated in TDD-CF mMIMO systems. Simulation
results show that under the max-min PA, most of APs in the CF-mMIMO systems are
found not to transmit at their full power, and the CF-mMIMO systems can provide
five- to ten-fold of improvement in the 95%-likely per-user SE over small-cell systems.
In [83], the authors studied the DL/UL SE maximization under the power constraints,
when the fairness is or is not considered. To tackle the non-convex objective functions,
an approach named as the successive lower-bound maximization, was proposed to effi-
ciently solved the optimization problems via the alternating optimization and sequen-
tial convex programming. In [91], the DL SE maximization under the max-min fairness
problems was considered, which is solved by two alternating optimization algorithms



22 Chapter 1. Introduction

TD
D

-C
F

D
TD

D
-C

F
N

A
FD

-C
F

IBFD
-C

F
M

D
D

-C
F

Sim
ultaneous

D
L/U

L
N

one
Exist

Exist
Exist

Exist
Tim

e-frequency
efficiency

Low
M

edium
Very

high
Very

high
H

igh
Synchronization

R
equired

R
equired

R
equired

R
equired

R
equired

O
peration

m
anner

A
ny

C
entralized

only
C

entralized
only

C
entralized

only
A

ny
N

etw
ork

latency
high

M
edium

low
low

low
H

igh-m
obility

com
m

unications
C

lassic
C

lassic
Im

proved
Im

proved
Im

proved
SIsuppression

N
one

N
one

R
equired

R
equired

R
equired

IA
Isuppression

N
one

Easy
Easy

H
ard

Easy
IA

IC
SI

N
one

R
equired

R
equired

R
equired

N
one

IM
Isuppression

C
lassic

C
lassic

C
lassic

C
lassic

Im
proved

Fronthaulrequirem
ent

C
lassic

H
igh

H
igh

H
igh

C
lassic

T
A

B
L

E
1.3:C

om
parison

ofdifferentC
F

schem
es.



1.3. Cell-Free Massive MIMO 23

based on the weighted MMSE (WMMSE) and fractional programming, respectively.
In [92], a joint PA and user grouping problem was formulated under the constraints of
users’ QoS requirements. In order to solve the optimization problem, a so-called gener-
alized benders decomposition (GBD) method was proposed to minimize the transmit
power. Furthermore, the max-min PA optimization problem, subject to power con-
straints, was studied in [93], where the first order method was applied to reduce the
computational complexity.

In the context of FD-style CF-mMIMO systems, in [86], the joint AP-MS association and
AP selection were optimized as a PA problem to maximize the SE/EE of the IBFD-CF
mMIMO systems, which is solved by an algorithm combining the Dinkelbach method
with the successive convex approximation (SCA). In [94], by assuming the limited-
capacity of fronthaul in the IBFD-CF mMIMO systems, the weighted sum EE optimiza-
tion associated with DL/UL PA was carried out by a two-layered approach. In [88], the
user selection and SE maximization in NAFD-CF mMIMO systems were formulated,
and a low-complexity SCA-based iterative algorithm was proposed to solve the highly
complex non-convex problem. Furthermore, in [95], the authors introduced a mixed-
integer optimization problem to maximize the SE of the NAFD-CF mMIMO systems,
where a two-stage strategy, including iterative SCA and binary relaxations, was pro-
posed to achieve the optimization.

In CF systems, as the APs with one or multiple antennas are densely distributed, the op-
timization of SE/EE or of user clustering is of highly computational complexity. This
becomes even more complicated in the FD-style CF-mMIMO systems, where the DL
and UL optimizations are coupled in one problem to optimize. To solve this kind of
optimization problems but at a reduced system overhead, the learning-based methods
have been often taken into consideration. For example, in [96], the authors conducted
PA to accomplish the max-min fairness in TDD-CF mMIMO systems, on the basis of a
fully-connected deep neural network (DNN). This DNN-based algorithm was shown
to be able to achieve approximately the same performance as the state-of-the-art meth-
ods but at the reduced computational complexity. In [97], the authors proposed a DNN
architecture consisting of two convolutional layers and four fully-connected layers to
solve PA problem to achieve max-min fairness in TDD-CF mMIMO systems. In [98], the
authors applied the DNN with the fully-connected layers to implement the SE maxi-
mization and max-min fairness PA for the UL of the TDD-CF mMIMO systems. In [99],
a deep convolutional neural network (DCNN) relying only on the knowledge about
large-scale fading was proposed and the simulation results show that the DCNN can
efficiently exploit the large-scale fading for near-optimal PA. Additionally, in [100], a
deep reinforcement learning algorithm was proposed to solve the max-min fairness PA,
showing that it is capable of achieving the same SE as the optimal solution obtained by
the conventional convex solvers.
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However, Although the aforementioned learning-based PA methods are shown to pre-
vail over the traditional methods, they are not designed to exploit the structures of
the wireless communication networks. Hence, they are not scalable in terms of net-
works and can not be generalized to the unseen scenarios, such as various networks
with different cell sizes or/and AP/MS densities. Furthermore, in these papers, the PA
optimization is implemented in a supervised manner, which requires a lot of labeled
data that are obtained by the conventional convex optimization algorithms, leading to
significantly increased system overhead. Moreover, to the best of our knowledge, there
are rare research articles on the PA in the FD-style wireless systems using the learning-
based methods, probably due to the extremely hard network training. With this regard,
in this thesis, a cutting-edge learning-based technique, namely graph neural network
(GNN), will be designed and studied in the context of our MDD-assisted CF-mMIMO
systems, as detailed in Chapter 6.

1.4 Summary of Main Contributions

The main contributions and research aspects provided by this thesis are summarized
as follows:

• An MDD-based MIMO system operated in FD mode is proposed and investi-
gated, which is endowed with the advantages of both TDD and FDD. It also
shares some merits of FD and allows to be free of SI in digital domain, but faces
the same challenge of SI as the FD in analog domain. With this regard, an adap-
tive beamforming-assisted SI cancellation scheme based on cyclic coordinate de-
scent (CCD) algorithm is first proposed. Taking into account the practical re-
quirement of ADC, the proposed approach is shown capable of jointly coping
with the desired signals’ transmission and SI suppression. Then, the CE in MDD
multi-user MIMO system is proposed by exploiting the reciprocity between the
UL and DL subcarrier channels that is provided by MDD. Correspondingly, the
orthogonality-achieving pilot symbols are designed, and the LS-assisted CE as
well as the linear minimum mean-square error (LMMSE)-assisted CE are derived.
Furthermore, the performance of MDD-based multi-user MIMO systems employ-
ing the proposed SIC method is investigated, with respect to the SI cancellation
capability, sum-rate potential, CE performance, and the effect of CE on the achiev-
able performance.

• To demonstrate the advantages of MDD over HD in terms of time-frequency re-
source usage, the upper bound performance of MDD and HD is compared by as-
suming the unfair greedy RA. Then, considering a more complicated application
scenario of the mmWave with hybrid beamforming, the RA optimization with the
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QoS constraints on both DL and UL MSs is proposed. This non-convex RA prob-
lem is then divided into a suboptimal subcarrier allocation (SA) problem that is
solved by the proposed improved fair greedy algorithm and a convex PA prob-
lem. Furthermore, two general hybrid precoders based on matrix factorization
and direct approach are designed. Our studies show that the proposed RA algo-
rithm is capable of achieving the performance near the upper bound achieved by
the unfair greedy algorithm, while concurrently guaranteeing the proportional
fairness among all DL/UL MSs. The performance of the two precoding schemes
is depended on the number of radio frequency chains supported. Furthermore,
with appropriate antenna deployment, the proposed SIC algorithm is able to pro-
vide sufficient SI mitigation, and can be implemented without impacting the RA
operation.

• To combat the channel aging problem over fast time-varying channels and fully
exploit the time-domain resource, an MDD mMIMO scheme and two types of
well-designed frame structures for operation are proposed. In comparison with
TDD, the corresponding frame structures related to 3GPP standards and their
variant forms are presented. The MDD-specific general Wiener predictor (WP)
and decision-directed Wiener predictor (DDWP) are introduced to predict the
channel state information, respectively, in the time domain based on UL pilots
and in the frequency domain based on the detected UL data, considering the
impact of residual SI. Moreover, by applying the zero-forcing (ZF) precoding
and maximum ratio combining, the closed-form approximations for the lower
bounded rate achieved by TDD and MDD systems over time-varying channels
are derived. Simulation results show that MDD, endowed with the capability of
full-duplex but less demand on SI cancellation than IBFD, outperforms both the
conventional TDD and IBFD in combating channel aging.

• An MDD-based CF scheme, namely MDD-CF, is proposed, which enables DL
data and UL data (or pilots) to be concurrently transmitted on mutually orthog-
onal subcarriers in the distributed CF-mMIMO systems. To demonstrate the ad-
vantages of MDD-CF, the SE performance is studied in terms of one coherence
interval when AP selection, PA and SA are considered. However, the SE opti-
mization is a mixed-integer non-convex problem that is NP-hard. Hence, to solve
this problem, the inherent association between involved variables are executed to
transform the problem into a continuous-integer convex-concave problem. Then,
a quadratic transform based SCA (QT-SCA) iterative algorithm is proposed to
achieve the SE maximization. Next, we extend our study to the scenario with one
radio frame consisting of several CT intervals. Correspondingly, a novel two-
phase CT interval scheme is designed to not only improve the SE in radio frame
but also provide consistent data transmissions over fast time-varying channels.
Correspondingly, to facilitate the optimization, we propose a two-step iterative
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FIGURE 1.8: The outline of the thesis.

algorithm by building the connections between two phases in TPCT through an
iteration factor. Simulation results show that, MDD-CF can significantly out-
perform IBFD-CF due to the efficient interference management. Furthermore,
compared with TDD-CF, MDD-CF is more robust to high-mobility scenarios and
achieves better SE performance.

• In order to maximize the SE with the less computational complexity in the dis-
tributed MDD-CF mMIMO systems, we present heterogeneous graph neural net-
work specific for CF systems, namely CF-HGNN. The proposed CF-HGNN con-
sists of an adaptive node embedding layer, meta-path based message passing,
meta-path based attention and downstream PA learning. In particular, the adap-
tive node embedding layer can handle the varying number of APs, MSs and sub-
carriers, and the involved attention mechanism enables each AP/MS node in CF-
HGNN to aggregate the information from interfering path and communication
path with different priorities. The proposed CF-HGNN is capable of using 104

times less operation time to achieve the 99% performance of the SE of QT-SCA.
Additionally, CF-HGNN also significantly outperforms unfair greedy method in
terms of SE performance. Furthermore, CF-HGNN exhibits good adaptivity to
varying number of nodes and subcarriers, and also generalization ability to dif-
ferent sizes of CF network.
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1.5 Thesis Outline

The outline of this thesis is highlighted in Fig. 1.8.

• Chapter 2: In Chapter 2, we introduce a novel duplexing mode, namely MDD,
to the MU-MIMO systems with hybrid beamforming. The motivation of sup-
pressing SI in MDD MIMO is presented in Section 2.1. Then, the basic models of
DL/UL communications, SI channel and ADC dynamic range in MDD MIMO
are introduced in Section 2.2. In Section 2.3, on the basis of CCD algorithm,
an adaptive beamforming-based SIC scheme via analog precoder/combiner de-
sign is proposed, which aims to provide sufficient SIC in propagation/analog-
domain to let ADC work within an effective dynamic range. Furthermore, the CE
methods with well-designed frequency-domain pilots is specifically proposed for
MDD MIMO systems in Section 2.4. In Section 2.5, the performance and computa-
tional complexity of the proposed SIC approach is comprehensively investigated
and compared with the conventional beamforming-based method. Section 2.6
concludes this chapter. Overall, Chapter 2 comprised of robust SIC and efficient
CE can be deemed as the fundamentals of the following research on MDD-based
MIMO systems.

• Chapter 3: Further to Chapter 2, the RA problem consisting of subcarrier as-
signment and power allocation in MDD MIMO systems is studied. The brief
review of RA in FD OFDMA systems and the motivation of studying RA in MDD
MIMO are provided in Section 3.1. The DL/UL communication models and the
RA optimization problem considering the proportional data rate constraints are
presented in Section 3.2. To demonstrate the performance advantages of MDD
in terms of resource usage, a MU-SISO system using unfair greedy RA algorithm
is firstly investigated in Section 3.3. Then, in order to solved the NP-hard and
nonconvex problem presented in Section 3.2, the suboptimal SA and PA algo-
rithms are proposed in Section 3.4. For SA, an improved fair greedy algorithm
is proposed, which consists of three stages to concurrently achieve the sum-rate
maximization, coarse fairness and spatial multiplexing gain. For PA, after the
implementation of SA, the PA problem is transformed into a convex form by
leveraging the full-digital ZF precoding, which is then solved with the aid of
Karush-Kuhn-Tucker (KKT) conditions. Furthermore, in Section 3.5, two hybrid
precoding schemes are proposed based on matrix factorization and direct ap-
proach, respectively, for conducting RA under the fairness constraint, and also
a novel combining design incorporating an adaptive SIC method originally pro-
posed in Chapter 2. In Section 3.6, the performance results in terms of RA and
SIC are presented. Section 3.7 concludes this chapter.
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• Chapter 4: In Chapter 4, we explore the advantages of MDD in dealing with chan-
nel aging problem. The brief review of the existing techniques of performing com-
munications over fast time-varying channels and the motivation of introducing
MDD to relieve channel aging problem are presented in Section 4.1. The DL/UL
communication models and channel aging model are presented in Section 4.2. In
Section 4.3, two types of frame structures dedicated for MDD are proposed to
mitigate the channel aging problem. Then, WP and DDWP are proposed in Sec-
tion 4.4 to supporting consistent communications over two types of frame struc-
tures, which predict time-domain CSI and frequency-domain CSI, respectively.
The estimated CSI, which are taken as the input of the two predictors, can be ob-
tained based on the method proposed in Chapter 2. Furthermore, in Section 4.5,
the closed-form expressions for approximating the lower bounded average sum
rates of both TDD and MDD systems are derived using the ZF precoding and
the maximum ratio combining. The numerical results for the performance com-
parison of the MDD and TDD systems with two types of frame structures are
presented in Section 4.6. Lastly, we conclude this chapter in Section 4.7.

• Chapter 5: In Chapter 5, we study the application of MDD in CF-mMIMO. In Sec-
tion 5.1, we review the most of the HD- and IBFD-based CF-mMIMO systems and
present the potentials of MDD-CF in the distributed CF-mMIMO. In Section 5.2, a
distributed MDD-CF scheme is proposed with the consideration of AP-selection,
PA, SA as well as MSs’ QoS constraints. In addition, the impact of SI, IAI and IMI
are practically modeled. In Section 5.3, the case of DL/UL transmissions in one
CT interval is first considered. To solve the corresponding optimization problem,
a QT-SCA is proposed to achieve the SE maximization. Then, in Section 5.4, the
case of DL/UL transmissions in one radio frame including multiple CTs is consid-
ered, and the CE is implemented based on the method proposed in in Chapter 2.
In order to maximize the SE in radio frame, a two-phase CT interval is specifically
designed for FD-style CF systems. Due to the fact that the two phases are tightly
coupled, we introduce an iterative factor to build the connection between them,
and then the original optimization problem in radio frame is transformed into a
two-step iterative optimization, which can be solved with the aid of QT-SCA and
bisection methods. Furthermore, a comprehensive comparison between IBFD-CF,
TDD-CF and MDD-CF is implemented in Section 5.5. Section 5.6 concludes this
chapter.

• Chapter 6: As the proposed QT-SCA in Chapter 5 for PA in the distributed MDD-
CF systems impose heavy burden on system overhead with the increased APs,
MSs and subcarriers, we further propose a heterogeneous graph neural network
(HGNN)-based approach to efficiently allocate power among all of APs and MSs
over multiple subcarriers in Chapter 6. In Section 6.1, we present the motiva-
tion of using GNN in implementing PA in CF-mMIMO. In Section 6.2, the basic



1.5. Thesis Outline 29

system model of distributed MDD-CF within one CT interval is inherited from
Section 5.2. We then reformulate the PA problem in MDD-CF mMIMO under the
MSs’ QoS constraints, while the AP-seletion and SA are omitted. Thereafter, in
Section 6.3, the CF-HGNN consisting of four fundamental modules, i.e., adap-
tive node embedding layer, meta-path based message passing, meta-path based
attention and downstream PA learning, is proposed. Furthermore, in Section 6.4,
we compare the performance achieved by QT-SCA, unfair greedy method and
CF-HGNN. Section 6.5 concludes this chapter.





31

Chapter 2

Beamforming-Based
Self-Interference Cancellation and
Channel Estimation in MDD MIMO

This chapter endeavors to solve two fundamental challenges in multicarrier-division
duplex (MDD) multi-input multi-output (MIMO) systems, namely self-interference (SI)
problem and channel estimation (CE), relying on the designs of hybrid beamforming
and frequency-domain pilots, respectively.

2.1 Introduction

As we discussed in Chapter 1, owing to the fact that the SI and desired uplink (UL)
signal occur over mutually orthogonal subcarriers, the digital-domain SI can be eas-
ily removed by fast Fourier transform (FFT) operation in MDD systems, while the
propagation/analog-domain SI still require the appropriate SIC methods to ensure the
efficient work of analog-to-digital converter (ADC) at receiver, which is similar to the
case in in-band full duplex (IBFD) systems. In this regard, aiming at providing the
sufficient self-interference cancellation (SIC) prior to ADC, and hence enabling MDD
systems to perform in an efficient way without SI, we will study the beamforming-
based SIC technique in MDD MIMO systems, which can not only suppress SI to a very
low level, but guarantee the performance of desired UL transmission. The particular
motivation for addressing this specific problem arises from the following observations.

From literature [34, 101–105] we know that in the context of the conventional IBFD
MIMO systems, various SIC methods in the propagation and analog domains have
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been proposed. These SIC methods may also be introduced to the MDD MIMO sys-
tems. However, when MDD MIMO system is in the large-scale, explained by the num-
ber of transmit/receive antennas, the traditional SIC approaches for MIMO may not
be suitable, due to the consequence of huge overhead and complexity. Fortunately, in
this case, the big number of antennas can be leveraged for SI suppression. To this end,
beamforming-based SIC has become one of the most important methods for SI reduc-
tion. Specifically in [30], a full-digital precoder has been designed to point SI signals to
the null space of desired received signals and, thereby, cancel the SI signals in analog
domain. By properly designing the full-digital precoders, SI can also be suppressed
along with the maximization of sum-rate [106, 107]. Instead of full-digital precoding,
as shown in [108], hybrid precoding is capable of achieving the SI reduction of upto
30 dB. However, to the best of our knowledge, on the joint design of desired signal
transmission and SIC, all the beamforming-based SIC methods presented so far only
provide a fixed amount of SI reduction. This may not satisfy the different requirements
of propagation/analog-domain SI reduction in practice and, consequently, causes large
quantization noise after ADC, if SI reduction is insufficient. Furthermore, in these ref-
erences, only the point-to-point single-carrier MIMO communication scenarios have
been considered. Additionally, in [4], the MDD-assisted point-to-point multicarrier
MIMO system employing full-digital precoder/combiner has been proposed and stud-
ied, demonstrating that MDD-mode is capable of outperforming half duplex (HD) and
IBFD modes in some communication scenarios. However, the existing SIC methods re-
lying on full-digital beamformers are no longer feasible in large-scale MIMO systems,
as the full-digital beamformers are expected to be substituted with the hybrid ones for
the sake of efficiency. Hence, to satisfy the requirement of ADC in various communica-
tion environments, the study on the dynamic SI reduction in the hybrid beamforming
assisted IBFD or MDD systems is highly important, but has not been considered in
open literature.In addition to the SI problem, we will focus on the CE in MDD sys-
tems, which exhibits the merits of channel reciprocity and channel correlation between
downlink (DL) and UL channels, as we mentioned in Section 1.2.1.

Against the background, in this chapter, the novelty of our work is compared with the
related works in Table 2.1. Note that in addition to the differences stated in the table,
the CE in MDD-based systems was not considered in [4]. The contributions of this
chapter can be summarized as follows:

Firstly, the SIC requirement for ADC to efficiently operate in its dynamic range is mod-
eled. Then, to make MDD-mode feasible in large-scale multiuser (MU) MIMO systems,
we propose an adaptive beamforming based SIC method via analog precoder/com-
biner design in order to dynamically suppress SI, which has not been investigated in the
open literature. Various design options are addressed by taking account of the trade-off
between performance and complexity. Furthermore, zero-forcing (ZF) and minimum
mean square error (MMSE) algorithms are respectively introduced to design the digital
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precoder and combiner. Our studies show that the proposed beamforming SIC method
are capable of simultaneously suppressing the SI while maintaining the performance
of desired DL/UL communications, when appropriate initialization is applied in the
proposed algorithms. Furthermore, our proposed method is capable of providing SIC
over a big dynamic range upto 300 dB, which is achieved via applying different system
configurations and an appropriate number of SIC iterations.

Secondly, we address the CE in MDD MIMO systems, and consider the estimation of
both UL and DL channels by exploiting the correlation existing among subcarriers and
the reciprocity existing between the UL and DL channels. To be more specific, we first
design a set of frequency-domain orthogonality-achieving pilot symbols (PSs) for esti-
mating the UL/DL channels of all mobile stations (MSs). Based on these orthogonality-
achieving PSs, the least square (LS) CE is implemented to obtain the time-domain UL
CIR, from which the UL/DL CIRs of all subcarriers are derived with the aid of the
above-mentioned subcarrier correlation and reciprocity of UL/DL channels. Further-
more, we consider the CE in the scenario where employing orthogonality-achieving
PSs is impossible due to a big number of MSs and/or randomly distributed UL sub-
carriers. Correspondingly, the CE is accomplished in the principles of linear minimum
mean square error (LMMSE).

Finally, we investigate and compare the performance of the MDD MIMO systems. First,
we demonstrate the performance of the proposed SIC schemes. Then, the spectral-
efficiency performance of MDD MIMO systems with various beamforming aided SIC
options is investigated and compared. Furthermore, the performance of the proposed
CE schemes is demonstrated, and the impact of CE on the achievable spectral-efficiency
is studied and compared. Our studies show that the LS CE relying on the orthogonality-
achieving PSs enables the MDD MIMO system to achieve nearly the same sum-rate as
the counterpart system with perfect channel state information (CSI). In the case that
orthogonality-achieving PSs are impossible, the LMMSE CE is promising, allowing to
achieve the sum-rate close to that attained under the assumption of perfect CSI.

The remainder of this chapter is outlined as follows. In Section 2.2, we address the mod-
eling in MDD MIMO systems, including transmitter, channel and receiver models, as
well as the modeling of ADC. In Section 2.3, the hybrid beamforming is designed with
the objective to maximize sum-rate while simultaneously meet the SIC target. CE is
studied in Section 2.4, while simulation results are demonstrated in Section 2.5. Finally,
in Section 2.6, we summarize the findings from research and consider their implica-
tions.
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FIGURE 2.1: Schematic diagram of the MDD MIMO system.

2.2 System Model

We consider an MDD MIMO system, where a N-element transmit antenna array at
BS uses NRF RF chains to serve D DL MSs and simultaneously, a N̄-element receive
antenna array also at BS uses N̄RF radio frequency (RF) chains to serve D̄ UL MSs.
Hence, the total number of MSs is Dsum = D + D̄. All MSs are equipped with single
antenna. In our proposed system, the BS works in MDD mode, while MSs are operated
in TDD mode. As shown in Fig. 2.1, we assume that the transmitter and receiver at BS
are reasonably separated in space, and both of them are equipped with the uniformly
spaced linear antenna array (ULA). We assume OFDM-assisted data transmission, that
the channels between BS and MSs experience frequency selective fading, and that suffi-
cient cyclic prefix (CP) is invoked to avoid inter-symbol interference (ISI). Furthermore,
following the principles of MDD [4], subcarriers are divided into two mutually exclu-
sive subsets, namely a DL subcarrier subsetM with M subcarriers, and an UL subcar-
rier subset M̄ with M̄ subcarriers, i.e., |M| = M and |M̄| = M̄. The total number of
subcarriers is expressed as Msum = M+ M̄. We assume that UL/DL MSs are scheduled
in such a way, so that the interference generated by UL MSs on a DL MS is sufficiently
low, without distorting the operation of the DL MSs’ receiver ADCs.

2.2.1 Communications Channel Model

The channel between the n-th transmit antenna at BS and the d-th DL MS is modeled
by a L-tap frequency-selective fading channel, with the time-domain CIR (TDCIR) ex-
pressed as [109]

gggDL
n,d = [gn,d[1], ..., gn,d[l], ..., gn,d[L]]

T , (2.1)
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where gDL
n,d [l] = αDL

n,d,l follows a complex Gaussian distribution of αDL
n,d,l ∼ CN (0, 1/L).

Similarly, the UL channel between the d̄-th UL MS and the n̄-th receive antenna at BS is
defined as the L-tap TDCIR expressed as gggUL

n̄,d̄ . Furthermore, when the same frequency
band is considered, which is the case in MDD mode, we have gggDL

n,d = gggUL
n,d , meaning that

there is no distinction between UL and DL channels, i.e., they are reciprocal. Hence,
when there is no confusion, the notations ‘DL’ and ‘UL’ are removed.

According to the principles of OFDM [68], the frequency-domain CIR (FDCIR) hhhn,d can
be obtained as

hhhn,d = FFFΨΨΨgggn,d, (2.2)

where FFF ∈ CMsum×Msum is the FFT matrix, ΨΨΨ ∈ CMsum×L is constructed by the first L
columns of IIIMsum . Furthermore, the DL subchannels hhhDL

n,d and UL subchannels hhhUL
n,d be-

tween the n-th antenna at BS and the d-th MS can be obtained from (2.2), which can be
expressed as

hhhDL
n,d = ΦΦΦT

DLhhhn,d = [hn,d[1], ..., hn,d[m], ..., hn,d[M]]T , (2.3)

hhhUL
n,d = ΦΦΦT

ULhhhn,d = [hn,d[1], ..., hn,d[m̄], ..., hn,d[M̄]]
T , (2.4)

where ΦΦΦT
DL ∈ CM×Msum and ΦΦΦT

UL ∈ CM̄×Msum are the mapping matrices, constructed
from IIIMsum by choosing the columns corresponding to the particular subcarriers as-
signed to DL and UL, respectively.

2.2.2 Self-Interference Channel Model

Since both UL and DL are operated in the same frequency band based on MDD, the
MDD MIMO system experiences SI, as shown in Fig.2.1. We assume that the SI channel
experiences Rician fading, constituting both LoS component and NLOS component,
which is expressed as [108]

HHHSI =

√︃
κ

κ + 1
HHHLoS

SI +

√︃
1

κ + 1
HHHNLOS

SI , (2.5)

where κ is the Rician factor. As the transmit and receiver antennas at BS are close to
each other, HHHLoS

SI denotes the LoS near-field flat fading channel, with the (i, j)-th element
expressed as [110] (︂

HHHLoS
SI

)︂
i,j
=

ρ

rij
exp

(︃
−j2π

rij

λ

)︃
, (2.6)

where ρ is the power normalization constant making E[||HHHLoS
SI ||2F] = NN̄, rij is the

distance between the i-th element of transmit array and the j-th element of receive
array, and λ is the wavelength. By contrast, HHHNLOS

SI in (2.5) denotes the NLOS channel,
which is assumed to follow the flat Rayleigh fading, with its elements obeying the
distribution of

(︁
HHHNLOS

SI

)︁
i,j ∼ CN (0, 1).
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2.2.3 Requirement of Self-Interference Cancellation

In full-duplex systems, ADC is the most critical component determining the system
operability and achievable performance. A practical ADC has only limited dynamic
range and resolution. Hence, if the input signal to an ADC is beyond a particular level,
the signal will be distorted, yielding large quantization noise and non-linear distortion,
which would further decrease the performance of the following digital-domain signal
processing [21]. Specifically, when assuming a Q-bit ADC, the signal to quantization
noise ratio (SQNR) is about 6.02Q [111]. When given the bandwidth of B (Hz), the noise
floor at receiver is given by [23] −174 + kN + 10log(B) dBm, where kN is noise factor.
Hence, the maximum input signal power to the receiver is

smax(dBm) = −174 + kN + 10log(B) + 6.02Q, (2.7)

Therefore, for an SI contaminated signal to pass an ADC without distortion, the propagation-
and analog-domain SI cancellation should provide the SIC of at least [21]

CDemand
SI (dB) = PDL(dBm)− smax(dBm) + 10(dB), (2.8)

where PDL is the transmit power of DL, while 10 dB is added to account for the peak-
to-average power ratio (PAPR), as an OFDM signal’s power may rise upto 10 dB above
the average power [112].

After the propagation- and analog-domain SIC, the SI input to ADC of BS receiver is
PSI = PDL − CSI, where CSI is the total SI reduced in the propagation- and analog-
domains. Hence with the aid of (2.8), we know that when given PDL, the SIC should
satisfy PSI ≤ PDL − CDemand

SI , yielding the SIC requirement of

PDL

PSI
≥ 10

CDemand
SI

10 , (2.9)

Above we have provided the channel models in the MDD MIMO systems, and ana-
lyzed the target for SI cancellation. Below we start considering the transceiver design
for the MDD MIMO systems.

2.2.4 Transmitter Model

For DL transmission, let the symbol vector transmitted by BS on the DL subcarriers be
expressed as xxxDL[m] ∈ CD×1, which is normalized to satisfy E

[︁
xxxDL[m]xxxDL[m]H

]︁
= IIID.

In order to mitigate SI and attain beamforming gain, at transmitter, xxx[m] is processed
by a precoder FFF[m] ∈ CN×D, with the constraint of ∥FFF[m]∥2

F ≤ Pm, where Pm is the
maximum transmit power of the m-th DL subcarrier. The total transmit power of DL
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satisfies ∑M
m=1 Pm ≤ PDL. As shown in Fig. 2.1, the transmitter precoder constitutes a

digital precoder FFFBB[m] for each individual DL subcarrier and an analog precoder FFFRF

that is common to all DL subcarriers. Hence, the overall precoding for a DL subcarrier
can be expressed as FFF[m] = FFFRFFFFBB[m], where FFFRF ∈ CN×NRF , and FFFBB[m] ∈ CNRF×D.
The baseband signal transmitted on the m-th subcarrier can be expressed as

sssDL[m] = FFF[m]xxxDL[m], m = 1, 2, . . . , M, (2.10)

where sss[m] ∈ CN×1.

2.2.5 Receiver Model

When given the transmitted signal as shown in (2.10), the received signals by the D
MSs from the m-th subcarrier can be expressed as

yyyDL[m] = HHHDL[m]FFF[m]xxxDL[m] + zzzDL[m], (2.11)

where HHHDL[m] ∈ CD×N and zzz[m] ∼ CN (000, σ2IIID) are the DL channel matrix and addi-
tive Gaussian noise corresponding to the m-th DL subcarrier, respectively. It is note-
worthy that for simplicity we ignore the interference from UL MSs to DL MSs in (2.11),
so that we can focus on the SIC and CE in MDD MIMO systems1.

On the other side, the signals transmitted at BS also propagate to its receive antenna
array for the UL. This SI signal at m-th subcarrier after the analog combining can be
expressed as

yyySI[m] = WWWH
RFHHHSIFFF[m]xxxDL[m], (2.12)

In (2.12), WWWRF ∈ CN̄×N̄RF is the analog combiner, which is regarded as the pseudo-
identity matrix in digital beamforming system, i.e. WWWRF = III N̄×N̄RF

[12]. Based on (2.12),
the total SI power entering the ADC in the BS receiver is given by PSI = ∑M

m=1 E ∥yyySI[m]∥2
2.

Note that the distance between the transmitter and receiver arrays at BS is much smaller
than the communication links from MSs to BS, which leads to SI signals to be 50-100 dB
stronger than the desired signals received from UL. This means that although DL and
UL are operated on different subcarriers, prior to digitization, UL signals would be
overwhelmed by SI signals in ADC, if propagation- and analog-domain SIC cannot
provide sufficient SI reduction. In this case, quantization noise may be significant and
unable to be mitigated by any digital-domain signal processing techniques. Therefore,
a certain amount of SI reduction has to be achieved to satisfy (2.9) prior to the ADC at
receiver. On the other side, provided that the constraint of (2.9) is satisfied, as shown in

1Note furthermore that the interference from UL MSs to DL MSs in FD-based systems can be effectively
mitigated via the scheduling at medium access control (MAC) layer [113–115]. However, the in-depth
research in the context of MDD-based systems is required, which will be addressed in our future work.
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Fig. 2.1, the received digital signals after RF processing and ADC can be expressed as

yyyUL[m̄] = WWWH
RFHHHUL[m̄]xxxUL[m̄] + ∑

m∈M
WWWH

RFHHHSIFFF[m]xxxDL[m] +WWWH
RFzzzUL[m̄], (2.13)

where xxxUL[m̄] denotes the UL data symbols satisfying E
[︁
xxx̄DL[m]xxx̄DL[m]H

]︁
= IIID̄, zzzUL[m̄]

is the complex Gaussian noise obeying the distribution of CN (0, σ2III N̄). Further, after
CP removing and digital-domain SIC by FFT operation, the final signal for UL detection
can be expressed as

yyyUL[m̄] = WWWH [m̄]HHHUL[m̄]xxxUL[m̄] +WWWH [m̄]zzzUL[m̄] (2.14)

for m̄ = 1, 2, . . . , M̄, where WWW[m̄] = WWWRFWWWBB[m̄], WWWBB[m̄] ∈ CN̄RF×D̄.

2.3 Adaptive Beamforming-Based Self-Interference Cancella-
tion

In this section, we address the beamforming-aided SIC implemented via the design of
hybrid precoder/combiner. The objective of SIC is to make the SIC requirement of (2.9)
be satisfied.

According to (2.12), the power of the SI signals before ADC can be evaluated as

PSI =
M

∑
m=1

E
{︂

Tr
(︂

yyySI[m]HyyySI[m]
)︂}︂

= Tr

(︄
FFFH

RFHHHH
SIWWWRFWWWH

RFHHHSIFFFRF

M

∑
m=1

FFFBB[m]FFFH
BB[m]

)︄
.

(2.15)
From this equation we can know that PSI is proportional to P

′
SI = Tr(FFFH

RFHHHH
SIWWWRFWWWH

RFHHHSIFFFRF).
Hence, PSI can be reduced via minimizing P

′
SI. Therefore, according to the structure of

P
′
SI, we consider two design options for SIC, which are depended on the optimization

of FFFRF and WWWRF, respectively, in analog domain.

2.3.1 Precoding Optimization Aided Self-Interference Cancellation

The first design option assumes that SI suppression is solely dependent on the design
of FFFRF at transmitter. Thereby, the design of combiner at receiver only focuses on the
UL transmissions without considering the impact of SI. In this chapter, we consider the
MMSE method for UL combining [116], and the full-digital combiner can be expressed
as [117]

WWWMMSE[m̄] =
(︂

HHHUL[m̄]HHHH
UL[m̄] + σ2III

)︂−1
HHHUL[m̄],

m̄ = 1, 2, . . . , M̄. (2.16)
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Then, the hybrid UL combiners can be designed to approximate WWWMMSE[m̄], formulated
as

arg min
WWWRF;WWWBB[1],...,WWWBB[M̄]

M̄

∑
m̄=1
∥WWWMMSE[m̄]−WWWRFWWWBB[m̄]∥2

F

subject to | (WWWRF)i,j | = 1, ∀i, j. (2.17)

The optimization problem of (2.17) is a typical one in the design of hybrid beamform-
ing, which can be solved by different algorithms, such as that in [118–122]. Specifi-
cally in the performance study in Section 2.5 of this chapter, we introduce the projected
gradient descent (PGD) algorithm [121, 122]. Readers interesting in the details of the
algorithm are referred to these references.

After WWWRF is obtained, the SI suppression can be executed based on the optimization of

arg min
FFFRF

f (FFFRF) (2.18a)

subject to | (FFFRF)i,j | = 1, ∀i, j, (2.18b)

PDL

PSI
≥ 10

CDemand
SI

10 . (2.18c)

where f (FFFRF) = Tr(HHHwFFFRFFFFH
RFHHHH

w) with HHHw = WWWH
RFHHHSI, which is equal to the P

′
SI in

(2.15). However, this optimization problem is non-convex and hard to solve. To cir-
cumvent this dilemma and reduce the computational complexity, we propose an adap-
tive algorithm based on the CCD algorithm [123–126], so as to dynamically suppress
the SI. It is noteworthy that the performance of the CCD algorithm is sensitive to the
initialization [127]. Hence, in order to suppress SI while simultaneously maintaining
the required performance of DL, the initialization of FFFRF is very important in our al-
gorithm. In Section 2.5.1, we will investigate the effect of the initialization of FFFRF on
the achievable performance. Furthermore, to calculate PSI during the optimization pro-
cess, the digital precoder for the m-th subcarrier is assumed to be in ZF principle, which
yields

FFFZF
BB[m] = HHHH

eq[m]
(︂

HHHeq[m]HHHH
eq[m]

)︂−1
PPP

1
2 [m], m ∈ M, (2.19)

where HHHeq[m] = HHHDL[m]FFFRF is the resultant channel after the analog precoding, PPP[m] =

diag(p1[m], p2[m], ..., pD[m]) is obtained from the water-filling algorithm [128].

To solve the optimization problem (2.18) iteratively, the element (FFFRF)i,j is firstly op-
timized by assuming that all the other elements are fixed. In this case, (2.18a) can be
simplified to

f (FFFRF) = Tr(AAAj) + FFF(:,j)
RF

H
HHHH

wHHHwFFF(:,j)
RF = Tr(AAAj) + ζ H̃

ij + 2Re{(FFF∗RF)i,j ηH̃
ij }, (2.20)
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where ζ H̃
ij =

(︁
HHH̃ j
)︁

i,i + 2Re
{︁

∑
m ̸=i,n ̸=i

(FFF∗RF)m, j
(︁
HHH̃ j
)︁

m,n (FFFRF)n,j
}︁

, ηH̃
ij = ∑

m ̸=i

(︁
HHH̃ j
)︁

i,m (FFFRF)m,j,

associated with HHH̃ j = HHHH
wHHHw, and AAAj = HHHwFFF̄j

RF(FFF̄
j
RF)

HHHHH
w, where FFF̄j

RF denotes a matrix
obtained from FFFRF with its j-th column fff (j)

RF removed.

Since all the elements in FFFRF other than (FFFRF)i,j are fixed, AAAj, ζ H̃
ij and ηH̃

ij seen in (2.20) are
complex constants. Furthermore, under the modulus constraint of the analog precoder,
i.e., (FFFRF)i,j = e−jθij , (2.20) can be re-stated as

g(θij) = Tr(AAAj) + ζ H̃
ij + 2Re{ηH̃

ij ejθij} = Tr(AAAj) + ζ H̃
ij + ηH̃

ij ejθij + (ηH̃
ij )
∗e−jθij . (2.21)

Now the optimization is converted to an extreme-value problem, which can be readily
solved. In detail, upon taking the derivative of g(θij) with respect to θij, we obtain
∂g(θij)

∂θij
= jηH̃

ij ejθij − j(ηH̃
ij )
∗e−jθij = 0, which is equivalent to

Re{ηH̃
ij } sin(θij) + Im{ηH̃

ij } cos(θij) = 0. (2.22)

Let us represent it in the form of

|ηH̃
ij | sin(θij + ϕij) = 0, (2.23)

where

ϕij =

⎧⎪⎪⎨⎪⎪⎩
sin−1

(︂ Im{ηH̃
ij }

|ηH̃
ij |

)︂
, if Re{ηH̃

ij } ≥ 0,

π − sin−1
(︂ Im{ηH̃

ij }
|ηH̃

ij |

)︂
, if Re{ηH̃

ij } < 0.
(2.24)

Solving (2.24) under the constraint of θij ∈ (0, 2π), we obtain

θ
(1)
ij = −ϕij,

θ
(2)
ij = π − ϕij. (2.25)

However, there is only one solution yielding a minimum value of g(θij), i.e., the opti-
mum solution. Hence, the final solution to θij is given by

θ
(opt)
ij = arg min

θ
(1)
ij ,θ(2)ij

(︁
g(θ(1)ij ), g(θ(2)ij )

)︁
. (2.26)

The above optimization process is repeated with respect to each of the elements in FFFRF,
and the elements of FFFRF are iteratively optimized until the cost function converges to a
local minimum. Hence, before reaching the minimum, SI can be gradually suppressed
with the increase of the number of iterations. A shortcoming of the CCD algorithm is
that convergence is usually slow and dependent on the cost function of (2.18a), which in
turn related to the SI channel and antenna configurations [111]. Nevertheless, once the
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condition of (2.18c) is satisfied, meaning that the SI reduction provided by beamform-
ing is sufficient to make ADC work efficiently, more iterations for further SI reduction
is no longer necessary. Hence, once the constraint of (2.18c) is met, the process of SI
suppression can be terminated to save time. In Section 2.5.1, we will demonstrate the
convergence performance of the CCD algorithm.

In summary, the first design option is stated as Algorithm 1. For UL reception, when
given WWWMMSE[m̄], the hybrid combiner is obtained by the PGD algorithm. For SI sup-
pression, after the initialization of FFFRF, the analog precoder is iteratively updated to
reduce the SI power based on the CCD algorithm, until the SIC meets the requirement.
During every iteration, the digital precoder FFFBB[m] is derived based on ZF method and
water-filling algorithm.

Algorithm 1: Precoding optimization aided SIC (Option 1)

Input : Pm, PDL, CDemand
SI

1 Compute WWWBB[m̄] and WWWRF by the PGD method after obtaining WWWMMSE[m̄] in (2.16);
2 Initialize FFFRF;
3 for 1 ≤ j ≤ NRF do
4 for 1 ≤ i ≤ N do
5 Calculate ηH̃

ij and g(θij) in (2.20) and (2.21), respectively;

6 Derive θ
(1)
ij and θ

(2)
ij via minimizing g(θij);

7 Find θ
(opt)
ij : = arg min

(︁
g(θ(1)ij ), g(θ(2)ij )

)︁
;

8 FFFRF(i, j) = e−jθ(opt)
ij

9 end for
10 end for
11 for 1 ≤ m ≤ M do
12 Derive PPP[m] based on the water-filling algorithm;
13 Compute FFFZF

BB[m] = HHHH
eq[m](HHHeq[m]HHHH

eq[m])−1 ×PPP
1
2 [m], where

HHHeq[m] = HHHDL[m]FFFRF;
14 end for

15 Calculate the power of SI: PSI =
M
∑

m=1
E ∥yyySI[m]∥2

2;

16 if PDL
PSI
≥ 10

CDemand
SI

10 , ∀m then
17 store FFFRF and FFFZF

BB[m];
18 else
19 go to Step 3.
20 end if

2.3.2 Combining Optimization Aided Self-Interference Cancellation

In the context of the second design option, we assume that N̄ > N. In this scenario,
the analog precoder FFFRF is derived via maximizing the DL spectral efficiency without
considering the effect of the SI on the UL receiving. Instead, SI suppression is only
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attempted by the design of WWWRF. Therefore, the design of the hybrid combiner in Option
2 is similar to the design of the hybrid precoder in Option 1, except that there is no PA
in combiner’s design. Furthermore, the analog and digital precoders in Option 2 can
be designed by employing the PGD algorithm, when an overall precoder in the form
of (2.19) is prepared.

It can be argued that the design in Option 2 has lower complexity than that in Option 1.
The reason is that in Option 1, the digital precoder and analog precoder need to be iter-
atively updated, so that the SI on the UL receiving is gradually reduced to an allowed
value. By contrast, in Option 2, once the hybrid DL precoder is obtained, the SI on
UL receiver becomes stable. Hence, no iteration is required between the design of the
digital combiner and that of the analog combiner. In other words, the analog combiner
can be firstly designed to suppress SI to a sufficient level. Then, digital combiner can
be derived for a fixed analog combiner. In summary, the design in Option 2 is stated as
Algorithm 2.

It is worth noting that following Options 1 and 2, there is a third option for the design,
which optimizes WWWRF and FFFRF jointly. However, it can be shown that the SIC perfor-
mance is mainly determined by the DL transmitter or UL receiver, depending on which
of them has more antenna elements. As demonstrated in Section 2.5, the side (either
DL transmitter or UL receiver) with less antenna elements can hardly provide any gain
for SIC. Owing to this, the third design option is not further considered in this chapter.

Algorithm 2: Combining Optimization Aided SIC (Option 2)

Input : Pm, PDL, CDemand
SI

1 Derive full-digital precoder FFFZF[m] and divide it into FFFRF and FFFBB[m] based on
PGD;

2 Initialize WWWRF via maximizing the UL spectral-efficiency in [123];
3 Design WWWRF by following Step 3 to Step 10 in Algorithm 1;

4 Calculate the power of SI: PSI =
M
∑

m=1
E ∥yyySI[m]∥2

2;

5 if PDL
PSI
≥ 10

CDemand
SI

10 , ∀m then
6 store WWWRF;
7 else
8 go to Step 3.
9 end if

10 for 1 ≤ m ≤ M̄ do

11 Compute WWWBB[m̄] =
(︂

HHHeq[m̄]HHHH
eq[m̄] + σ2III

)︂−1

12 ×HHHeq[m̄], where HHHeq[m̄] = WWWH
RFHHHUL[m̄];

13 end for
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2.4 Channel Estimation in MDD MIMO

As argued in Section 1.2.1, in MDD systems, the DL channels can be estimated based
on the observations received from the UL channels by exploiting the reciprocity exist-
ing between the DL and UL subchannels, which is generated by the frequency-domain
correlated fading. In this section, we consider the CE in MDD MIMO systems. We
first consider the CE based on orthogonal transmission and focus on the design of
frequency-domain pilot symbol (PS) vectors and the associated conditions. Then, the
CE in the scenario of non-orthogonal transmission is considered. Note that, below we
only consider the CE of communication channels. The SI channel can be estimated by
the various approaches proposed in references, e.g., in [129–132].

By observing (2.2), (2.3) and (2.4), we can know that the CE can be initialized with
the UL training in frequency-domain. Using the frequency-domain training, the time-
domain channel gggn,d can be estimated. Then, from gggn,d both the DL and UL channels of
the subcarriers can be obtained with the aid of (2.3) and (2.4).

Let us assume that all MSs synchronously transmit their PSs. For CE, we assume that
each MS transmits PSs on all the UL subcarriers. The fading of channels is assumed to
be slow enough for making use of the reciprocity for UL/DL processing. Then, consider
that the PSs transmitted by the d-th MS are given by xxxd = [xd[1], ..., xd[m̄], ..., xd[M̄]]

T,
where d is either a UL MS or a DL MS. The received signal from the m̄-th subcarrier by
the n-th antenna (either the transmit or receive antenna at BS) can be expressed as

yn[m̄] =
√

ρr

Dsum

∑
d=1

hn,d[m̄]xd[m̄] + zn[m̄], m̄ = 1, ..., M̄, (2.27)

where zn[m̄] ∼ CN (0, σ2) is the additive complex Gaussian noise, ρr represents the
average transmit power per symbol per MS. Let yyyn = [yn[1], . . . , yn[M̄]]

T. Then, we can
have an expression of

yyyn =
√

ρr

Dsum

∑
d=1

XXXdhhhUL
n,d + zzzn =

√
ρr

Dsum

∑
d=1

XXXdΦΦΦT
ULFFFΨΨΨgggn,d + zzzn, (2.28)

where XXXd = diag{xxxd}, zzzn ∼ CN (000, σ2IIIM̄), hhhUL
n,d is given by (2.4), and with the aid of

(2.2), i.e., hhhUL
n,d = ΦΦΦT

ULFFFΨΨΨgggn,d, yyyn is directly expressed in terms of the TDCIR gggn,d.

From (2.28), we can see that if the PSs can be designed to satisfy⎧⎨⎩
(︁
XXXiΦΦΦT

ULFFFΨΨΨ
)︁H (︁XXXiΦΦΦT

ULFFFΨΨΨ
)︁
= ϱIIIL,(︁

XXXiΦΦΦT
ULFFFΨΨΨ

)︁H (︁XXX jΦΦΦT
ULFFFΨΨΨ

)︁
= 000L, ∀ i ̸= j,

(2.29)



2.4. Channel Estimation in MDD MIMO 45

where ϱ is a constant, then the TDCIR gggn,i from MS i can be readily estimated by the LS
method, given by

ggĝn,i =
1

ϱ
√

ρr

(︂
XXXiΦΦΦT

ULFFFΨΨΨ
)︂H

yyyn. (2.30)

Furthermore, if MS i is a UL user and Antenna n is the receive antenna at BS, then BS
uses (2.4) to obtain the frequency-domain channel gains for UL detection. By contrast,
if MS i is a DL user and Antenna n is the transmit antenna of BS, then BS uses (2.3) to
obtain the frequency-domain channel gains for DL precoding.

The set of PSs satisfying (2.30) are referred to as the orthogonality-achieving PSs. With
the aid of the approach proposed in [133], it can be shown that if M̄ ≥ L and the M̄ UL
subcarriers are evenly distributed among the Msum subcarriers, the set of PSs given by

xxxd =
[︂
1, ej2π

(d−1)ξ
M̄ , ej2π

2(d−1)ξ
M̄ , · · · , ej2π

(M̄−1)(d−1)ξ
M̄

]︂T
,

1 ≤ d ≤ Dsum, (2.31)

where ξ =
⌊︂

M̄
Dsum

⌋︂
, are orthogonality-achieving PSs. Hence, we have the following

Proposition.

Proposition 1. When ξ =
⌊︂

M̄
Dsum

⌋︂
≥ L, and the M̄ number of UL subcarriers are evenly

distributed with a spacing of l = Msum/M̄, the Dsum PSs given in (2.31) make the
matrices PPP[d] = XXXdΦΦΦT

ULFFFΨΨΨ for d = 1, ..., Dsum mutually orthogonal.

Proof. See Appendix A.

However, if the conditions stated in Proposition 1 are not satisfied, or more random PSs
are used, orthogonality-achieving PSs may not be available. In this case, we can write
(2.28) as

yyyn = QQQigggn,i + TTTi + zzzn, (2.32)

where by definition, QQQi =
√

ρrXXXiΦΦΦT
ULFFFΨΨΨ, and TTTi =

√
ρr ∑Dsum

d=1,d ̸=i XXXdΦΦΦT
ULFFFΨΨΨgggn,d is the

interference signal from other MSs. In order to suppress the interference from the other
MSs, let us introduce the LMMSE estimator for CE. Then, the estimate to gggn,i in (2.28)
can be expressed as ggĝn,i = AAAH

n,iyyyn, where AAAn,i achieving MMSE can be obtained from
the minimization problem formulated as

AAALMMSE
n,i = arg min

AAA
E
[︃⃦⃦⃦

gggn,i − AAAHyyyn

⃦⃦⃦2
]︃

. (2.33)

Assume that the TDCIRs from MSs are uncorrelated, i.e., E[gggn,dgggH
n,d′ ] = 000, ∀d ̸= d′,

which is usually satisfied as MSs are in general well separated in space. Then, the
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solution to (2.33) is

AAALMMSE
n,i =

(︃
1
L

QQQiQQQH
i + E[TTTiTTTH

i ] + σ2IIIM̄

)︃−1 (︃ 1
L

QQQi

)︃
, (2.34)

where E[TTTiTTTH
i ] =

ρr
L ∑Dsum

d=1,d ̸=i XXXdΦΦΦT
ULFFFΨΨΨΨΨΨHFFFHΦΦΦ∗ULXXXH

d . Correspondingly, the estimate
ggĝn,i is given by

ggĝn,i =
1
L

QQQH
i

(︃
1
L

QQQiQQQH
i + E[TTTiTTTH

i ] + σ2IIIM̄

)︃−1

yyyn. (2.35)

It is well-known that LMMSE yields biased estimation. To attain an unbiased estimator,
we can form the estimate as

ggǧn,i =

[︃(︂
AAALMMSE

n,i

)︂H
QQQi

]︃−1

ggĝn,i. (2.36)

Again, after obtaining the estimation of ggǧn,i, if MS i is a UL user and Antenna n is the
UL receive antenna at BS, BS uses (2.4) to obtain the frequency-domain channel for UL
detection. By contrast, if MS i is a DL user and Antenna n is the DL transmit antenna
at BS, BS uses (2.3) to obtain the frequency-domain channel for DL precoding.

2.5 Performance Results

In this section, we first evaluate the SIC performance. Then, under the assumption of
ideal CE, the performance results for the MDD MIMO systems are depicted and dis-
cussed, when the precoder and combiner designed in Section 2.3 are employed. Then,
the performance of the CE method introduced in Section 2.4 is investigated. Finally,
we compare the MDD and IBFD hybrid beamforming systems employed with the pro-
posed SIC algorithm, in terms of energy efficiency.

In our simulations, we assume the channel model as presented in Section 2.2.1, and
the ULA at BS with the half-wavelength spacing between two adjacent antenna ele-
ments. The distance rij between the i-th element of transmitter and the j-th element of
receiver is set according to [106] and the default angle between the transmitter array
and receiver array is φ = 120◦. We further assume that the number of CIR taps for
communications channel is L = 4. For the SI channel, we set κ = 20 dB as a default
value.

2.5.1 Performance of Self-Interference Cancellation

According to [134], we assume that the transmit power of BS and the signaling band-
width are PDL = 30 dBm and B = 20 MHz, respectively. The total transmit power is
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uniformly allocated to the DL subcarriers. We further assume the 12-bit ADCs used
by the UL receiver at BS. Then, the maximum input power to the UL receiver and
the demand of SIC can be found from (2.7) and (2.8), which are smax ≈ −25 dBm,
CDemand

SI = 65 dB, respectively. In other words, the system needs to achieve at least
65 dB of SI reduction, so that the UL receiver at BS can work efficiently.
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FIGURE 2.2: SI reduction versus number of iterations with PDL = 30 dBm, B = 20
MHz, φ = 120◦, κ = 20 dB. (1) Optimized initial analog precoder; (2) Random initial

analog precoder.

In the first experiment, we demonstrate the SIC performance in the MDD MIMO sys-
tems with the transceivers designed under Option 1 of Section 2.3. In this study, we
assume that the number of antennas and RF chains at UL receiver are N̄ = 32 and
N̄RF = 8, respectively. The other parameters are detailed under the caption of Fig. 2.2.
In this figure, we compare the SIC performance of the proposed iterative coordinate de-
scent algorithm, when the analog precoder is either randomly initialized or initialized
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via optimizing the DL sum-rate as in equation (19) in [123], which are referred to as the
‘Random initial’ and ‘Optimized initial’ analog precoders, respectively, in the figure.
Note that the random initial analog precoder is obtained by firstly extracting the angle
information from the null space matrix of HHHSI, i.e., from VVV(N−rank(HHHSI)):end, and then,
NRF columns of VVV(N−rank(HHHSI)):end are randomly selected to construct FRF. Note further-
more that the SIC behavior from the 1st to the 20th iterations are separately depicted in
Fig. 2.2(A) to highlight the relatively sharp changes. As shown in Fig. 2.2, explicitly, the
SI reduces with the increase of the number of iterations. Specifically, when BS employs
N = 128 DL transmit antennas and NRF = 16 DL RF chains, 65 dB of SIC reduction
can be achieved after 80 iterations, when either the random initial or optimized initial
analog precoder is employed. The performance achieved by the random initial analog
precoder and optimized initial analog precoder is very similar. Fig. 2.2 illustrates that
employing more DL transmit antennas allows more SI reduction for a given number of
iterations. For NRF = 16 and when the number of DL transmit antennas is decreased
from 128 to 64, the SI reduction capability is reduced from about 65 dB to about 25 dB
after 80 iterations. Furthermore, Fig. 2.2 shows that when the number of RF chains is
reduced from 32 to 16 while keeping the number of DL transmit antennas fixed, more
than 2.5 dB of SI reduction can be obtained. Note that, the above observations can be
similarly obtained from the systems operated under Option 2, when the above-stated
DL transmit antennas is changed to the UL receive antennas.

The second experiment considers the effect of the Rician factor κ and the arrays angle
φ on the performance of SIC. Again, we assume that the system is operated under
Option 1 with the parameters as shown in the caption of Fig. 2.3, where the range from
the 1st to the 20th iterations are separately depicted in Fig. 2.3(A) for highlighting the
behavior. It can be observed that the Rician factor and arrays angle yield big impacts
on the SIC performance. Specifically in terms of the Rician factor, it can be seen that
when the LoS component becomes more dominant, the proposed SIC method becomes
less efficient. However, we should note that while the beamforming methods work
inefficiently with the LoS component, other easy-implementing approaches, such as, of
adding blockage between transmitter and receiver [29,35,39,72,135], may be employed
to significantly mitigate the LoS SI. In terms of the angle between the transmit and
receive antenna arrays, Fig. 2.3 shows that the narrower angel is set, the more SI can
be reduced. This is because when the angle is narrower, the SI power imposed by the
SI signal of a given transmit array element on all the receiver array elements is nearly
same, which is beneficial to SIC by using beamforming technique. By contrast, if the
angle between transmit/receive arrays is wide, the distances from a given transmit
array element to all the receive antenna array elements can be very different. Hence,
the SI power from a given transmit array element to the receive array elements is very
different. Consequently, it is difficult for the beamformer to simultaneously suppress
them efficiently.
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FIGURE 2.3: SIC versus number of iterations performance with respect to different
angles between the transmit and receive antenna arrays, as well as to different Rician
factors of SI channel, when assuming PDL = 30 dBm, B = 20 MHz, N = 128, N̄ =

32, NRF = 16 and N̄RF = 8.

Additionally, from Figs. 2.2 and 2.3 we can be implied that the SI reducing rate and
the SIC potential provided by the proposed CCD algorithm are dependent on the an-
tenna configuration and SI channel’s characteristics. For instance, if the SI channel only
has NLOS components, the CCD algorithm makes the SI approach a fixed value after
about 10 iterations, yielding a SI reduction of about 300 dB, which is much larger than
CDemand

SI of required. As shown in Figs. 2.2 and 2.3, in some cases, the SI reducing rate
is relatively small, but the CCD algorithm can still allow to achieve the required SIC.
For example, when the Rician factor is 100, the algorithm is able to provide about 65 dB
SI reduction after about 80 iterations. In some other cases, such as, when the Rician
factor is 105, the SI reducing rate is very small and the SIC requirement of (2.18b) is
hard to meet, even after many iterations. However, it is worth noting that in this case,
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FIGURE 2.4: SIC performance comparison of the proposed methods with Option 1
and Option 2 and the method presented in [108], when PDL = 30 dBm, B = 20 MHz,

φ = 120◦, and κ = 20 dB.

the LoS propagation is dominant and the SI can be efficiently suppressed by the other
approaches of, such as, using blockage. In summary, from the results of Figs. 2.2 and
2.3 we can know that to attain a good performance of SI reduction, we can increase the
number of antennas at the side implementing SIC and/or reduce the angle between
TX/RX antenna arrays.

Finally, we compare the SIC performance of the MDD MIMO systems with the transceivers
designed by Option 1 and Option 2, respectively, in Fig. 2.4. The beamforming based
SIC algorithm presented in [108] is shown as the benchmark. In this study, we set the
parameters to N = 128, N̄ = 32, NRF = 16 and N̄RF = 8 for Option 1, for Option 2
in the case of N ≥ N̄ and also for the algorithm presented in [108]. For the Option 2
in the case of N < N̄, we set N = 32, N̄ = 128, NRF = 8, and N̄RF = 16. From Fig.
2.4 we observe that Option 1 and Option 2 are equally efficient for SI mitigation, when
the same number of antennas used for SI suppression is assumed. Moreover, as shown
in Fig. 2.4, in the case of N ≥ N̄, if Option 2 is employed to mitigate SI, i.e., SI is
suppressed by receive antenna array, the SIC gain is very limited. Therefore, when
given the deployment of N ≥ N̄ or N ≤ N̄, there is not much meaning to implement
the joint transmit/receive beamforming for SI mitigation. This is because in contrast
to using either transmit beamforming in the case of N ≥ N̄ or receive beamforming
under N ≤ N̄, the SIC gain provided by the joint transmit/receive beamforming is
marginal, while the increase of implementation complexity is significant. Additionally,
when comparing the SIC Option 1 with Fig. 2.2(b) in the case of (1): N = 128, NRF = 16,
both cases use the same parameters, we can see that the proposed algorithm is capable
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TABLE 2.2: Comparison between the proposed and competing beamforming aided
SIC methods

Method Constraint Complexity SIC Capability

Option 1 N ≥ N̄ O(N̄3
+ NN̄N̄RF) high

Option 2 N ≤ N̄ O(NN̄N̄RF) high

Option 2 N ≥ N̄ O(NN̄N̄RF) low

[108] N ≥ N̄ O(N̄3
+ NN2

RF) medium

of providing 65 dB of required SI reduction after 80 iterations. By contrast, although
the SIC algorithm presented in [108] can provide 30 dB SI reduction after 5 iterations, it
however gets saturated at this value and is unable to achieve the required SI reduction
in analog-domain, no matter how many iterations of the algorithm are executed.

In Table 2.2, we summarize the comparison between the proposed SIC methods and
the method presented in [108] in terms of their complexity and SIC capability. The
complexity shown in Table 2.2 includes both the complexity for SI reduction and that
for digital precoder/combiner, when the number of antenna elements and that of RF
chains at transmitter or receiver are given. First, regarding to the SIC performance,
as we stated in Section 2.3.2, both Option 1 and Option 2 (N ≤ N̄) have the highest
SIC capability. However, as the SIC is independent of the design of precoder, Option
2 (N ≤ N̄) demands lower computational complexity than Option 1. As shown in
Table 2.2, Option 2 (N ≥ N̄) also has low computational complexity, but it is unable to
provide sufficient SI suppression due to the constraint on antenna arrays, as shown in
Fig. 2.4. As for the method presented in [108], it can provide upto 30 dB SI reduction
after about 5 iterations, but no further SI reduction is available, no matter how many
iterations are executed. Hence, when taking into account the SIC capability and the
required complexity, as shown in Table 2.2, Option 2 with N ≤ N̄ constitutes the most
desirable SIC method.

2.5.2 Performance of MDD MIMO with Self-Interference Cancellation

We now demonstrate the achievable performance of the hybrid MDD MIMO systems
with SIC. For this purpose, we consider a MDD MIMO system, where BS employs
N = 128 transmit antennas and NRF = 16 DL RF chains to support D = 6 DL MSs,
as well as N̄ = 32 receive antennas and N̄RF = 8 UL RF chains to serve D̄ = 4 UL
MSs. Unless explicitly noted, the transmit power of BS and MS is set to PDL = 30 dBm
and PMS = 20 dBm, respectively [134, 136]. Furthermore, at BS, the transmit power is
evenly assigned to the M DL subcarriers, while the transmit power of a DL subcarrier
is assigned to the D number of DL MSs based on the water-filling principle. The total
bandwidth is assumed to be 20 MHz and the number of DL and UL subcarriers are
M = 64 and M̄ = 32, respectively. The MSs are assumed to be uniformly distributed
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FIGURE 2.5: Average sum-rate of the MDD MIMO systems with different beamform-
ing/initialization schemes, when N = 128, NRF = 16, N̄ = 32, N̄RF = 8, M = 64,

M̄ = 32, D = 6, D̄ = 4 and L = 4.

within a circular area of radius R = 60 m. Furthermore, the pathloss for a MS with
distance d from BS is modeled as PL(dB) = 72 + 29.2 log10(d). Additionally, the power
spectral density of noise is −173 dBm/Hz. In the following figures, the average sum
rate denotes the total rate of a system, including both DL and UL, which is formulated
as

RMDD =
1

Msum

(︄
M

∑
m=1

D

∑
d=1

Rd[m] +
M̄

∑
m̄=1

D̄

∑
d̄=1

Rd̄[m̄]

)︄
. (2.37)

Note that the comprehensive comparison of MDD with TDD/IBFD in mmWave envi-
ronment can be found in [4]. More general comparison of MDD with FDD/TDD can be
found in [137]. Readers interested in the more details about the comparison are referred
to these references.

Fig. 2.5 demonstrates the sum-rate performance of the MDD MIMO systems with vari-
ous beamforming schemes. In this study, the transmit power at BS varies from 10 dBm
to 50 dBm, while the transmit power of individual MSs is 20 dBm. From the results of
Fig. 2.5, we observe that the ideal full-digital MDD MIMO system without SI provides
the upper-bound performance. Note that, here ‘without SI’ means that the required
SIC can be achieved by the ideal SIC approaches. However, when hybrid beamforming
assisted SIC is considered, as Fig. 2.5 shows, using different initial analog precoders
under Option 1 yield a big impact on the achievable sum-rate. The optimized initial
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FIGURE 2.6: Average sum-rate versus the number of iterations of the analog precoder
operated during the SIC process, when N = 128, NRF = 16, N̄ = 32, N̄RF = 8, M = 64,

M̄ = 32, D = 6, D̄ = 4 and L = 4.

analog precoder achieves much higher sum-rate than the random initial analog pre-
coder. By contrast, when operated under Option 2, the optimized initial analog com-
biner can only achieve the similar performance of the Option 1 with random initial
analog precoder. The reason behind is that in this study, we assumed N̄ << N, and in
this case, as argued in Section 2.3, the performance of SIC should be dominated by the
transmitter-based SIC, i.e., Option 1 design.

Fig. 2.6 shows the impact of the number of iterations used by the analog precoder dur-
ing SIC on the average sum-rate achieved. The SIC is achieved by the analog precoder
operated under Option 1, and the parameters are detailed with the figure. Note that
the ‘Ideal SIC‘ refers to that the remaining SI is ideally suppressed by the other SIC
methods without using analog precoder. Therefore, as shown in Fig. 2.6, the highest
sum-rate is observed before the analog precoder starts operating. When the analog
precoder is operated with more iterations, the achieved sum-rate reduces, as the result
that more degrees-of-freedom provided by transmit antennas are used for SIC. How-
ever, the achievable sum-rate becomes steady after only about 3 or 4 iterations, yielding
the sum-rate cost for SIC. By contrast, as shown in Fig. 2.2, the amount of SI compressed
monotonically increases with the increase of the number of iterations.

The impact of the number of DL transmit antennas N and the number of DL RF chains
NRF on the sum-rate performance of MDD MIMO systems is shown in Fig. 2.7, when
assuming that SI is suppressed using the Option 1 method. Explicitly, for a given num-
ber of DL transmit antennas, the achievable sum-rate increases, as the number of RF
chains increases, which is at the cost of the increase of implementation complexity. By
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FIGURE 2.7: Average sum-rate versus BS’s transmit power for the MDD MIMO sys-
tems employing different numbers of DL transmit antennas and RF chains.

contrast, when NRF is fixed, the sum-rate increases, as N increases, owing to the im-
proved SI capability.

Fig. 2.8 depicts the effect of the numbers of DL/UL subcarriers, i.e., M and M̄, on the
sum-rate performance of MDD MIMO systems, when the total number of subcarriers
is set to M + M̄ = 128, and the other parameters are set as default values. As each
UL MS has fixed transmit power, while the total BS transmit power is shared by all DL
MSs, the total throughput of MDD MIMO system is dominated by the UL, when the
transmit power of BS is relatively low. In this case, when the UL employs more sub-
carriers, the total throughput of MDD MIMO system is higher. By contrast, when BS’s
transmit power is sufficiently high, the system’s throughput will become DL dominant.
Correspondingly, employing more DL subcarriers provides higher throughtput by the
MDD MIMO system.

By contrast, in Fig. 2.9, we investigate the effect of the numbers of DL/UL MSs, i.e., D
and D̄, on the sum-rate performance of MDD MIMO systems, while the other param-
eters are set to default values. As seen in Fig. 2.9, first, supporting more DL or/and
UL MSs in general improves the total throughput of MDD MIMO systems. Second,
when D is fixed, the total throughput of MDD MIMO systems increases, as the value
of D̄ increases. Finally, in the case that D̄ is fixed, we observe that the total throughput
achieved by D = 12 is slightly lower than that obtained by D = 6, when BS’s trans-
mit power is relatively low. However, when BS’s transmit power is relatively high, the
observation reverses, i.e., the total throughput achieved by D = 12 is higher than that
obtained by D = 6. The reason behind this observation is that when at relatively low
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FIGURE 2.8: Average sum-rate versus BS’s transmit power for the MDD MIMO sys-
tems employing different numbers of DL/UL subcarriers.
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FIGURE 2.9: Average sum-rate versus BS’s transmit power for the MDD MIMO sys-
tems employing different numbers of DL/UL users.



56
Chapter 2. Beamforming-Based Self-Interference Cancellation and Channel

Estimation in MDD MIMO

10 15 20 25 30 35 40 45 50
Transmit power at BS (dBm)

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 S
um

 R
at

e 
(b

its
/s

/H
z)

FIGURE 2.10: Average sum-rate performance of MDD MIMO systems experiencing
the frequency-selective fading channels with different taps.

transmit power, the systems’ total throughput is dominated by the UL MSs. By con-
trast, at relatively high transmit power, the systems’ total throughput is dominated by
the DL MSs, owing to the contribution from the joint PA among the DL MSs.

Fig. 2.10 shows the effect of the severity of frequency-selective fading channel on the
achievable sum-rate performance of MDD MIMO systems, where increasing L means
the channel becomes more frequency-selective. As shown in Fig. 2.10, when the op-
timized initial analog precoder is employed, the achieved sum-rate reduces with the
increase of L. This is because when L increases, the fading experienced by different sub-
carriers becomes more random, making the optimized initial analog precoder appear
more like the random initial analog precoder. By contrast, when the random initial ana-
log precoder is employed, the achieved sum-rate is very similar, regardless of the values
of L. Hence, while the random initial analog precoder usually achieves lower sum-rate
than the optimized initial analog precoder, it is more robust to the time-varying of
channels.

2.5.3 Performance of Channel Estimation

In order to investigate the performance of CE, we consider a MDD MIMO system where
a BS employs a 128× 32 antenna array, and the number of DL and UL subcarriers are
M = 128 and M̄ = 64, respectively. Specifically in Fig. 2.11, we compare the MSE per-
formance of CE in three cases. In the first case, the LS CE with orthogonality-achieving
PSs, i.e., with the settings satisfying Proposition 1 is considered. In the second case,
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FIGURE 2.11: Mean-square error (MSE) performance of CE in MDD MIMO systems,
when N = 128, N̄ = 32, M = 128, M̄ = 64 and L = 4, and for LS D = 6 and D̄ = 4,

while for LMMSE D = 12 and D̄ = 6.

we also assume the LS CE but with the UL subcarriers randomly selected. Therefore,
the orthogonality-achieving PSs cannot be guaranteed. Finally, in the case of LMMSE
CE, the UL subcarriers are also randomly distributed. From Fig. 2.11 we observe that
the LS CE with orthogonality-achieving PSs achieves better MSE performance than the
other two CEsts, while the LS CE with randomly selected UL subcarriers achieves the
worst MSE performance. Furthermore, the LS CE with random UL subcarriers expe-
riences the interference, which is unable to be suppressed by the method, hence yield-
ing MSE floor. By contrast, the LMMSE CE is capable of efficiently suppressing the
interference and removing the MSE floor. We should note that, although the LS CE
with orthogonality-achieving PSs outperforms the LMMSE CE in terms of MSE per-
formance, it has the disadvantages of, such as, low number of orthogonality-achieving
PSs due to the constraint of Proposition 1.

Finally, in Fig. 2.12 we compare the achievable sum-rate of MDD MIMO systems, when
the channel knowledge is obtained by the LS CE with orthogonality-achieving PSs or
the LMMSE CE with random UL subcarriers. Furthermore, the case of ideal CE is
included as a benchmark. Explicitly, both CE schemes work efficiently over the SNR
range considered. The sum-rate gap between that achieved by assuming ideal channel
knowledge and that achieved by practical CE is marginal. When comparing the LS and
LMMSE methods, we find that the LS CE allows to transmit an extra of 2.5 bits/s/Hz
beyond the sum-rate achieved by the LMMSE CE. However, we should remember the
LS CE with orthogonality-achieving PSs is limited by Proposition 1.
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FIGURE 2.12: Average sum-rate versus SNR performance of MDD MIMO systems
with channel knowledge provided by different methods. Parameters: M = 128, M̄ =

64, L = 4, D = 8 and D̄ = 4.

2.6 Chapter Summary and Conclusions

In this chapter, we have investigated the adaptive SIC methods based on the hybrid
beamforming design of both transmitter and receiver as well as the CE in MDD MIMO
systems. We have first highlighted the design of the hybrid transmitter precoder for DL
transmission and the hybrid receiver combiner for UL signal detection, both of which
can simultaneously suppress SI to a desired level. Our studies show that SI can be dy-
namically mitigated by employing either the analog transmitter precoding or the ana-
log receiver combining. Furthermore, it is shown that SIC should be implemented at BS
transmitter or at BS receiver depending on which of them has more antenna elements.
Then, the CE in MDD MIMO systems has been designed by exploiting the reciprocity
existing between UL/DL channels resulted from the correlated fading of subcarriers.
Our studies reveal that first, when the number of MSs is relatively small and the PSs
are evenly arranged across the subcarriers, the design of orthogonality-achieving PSs
is available. In this case, a LS CE achieves optimum performance. However, when
randomly distributed PSs have to be used due to, such as, a big number of MSs, the
performance of LS CE degrades significantly. Instead, a LMMSE CE is near-optimum,
and is capable of significantly improving the performance over the LS CE. Finally, the
performance of the MDD MIMO systems with our proposed hybrid beamforming SIC
method has been investigated, when CSI is provided by our proposed CE, showing
that the achievable performance can be close to that with ideal CSI.
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Chapter 3

Resource Allocation with Hybrid
Beamforming Design in MDD
MIMO

This chapter investigates the advantages of multicarrier-division duplex (MDD) over
the conventional frequency-division duplex (FDD) and time-division duplex (TDD)
in terms of resource allocation (RA). Furthermore, the RA with the advanced hybrid
beamforming in MDD multi-input multi-output (MIMO) is studied.

3.1 Introduction

With the increasing demand of high capacity and SE for the next-generation wireless
networks, two significant techniques have come into our vision, namely millimeter
wave (mmWave) and in-band full duplex (IBFD) [72,138]. On one side, mmWave com-
munication makes use of the unexploited spectrum resource with GHz of bandwidth
to meet the requirements of high-rate applications. On the other side, owing to the
downlink (DL) and uplink (UL) transmissions concurrently occurring on the same fre-
quency band, IBFD has the potential to double the spectral efficiency that is achievable
by the FDD and TDD modes [72]. However, as analyzed in Section 1.2.1 and Chap-
ter 2, IBFD suffers from serious self-interference (SI) problem and significant system
complexity, whereas MDD, exhibiting its natural advantage of SI suppression in digital
domain aided by fast Fourier transform (FFT) at receiver, can be a transitional tech-
nique from half duplex (HD) to IBFD. In light of this, MDD systems require promising
RA strategies to fully exploit the available time-frequency resources. Compared with
HD systems, since DL and UL signals in MDD systems are transmitted on the different
subcarriers of an orthogonal frequency division multiplexing (OFDM) block, there are
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more degrees-of-free (DoF) for dynamically allocating subcarriers to DL and UL, which
further enhances spectral efficiency (SE). However, similar to IBFD systems, when con-
sidering the influence of residual SI, the implementation of RA is also challenging in
MDD systems.

In Chapter 2, we conduct beamforming from a self-interference cancellation (SIC) per-
spective, which pays more attention to the performance of SI mitigation. On the con-
trary, in order to fully take the advantages of MDD, this chapter will focus on the joint
design of RA and hybrid bearmformers for SE maximization, with the consideration of
quality of service (QoS) constraints as well as practical SI suppression. In the following,
we will briefly overview some related works to introduce our motivations of studying
RA in MDD MIMO mmWave systems.

As the increasing interest in MIMO systems, the joint design of beamformers and RA
has become more and more attractive. In [139–141], the authors studied the channel
and power allocation (PA) with digital beamforming and QoS constraints. However,
the proposed approaches cannot be directly applied in the large-scale MIMO mmWave
systems with hybrid beamforming. Furthermore, the algorithms with fairness con-
straint are unable to guarantee the proportional fairness exactly, leading to the perfor-
mance fluctuation among mobile stations (MSs). The authors of [121] studied the RA
to maximize the sum-rate of the mmWave orthogonal frequency division multiplexing
access (OFDMA) systems with hybrid beamforming under the power constraint of BS,
where PA, precoder design and subcarrier assignment are concurrently implemented,
causing a high complexity. Different from [121], the authors of [142] jointly optimized
the hybrid beamformers and RA in a distributed way to minimize the transmission la-
tency in mobile edge computing mmWave networks. However, the QoS requirements
of MSs were not considered in both these references. Furthermore, in [143], a propor-
tional fairness constrained hybrid beamforming algorithm was proposed for the DL
transmission in mmWave MU-MIMO systems, in which the constant modulus con-
straints on analog beamformers are ignored for simplicity. Furthermore, the proposed
algorithm fails to achieve the expected fairness, when the inter-MS distances are large.
We should note that in the RA of mmWave systems, the QoS requirements of MSs are
important, as MSs suffer from large path-losses, in particular, when they are at the cell
edges. To the best of our knowledge, there is no work in the open literature considered
the RA in the hybrid beamforming-assisted systems with the constraints on individual
MSs’ QoS.

On the other hand, there are limited works having so far studied the RA in FD OFDMA
systems. In [144], the authors considered to maximize the sum-rate of a multiuser
single-input single-output (MU-SISO) IBFD system by jointly optimizing the subcar-
rier assignment and PA. In [145], the joint MS pairing and RA problem for MU-SISO
IBFD system were investigated by proposing a low-complexity near-optimal matching
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algorithm. Moreover, the authors of [146] developed an optimal iterative RA algo-
rithm, aiming at minimizing the total power consumption via jointly optimizing DL
beamformer, UL transmit power and antenna selection. In [147], the authors jointly
optimized the UL transmit power and DL beamforming to minimize the long-term
transmit power under delay constraints. Although all the above-mentioned works en-
deavor to exploit the resources provided by FD, the SI problem, which is regarded as
the biggest obstacle to achieve high-efficiency FD communications, has not been as-
sumed in a practical way. More specifically, the SI was directly assumed as Gaussian
noise in [144], while in [145], SI was treated as a coefficient in the range of 70 dB to
110 dB. In [146] and [147], SI was assumed to be perfectly mitigated by a separate
SIC subsystem before the beamforming design. To the authors’ best knowledge, all
the existing studies on the RA optimization in FD systems ignore the practical imple-
mentation of SIC, but assume a near-optimal SIC. This assumption may be feasible in
a small-scale MIMO system equipped with a small number of antennas or radio fre-
quency (RF) chains supported by the conventional SIC approaches proposed, such as,
in [25,39,148]. However, these SIC methods may cause significant power consumption
and complexity in large-scale mmWave MIMO systems. Hence, a feasible RA algorithm
for FD systems should be designed by considering a practically efficient SIC method,
which is capable of providing sufficient SI suppression at the lowest possible cost of
system resources.

To fill the research gap, in this chapter, we propose and study the RA in MDD MIMO
mmWave systems for not only leveraging the DL/UL resources but also relieving the
impact of SI, via designing hybrid beamforming and SIC schemes, while simultane-
ously meeting the fairness constraints near-perfectly. Our contributions can be sum-
marized as follows:

Firstly, considering a MU-SISO system with unfair greedy RA, we demonstrate the
performance advantages of MDD against the HD modes of FDD and TDD.

Secondly, we study the RA in MDD MIMO mmWave systems. Since MDD enables sys-
tem to jointly allocate resources among DL/UL, which leads to a NP-hard problem, we
divide the joint UL/DL RA problem into the suboptimal subcarrier allocation (SA) and
PA. Specifically for SA, an improved fair greedy (IFG) algorithm is proposed, which
consists of three stages to concurrently achieve sum-rate maximization, coarse fairness
and spatial multiplexing gain. After SA and applying the full-digital zero-forcing (ZF)
precoding, PA becomes a convex solvable problem. Our results show that the pro-
posed RA algorithms allow to attain the performance near the upper bound that is
only achievable by the conventional unfair greedy algorithm. Simultaneously, our al-
gorithms guarantee the near-accurate proportional fairness among all the DL/UL MSs,
even when some MSs are located far away from BS.
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Thirdly, we design two hybrid precoding schemes for the implementation of RA based
on the matrix factorization and direct approach, respectively, under the fairness con-
straint. Our studies show that although the matrix factorization method performs well
in the systems without considering RA [149], it cannot perform as well as the direct ap-
proach, when the number of RF chains is relatively low. It is shown that this is because
the difference between a full digital precoder and the hybrid precoder designed from
it by using matrix factorization is magnified after RA, which leads to the increase of
inter-user interference.

Furthermore, we propose an adaptive SIC algorithm in conjunction with the design of
hybrid combiner at BS receiver. To the best of our knowledge, this is the first attempt to
jointly consider SIC and RA in FD systems. It is shown that our SIC algorithm is capable
of providing the flexible levels of SI suppression over a big range and decoupled with
the implementation of RA.

The remainder of this chapter is outlined as follows. In Section 3.2, we address the
modeling in MDD MIMO mmWave hybrid beamforming system and introduce the
formulation of RA problem. In Section 3.3, we briefly compare the MDD mode with
HD modes in the MU-SISO system applying unfair greedy RA algorithm. In Section
3.4, suboptimal subcarrier and PA are presented to jointly consider the maximization
of sum rate and fairness among DL and UL MSs. The two precoding strategies are pro-
posed for RA scheme and an adaptive SIC method based on the combiner is presented
in Section 3.5. Finally, several simulation results are presented in Section 3.6.

3.2 System Model

3.2.1 System Architecture

Consider an MDD MIMO mmWave system, where an NBS
sum-element antenna BS com-

municates with D downlink single-antenna MSs and D̄ uplink single-antenna MSs,
where D + D̄ = Dsum. As shown in Fig. 3.1, we assume that BS implements the
separate antenna configuration working in MDD mode, in which the Tx and Rx are
equipped with N and N̄ antenna elements, respectively. By contrast, MSs work in HD
mode. We further assume that the transmission channels between BS and MSs are fre-
quency selective. In order to deal with small-scale fading, OFDM modulation is applied
with the cyclic prefix introduced to avoid inter-symbol interference. In our proposed
MDD system, all MSs choose the subcarriers from a setM, with the size of |M| = M.
Denoting αm,d and αm,d̄ the two indicators of subcarrier assignments, which take values
as

αm,d (or αm,d̄) =

⎧⎨⎩ 1, if d (or d̄) assigned subcarrier m,

0, otherwise,
(3.1)
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... ...
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...
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UL subcarrier

DL transmission

UL transmission

SI

HD
DL MSs 

HD
UL MSs 

FIGURE 3.1: System model: MDD MIMO mmWave network.

where d and d̄ are DL MS and UL MS, respectively. Note that a subcarrier can only
be assigned either to DL MSs or to UL MSs, not to both simultaneously. After SA,
we obtain two mutually exclusive subsets, namely downlink subsetMDL and uplink
subsetMUL. The size of the two sets are pre-defined considering the QoS requirements
for both DL and UL MSs, and we have |MDL| ≤ MDL, |MUL| ≤ MUL and MDL +

MUL ≤ M. Let the DL signal transmitted to d or the UL signal transmitted by d̄ on
the m-th subcarrier be denoted as zd[m] ∈ C or zd̄[m] ∈ C. They satisfy E

[︂
|zd[m]|2

]︂
=

E
[︂
|zd̄[m]|2

]︂
= 1 and E

[︂
zi[m]z∗j [m]

]︂
= 0, ∀ i ̸= j.

Although DL and UL are operated on different subcarriers, MDD-based system still
suffers from SI in analog domain at BS, as IBFD systems [4]. If SI is not sufficiently sup-
pressed in analog domain, the BS transmit signal may overwhelm the ADC of the BS
receiver and cause large unexpected quantization noise. Therefore, the effect of SI and
its suppression will be considered in this chapter. However, the inter-user interference
from the UL MSs on the DL MSs is ignored. This is because in general, MSs are dis-
tributed from each other with relatively big distances, which results in big SI reduction
due to propagation pathloss [72]1. Then, when all MSs and BS are assumed to be syn-
chronized within an allowable limit, the interference among different subcarriers can
be ideally canceled with the aid of the FFT operation in digital domain, as assumed in
the references on IBFD OFDMA systems [144, 145].

1Note that, in the case where a UL MS is close to a DL MS, we can leverage the user scheduling operated
at medium access control (MAC) layer to minimize the interference between these two MSs [113]. This is
however out of the scope of this chapter.
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3.2.2 Channel Model

3.2.2.1 Communication Channel Model

According to [122], we present a T-delay channel model combined with limited scat-
tering characteristics of mmWave. As the antenna arrays at BS are separated, below
we only introduce the wideband channel model between the BS transmit array and the
d-th DL MS. The UL transmission channels have the same expression. The t-th delay
tap of the DL channel, gggd[t] ∈ CN , can be written as [122]

gggd[t] = β
Ld

∑
l=1

υl,d prc,d(tTs − τl,d)αMS,d(θl,d)αααBS(ϕl,d), (3.2)

where Ld is the number of propagation paths, β =
√︁

N/(LdPL), PL, υl,d, τl,d, θl,d, ϕl,d are
the pathloss, complex gain, delay, angle of arrival (AoA) and angel of departure (AoD)
of the l-th path, respectively, 1/Ts is the sampling frequency, prc,d(τ) is the raised cosine
(RC) pulse evaluated at the time of τ. Finally, αMS,d(θl,d) and αααBS(ϕl,d) are the array
response vectors of the receiver and the transmitter, respectively. Correspondingly, the
m-th subcarrier channel can be expressed as

hhhd[m] =
T

∑
t=1

gggd[t]e−j2πt m
M , m = 1, 2, ..., M. (3.3)

3.2.2.2 Self-Interference Channel Model

Here, we have the similar assumption of SI channel (i.e., HHHSI) with (2.5), and the HHHLoS

can also be found in (2.6). Moreover, since the distance between the BS transmit ar-
ray and the BS receive array is small, the NLoS components can be well modeled to
experience flat fading, having an expression in the form of

HHHNLoS
SI = βSI

Ln

∑
l=1

υlαααR(θl)ααα
H
T (ϕl), (3.4)

where Ln is the number of propagation paths between the BS transmit array and the
BS receive array, while βSI =

√︁
NN̄/Ln. Additionally, υl , αααR(θl) and αααH

T (ϕl) have the
similar definitions as that in (3.2).

3.2.3 Downlink Transmission

For DL transmission, the signal zd[m] is first processed by a digital precoder fff d
BB[m] ∈

CNRF , where NRF denotes the number of RF chains at BS transmitter. Then, after DAC
operation and RF processing, the time-domain signal is further processed by an analog



3.2. System Model 65

precoder FFFRF ∈ CN×NRF . As analog beamformers are implemented using unit-modulus
phase shifters, each element in FFFRF should meet the constraint

⃓⃓
(FFFRF)i,j

⃓⃓
= 1. Finally,

the signal xxxd[m] transmitted on the m-th subcarrier by the BS transmit antennas can be
formulated as

xxxDL
d [m] = αm,d

√
pm,dFFFRF fff d

BB[m]zd[m], m = 1, ..., M, (3.5)

where pm,d denotes the transmit power for MS d over subcarrier m, which satisfies
D
∑

d=1

M
∑

m=1
pm,d ≤ PDL with PDL denoting the total power of DL transmission. Moreover,

we normalize ∥FFFRF fff d[m]∥2
2 = 1 to ensure that

⃦⃦
xxxDL

d [m]
⃦⃦2

2 = αm,d pm,d. Given the m-th
subchannel vector hhhd[m] ∈ CN to the d-th MS, the received signal at MS d is given by

yDL
d [m] = hhhH

d [m]
D

∑
d=1

xxxDL
d [m] + nd[m], (3.6)

where nd[m] ∼ CN (0, σ2) is the complex Gaussian noise added to the m-th subcarrier,
which has the power of σ2.

It is assumed that coherent detection is employed at MSs. The SINR of the m-th subcar-
rier at the d-th DL MS can be obtained from (3.6) and is given by

SINRm,d =
αm,d pm,d

⃓⃓
hhhH

d [m]FFFRF fff d
BB[m]

⃓⃓2
D
∑

i ̸=d
αm,i pm,i

⃓⃓
hhhH

d [m]FFFRF fff i
BB[m]

⃓⃓2
+ σ2

. (3.7)

Furthermore, when Gaussian distributed transmit signals are assumed, the achievable

sum-rate of the d-th DL MS is given by Rd =
M
∑

m=1
log(1 + SINRm,d).

3.2.4 Uplink Transmission

For UL transmission, the multiple-access signal received from the m-th subcarrier by
BS receiver can be expressed as

yyyUL[m] =
D̄

∑
d̄=1

xxxUL
d̄ [m]⏞ ⏟⏟ ⏞

Desired signal

+HHHSIxxxDL⏞ ⏟⏟ ⏞
SI

+nnn[m], (3.8)

where xxxDL =
D
∑

d=1

M
∑

m=1
xxxDL

d [m] generates SI, the desired UL signal from MS d̄ is xxxUL
d̄ [m] =

√pm,d̄αm,d̄hhhd̄[m]zd̄[m], where pm,d̄ denotes the transmit power on subcarrier m of the d̄-

th UL MS. The transmit power of a UL MS satisfies the constraint of
M
∑

m=1
αm,d̄ pm,d̄ ≤ Pd̄.

Finally, nnn[m] ∼ CN (000, σ2III N̄) is the Gaussian noise.
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At the BS receiver, the received signal of (3.8) is first processed by an analog combiner
WWWRF ∈ CN̄×N̄RF . As shown in (3.8), the received signal includes both SI and desired
UL signal. In theory, the SI can be removed in digital domain by FFT operation, as
UL and DL signals are transmitted on different subcarriers. However, the power of SI
may be much larger than the power of desired signal. Hence, SI may overwhelm the
limited dynamic range of the ADC at BS receiver, introducing significant quantization
noise. Therefore, after the transmitter preprocessing seen in (3.5) and the receiver com-
bining using WWWRF, SI should be sufficiently suppressed to make the received desired
signal pass the ADC with high efficiency. As done in [148], we model the residual SI2,
by a vector rrrSI ∼ CN

(︁
000, ξdiag

(︁
E
[︁
WWWH

RFHHHSIxxxDLxxxH
DLHHHH

SIWWWRF
]︁)︁)︁

, where 0 < ξ ≤ 1 de-
notes the SIC capability provided by the SIC techniques implemented in propagation-
and analog-domain, such as those considered in [39, 72, 150]. Consequently, after ADC
conversion, FFT operation and digital combining, the final signal for detecting the in-
formation of MS d̄ can be expressed as

yd̄[m] = wwwd̄,H
BB [m]WWWH

RF

D̄

∑
d̄=1

xxxUL
d̄ [m] +wwwd̄,H

BB [m]WWWH
RFnnn[m] +wwwd̄,H

BB [m]rrrSI, (3.9)

where wwwd̄
BB[m] ∈ CN̄RF is the digital combiner for detecting the mth subcarrier of the d̄-

th UL MS. Note furthermore that WWWRF satisfies
⃓⃓
(WWWRF)i,j

⃓⃓
= 1, as it operates the analog

beamforming.

Similar to the DL detection, the SINR achieved by the mth subcarrier of the d̄-th UL MS
is given by

SINRm,d̄ =
αm,d̄ pm,d̄

⃓⃓⃓
wwwd̄,H

BB [m]WWWH
RFhhhd̄[m]

⃓⃓⃓2
D̄
∑

j ̸=d̄
αm,j pm,j

⃓⃓⃓
wwwd̄,H

BB [m]WWWH
RFhhhj[m]

⃓⃓⃓2
+ σ2

⃦⃦⃦
wwwd̄,H

BB [m]WWWH
RF

⃦⃦⃦2

2
+
⃓⃓⃓
wwwd̄,H

BB [m]rrrSI

⃓⃓⃓2
2

.

(3.10)

Correspondingly, the data-rate achieved by the d̄-th UL MS is given by R̄d̄ =
M
∑

m=1
log(1+

SINRm,d̄).

2Note that the residual SI consists of the combined effect of the additive noise introduced by auto-
matic gain control (AGC), non-linearity of ADC and the phase noise generated by oscillator due to RF
imperfection [148].
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3.2.5 Problem Formulation

To design an optimum adaptive RA scheme achieving proportional data rate constraints
in MDD MIMO system with hybrid beamforming, we have to solve a non-convex prob-
lem described as

max
αm,d,αm,d̄,FFFRF,WWWRF, fff d

BB[m],wwwd̄
BB[m],pm,d,pm,d̄

Λ (3.11a)

s.t.
D

∑
d=1

M

∑
m=1

αm,d pm,d ≤ PDL, (3.11b)

M

∑
m=1

αm,d̄ pm,d̄ ≤ Pd̄, ∀d̄, (3.11c)

αm,d + αm,d̄ ≤ 1, ∀m, d, d̄, (3.11d)
D

∑
d=1

αm,d ≤ NRF, ∀m, (3.11e)

D̄

∑
d̄=1

αm,d̄ ≤ N̄RF, ∀m, (3.11f)

R1 : R2 : ... : RD = γ1 : γ2 : ... : γD, (3.11g)

R̄1 : R̄2 : ... : R̄D̄ = η1 : η2 : ... : ηD̄, (3.11h)⃦⃦⃦
FFFRF fff d

BB[m]
⃦⃦⃦2

2
= 1, ∀m, d, (3.11i)⃓⃓

(FFFRF)i,j
⃓⃓
=
⃓⃓
(WWWRF)i,j

⃓⃓
= 1, ∀i, j, (3.11j)

|MDL| ≤ MDL, |MUL| ≤ MUL, (3.11k)

where Λ = ∑
∀m,d,d̄

log2 (1 + SINRm,d) + log2

(︁
1 + SINRm,d̄

)︁
, (3.11b) and (3.11c) impose

the constraint on the transmit power at BS and individual UL MSs, respectively, (3.11d)
explains that one subcarrier can only be assigned either to DL or to UL, (3.11e) and
(3.11f) state that the number of MSs allocated to the same subcarrier does not exceed
the number of RF chains of the DL and UL, respectively, {γi}D

i=1 in (3.11g) and {ηi}D̄
i=1

in (3.11h) are given to ensure the proportional fairness among DL and UL MSs3. Finally,
(3.11k) means that the number of DL and UL subcarriers have their specific constraints.

3.3 Potential of MDD with Resource Allocation

Before attempting to solve the optimization problem (3.11), let us first demonstrate the
potential of MDD over the HD modes of FDD and TDD, when the unfair greedy (UG)

3Note that the exact proportional fairness shown in (3.11h) cannot be guaranteed among UL MSs in
principle. This is because UL MSs work in the distributed manner and carry out PA separately. Therefore,
the proportional fairness of UL can only be implemented via SA.
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FIGURE 3.2: Illustration of subcarrier resources in the MDD, TDD and FDD modes,
where green squares denote the subcarriers available for both DL and UL allocations,
yellow squares denote the subcarriers only for DL allocations, while red squares rep-

resent the subcarriers only for UL allocations.

RA algorithm is employed4. To make the comparison straightforward, here we assume
a MU-SISO system, where both BS and MS terminals employ single antenna, and the
channel models of (3.2) with PL = 1. We assume that the transmit power of BS is
PDL = D, and that of each UL MS is Pd̄ = 1. The noise variance for both DL and UL is
σ2 = 1/SNR. Furthermore, as we compare the upper-bound of the three schemes, we
assume that there is no SI in MDD system or in other words, ideal SIC is implemented.

Fig. 3.2 illustrates the subcarriers available for UL/DL allocation, when MDD, FDD
and TDD are respectively employed. We can observe that as the UL/DL in MDD mode
are operated within the same frequency band at the same time, a subcarrier can be
assigned either to DL or to UL. By contrast, in FDD mode (or TDD mode), DL and UL
MSs are constrained on different frequency bands (or time slots). Hence, a subcarrier
is pre-defined either for DL or for UL, and cannot be allocated by jointly considering
both the UL and DL MSs.

To compare these modes, we assume that both DL and UL are assigned an equal re-
source in TDD and FDD modes, in terms of the number of time slots and subcarriers,
respectively. To match this, when MDD mode is considered, we assume that DL and
UL have the same number of subcarriers. Hence, the spectral efficiency of the MDD-,

4To demonstrate the upper bound performance, the UG RA algorithm is employed, which maximizes
the sum-rate of OFDM systems [151].
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FIGURE 3.3: Sum rate achieved by the MDD-, FDD- and TDD-based MU-SISO sys-
tems. The experimental parameters in three subfigures are: (a) M = 128, D = 8 and

D̄ = 8; (b) SNR= 30 dB, D = 8 and D̄ = 8; (c) SNR= 30, M = 128 and D = D̄
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FDD- and TDD-based MU-SISO systems can be expressed as

RMDD =
αMDD

M

M

∑
m̃=1

Rm̃,

RFDD =
αFDD

M

(︄
M/2

∑
m=1

Rm +
M

∑
m̄=M/2

Rm̄

)︄
,

RTDD =
αTDD

M

(︄
M

∑
m=1

Rm +
M

∑
m̄=1

Rm̄

)︄
,

(3.12)

where m and m̄ denote the corresponding subcarriers assigned to DL and UL, respec-
tively, m̃ ∈ {m, m̄}. Note that, as both DL and UL are always active in MDD and FDD
modes while in TDD mode, DL and UL become active alternatively, we have αMDD =

αFDD = 2αTDD = 1. In our simulations for Fig. 3.3, we set M = 128, D = D̄ = 8.

From Fig. 3.3 we can observe that MDD is capable of outperforming both TDD and
FDD. The reason behind is that, in MDD mode, each subcarrier has the largest spatial-
domain degree-of-freedoms (DoFs) (i.e., 16) to be allocated either to a DL or a UL MS.
By contrast, in TDD or FDD mode, as the 8 UL MSs and the 8 DL MSs cannot jointly
share the resources, each subcarrier has only 8 DoFs to be allocated. It is notewor-
thy that the performance advantage of MDD is attained under the assumption of the
shared-antenna configuration, which may be degraded in the separate-antenna con-
figuration resulted from the loss of antenna gain, when MDD and TDD/FDD modes
assume the same number of antenna elements. Nevertheless, the studies show that the
separate-antenna configuration is more desirable in FD systems, since it has the po-
tential to suppress SI at lower cost than the shared-antenna configuration [23]. On the
other side, when the large antenna arrays satisfying (N + N̄ ≫ Dsum) are considered,
we have the massive MIMO structure that is envisioned for future wireless systems.
In this scenario, the loss of antenna gain and spatial multiplexing gain in the MDD
systems resulted from separate-antenna configuration can be negligible [152].

In addition, we should also note that the implementation of RA at BS requires near ac-
curate CSI and it is usually a knotty challenge in high-mobility scenarios. For instance,
when a car moving at a speed of 36 km/h communicates within 30 GHz mmWave
band, the normalized Doppler spread is 0.07 (when assuming 15 kHz inter-subcarrier
spacing). Consequently, channels vary fast from symbol to symbol, according to the
Jakes autocorrelation model [153], which may lead to the outdated CSI for DL signal
preprocessing after the UL training, when TDD systems are considered. To mitigate
this problem, extra training pilots have to be added to the phase of data transmissions.
However, for a given coherence period, increasing UL pilots not only directly results in
the decrease of UL data rate, but also the degradation of DL data rate, as UL training
has to be executed more frequently. As for FDD, it is well-known that it is infeasible
for operation in massive MIMO systems, due to the extra complexity of CSI acquisition
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and the extreme overhead introduced by DL training and the CSI feedback from MSs
to BS, not to mention the channel aging resulted from CSI estimation and feedback.

By contrast, in MDD-based systems, both DL and UL are operated within the same time
slot and also the same frequency band. Hence, after the normal (initial) UL training,
BS can concurrently update the CSI with the aid of either the pilots sent along with the
UL data or the decision-directed CE using the detected UL data [154]. Therefore, MDD
systems are capable of implementing the DL transmission based on the CSI of nearly
real-time. In other words, MDD can effectively avoid the channel aging problem. Note
that above is just a brief comparison between MDD and TDD/FDD, as it is beyond the
scope of this chapter. A comprehensive comparison of MDD and TDD in fast fading
environments will be provided in Chapter 4.

3.4 Subcarrier and Power Allocation

In order to approximately solve the non-convex and NP-hard problem described in
(3.11), we seek the suboptimal methods to divide the optimization into SA and PA. To
be more specific, the variables {αm,d, αm,d̄} in (3.11a) are first obtained from the SA based
on an IFG algorithm, followed by the PA, for which the values of pm,d are calculated
by solving a convex optimization problem while that of pm,d̄ are obtained by the water-
filling algorithm. Note that in this section, we assume that the system is nearly free from
SI (i.e., ξ ≪ 1), as done in the other IBFD RA systems [145, 146]. However, different
from these references, in this chapter, we will propose an adaptive beamforming based
SIC method in Section 3.5, which guarantees that SI has little impact on the performance
of the RA in this section5.

3.4.1 Subcarrier Allocation

LetMd andMd̄ denote the sets of subcarriers assigned to the d-th DL MS and d̄-th UL
MS, respectively. Hence, we haveMDL =M1 ∪ ... ∪Md... ∪MD andMUL =M1 ∪
... ∪Md̄... ∪MD̄. Let Dm (or D̄m) denotes the set of DL MSs (or UL MSs), which are
allocated the m-th subcarrier. Dm (or D̄m) satisfies |Dm| ≤ NRF (or

⃓⃓
D̄m
⃓⃓
≤ N̄RF). Note

again that the same subcarrier m can only be assigned either to DL or to UL, not to both
simultaneously. During the SA stage, we assume that the maximal-ratio transmission
(MRT) assisted precoding is employed by BS for its computational simplicity [152].

Then, the SNR for the DL and UL MSs can be expressed as SNRm,d =
∥hhhd[m]∥2

2
σ2 and

SNRm,d̄ =
∥hhhd̄[m]∥2

2
σ2 , respectively. Correspondingly, the achievable rates of the DL MS

5To the best of our knowledge, there are no SIC methods in hybrid beamforming systems, which can
provide more than 100 dB of SIC at low complexity and low power consumption. Furthermore, we found
that there are some beamforming based SIC approaches, such as that studied in [30, 108], which are cou-
pled with RA. With these approaches, the results of RA change during the process of SI suppression.
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d and UL MS d̄ can be temporarily expressed as R̃d = ∑m∈Md
log(1 + SNRm,d) and

R̃d̄ = ∑m∈Md̄
log(1 + SNRm,d̄).

Then, the IFG SA algorithm is operated, which enables MSs to choose the best possible
subchannels and exploit the space degree-of-freedom in MIMO systems while under
the constraint of fairness. The proposed IFG SA algorithm is stated as Algorithm 3,
which is divided into three stages. In view of the practice that DL transmission usually
needs more resources than UL transmission, the algorithm commences allocating sub-
carriers to DL MSs during all of the three stages. Specifically, during the first stage one
subcarrier is initially assigned to each MS by employing the UG SA algorithm. Dur-
ing the second stage, subcarriers are allocated with considering the fairness until the
constraint (3.11k) is satisfied. Finally, the third stage leverages the spatial diversity pro-
vided by the MIMO system to accomplish the rest allocation. The details of the three
stages of Algorithm 3 are stated as follows:

• During the first stage, the channel gain matrix, GGG = [GGG1; GGG2], is initialized to
gij = ∥hhhi[j]∥2, where GGG1 ∈ CD×M, GGG2 ∈ CD̄×M. The candidate subcarrier set is
initialized to TDL =M for DL and to TUL =M for UL. Furthermore, the iteration
index is set to k = 1. During the k-th iteration, the largest element (GGG)d,m of the
remaining candidates of GGG is identified. Depending on MS d being a DL MS or a
UL MS, there are two options to update the related sets, as shown in line 9 and
line 15. Note that, since each MS is only assigned one subcarrier during the first
stage, the d-th row is removed from GGG after the d-th MS is assigned a subcarrier
during the k-th iteration. Simultaneously, under the constraint of (3.11d) that
a subcarrier assigned to DL (or UL) can no longer be assigned to UL (or DL),
the m-th column is also removed from GGG2 (or GGG1), after the m-th subcarrier is
assigned during the kth iteration. Furthermore, to meet the constraints of (3.11e)
and (3.11f), if a subcarrier has already been assigned to NRF DL MSs (or N̄RF UL
MSs), the subcarrier and its corresponding column are removed from both TDL

(or TUL) and GGG1 (or GGG2).

• During the second stage, subcarriers are allocated with the consideration of fair-
ness. For this purpose, during an allocation iteration, the d-th DL MS with the
lowest ratio of R̃d/γd first chooses the best subcarrier m from the candidate set
TDL, as described in line 21. Then, R̃d is updated before going to the next itera-
tion. This procedure is repeated until the condition |MDL| = MDL is satisfied.
Analogously, UL allocation can be executed.

• After the second stage of allocation, all MSs (including both DL and UL MSs) have
obtained their subcarriers. However, the conditions of (3.11e) and (3.11f) with
equality might not be reached. This implies that there are still spatial degrees-of-
freedom that can be exploited. Therefore, during the third stage, SA following the
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Algorithm 3: IFG Subcarrier Allocation Algorithm for MDD MIMO System

Input : Channel gains hhhd[m] and hhhd̄[m], ∀d = 1, ..., D, d̄ = 1, ..., D̄, m ∈ M
Output:MDL,MUL,Md,Md̄,Dm, D̄m

1 [The First Stage]
2 Initialization:
3 GGG = [GGG1; GGG2], GGG1 ∈ CD×M, GGG2 ∈ CD̄×M, TDL = TUL =M;
4 MDL =MUL = ∅,Md =Md̄ = ∅, Dm = D̄m = ∅;
5 end
6 for k = 1→ Dsum do
7 Calculate (d, m) = arg max(i,j)(GGG)i,j;
8 if 1 ≤ d ≤ D then
9 Update GGG(d,:)

1 = 000, GGG(:,m)
2 = 000 in GGG;

10 Dm = Dm ∪ {d},MDL =MDL ∪ {m},Md =Md ∪ {m},
TUL = TUL\ {m};

11 if |Dm| = NRF then
12 GGG(:,m)

1 = 000, TDL = TDL\ {m};
13 end if
14 else
15 Update GGG(d−D,:)

2 = 000, GGG(:,m)
1 = 000 in GGG, then D̄m,MUL,Md̄, TDL, GGG2 and

TUL are further updated by following the same rules from line 10 to line
13;

16 end if
17 end for
18 end
19 [The Second Stage]
20 repeat
21 Compute the rate R̃d, d = 1, ..., D, and find the d-th DL MS satisfying

R̃d
γd
≤ R̃i

γi
for all 1 ≤ i ≤ D, i ̸= d;

22 Assign subcarrier m to the d-th MS that satisfies ∥hhhd[m]∥2 ≥ ∥hhhd[j]∥2,
m, j ∈ TDL, and execute the same operations in line 10;

23 if |Dm| = NRF then
24 TDL = TDL\ {m};
25 end if
26 until |MDL| = MDL;
27 Similarly, the UL allocation can be executed by following the operations from

line 20 to line 26 to obtain the updatedMd̄,MUL, D̄m, TDL and TUL;
28 end
29 [The Third Stage]
30 repeat
31 Carry out the operations described from line 20 to line 26, with only Dm and

Md shown in line 10 being updated;
32 until TDL = ∅;
33 Similarly, the UL allocation can be done by following the operations from line

20 to line 26 to further updateMd̄ and D̄m;
34 end
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second stage is continued, until the constraints of (3.11e) and (3.11f) with equality
are reached.

It can be shown that after SA, the fairness constraints of (3.11g) and (3.11h) can be
coarsely accomplished. Next, PA is executed to attain the proportional rate constraints
of (3.11g) and (3.11h), while maximizing the total rate of the system, as detailed below.

3.4.2 Power Allocation

After SA, the optimization problem in (3.11) can be divided into the DL PA and UL PA,
which can be executed independently.

Specifically, for DL, the PA problem can now be stated as

max
FFFRF, fff d

BB[m],pm,d
∑

m∈MDL

∑
d∈Dm

log2

⎛⎜⎜⎝1 +
pm,d

⃓⃓
hhhH

d [m]FFFRF fff d
BB[m]

⃓⃓2
∑

i∈Dm,i ̸=d
pm,i

⃓⃓
hhhH

d [m]FFFRF fff i
BB[m]

⃓⃓2
+ σ2

⎞⎟⎟⎠ (3.13a)

s.t. (3.11g), (3.11i), (3.11j),
D

∑
d=1

∑
m∈Md

pm,d ≤ PDL. (3.13b)

By contrast, for UL, the PA problem can be formulated as

max
pm,d̄

∑
m∈MUL

∑
d̄∈D̄m

log2

⎛⎜⎜⎜⎝1 +
pm,d̄

⃓⃓⃓
wwwd̄,H

BB [m]WWWH
RFhhhd̄[m]

⃓⃓⃓2
∑

j∈D̄m,j ̸=d̄
pm,j

⃓⃓⃓
wwwd̄,H

BB [m]WWWH
RFhhhj[m]

⃓⃓⃓2
+ INm,d̄

⎞⎟⎟⎟⎠ (3.14a)

s.t. ∑
m∈Md̄

pm,d̄ ≤ Pd̄, ∀d̄. (3.14b)

Observing from (3.13) and (3.14), we can know that DL PA is under the constraint of
the total power of all DL MSs. By contrast, each UL MS carries out PA separately under
the constraint of individual MS’s power. Below we first consider DL PA.

3.4.2.1 Downlink Power Allocation

The optimization problem in (3.13) is the sum-rate maximization problem coupled with
fairness constraints, which is still a non-convex problem. To simplify it, we first apply
the ZF precoding with assuming a fixed power assignment to all MSs so as to obtain
a full-digital precoder. This will allow us to transfer the non-convex problem of (3.13)
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to a convex optimization problem. To this objective, the full-digital precoder can be
expressed as

FFFZF[m] = HHHH
DL[m]

(︂
HHHDL[m]HHHH

DL[m]
)︂−1

, (3.15)

where HHHDL[m] ∈ C|Dm|×N =
[︁
hhh1[m], ..., hhhd[m], ..., hhh|Dm|[m]

]︁H, and FFFZF[m] ∈ CN×|Dm| =[︂
fff 1

ZF[m], ..., fff d
ZF[m], ..., fff |Dm|

ZF [m]
]︂
. It can be shown that owing to the power constraint in

(3.13d), fff d
ZF[m] is in fact a normalized version, given as fff d

ZF[m] ← fff d
ZF[m]/

⃦⃦
fff d

ZF[m]
⃦⃦

2.
Consequently, upon replacing FFFRF fff d

BB[m] in (3.13) by fff d
ZF[m], the DL PA problem can

now be formulated as

max
pm,d

D

∑
d=1

∑
m∈Md

log2 (1 + pm,d Jm,d) (3.16)

s.t. (3.11g), (3.13b),

where

Jm,d =

⃓⃓⃓⃓
hhhH

d [m] fff d
ZF[m]

∥ fff d
ZF[m]∥2

⃓⃓⃓⃓2
(︄

∑
i∈Dm,i ̸=d

pm,i

⃓⃓⃓⃓
hhhH

d [m] fff i
ZF[m]

∥ fff i
ZF[m]∥2

⃓⃓⃓⃓2
+ σ2

)︄ . (3.17)

It can be readily shown that this is a convex optimization problem6. Therefore, by
introducing the Lagrange multiplier, the equivalent cost function can be formulated as

L =
D

∑
d=1

∑
m∈Md

log2 (1 + pm,d Jm,d) + λ1

(︄
D

∑
d=1

∑
m∈Md

pm,d − PDL

)︄

+
D

∑
d=2

λd

(︄
∑

m∈M1

log2 (1 + pm,1 Jm,1)−
γ1

γd
∑

m∈Md

log2 (1 + pm,d Jm,d)

)︄
. (3.18)

In order to obtain the optimal {pm,d} from (3.18), by following [155], the PA can be
divided into two parts, namely the PA among the subcarriers of a DL MS for given
power Pd of this MS and the PA among the DL MSs. Specifically, when allocating the
power Pd of the d-th DL MS to its |Md| subcarriers, we assume without any loss of
generality that J1,d ≤ J2,d ≤ ... ≤ J|Md|,d. Then, it can be shown that with the aid of the
KKT conditions [156], we have

pm,d = p1,d +
Jm,d − J1,d

Jm,d J1,d
, and

Pd = |Md| p1,d +
|Md|

∑
m=2

Jm,d − J1,d

Jm,d J1,d

(3.19)

6Note that, as the result of ZF precoding, the interference imposed by the other MSs on the d-th DL

MS is approximately zero, i.e., we have ∑
i∈Dm ,i ̸=d

⃓⃓⃓⃓
hhhH

d [m] fff i
ZF[m]

∥ fff i
ZF[m]∥2

⃓⃓⃓⃓2
≈ 0. Therefore, Hm,d is irrelevant to the

variables
{︁

pm,i
}︁

i ̸=d.
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for m ∈ Md and d = 1, 2, ..., D. The PA of (3.19) implies that the optimal power as-
signment among the different subcarriers of a DL MS follows the water-filling princi-
ples [157]. Hence, it may happen that some subcarriers of a DL MS may be allocated
negative power. If this happens, those subcarriers with negative power are removed
from the subcarrier set of the MS.

In the context of the PA among different DL MSs, the solutions can be obtained via
solving the two sets of nonlinear equations by the Newton-Raphson method [155], ex-
pressed as,

γ1

γd
=
|M1|

(︂
log2

(︂
1 + J1,1

P1−V1
|M1|

)︂
+ log2 G1

)︂
|Md|

(︂
log2

(︂
1 + J1,d

Pd−Vd
|Md|

)︂
+ log2 Gd

)︂ , and

D

∑
d=1

Pd = PDL

(3.20)

for d = 1, 2, .., D, where Vd =
|Md|
∑

m=2

Jm,d−J1,d
Jm,d J1,d

and Gd =

(︄
|Md|
∏

m=2

Jm,d
J1,d

)︄ 1
|Md|

. To summarize, the

PA of DL is stated in Algorithm 4.

Algorithm 4: Power Allocation Algorithm for DL
Input :MDL,Md,Dm , Jm,d, PDL, HHHSI
Output:MDL,Md,Dm, pm,d, Pd, WWWRF

1 Initialization: Pd = PDL
D , for ∀d;

2 [Power allocation among DL MSs]
3 repeat
4 Solve two sets of nonlinear equations in (3.20) by the Newton-Raphson

method to obtain {Pd}D
d=1;

5 for d = 1→ D do
6 if Pd ≤ Vd then
7 Calculate {pm,d}m∈Md

based on (3.19);
8 For any pm,d ≤ 0, the corresponding subcarrier index is removed

fromMd andMDL;
9 Update Dm, fff d

ZF[m], and Jm,d;
10 else
11 Continue;
12 end if
13 end for
14 until Pd > Vd, for ∀d;
15 end
16 [Power allocation among subcarriers of individual MSs]
17 for d = 1→ D do
18 Apply the water-filling algorithm to obtain {pm,d}m∈Md

based on (3.19);
19 end for
20 end
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3.4.2.2 Uplink Power Allocation

For UL, PA is only among the subcarriers of a single UL MS. As there is no fairness
issue, the objective during this stage is solely to maximize data rate. Hence, the water-
filling PA can be executed based on the similar equation in (3.19) but under the con-
straint of the total power of an individual MS.

3.5 Hybrid Beamformer Design Associated with Resource Al-
location

In this section, we first propose two approaches to design the hybrid precoder associ-
ated with RA. Then, an adaptive SIC algorithm is introduced for practical FD systems
via the hybrid combiner design.

3.5.1 Hybrid Precoder

3.5.1.1 Factorization Approach

In order to obtain FFFRF and fff d
BB[m], m ∈ MDL, d ∈ Dm, the factorization approach for

designing the hybrid precoder from fff d
ZF[m] can be formulated as

min
FFFRF,{ fff d

BB[m]}
∑

m∈MDL

∑
d∈Dm

⃦⃦⃦
fff d

ZF[m]− FFFRF fff d
BB[m]

⃦⃦⃦2

2

s.t. (3.11i), (3.11j).

(3.21)

It is noteworthy that our factorization approach differs from the one considered in [122]
and [118], in which the power constraint is set to ∥FFFRFFFFBB[m]∥2

F = |Dm| with FFFBB[m] =[︂
fff 1

BB[m], fff 2
BB[m], ..., fff |Dm|

BB [m]
]︂
. In our optimization, as shown in (3.21), the more strict

constraints of
⃦⃦

FFFRF fff d
BB[m]

⃦⃦2
2 = 1, ∀m, d are imposed. In order to solve the problem

of (3.21), first, we minimize
⃦⃦

fff d
ZF[m]− FFFRF fff d

BB[m]
⃦⃦2

2 for a given FFFRF. This gives a least

square (LS) solution to fff d
BB[m], i.e., fff̂

d
BB[m] = FFF†

RF fff d
ZF[m], where FFF†

RF =
(︁
FFFH

RFFFFRF
)︁−1 FFFH

RF,
as N > NRF and FFFRF is assumed to be a full column rank matrix. After the power
normalization to meet

⃦⃦
FFFRF fff d

BB[m]
⃦⃦2

2 = 1, we obtain

fff̃
d
BB[m] =

fff̂
d
BB[m]⃦⃦⃦

FFFRF fff̂
d
BB[m]

⃦⃦⃦
2

. (3.22)
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Then, substituting fff̃
d
BB[m] for fff d

BB[m] into (3.21), the cost function of the problem can be
rewritten as

Φ (FFFRF) = ∑
m∈MDL

∑
d∈Dm

⃦⃦⃦
fff d

ZF[m]− FFFRF fff̃
d
BB[m]

⃦⃦⃦2

2
. (3.23)

According to the PGD principle [158], the local minimum can be reached via updating
FFFRF along the negative conjugate gradient direction and then, projecting the solution to
the feasible set where the elements of matrix have unit modulus. Hence, after obtaining
the conjugate gradient as shown in Appendix B, the above-mentioned two steps can be
expressed as

FFF(i+1)
RF = FFF(i)

RF − l
∂(Φ)

∂FFF∗(i)RF

,

FFF(i+1)
RF = arg(FFF(i+1)

RF ),

(3.24)

where l denotes a positive decreasing step size towards the local optimum. Once the
optimal FFFRF is obtained, fff d

BB[m] can be derived as

fff d
BB[m] =

(︂
FFF(i)

RF

)︂†
fff d

ZF[m]/
⃦⃦⃦⃦

FFF(i)
RF

(︂
FFF(i)

RF

)︂†
fff d

ZF[m]

⃦⃦⃦⃦
2

, ∀d, m. (3.25)

3.5.1.2 Direct Approach

Although the PGD algorithm with a decreasing step size guarantees the convergence to
a local minimum, the difference between fff d

ZF[m] and FFFRF fff d[m] may be increased by RA,
especially when the number of RF chains is small, which results in that the interference
in (3.17) from other MSs cannot be approximated to zero. In this case, Algorithm 4 may
be hard to achieve the proportional rates among DL MSs at a sufficient accuracy, as
the result that Hm,d in (3.18) also includes pm,i, i ̸= d, in addition to the desired pm,d.
Consequently, due to the deviation introduced by the hybrid precoder, the problem
of (3.16) is no longer a convex optimization problem, which is hence prohibitive from
being solved by an efficient approach. Therefore, for comparison purposes, below we
present a so-called Direct Approach (DA) to derive FFFRF and fff d[m], which is capable of
providing the precise proportions of fairness.

To begin with, according to [123], suboptimal FFFRF can be obtained by solving the fol-
lowing optimization problem :

max
FFFRF

log2

⃓⃓⃓⃓
III +

PDL

σ2NNRF
FFFH

RFHHH̃FFFRF

⃓⃓⃓⃓
(3.26)

s.t. (3.11j),



3.5. Hybrid Beamformer Design Associated with Resource Allocation 79

where HHH̃ =
1

|MDL| ∑
m∈MDL

(︂
HHHDL[m]HHHHDL[m]

)︂
. Next, the digital ZF precoders FFFBB

ZF[m]

are obtained by replacing HHHDL[m] with HHHeq[m] in (3.15), where HHHeq[m] = HHHDL[m]FFFRF.
Then, after normalization, we can solve the optimization problem by letting FFFZF[m] in
(3.15) equal to FFFRFFFFBB

ZF[m]. Since the optimization (3.16) is convex, which enables us to
derive the solutions directly using Algorithm 4, which yields the precise proportions of
fairness. The details can be found in Algorithm 5 as shown below.

Algorithm 5: Hybrid Precoder Design: Direct Approach
Input :MDL,Md,Dm (these three sets are obtained by SA), PDL
Output:MDL,Md,Dm, pm,d, Pd, FFFRF, fff d[m]

1 Initialization: Pd = PDL
D , ∀d;

2 Compute FFFRF and FFFBB
ZF[m] using (3.26) and (3.15), respectively ;

3 Calculate Jm,d in (3.17) by letting FFFZF[m] equal to FFFRFFFFBB
ZF[m], ∀m ∈ MDL, d ∈ Dm ;

4 Execute step 2 to step 19 in Algorithm 4

It is noteworthy that both the proposed hybrid beamforming algorithms have the same
overall computation complexity, expressed as O(NN2

RF). However, it can be observed
from Algorithm 5 that the DA method is coupled with PA. This means that the hybrid
precoders in the DA method need to be continuously updated during PA, as shown in
Algorithm 4 (line 9), which leads to an increased complexity. By contrast, the hybrid
beamformers in the PGD method are independent of the PA, which are hence simpler
for practical implementation.

3.5.2 Hybrid Combiner with Self-Interference Cancellation

During RA, the effect of SI is ignored by assuming perfect SI suppression. However,
existing SIC methods are unable to provide sufficient SI reduction while keeping a low
complexity and overhead at the same time. Hence in this section, we introduce an
adaptive beamforming based SIC algorithm by exploiting the large number of antennas
employed in mmWave systems.

First, according to (3.9), the total power of the SI signal rrrSI after analog combining can
be expressed as

Tr (Cov (rrrSI)) = ξTr

(︄
FFFH

RFHHHH
SIWWWRFWWWH

RFHHHSIFFFRF ×
(︄

D

∑
d=1

∑
m∈Md

pm,d fff d
BB[m] fff d,H

BB [m]

)︄)︄
,

(3.27)

from which we can observe that the SI power is proportional to
⃦⃦

WWWH
RFHHHSIFFFRF

⃦⃦2
F. Since

FFFRF has already been determined by DL PA and is fixed, the suppression of SI can
only be depended on the design of the analog combiner WWWRF. Therefore, we have the
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optimization problem stated as

min
WWWRF

⃦⃦⃦
WWWH

RFHHHSIFFFRF

⃦⃦⃦2

F
(3.28)

s.t. (3.11j).

The problem (3.28) can be solved by the CCD algorithm via iteratively optimizing the
individual elements of WWWRF, the details of which can be found in [69] and are not re-
peated for brevity. After obtaining the analog combiner for SIC, the optimal digital
combiner for a subcarrier can be derived based on conventional MMSE approach [159].

Note that our proposed SIC is operated independently from RA. Hence, the process of
SIC does not have any impact on the operations of RA, which were considered in the
previous sections.

3.6 Performance Results

In this section, we firstly present the simulation results for the MDD MIMO mmWave
systems with the proposed RA algorithms, when the QoS requirements of both UL
and DL MSs are imposed. Then, to tackle the problem of SI in MDD RA systems, the
performance of our proposed SI reduction method is investigated in Section 3.6.2.

3.6.1 Performance of Resource Allocation

First, let us demonstrate the performance of the MDD MIMO mmWave systems with
our proposed RA algorithms. To begin with, we show the performance upper-bound
by following [151] without considering the fairness constraints, when SA is achieved
using the UG algorithm, while transmit power is assigned by the water-filling algo-
rithm. However, we should note that in [151], all MSs and BS are equipped with single
antenna and are operated in HD mode. Hence, to make it compatible with our MDD
MIMO system, we consider a modified UG (MUG) algorithm for the scheme of [151]
to operate the second and third stages of SA but keep the water-filling algorithm for
PA. In the MUG algorithm, we assume that inter-user interference is mitigated by a ZF
precoder. Then, each subcarrier may be assigned to multiple MSs with the best channel
gains under the constraint of |Dm| ≤ NRF. Afterwards, BS allocates the transmit power
to all DL subcarriers based on the water-filling principle, while UL power assignment
is implemented via water-filling for each UL MS’s subcarriers. Additionally, we also
compare another RA method, namely MUG-PowAve. With the MUG-PowAve, SA is
the same as the MUG algorithm, but DL power is firstly evenly distributed to all DL
subcarriers, and then water-filling is used to assign the power of a subcarrier to the
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FIGURE 3.4: Performance comparison of the MUG algorithm and the proposed algo-
rithm with different fairness constraints, when N̄ = 128 N̄RF = 16, N = 32, NRF = 16,

D = 20, D̄ = 10.

MSs sharing this subcarrier. Note that this RA approach has been considered in many
references, such as, in [122, 159].

In this subsection, we consider a MDD MIMO mmWave system operated in 28 GHz
with the SIC capability of ξ = −100 dB, where BS employs N = 32 transmit antennas
and NRF = 16 DL RF chains to support D = 20 DL MSs, and N̄ = 128 receive antennas
and N̄RF = 16 UL RF chains to serve D̄ = 10 UL MSs. All MSs are randomly dis-
tributed with their distances from BS being between 50 m to 200 m, i.e., dm ∈ [50, 200].
The path-loss is PL(dB) = 72 + 29.2 · log10(dm). The total number of subcarriers are
M = 64, in which the number of DL and UL subcarriers used for transmissions satisfy
|MDL| = |MUL| ≤ M

2 = 32. The transmit power of BS transmitter is PDL = 12 W,
and all UL MSs have the same transmit power of Pd̄ = PDL/D = 0.6 W. All the above-
mentioned parameter values are default values, unless they are stated specifically. The
default proportional fairness among DL and UL MSs are {γi = 1}D

i=1 and {ηi = 1}D̄
i=1,

respectively. Additionally, we will consider the other two fairness constraints of γ1 = 5
and γ1 = 10, respectively, while the other values remain the same as the default value
of 1. Besides, we assume that the transmit and receive arrays at BS are the ULA arrays
with the half-wavelength spacing between two adjacent antenna elements. Both DL
and UL channels are assumed to have T = 6 delay taps and Ld = 4 paths. The channel
gains obey the distribution υl,d ∈ CN (0, 1), and the AoA/AoD azimuth angles are as-
sumed to be uniformly distributed in [0, 2π]. Furthermore, the noise variance σ2 is set
to 10−13 W. The results are obtained via average of 100 channel realizations.
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FIGURE 3.5: Fairness comparison of MUG algorithm and proposed RA algorithm,
when PDL = 12 W, N̄ = 128 N̄RF = 16, N = 32, NRF = 16, D = 20, D̄ = 10.

Firstly in Fig. 3.4, we demonstrate the performance of the MDD MIMO mmWave sys-
tems with our proposed RA algorithm having different fairness constraints. Here, it is
assumed that full-digital precoders are employed at BS transmitter. Fig. 3.4 demon-
strates that the proposed RA with {γi = 1}D

i=1 slightly outperforms the MUG-PowAve
method but slightly worse than the MUG method in terms of the sum rate per MS.
As γ1 increases, the average sum rate per MS achieved by the proposed RA becomes
lower. The reason behind is that all MSs in the system experience large-scale fading.
Due to the high level path-loss in mmWave communications, if one MS far away from
the BS imposes the highest demand for a data rate, which corresponds to γ1 = 5 or 10,
the BS has to assign most of the transmit power to this MS, making the PA inefficient
and hence the degradation of overall data rate.

Fig. 3.5 shows the fairness comparison between the MUG algorithm and the proposed
RA algorithm in different cases. Explicitly, our proposed RA method can achieve the
near-accurate proportions of rates for the DL MSs, when γ1 has different values. Fig.
3.5 also shows the corresponding results of the MUG algorithm, when {γi = 1}D

i=1 and
{ηi = 1}D̄

i=1. We can see that the MUG algorithm slightly outperforms the proposed
RA algorithm in terms of the average sum rate per DL or UL MS. However, it causes a
big difference between the maximum and minimum rates (about 21 bits/s/Hz), which
explains the possible poor performance attained by the MSs located at cell edge. By
contrast, for the proposed RA algorithm, the proportional fairness of all DL MSs can be
guaranteed. However, as the fairness in UL case is only considered via SA, the achieved
rates of UL MSs have small fluctuation. Nevertheless, they are still much more stable
than that obtained by the MUG algorithm.

Next, we compare the complexity of our proposed and the competing RA methods. In
all these schemes, RA is divided into two stages, SA and PA. Both MUG and MUG-
PowAve algorithms use the same SA method, which has the complexity of O(M),
while the proposed method needs to meet the fairness constraint and has the com-
plexity of O (DsumM). For PA, both MUG and MUG-PowAve apply the water-filling
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TABLE 3.1: Complexity comparison of the proposed and competing RA methods in
MDD systems

Method Complexity Sum Rate Feature

MUG O(2M) High Optimal RA method

MUG-PowAve O(NRFM + M) Medium Easy-to-implement

Proposed (γ1 = 1) O(DsumM + D3) High Fairness guaranteed
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FIGURE 3.6: Sum rate versus transmit power of BS when different hybrid precoders
are employed and when assuming N̄ = 128, N̄RF = 16, N = 32, NRF = 16, D = 20,

D̄ = 10, {γi = 1}D
i=1 and {ηi = 1}D̄

i=1.

algorithm, whose complexity is linearly proportional to the number of variables used in
the optimization problem [160]. Therefore, these two methods have the complexity of
O(M) and O(NRFM), respectively. By contrast, the proposed algorithm needs to solve
the nonlinear equations and calculate the matrix inversion when applying the New-
Raphson method. These lead to a complexity of O(D3). Overall, the computational
complexity of the considered RA algorithms is summarized in Table 3.1. In a nutshell,
although our proposed algorithm has higher complexity than the other two UG algo-
rithms, when the number of MSs becomes large, this extra complexity investment lead
to the promising performance and at the same time, the near-accurate fairness defined
for different MSs.

Fig. 3.6 and 3.7 show the sum rate performance of the MDD MIMO mmWave systems,
when various hybrid precoders are employed. Here PGD-EY indicates the hybrid pre-
coder with FFFRF initialized by the Eckart-Young theorem [122]. PGD-UB indicates the
hybrid precoder with FFFRF initialized by maximizing the upper bound of DL’s spectral
efficiency for a given FFFBB [159]. Additionally, the hybrid precoder design by convex
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FIGURE 3.7: Sum rate versus the number of RF chains at BS transmitter, when different
hybrid precoder designs are employed and when assuming PDL = 12 W, N̄ = 128,

N̄RF = 16, N = 32, D = 20, D̄ = 10, {γi = 1}D
i=1 and {ηi = 1}D̄

i=1.

relaxation (HD-CVXR) presented in [118] is compared, which is demonstrated to pro-
vide a high spectral efficiency in the conventional hybrid beamforming systems. Fig.
3.6 shows that when NRF = 16, DA is capable of achieving the highest sum rate among
the considered schemes, which is only 3 bits/s/Hz lower than that obtained by the
full-digital ZF solution. The reason behind is that the factorization of the full-digital
ZF precoder using the approach, such as PGD and HD-CVXR, introduces inter-user
interference within a subcarrier. This interference is further amplified by PA. The merit
of DA is that the inter-user interference can be efficiently mitigated by applying ZF
processing for FFFBB. As shown in Fig. 3.6, the initialization of RF precoder by the PGD
method generates a big impact on the sum rate performance, and the one from [159] is
better for our system than the other one from [122].

From Fig. 3.7, we observe that both the PGD-UB and HD-CVXR algorithms surpass
the DA, when the number of RF chains is big, which converge to the upper bound
performance achieved by the full-digital ZF. This can be explained as follows. When the
number of RF chains is relatively big, the difference between the full-digital ZF and the
hybrid precoders becomes sufficiently small, making the inter-user interference yields
little influence on the sum rate even after PA.

Finally, Fig. 3.8 illustrates the rates achieved by individual DL MS on one channel
realization. Compared with Fig. 3.7 where the methods of PGD-UB, DA and HD-CVXR
achieve nearly the same sum rate within 100 channel realizations when NRF = 20 and
the fairness constraint on DL MSs is {γi = 1}D

i=1, Fig. 3.8 shows that, as analyzed
in Section 3.5, the DA with higher implementation complexity can achieve the exact
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FIGURE 3.9: SIC performance with respect to different number of antenna elements at
receiver, when assuming PDL = 12 W, N̄RF = 16, N = 32, NRF = 16, φ = 120◦, κ = 10.

fairness constraints and stable sum rate among DL MSs by solving the optimization
problem in (3.13) on every single channel realization, while the factorization of the
full-digital precoder (e.g., PGD and HD-CVXR) introduces inter-user interference and
destroys the equal rate constraint, leading to the fluctuation of performance among DL
MSs.
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FIGURE 3.10: The uplink performance with the assumption of real and ideal SIC, when
assuming PDL = 12 W, N̄ = 128, N̄RF = 16, N = 32, NRF = 16, φ = 120◦, κ = 10.

3.6.2 Performance of Self-Interference Cancellation

In Section 3.6.1, we assume the system with ideal SI suppression (i.e., ξ = −100 dB)
provided by existed approaches such as [39, 72, 150, 161]. However, to the best of our
knowledge, none of existed SIC methods can provide 100 dB SI reduction in FD hybrid
beamforming MIMO systems. In this section, we assume that there is no other SIC
methods (i.e., ξ = 0 dB) and all the SI reduction depends on our proposed method.
Apart from the default values used in Section 3.6.1, for the LoS component of the SI
channel, we assume that the distance rij between the i-th element of transmit array and
the j-th element of receive array is set according to [106] and the default angle between
transmit array and receive array is φ = 120◦. For the NLoS components, we assume
that the channel has Ln = 6 paths and the complex gain αl , AoA and AoD have the
same features as the communication channels stated in Section 3.6.1.

In Fig. 3.9, we plot the SIC performance versus the number of iterations operated by
the proposed SIC algorithm. It is observed that for a given transmit antenna array and
a given number of iterations, more SI can be mitigated, when BS is equipped with more
receive antenna elements. The reason behind is that as the number of receive antenna
elements increases, the null space of HHHH

SI has a bigger rank. Therefore, the receiver is
more capable of suppressing SI signals.

Fig. 3.10 studies the influence of the SI suppression provided by our proposed SIC
algorithm on the desired UL transmissions, where ideal SI cancellation means that rrrSI =

000 in (3.9) during signal detection. From Fig. 3.10, we can observe that to attain the
same performance as the ideal system without SI, a practical system should provide
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at least 110 dB SI reduction, which requires our proposed SIC method to operate 130
iterations. The insufficient SI suppression may lead to large quantization noise and
make RA inefficient in FD systems. It is worth noting that in practice, the SI channel
varies very slowly due to long coherence time, as both transmitter and receiver are
fixed at BS. Hence, the SIC operations are only required to be executed once after a
relatively long time period. Furthermore, an SIC updating process can be started at a
nearly converged state, which allows a significantly shorter time than 130 iterations to
reach the required SIC. Therefore, the proposed SIC algorithm is efficient for practical
operation.

3.7 Chapter Summary and Conclusions

In this chapter, we have studied the RA problem in the large-scale MDD MIMO mmWave
systems with the consideration of user fairness, SI suppression and hybrid precoder/-
combiner design. To demonstrate the advantage of MDD, we have first considered the
RA based on the unfair greedy algorithm in MU-SISO systems. The studies show that
MDD mode has the potential to outperform HD modes, owing to that the MDD mode
enables UL and DL to jointly share the available resource. Then, the suboptimal RA
algorithms have been proposed for the MDD MIMO systems to maximize the sum-rate
and simultaneously to meet the fairness requirements among DL and UL MSs. Further-
more, two approaches, namely the matrix factorization approach and DA, have been
proposed for designing the hybrid precoder associated with the RA schemes. Our stud-
ies reveal that when the number of RF chains is relatively small, the DA outperforms
the matrix factorization approach. By contrast, when the number of RF chains is rela-
tively big, the matrix factorization approach is a better option for designing precoders.
Furthermore, to address the SI problem in MDD systems, we have modeled the influ-
ence of SI and proposed an adaptive beamforming aided SIC algorithm embedded in
combiner design. Our simulation results demonstrate that the proposed SIC algorithm
enable the RA operations free from SI with appropriate antenna deployment, while
imposing no impact on the desired UL transmissions.
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Chapter 4

MDD for Mitigation of Channel
Aging Problem in Massive MIMO

This chapter investigates the performance of multicarrier-division duplex (MDD) in
high-mobility massive multiple-input multiple-output (mMIMO) scenarios, showing
the MDD’s potential for mitigating the channel aging problem. Furthermore, to facil-
itate the robust communications over fast time-varying channels, the custom-tailored
frame structures and channel predictors are designed and studied. Additionally, the
performance of MDD and time-division duplex (TDD) systems is compared in high
mobility communications scenarios.

4.1 Introduction

The mMIMO has been regarded as one of the most promising technologies for signif-
icantly improving the spectral efficiency (SE) in the 5G wireless systems [45]. How-
ever, due to the large number of antennas equipped at base station (BS), the acqui-
sition of channel state information (CSI) becomes highly challenging. As the result,
TDD is deemed to be the only feasible mode in practical mMIMO systems to date,
which exploits the channel reciprocity to acquire downlink (DL) CSI from uplink (UL)
pilots [162]. As its counterpart, in frequency-division duplex (FDD) systems, as elab-
orated in Section 1.1.1, the overhead for training/feedback is proportional to the size
of the antenna arrays at BS, resulting in less resources for sending desired data in one
coherence block [10]. On the other hand, with the growing demand on the mobile ser-
vices operated in ground vehicles, high-speed trains, unmanned aerial vehicle (UAVs),
etc., the performance of TDD systems is no longer dominated by pilot contamination
but the channel aging problem. In other words, due to fast time-varying, the channel
at the time when it is estimated via UL training may be very different from that at the
time when it is applied for DL preprocessing and UL detection. Moreover, the UL/DL
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switching intervals required by TDD systems exacerbate the situation. This CSI mis-
match may lead to significant degradation of the SE of both UL and DL.

In order to support the robust communications over fast time-varying channels, chan-
nel prediction based on the Wiener filter or Kalman filter has been studied. In [74],
the authors considered the channel aging problem in mMIMO systems and applied the
Wiener predictor (WP) to predict future CSI. The results show that using channel pre-
diction can partially relieve the channel aging effect and render an increase of sum rate.
The authors of [14] analyzed the effect of WP for time-varying channels on the system
performance. However, in these two papers, the one-step WP relies on the latest chan-
nels estimated using the UL pilots that are always available in the front of the symbol to
be predicted. Unfortunately, in practical TDD systems, UL pilots are unavailable dur-
ing DL transmission and hence, the accuracy of channel prediction degrades with time,
causing the performance degradation. For this sake, in [15], the authors considered a
more practical scenario, where no UL pilots are sent during the Kalman filter assisted
channel prediction for DL transmission. The results show that the Kalman predictor
is capable of improving performance when compared with the case without predic-
tion. However, due to the time-varying effect, the achievable DL rate reduces quickly
with time as the result of the fact that the predicted CSI becomes less and less accurate.
Recently in [16], a learning-based approach was introduced, showing that it can outper-
form the conventional non-linear Kalman predictor in dealing with the channel aging
problem. Again, the prediction accuracy of CSI deteriorates as the interval between the
channel being predicted and the pilot symbols becomes larger.

In contrast to the half duplex (HD) mode of TDD, in-band full duplex (IBFD) has the
inherent advantage for solving the channel aging problem. This is because in IBFD
systems, DL and UL occur concurrently, which enables to acquire the latest CSI during
data transmission without invoking DL/UL switching. However, to the best of our
knowledge, there are no open references which have considered the IBFD-relied trans-
mission design for the multicarrier mMIMO systems communicating over fast time-
varying channels. One conceivable reason may be that the SI problem in IBFD-relied
systems is still intractable. This becomes even more challenging in the high-mobility
communication scenarios. Note that, although channel aging is not considered, in [163],
the channel acquisition relying on a hybrid IBFD and TDD mode was demonstrated to
be efficient. With this hybrid scheme, partial DL transmissions are activated during UL
training, leading to an increased SE. Moreover, the effect of self-interference cancella-
tion (SIC) on the performance of channel estimation (CE) was studied with the IBFD
systems, showing that if SIC is insufficient, IBFD is unable to outperform the conven-
tional TDD. Similar observations were also obtained in [4].

To overcome the weakness of both IBFD and TDD over fast time-varying communi-
cation channels, inspired by [68], we propose the MDD associated with the dedicated
frame design so as to relieve the channel aging problem, which constitutes the main
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motivation of this chapter. The rationale can be briefly explained as follows. On the one
hand, in MDD systems, both DL and UL transmissions can occur concurrently within
the same frequency band but on different subcarriers. Hence, when needed, UL pilots
can be continuously (or frequently) transmitted during DL transmissions, as shown in
Figure 1.6. Therefore, CSI can be updated in time and does not become outdated as
in TDD systems. On the other hand, MDD is capable of circumventing the stringent
requirement for SIC in IBFD systems. According to Section 1.1.2.1, in practical IBFD
systems, in addition to the SIC in the propagation- and analog-domain, the digital-
domain SIC has to cancel the main SI signal component by at least 30 dB. Achieving
this is very power-consuming and technically demanding, especially for the relatively
small-sized MSs, e.g., UAVs and smartphones. By contrast, in the MDD systems, this
amount of SIC can be attained at nearly no extra cost of system resources, thanks to the
embedded fast Fourier transform (FFT) operation [4], which allows to ideally separate
UL signals from DL signals in the digital-domain. Owing to the aforementioned merits
of MDD, it is important to investigate the MDD’s implementation in fast time-varying
scenarios, and to unlock its advantages over the conventional TDD and IBFD systems.
Therefore, our main contributions of this chapter are summarized as follows:

Firstly, a model for the MDD-based mMIMO systems communicating over time-varying
channels is presented. To alleviate the channel aging problem, we propose two types
of frame structures dedicated for MDD, which enable UL pilots (or UL data transmis-
sions) to occur concurrently with DL transmissions, so that CSI can be promptly up-
dated whenever needed. For comparison, the corresponding TDD frame structures
related to the 3GPP standards [136, 164] as well as their modified forms for supporting
different mobility scenarios are introduced.

Secondly, to operate with the proposed frame structures, we introduce two finite im-
pulse response WPs that consider both CE and residual SI errors, namely the general
WP and the decision-directed WP (DD-WP), dedicated to MDD systems. To be more
specific, the general WP directly predicts the time-domain CSI based on the observa-
tions collected from the UL CE. By contrast, the DD-WP leverages both the UL pilots
and the detected UL data symbols to predict the frequency-domain CSI. Along with
these WPs, the impact of residual SI and the order of WPs on the performance of MDD
systems are studied and compared.

Thirdly, by assuming the zero-forcing (ZF) precoding for DL transmission and the max-
imum ratio combining (MRC) for UL detection, the closed-form expressions for approx-
imating the lower bounded average sum rates of both the TDD and MDD systems are
derived, when the proposed WPs are operated with two general types of frame struc-
tures.

Our studies and simulation results show that TDD systems suffer from the channel ag-
ing problem, whose performance degrades significantly with time, when channels vary



92 Chapter 4. MDD for Mitigation of Channel Aging Problem in Massive MIMO

fast. By contrast, the MDD systems endowed with the FD capability can effectively mit-
igate the channel aging problem and hence, are capable of significantly outperforming
their TDD counterparts, when communicating over fast time-varying channels. More-
over, the studies demonstrate that the SIC in FD systems plays a paramount role in
channel prediction. In the case of imperfect SIC, MDD becomes more competent than
IBFD for operation in high-mobility communications scenarios.

The rest of the chapter is organized as follows. In Section 4.2, the model for the MDD-
based system is described. In Section 4.3, two general frame structures for TDD and
MDD systems are introduced. Section 4.4 presents the principles of CE and two ap-
proaches for channel prediction. Section 4.5 analyzes the lower bounded average sum
rates of MDD and TDD systems. Section 4.6 provides the performance results to com-
pare TDD, MDD and IBFD systems. Finally, conclusions are drawn in Section 4.7.

4.2 System Model

Consider a single-cell mMIMO orthogonal frequency division multiplexing (OFDM)
system having an BS equipped with N antennas and D single-antenna MSs randomly
distributed in the cell. The system is operated in the MDD mode, allowing DL and UL
to communicate concurrently in the same frequency band but on different subcarriers.
Following the concept of mMIMO, the number of antennas at BS is assumed to be
much larger than the number of served MSs [10], i.e., N ≫ D. Furthermore, based on
the principles of MDD [4], subcarriers are divided into two mutually exclusive subsets,
namely a DL subcarrier subsetM with M subcarriers, and a UL subcarrier subset M̄
with M̄ subcarriers, i.e., |M| = M and |M̄| = M̄. The total number of subcarriers
is expressed as Msum = M + M̄. Similar to the other works on RA, e.g., [144, 165,
166], the DL/UL subcarrier allocation (SA) is carried out at BS based on the CSI and
the requirements of MSs’ quality of services. The allocation results are informed to
MSs through control channels during the initial access procedure. Below we assume
that the DL/UL SA results have been obtained, and that each MS knows its assigned
subcarriers. The feasible SA algorithm in MDD systems can be found in Section 3.4.

4.2.1 Channel Model

We assume that the channels are frequency-selective in terms of the Msum subcarriers
but each subcarrier experiences flat fading. To consider the influence of channel aging,
we assume that the channel coefficients do not change within one OFDM symbol, but
vary from one symbol to the next. Therefore, the time-domain CSI of the L-tap channel
between the d-th MS and the n-th BS antenna over the i-th OFDM symbol duration can
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be expressed as
gggn,d[i] = [gn,d[i, 1], ..., gn,d[i, l], ..., gn,d[i, L]]T , (4.1)

where gn,d[i, l] = νn,d[i, l]
√︁

βd and νn,d[i, l] ∼ CN (0, 1/L) is the small-scale fading,
while βd represents the large-scale fading, which only depends on the distance between
MS d and BS and is assumed to remain constant over one communication frame. For
any user-antenna pair, the channels of different taps are assumed to be independent.
Hence we have RRRd

g = E
[︂
gggn,d[i]gggH

n,d[i]
]︂
= βd

L IIIL.

According to the principles of OFDM [68], the frequency-domain CSI hhhn,d[i] over the
i-th OFDM symbol duration can be obtained as

hhhn,d[i] = FFFΨΨΨgggn,d[i], (4.2)

where FFF ∈ CMsum×Msum is the FFT matrix with (FFF)p,q = 1√
Msum

e−j2π(p−1)(q−1)/Msum ,
ΨΨΨ ∈ CMsum×L is constructed by the first L columns of IIIMsum . Furthermore, the DL sub-
channels hhhDL

n,d [i] and UL subchannels hhhUL
n,d [i] between the n-th antenna at BS and the d-th

MS over the i-th OFDM symbol can be obtained from (4.2), which can be expressed as

hhhDL
n,d [i] = ΦΦΦDLhhhn,d[i] = [hn,d[i, 1], ..., hn,d[i, m], ..., hn,d[i, M]]T , (4.3)

hhhUL
n,d [i] = ΦΦΦULhhhn,d[i] = [hn,d[i, 1], ..., hn,d[i, m̄], ..., hn,d[i, M̄]]

T , (4.4)

where ΦΦΦDL = III(M,:)
Msum

and ΦΦΦUL = III(M̄,:)
Msum

are the mapping matrices, constructed from
IIIMsum by choosing its rows corresponding to the particular subcarriers assigned to DL
and UL, respectively. Due to the short separation between transmitter and receiver,
the SI channels are assumed to be flat fading and identical to all subcarriers, and also
quasi-static within one frame. Specifically, the SI channels at BS and MSs follow the
distributions of (HHHSI)i,j ∼ CN (0, 1), where HHHSI ∈ CN×N , and hSI ∼ CN (0, 1), respec-
tively.

4.2.2 Channel Aging

As we stated in Section 4.1, the relative mobility between BS and MSs leads to time-
varying channels, causing that the channel varies between the time when it is estimated
and the time when the estimated CSI is applied for transmissions. This is the well-
known channel aging problem. To model the channel aging, we introduce the Jakes
model, which has the normalized discrete-time autocorrelation function at the BS given
by [16]

R[k] = J0(2π fDTs|k|), (4.5)

where J0(·) is the zeroth-order Bessel function of the first kind, Ts is the OFDM symbol
duration, fD is the maximum Doppler frequency shift, and |k| is the delay in terms of
the number of symbols.
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Furthermore, for the sake of analyzing MDD frame structures with WP and DD-WP in
the following sections, we adopt the autoregressive model of order 1, denoted as AR(1),
for approximating the temporal correlation between adjacent symbols. In this case, the
channel coefficient gggn,d[i] of (4.1) can be formulated as [153]

gggn,d[i] = αgggn,d[i− 1] + vvvn,d[i], (4.6)

where α = J0(2π fDTs), which is assumed to be perfectly known at BS, vvvn,d[i] is an
uncorrelated channel error vector due to channel aging, which can be modeled as a
stationary Gaussian random process with i.i.d. entries and the distribution of
CN

(︂
000, (1− α2)RRRd

g

)︂
. According to the channel model of (4.6), gggn,d[i] is a stationary

Markov random process, and has the auto-correlation of E
[︂
gggn,d[i− q]gggH

n,d[i− p]
]︂
=

α|p−q|RRRd
g. Moreover, according to (4.3) and (4.4), we can obtain the DL subchannels

satisfying
hn,d[i, m] = αhn,d[i− 1, m] +ψψψmvvvn,d[i]⏞ ⏟⏟ ⏞

ṽm
n,d[i]

, (4.7)

where ψψψm = III(m,:)
sum FFFΨΨΨ and ṽm

n,d[i] ∈ CN
(︁
0, (1− α2)Rd

h

)︁
with Rd

h = E
[︂

hn,d[i, m]hH
n,d[i, m]

]︂
=

βd/Msum. Similarly, the UL subchannels hn,d[i, m̄] can be generated.

4.2.3 Downlink Transmission

For DL transmission, the signal sssDL[i, m] ∈ CN×1 transmitted by BS on the m-th subcar-
rier in the i-th OFDM symbol duration is

sssDL[i, m] =
√

pDLFFFZF[i, m]xxx[i, m], (4.8)

where pDL is the power budget per DL subcarrier and the total BS transmit power is
PDL = pDLM, xxx[i, m] = [x1[i, m], ..., xD[i, m]]T contains the information symbols normal-
ized to satisfy E

[︁
xxx[i, m]xxx[i, m]H

]︁
= IIID. We assume that the ZF precoding is applied

at transmitter, giving FFFZF[i, m] = HHHH
DL[i, m]

(︁
HHHDL[i, m]HHHH

DL[i, m]
)︁−1, where FFFZF[i, m] =

[ fff 1[i, m], ..., fff D[i, m]] with the constraint of ∥ fff d[i, m]∥2 = 1/
√

D, such that
E
[︂
∥sssDL[i, m]∥2

2

]︂
= pDL, and HHHDL[i, m] = [hhh1[i, m], ..., hhhd[i, m], ...hhhD[i, m]]H, where hhhd[i, m]

= [h1,d[i, m], h2,d[i, m], ..., hN,d[i, m]]T. It is noteworthy that the analysis in this chapter is
based on the equal PA among MSs. Intuitively, an appropriate PA method, e.g., that in
Section 3.4, will increase the achievable sum rates, owing to both user and subcarrier
diversity being exploited. The received signal at the d-th MS can be expressed as

yd[i, m] =
√

pDLhhhH
d [i, m] fff d[i, m]xd[i, m] +

√
pDL ∑

k ̸=d
hhhH

d [i, m] fff k[i, m]xk[i, m] + zSI
d [i]

+ zd[i, m],
(4.9)
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where zSI
d [i] ∼ CN (0, ξMS pULM̄) denotes the residual SI1 signal imposed by the UL

transmission of MS d with pUL being the power budget per UL subcarrier, such that the
total MS transmit power is PUL = pULM̄. Note that ξMS in (4.9) and ξBS in (4.10) denote
the SIC capability that is provided by the existing SIC techniques, such as, the antenna
circulator [21], spatial beamforming [69], dual-port polarized antenna [25], multi-tap
RF canceller [39], etc., implemented in propagation- and analog-domain, as well as the
FFT operation operated in digital-domain. In (4.9), the covariance of zSI

d [i] is calculated
in detail in Appendix C. In addition, zd[i, m] ∼ CN (0, σ2) denotes the additive white
Gaussian noise. Note also that, as we mentioned in Equation 1.2.1.1, since the inter-MS
interference (IMI) and the desired DL signal are located on the mutually orthogonal
subcarriers, with the aid of approriate power control and large-scale fading, the IMI
can be easily suppressed to the effective dynamic level of ADC at recevier and then
canceled by FFT operation in digital domain. To avoid the deviation of the core of this
chapter, we assume that the interference caused by the other MSs’ UL transmission on
the DL reception is perfectly suppressed.

4.2.4 Uplink Transmission

For the UL transmission, the signal received at BS over the m̄-th UL subcarrier and i-th
OFDM symbol duration can be expressed as

sssUL[i, m̄] =
D

∑
d=1

hhhd[i, m̄]
√

pULxd[i, m̄] + zzzSI[i] + zzz[i, m̄], (4.10)

where hhhd[i, m̄] = [h1,d[i, m̄], h2,d[i, m̄], ..., hN,d[i, m̄]]T, zzz[i, m̄] ∼ CN (000, σ2IIIN). zzzSI[i] is the SI
generated by BS transmissions, which is modeled as zzzSI[i] ∼ CN (000, ξBS pDLMIIIN). The
covariance of zzzSI[i] is derived in detail in Appendix C. In this chapter, we assume that
the MRC is used for signal detection. Then we have WWWMRC[i, m̄] = HHHUL[i, m̄], where
HHHUL[i, m̄] = [hhh1[i, m̄], ..., hhhD[i, m̄]]. Let us write WWWMRC[i, m̄] = [www1[i, m̄], ..., wwwD[i, m̄]].
Then the decision variable for MS d can be expressed as

yd[i, m̄] =
√

pULwwwH
d [i, m̄]hhhd[i, m̄]xd[i, m̄] +

√
pUL ∑

k ̸=d
wwwH

d [i, m̄]hhhk[i, m̄]xk[i, m̄]

+wwwH
d [i, m̄]zzzSI[i] +wwwH

d [i, m]zzz[i, m̄],
(4.11)

where the second term at the right-hand side is multiuser interference, while the third
term is due to SI.

1The residual SI consists of the combined effect of the additive noise introduced by automatic gain con-
trol (AGC), non-linearity of analog-to-digital converter (ADC) and the phase noise generated by oscillator
due to radio frequency (RF) imperfection [148].
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FIGURE 4.1: Type I frame structure for the conventional TDD and proposed MDD
systems.

4.3 Frame Structure Design

Due to the effect of channel aging, channel coefficients may vary from symbol to sym-
bol, leading to poor system performance in high-mobility communication scenarios
[74]. To overcome the time-varying fading problem, in conventional TDD mode, chan-
nel prediction is usually implemented after the training phase to reduce CSI error.
However, when the relative velocity between transmitter and receiver increases, the
channel becomes less correlated, increasing the prediction error, which in turn renders
the later detected symbols less reliable. One way to mitigate this problem is to em-
ploy extra training symbols for updating the CSI during data transmission. Following
this observation, if the channel aging problem becomes severe, more training symbols
are inserted, which results in more frequent switching between UL training and DL
data transmission, as well as the decrease of useful data rate. To this end, our main
motivation of this chapter is to demonstrate that the MDD mode is capable of effi-
ciently solving the channel aging problem in fast fading communication scenarios. For
demonstration and comparison, in the following subsections, we will present two types
of frame structures for coping with the channel aging problem and also for analyzing
the performance of MDD systems in terms of sum-rate.
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4.3.1 Frame Structure: Type I

In this subsection, we consider a simple scenario, where the frame structure only in-
cludes UL training and DL transmission, as shown in Fig. 4.1. The length of one frame2

is assumed to be equal to T OFDM symbol durations.

4.3.1.1 TDD

As shown in Fig. 4.1, in the TDD mode, a frame consists of τp training symbols trans-
mitted by UL and T − τp − 1 symbols used for DL transmission. The switching from
UL training to DL data transmission or from DL data transmission to the next training
phase incurs a fixed cost, which is assumed to be half of an OFDM symbol.3 To cope
with channel aging, the channel prediction is implemented by a τp-th order WP4 after
the training phase, as shown in Fig. 4.1, and all the precoding/detection are operated
at BS based on the predicted CSI. It is noteworthy that in practice, the τp training sym-
bols can be first disassembled into several groups, which are then evenly distributed
over one frame, so as to relieve the effect of accumulated prediction errors. However,
the accompany of the increased switching intervals results in the reduced time for DL
transmission and hence the decreased system’s efficiency.

4.3.1.2 MDD

In the context of MDD, as UL/DL transmissions are on different subcarriers, CSI esti-
mation and prediction can be implemented in the FD mode. That is to say, UL pilots
can be kept active to update CSI in real time within one OFDM symbol. In detail,
as shown in Fig. 4.1, UL training is always activated and hence, the channels for DL
transmission can be predicted by a WP based on the newest τp pilots. However, in
low-speed scenarios, the excessive transmission of UL pilots inevitably increases en-
ergy consumption and system complexity, which is unnecessary as the channels change
slowly. Moreover, in the case where only the DL transmission is needed, continuous
UL training on M̄ subcarriers leads to only M of the Msum subcarriers being used for
the DL transmission. Therefore, in practice, the pilots within one MDD frame can be
partially transmitted (as illustrated by the example presented in Fig. 4.1) so that some
UL subcarriers can be ‘borrowed’ for DL data transmission to reduce the overhead of SI

2Note that one frame defined in this chapter may include several subframes used in 4G long-term
evolution (LTE) systems or slots in 5G new radio (NR) systems, where each subframe or slot contains 14
OFDM symbols. Specifically in 4G LTE, one frame consists of 10 subframes and two of them are used for
training [136]. The frame structure in 5G NR is more flexible than that in 4G LTE [164].

3The length of the switching period in LTE can be a different value, such as 1, 2, 3, 4, 9 or 10 OFDM
symbols [136]. We choose 0.5 to minimize the influence of the switching interval on the evaluation of TDD
system’s performance.

4To ease analysis and facilitate comparison, only WP is considered in this chapter. The Kalman predic-
tor and the state-of-the-art deep learning approaches will be studied in our future work.
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FIGURE 4.2: Type II frame structure for conventional TDD and proposed MDD sys-
tems.

mitigation. In Section 4.6, the TDD/MDD frame structures with different distributions
of pilots will be investigated.

4.3.2 Frame Structure: Type II

A more general frame structure consisting of the UL training followed by both UL
transmission and DL transmission is considered for both TDD and MDD, as shown in
Fig. 4.2.

4.3.2.1 TDD

In the TDD mode, as shown in Fig. 4.2, τp pilot symbols are transmitted in Phase I
for initializing the transmission. During Phase II, the detected UL data symbols and
possibly a part of pilots are used to predict channels by a τp-th order DD-WP. With
this setting, during the UL transmission, the channel knowledge can be continuously
updated with the DD prediction principle. By contrast, during the DL transmission,
channel updating is unavailable as there is no UL transmission. Consequently, the
transmissions of the T − τp − τu − 1 DL symbols are based on the outdated CSI, which
is similar to the situation with the Type I frame structure.

4.3.2.2 MDD

As shown in Fig. 4.2, the Type II frame structure in MDD systems can be designed in a
very efficient way. Firstly, for fair comparison with TDD, in Phase I, τp pilot symbols are
still transmitted for the implementation of a τp-th order DD-WP in Phase II. However,
different from TDD, during the transmission of pilot symbols, DL symbols can also be
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transmitted with the aid of the CSI predicted by a κp-th order WP, where 1 ≤ κp ≤ τp.
In the extreme case, when κp = 1, τp− 1 more DL symbols than TDD can be transmitted
in Phase I, which may significantly increase the SE. During Phase II, both DL and UL
can transmit T − τp symbols. Furthermore, a continuously updated τp-th order DD-
WP can be implemented to predict the channels using the pilots and the detected UL
symbols.

4.4 Channel Estimation and Prediction in MDD systems

In this section, we study the CE and prediction in MDD systems, when the proposed
frame structures in Section 4.3 are introduced.

4.4.1 Channel Estimation

Let us assume that all MSs synchronously transmit their frequency-domain pilot se-
quences (FDPS) over M̄ UL subcarriers. Specifically, the FDPS transmitted by the d-th
MS is expressed as xxxp,d =

[︁
xp,d[1], ..., xp,d[m̄], ..., xp,d[M̄]

]︁T. Then, the received signal at
the n-th antenna of BS corresponding to the i-th symbol is given by

yyyp,n[i] =
√

pUL

D

∑
d=1

XXXp,dhhhUL
n,d [i] + zzzSI

n [i] + zzzp,n[i]

=
√

pUL

D

∑
d=1

XXXp,dΦΦΦULFFFΨΨΨgggn,d[i] + zzzSI
n [i] + zzzp,n[i],

(4.12)

where XXXp,d = diag
{︁

xxxp,d
}︁

, zzzp,n[i] ∼ CN (000, σ2IIIM̄). Note that, in MDD systems, BS may
experience SI during UL training, if DL symbols are transmitted at the same time. For
example, in the frame structure as shown in Fig. 4.1, when 1 ≤ i ≤ τp, we have
zzzSI

n [i] = 0, as there is no DL transmissions. By contrast, when τp < i ≤ T, zzzSI
n [i] ∼

CN (0, ξBS pDLMIIIM̄).

According to the CE method proposed in Section 2.4, the noisy observation of gggn,d[i]
can be obtained as

yyỹd
p,n[i] = PPPH

d yyyp,n[i] =
√

pULM̄
Msum

gggn,d[i] + PPPH
d (zzz

SI[i] + zzzp,n[i]). (4.13)

Correspondingly, the MMSE estimate to gggn,d[i] is given by

ggĝn,d[i] =

√
pUL M̄

Msum

βd
L

pUL M̄2

M2
sum

βd
L + ξBS pDL MM̄

Msum
+ M̄

Msum
σ2

yyỹd
p,n[i]. (4.14)
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4.4.2 Channel Prediction

4.4.2.1 General Wiener Predictor

In this subsection, we focus on the prediction of gggn,d[i + 1] based on the current and
previous received training signals, which are expressed as yyȳd

p,n[i] =[︂
yyỹd,H

p,n [i], yyỹd,H
p,n [i− 1], ..., yyỹd,H

p,n [i + 1− τp]
]︂H

, where yyỹd
p,n[i] is given by (4.13). We first as-

sume a τp-th order WP, with the weights VVVn,d =
[︂
VVV1

n,d, ...,VVVq
n,d, ...,VVVτp

n,d

]︂
, VVVq

n,d ∈ CL×L.
Then, the predictor can be formulated as

ggǧWP
n,d [i + 1] =

τp

∑
q=1

VVVq
n,dyyỹd

p,n[i + 1− q] = VVVn,dyyȳd
p,n[i]. (4.15)

According to the principles of Wiener filter [74, 167], the solution to VVVn,d is

VVVn,d = RRRd
gȳ[1]

(︂
RRRd

ȳ,i[0]
)︂−1

, (4.16)

where the cross-correlation between the real channel of the next symbol and the obser-
vations is

RRRd
gȳ[1] = E

[︂
gggn,d[i + 1]yyȳd,H

p,n [i]
]︂
=

√
pULM̄

Msum
[δδδ(τp, α)⊗RRRd

g], (4.17)

where δδδ(τp, α) = [α, α2, ..., ατp ]. In (4.16), the autocorrelation matrix of the training sig-
nals is

RRRd
ȳ,i[0] = E

[︂
yyȳd

p,n[i]yyȳ
d,H
p,n [i]

]︂
= ξξξ(τp, α)⊗ (

pULM̄2

M2
sum

RRRd
g) +

M̄σ2

Msum
IIILτp +ΞΞΞSI[i], (4.18)

where

ξξξ(τp, α) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 α · · · ατp−1

α 1 · · · ατp−2

...
...

. . .
...

ατp−1 ατp−2 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.19)

It can be observed that in the Type I frame structure for fast-fading channels, the amount
of SI is dependent on the observation time, which leads to

ΞΞΞSI[i] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

000Lτp×Lτp , i = τp,⎡⎣ ξBS pDL MM̄
Msum

III(i−τp)L 000

000 000

⎤⎦ , τp < i ≤ 2τp,

ξBS pDL MM̄
Msum

IIIτp L, i > 2τp.

(4.20)
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According to the properties of WP, gggn,d[i + 1] can be orthogonally decomposed into

gggn,d[i + 1] = ggǧWP
n,d [i + 1] + vvv̌n,d[i + 1], (4.21)

where vvv̌n,d[i + 1] ∼ CN (000, RRRd
g−ΥΥΥd,i) is the uncorrelated channel prediction error vector

with ΥΥΥd,i = RRRd
gȳ[1]RRRd

ȳ,i
−1
[0]RRRd,H

gȳ [1].

Similar to (4.7), the predicted DL subchannels can be attained, which are expressed as

hn,d[i + 1, m] = ȟ
WP
n,d [i + 1, m] +ψψψmvvv̌n,d[i + 1]⏞ ⏟⏟ ⏞

v̌WP
n,d [i+1,m]

, m = 1, ..., M, (4.22)

where ȟ
WP
n,d [i + 1, m] ∼ CN

(︃
0, σ2

ȟ
WP
d,i,m

)︃
with σ2

ȟ
WP
d,i,m

= ψψψmΥΥΥd,iψψψ
H
m , and v̌WP

n,d [i + 1, m] ∼

CN (0, σ2
v̌WP

d,i,m
) with σ2

v̌WP
d,i,m

= Rd
h − σ2

ȟ
WP
d,i,m

. Moreover, as the channels of different antennas

are assumed to be independent, the channels between BS antennas and the d-th MS can
be collected to a vector as

hhȟ
WP
d [i + 1, m] = hhhd[i + 1, m] + vvv̌WP

d [i + 1, m], (4.23)

where hhȟ
WP
d [i + 1, m] ∼ CN (000, σ2

ȟ
WP
d,i,m

IIIN) and vvv̌WP
d [i + 1, m] ∼ CN (000, σ2

v̌WP
d,i,m

IIIN).

4.4.2.2 Decision-Directed Wiener Predictor

In the proposed Type II frame structure, as UL transmission is activated, channels can
be predicted in the DD principles [168]. Assume that a τp-th order DD-WP is per-
formed based on the τp latest detected symbols received by BS. According to (4.10),
the received signal by the n-th antenna of BS over the m̄-th UL subcarrier and the i-th
symbol duration is

sn[i, m̄] =
√

pULxxxT[i, m̄]hhhn[i, m̄] + zSI[i] + z[i, m̄], (4.24)

where xxx[i, m̄] = [x1[i, m̄], ..., xD[i, m̄]]T, hhhn[i, m̄] = [hn,1[i, m̄], ..., hn,D[i, m̄]]T and zSI[i] ∼
CN (0, ξBS pDLM).

Based on the DD signals of (4.24), a τp-th order DD-WP is employed to predict the

channels hhhn[i + 1, m̄] as hhȟ
DD
n [i + 1, m̄] = VVVDDsss̄n[i, m̄], where sss̄n[i, m̄] = [sn[i, m̄], ..., sn[i +

1− τp, m̄]]T, and VVVDD can be expressed as

VVVDD = RRRhs̄[1, m̄]RRR−1
s̄,i [0, m̄] (4.25)

with RRRhs̄[1, m̄] = E
[︁
hhhn[i + 1, m̄]sss̄H

n [i, m̄]
]︁

and RRRs̄,i[0, m̄] = E
[︁
sss̄n[i, m̄]sss̄H

n [i, m̄]
]︁
, which are

detailed below.
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First, the cross-correlation matrix in (4.25) can be obtained with the aid of (4.7) and
(4.24), which is

RRRhs̄[1, m̄] = E
[︂
hhhn[i + 1, m̄]sss̄H

n [i, m̄]
]︂
=
√

pUL
[︁
αRRRhxxx∗[i, m̄], ..., ατpRRRhxxx∗[i + 1− τp, m̄]

]︁
=
√

pULAAA(τp, α)QQQ(τp, D)BBBH(τp, D),

(4.26)

where

RRRh = diag(R1
h, ..., RD

h ), QQQ(τp, D) = RRRh ⊗ IIIτp , AAA(τp, α) = IIID ⊗ δδδ(τp, α),

BBB(τp, D) = [diag(xxx̂1[m̄]), ..., diag(xxx̂d[m̄]), ..., diag(xxx̂D[m̄])]
(4.27)

and in BBB(τp, D), xxx̂d[m̄] =
[︁
x̂d[i, m̄], ..., x̂d[i + 1− τp, m̄]

]︁T are UL detected symbols. To
obtain (4.26), each element in xxx̂d[m̄] needs to be correctly detected. This can be achieved
by measuring the reliability of each detection in terms of the likelihood value of a de-
tected symbol. If the likelihood value is larger than a preset threshold resulting in high
reliability, the symbol is then included for DD prediction. Otherwise, the symbol will
not be used for DD channel prediction.

The auto-correlation matrix RRRs̄,i[0, m̄] in (4.25) is given by

RRRs̄,i[0, m̄] = E
[︂
sss̄n[i, m̄]sss̄H

n [i, m̄]
]︂

= pULBBB(τp, D)CCC(τp, D)QQQ(τp, D)BBBH(τp, D) + σ2IIIτp +ΞΞΞDD
SI [i],

(4.28)

where CCC(τp, D) = IIID ⊗ ξξξ(τp, α). When the proposed Type II frame structure is em-
ployed, SI is also present at the observation time, which leads to

ΞΞΞDD
SI [i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎣ ξBS pDLMIIIτp−1 000

000 0

⎤⎦ , i = τp,

ξBS pDLMIIIτp , i > τp.

(4.29)

With the aid of the orthogonal decomposition, we have the expression

hhhn[i + 1, m̄] = hhȟ
DD
n [i + 1, m̄] + eeěDD

n [i + 1, m̄], (4.30)

where eeěDD
n [i + 1, m̄] ∼ CN (000, RRRh −ΘΘΘi[m̄]) is the uncorrelated channel prediction er-

ror vector, and ΘΘΘi[m̄] = RRRhs̄[1, m̄]RRR−1
s̄,i [0, m̄]RRRH

hs̄[1, m̄], which is the covariance matrix of

hhȟ
DD
n [i + 1, m̄]. Furthermore, we can write hhȟ

UL
n,d [i + 1] =

[︂
ȟ

DD
n,d [i + 1, 1], ..., ȟ

DD
n,d [i + 1, M̄]

]︂T
,

which follows the distribution of hhȟ
UL
n,d [i + 1] ∼ CN (000, ΓΓΓd,i), with ΓΓΓd,i derived in detail in

Appendix D.
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Having obtained the frequency-domain prediction of hhhn,d[i + 1] over UL subcarriers,
the corresponding time-domain CSI can be found as

ggǧDD
n,d [i + 1] = JJJhhȟ

UL
n,d [i + 1] (4.31)

provided that M̄ ≥ L. In (4.31), JJJ =
(︂
(ΦΦΦULFFFΨΨΨ)H (ΦΦΦULFFFΨΨΨ)

)︂−1
(ΦΦΦULFFFΨΨΨ)H. Finally,

upon following the same approach described in (4.21)-(4.22), the DL channel vector
between BS and the d-th MS with respect to the m-th DL subcarrier and the (i + 1)
symbol duration can be predicted as hhȟ

DD
d [i + 1, m], which follows

hhȟ
DD
d [i + 1, m] = hhhd[i + 1, m] + vvv̌DD

d [i + 1, m], m = 1, ..., M, (4.32)

where hhȟ
DD
d [i + 1, m] ∼ CN (000, σ2

ȟ
DD
d,i,m

IIIN), σ2
ȟ

DD
d,i,m

= ψψψmJJJΓΓΓd,iJJJHψψψH
m , and vvv̌DD

d [i + 1, m] ∼

CN (000, σ2
v̌DD

d,i,m
IIIN), σ2

v̌DD
d,i,m

= Rd
h − σ2

ȟ
DD
d,i,m

.

4.5 Performance Analysis over Fast-Fading Channels

In this section, we derive the ergodic rates attainable by the MDD and TDD systems
with the proposed channel acquisition, where the two types of frame structures intro-
duced in Section 4.3 are respectively applied.

4.5.1 Type I Frame Structure

The ergodic achievable rate of the MDD systems with the Type I frame structure shown
in Fig. 4.1 can be expressed as

RMDD-1(τp) =
1

TMsum

D

∑
d=1

T

∑
i=τp+1

M

∑
m=1

RMDD-1
d,i,m , (4.33)

where RMDD-1
d,i,m denotes the rate obtained by the d-th MS over the m-th DL subcarrier

during the i-th symbol duration. Note that since no DL pilots are employed, only the
expected effective channel gain is available at MSs. Hence, the mean effective channel
gain is treated as the CSI for signal detection at MSs’ sides. The effective channel gain is
ωZF

d,d[i, m] = hhhH
d [i, m] fff̌ d[i, m], where fff̌ d[i, m] is derived by the ZF principle with the pre-

dicted channel hhȟ
WP
d [i + 1, m] obtained in (4.23). Then, we can derive the lower bounded
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achievable ergodic rate of RMDD-1-LB
d,i,m as

RMDD-1
d,i,m ≥ RMDD-1–LB

d,i,m

= log2

⎛⎜⎜⎜⎝1 +
pDL

⃓⃓⃓
E
[︂
ωZF

d,d[i, m]
]︂⃓⃓⃓2

pDLvar
{︂

ωZF
d,d [i, m]

}︂
+ pDL

D
∑

k=1,k ̸=d
E

[︃⃓⃓⃓
ωZF

d,k [i, m]
⃓⃓⃓2]︃

+ var
{︁

zSI
d

}︁
+ σ2

⎞⎟⎟⎟⎠ .

(4.34)

According to Lemma 4 in [169], the expectation and variance of the effective channel
gain ωZF

d,d[i, m] can be approximated as

E
[︂
ωZF

d,d [i, m]
]︂
= E

[︂
1/(
√

D
⃦⃦⃦

fff̌ d[i, m]
⃦⃦⃦
)
]︂
≈
√︃

N − D + 1
D

√︃
σ2

ȟ
WP
d,i,m

(4.35)

and

var
{︂

ωZF
d,d[i, m]

}︂
≈ 1

D

(︂1
4

σ2
ȟ

WP
d,i,m

+ σ2
v̌WP

d,i,m

)︂
, (4.36)

respectively, where fff̌ d[i, m] is the unnormalized column of the matrix FFF̌
ZF
[i, m] seen in

(4.8). For the interference signal from the other MSs, as seen in the denominator of
(4.34), we have

E

[︃⃓⃓⃓
ωZF

d,k [i, m]
⃓⃓⃓2]︃

= E

[︃⃓⃓⃓
hhȟ

WP,H
d [i, m] fff̌ k[i, m] + vvv̌WP,H

d [i + 1, m] fff̌ k[i, m]
⃓⃓⃓2]︃

= E

[︃⃓⃓⃓
vvv̌WP,H

d [i + 1, m] fff̌ k[i, m]
⃓⃓⃓2]︃

=
1
D

σ2
v̌WP

d,i,m
. (4.37)

Consequently, upon substituting (4.22), (4.35), (4.37) and (C.1) into (4.34), the approx-
imation to the lower bounded achievable ergodic rate of the d-th MS on the m-th DL
subcarrier within the i-th OFDM symbol duration can be expressed as

RMDD-1-LB
d,i,m

≈ log2

⎛⎝1 +
pDL (N − D + 1)ψψψmΥΥΥd,iψψψ

H
m

0.25pDLψψψmΥΥΥd,iψψψH
m + pDLD

(︂
βd

Msum
−ψψψmΥΥΥd,iψψψH

m

)︂
+ ξMS pULDM̄ + Dσ2

⎞⎠ .

(4.38)

Finally, RMDD-1-LB(τp) is obtained by substituting (4.38) into (4.33).
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On the other hand, the achievable ergodic rate of the TDD systems with the Type I
frame structure shown in Fig. 4.1 can be written as

RTDD-1(τp) =
1

TMsum

D

∑
d=1

⎛⎝ T−1

∑
i=τp+2

Msum

∑
m=1

RTDD-1
d,i,m +

1
2

Msum

∑
m=1

(︂
RTDD-1

d,τp+1,m + RTDD-1
d,T,m

)︂⎞⎠ . (4.39)

Furthermore, the approximated lower bounded achievable ergodic rate of TDD sys-
tems can be derived by following nearly the same steps as above for the MDD systems,
except only the following two points. The first one is that all the channels within one
frame are predicted relying on the first τp training symbols sent at the start of the frame,
yielding δδδ(τp, α) in (4.17) being changed to [αi−τp , αi+1−τp , ..., αi−1]. The second point is
that the TDD systems do not experience SI. Therefore, we have ΞΞΞSI[i] = 0, ∀i in (4.20).

4.5.2 Type II Frame Structure

The ergodic achievable rate of the MDD systems with the Type II frame structure shown
in Fig. 4.2 can be expressed as

RMDD-2(τp.κp) =
1

TMsum

D

∑
d=1

(︄
τp

∑
i=κp+1

M

∑
m=1

RMDD-1
d,i,m +

T

∑
i=τp+1

M

∑
m=1

RMDD-2-DL
d,i,m +

T

∑
i=τp+1

M̄

∑
m̄=1

RMDD-2-UL
d,i,m̄

)︄
, (4.40)

where RMDD-1
d,i,m denotes the rate attained during Phase I, RMDD-2-DL

d,i,m and RMDD-2-UL
d,i,m̄ de-

note respectively the DL and UL rates achievable during Phase II. To compute the lower
bounded rate RMDD-2-LB(τp.κp), in (4.40), the lower bound for RMDD-1

d,i,m is given by (4.38),
while the lower bound for RMDD-2-DL

d,i,m can be obtained from the approach for computing

RMDD-1-LB
d,i,m by replacing ȟ

WP
d,i,m using ȟ

DD
d,i,m. Therefore, we only need to derive the lower

bound for the achievable UL ergodic rate, i.e., RMDD-2-UL
d,i,m̄ . Denote the effective channel

gain as ωMRC
d,d [i, m̄] = www̌H

d [i, m̄]hhhd[i, m̄]. Then, we have

RMDD-2-UL
d,i,m̄ ≥ RMDD-2-UL-LB

d,i,m̄

= log2

(︂
1 +

pUL

⃓⃓⃓
E
[︂
ωMRC
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]︂⃓⃓⃓2

pUL
D
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E

[︃⃓⃓⃓
ωMRC
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⃓⃓⃓2]︃

+ (var {zzzSI[i]}+ σ2)E
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∥www̌d[i, m̄]∥2

2

]︂)︂

(a)
= log2

(︂
1 +

pUL

⃓⃓⃓
E
[︂
hhȟ

DD,H
d [i, m̄]hhhd[i, m̄]

]︂⃓⃓⃓2
pUL

D
∑

k=1,k ̸=d
E

[︃⃓⃓⃓
hhȟ

DD,H
d [i, m̄]hhhk[i, m̄]

⃓⃓⃓2]︃
+ (ξBS pDLM + σ2)E

[︃⃦⃦⃦
hhȟ

DD
d [i, m̄]

⃦⃦⃦2

2

]︃)︂,

(4.41)
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where (a) is obtained by using www̌d[i, m̄] = hhȟ
DD
d [i, m̄] to implement the MRC receiver. In

particular, the expectation term in the numerator of (4.41) can be derived as⃓⃓⃓
E
[︂
hhȟ

DD,H
d [i, m̄]hhhd[i, m̄]

]︂⃓⃓⃓2
=
⃓⃓⃓
E
[︂
hhȟ

DD,H
d [i, m̄]

(︂
hhȟ

DD
d [i, m̄] + eeěDD

d [i, m̄]
)︂]︂⃓⃓⃓2

(b)
=
⃓⃓⃓
E
[︂
hhȟ

DD,H
d [i, m̄]hhȟ

DD
d [i, m̄]

]︂⃓⃓⃓2
=

⃓⃓⃓⃓
E

⃦⃦⃦
hhȟ

DD
d [i, m̄]

⃦⃦⃦2

2

⃓⃓⃓⃓2
, (4.42)

where (b) is due to the fact that vvv̌DD
d [i, m] has zero mean and is independent of hhȟd[i, m̄].

The first expectation in the denominator of (4.41) can be derived as

E

[︃⃓⃓⃓
hhȟ

DD,H
d [i, m̄]hhhk[i, m̄]

⃓⃓⃓2]︃
= E

[︃⃓⃓⃓
hhȟ

DD,H
d [i, m̄]hhȟ

DD
k [i, m̄] + hhȟ

DD,H
d [i, m̄]eeěDD

k [i, m̄]
⃓⃓⃓2]︃
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≤ E
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DD,H
d [i, m̄]hhȟ

DD
k [i, m̄]

⃓⃓⃓2]︃
+ E

[︃⃓⃓⃓
hhȟ

DD,H
d [i, m̄]eeěDD

k [i, m̄]
⃓⃓⃓2]︃

(d)
= Rk

hE

[︃⃦⃦⃦
hhȟ

DD
d [i, m̄]

⃦⃦⃦2

2

]︃
, (4.43)

where (c) and (d) follow from the fact that hhȟ
DD
d [i, m̄], hhȟ

DD
k [i, m̄] and eeěDD

k [i, m̄] are inde-
pendent vectors and vvv̌DD

k [i, m̄] has zero mean. Consequently, upon substituting (4.30),
(4.42) and (4.43) into (4.41), we can obtain the approximated lower-bounded UL rate,
which is given by

RMDD-2-UL-LB
d,i,m̄ ≈ log2

⎛⎜⎜⎜⎝1 +
pULN (ΘΘΘi[m̄])d,d

pUL
D
∑

k=1,k ̸=d

βk
Msum

+ ξBS pDLM + σ2

⎞⎟⎟⎟⎠ . (4.44)

In the context of TDD, the achievable ergodic rate in the case of the Type II frame struc-
ture shown in Fig. 4.2 can be expressed as

RTDD-2(τp, τu) =
1

TMsum

D

∑
d=1

(︃ τp+τu

∑
i=τp+1

Msum

∑
m=1

RTDD-2-UL
d,i,m +

T

∑
i=τp+τu+2

Msum

∑
m=1

RTDD-2-DL
d,i,m

+
1
2

Msum

∑
m=1

(︂
RTDD-2-UL

d,τp+τu+1,m + RTDD-2-DL
d,T,m

)︂)︃
. (4.45)

Based on (4.45), the approximated lower bound RTDD-2-LB(τp, τu) can be obtained in the
way similar to that for MDD systems. Therefore, the derivation is omitted to avoid
redundancy.
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TABLE 4.1: Simulation parameters

Default parameters Value

Distance between BS and MSs (Dd) [50, 100] m

Number of BS antennas (N) 32

Number of MSs (D) 8

Number of DL/UL subcarriers for TDD (Msum) 96

Number of DL/UL subcarriers for MDD (M/M̄) 64 / 32

BS transmit power (pDLM) 30 dBm

MS transmit power (pULM̄) 20 dBm

Noise power -94 dBm

Large-scale fading (βd) (Dd)
3.8

Delay taps (L) 4

Carrier center frequency 5 GHz

Subcarrier bandwidth 15 kHz

OFDM symbol duration (Ts) 66.67 µs

Total symbols in one frame (T) 28

Switching interval in TDD 0.5

Digital modulation 16 QAM

SIC capability at BS (ξBS) 130 dB

SIC capability at MS (ξMS) 120 dB

4.6 Simulation Results and Discussion

In this section, we present the numerical results for the performance comparison of the
MDD and TDD systems with two types of frame structures, as shown in Fig. 4.1 and
Fig. 4.2, respectively. We also compare the performance of IBFD and MDD systems
with the proposed frame structures, when SIC capability is limited. Furthermore, we
validate the analytical results derived in Section 4.5 by Monte Carlo simulations over
1000 channel realizations. Throughout this section, we assume a single-cell network
with one BS and multiple single-antenna MSs. Some key parameters are listed in Table
4.1. It is noteworthy that to demonstrate the tendency of the rate change within one
frame, the switching intervals in the TDD mode are not considered, while the X-axis
represents the index of OFDM symbol. By contrast, the switching intervals are taken
into account in evaluating the average sum rate over one frame, as shown in (4.39) and
(4.45).
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FIGURE 4.3: Sum rate versus OFDM symbol index of the TDD systems with the dif-
ferent assumptions about channel acquisition and relative velocity.

4.6.1 Type I Frame Structure: TDD Vs MDD

In this subsection, TDD and MDD systems are compared under the Type I frame struc-
ture. For TDD systems, a total of 7 pilots are transmitted within one frame. By contrast,
for MDD systems, UL pilots can always be transmitted or be transmitted in part. Note
that, in the following figures, ‘TDD-1’ denotes the scheme that all pilots are consecu-
tively transmitted at the beginning of the frame and a 7-th order WP is applied. The
notations of ‘TDD-1, Ideal’ and ‘TDD-1, NoP’ indicate respectively that the channel is
ideal without the channel aging problem and that the CSI acquisition does not rely on
channel prediction. ‘MDD-1(z)’ denotes the scheme that UL pilots are continuously
sent by MSs and a z-th order WP is applied. Furthermore, the results of ‘TDD-1’ and
‘MDD-1(z)’ are plotted by using the lower-bounded rates given in (4.33), (4.39), (4.40)
and (4.45), while the results of ‘TDD-1, Apx’ and ‘MDD-1(z), Apx’ represent the corre-
spondingly approximated rates derived in Section 4.5.

In Fig. 4.3, we evaluate the performance of the TDD systems operated in different mo-
bility scenarios with or without channel prediction. We observe that when the relative
velocity is 20 km/h, the TDD system with WP outperforms the TDD system without
channel prediction. However, as the symbol index increases, meaning that CSI be-
comes more outdated, the performance gap between the above two strategies becomes
narrower. Therefore, in the TDD mode, the latter symbols benefit less from channel
prediction, as only 7 symbols are used for prediction and the prediction error increases
over time. Additionally, as seen in Fig. 4.3, as the relative speed increases, the advan-
tage of employing channel prediction diminishes, and the performance drops faster
and becomes significantly worse than the system with precise CSI. The results in Fig.
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FIGURE 4.4: Performance comparison of the MDD and TDD systems, when Type I
frame structure and 7-th order WP are employed.

4.3 explicitly indicate that the traditional TDD mode is not feasible for communication
in high-mobility scenarios, even when channel prediction is employed.

Based on the Type I frame structure presented in Fig. 4.1, we demonstrate the effect of
the time-varying channels on the performance of TDD and MDD systems in Fig. 4.4.
It can be observed from Fig. 4.4(A) that the accuracy of channel prediction in MDD
systems is nearly constant after 7 pilot symbols, regardless of the relative traveling ve-
locity of 100 km/h or 200 km/h. This is because in MDD systems, the UL pilots can
continuously provide BS with the most updated CSI for DL transmission, which hence
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guarantees a stable system sum rate, as shown in Fig. 4.4(B). Moreover, the difference
between the sum rates achieved by the MDD systems at 100 km/h and 200 km/h is rel-
atively small, meaning that MDD systems are robust to time-varying fading channels.
By contrast, although the sum rate of TDD systems is higher than that of MDD systems
within the first several symbols, for both the velocities considered, it reduces quickly
with time in terms of the OFDM symbol indices, due to the reduced accuracy of chan-
nel prediction with time. Furthermore, when the velocity is changed from 100 km/h to
200 km/h, the sum rate deteriorates significantly. Therefore, the performance of TDD
systems is sensitive to the mobility of wireless channels. The rationale is that in TDD
systems, UL training and DL have to be performed in an alternative way. Once it is
switched to DL transmission, the CSI has to be predicted based on the old data, which
may be outdated, if mobility is high. Additionally, in Fig. 4.4, it is demonstrated that
the approximations of the lower bounded ergodic rates derived in Section 4.5 match
closely to the lower bounded sum rates attained via Monte Carlo simulations.

In Fig. 4.5, we investigate the performance of MDD systems, when Type I frame struc-
ture and different orders of WPs are employed. According to Fig. 4.1, a higher order
WP uses more channel observations received in the past to predict channels. It is ob-
served from Fig. 4.5(A) that at the relative speed of 50 km/h, the 7-th order WP in
general significantly outperforms the 1-st order WP. However, when the speed is in-
creased to 250 km/h, the 1-st order WP achieves nearly the same performance as the
7-th order WP. The reason behind is that when channel varies fast, the prediction of
the current channel is more dependent on the nearest pilot symbols and the observa-
tions in the past become less correlated to the prediction. Fig. 4.5(B) further shows that
when pilots are continuously transmitted under the Type I frame structure, the 1-st or-
der WP attains a better performance averaged over one frame, owing to the fact that
in this case, 6 more DL symbols can be transmitted, even though the slightly reduced
prediction accuracy results in some performance loss.

Next, to comprehensively compare the performance of the TDD and MDD systems em-
ploying the Type I frame, we consider two more pilot distribution methods for TDD,
namely the TDD-1-ES and TDD-1-TG, as shown in Fig. 4.6. Specifically, with the TDD-
1-ES, 7 training symbols are evenly distributed within one frame. By contrast, with
the TDD-1-TG, 7 training symbols are first divided into two groups, which are then
inserted into the frame. Note that the TDD-1-TG is similar to the frame structure ap-
plied in 3GPP 36.211, where two pilot subframes are evenly distributed within one
frame [170]. For MDD systems, we also introduce an alternative Type I frame structure
denoted as MDD-1-PA, as depicted in Fig. 4.1. With the MDD-1-PA, τp = 1, and a total
of 7 pilots are activated, which are evenly distributed within one frame.

In Fig. 4.7, we compare the average sum rate of the MDD and TDD systems with the
various Type I frame structures, and when two frame lengths are considered. Note that,
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FIGURE 4.5: Performance comparison of the MDD systems with Type I frame structure
and different orders of WPs.

as the frame length increases, the number of pilots is set to remain the same in MDD-
1-PA and three TDD structures, while the number of DL symbols increases. It can be
observed from Fig. 4.7 that MDD-1-PA outperforms all the other arrangements, when
the relative speed is lower than 280 km/h in Fig. 4.7(A) and 210 km/h in Fig. 4.7(B).
This is because when only a fraction of pilots are transmitted, the saved UL resources
(subcarriers) can be exploited to transmit DL data, provided that the CSI updating is
enough for protecting the DL transmission. By contrast, MDD-1(1) is superior to the
MDD-1-PA in the high-speed case. In this case, although there are only M subcarriers
used for DL transmission, the continuously transmitted pilots on the M̄ UL subcarriers
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FIGURE 4.6: Alternative pilot distribution methods for the Type I frame structure in
TDD mode, when the total number of pilots is 7.

guarantees the reliable channel prediction, which the MDD-1-PA structure is however
unable to provide. With respect to TDD, the advantages of the three frame structures
are dependent on the relative velocity and the length of frames. As shown in Fig. 4.7(A)
and 4.7(B), in general, TDD-1 and TDD-TG have relatively better performance, when
the relative velocity is low, owing to the use of less switching intervals. By contrast,
TDD-1-ES benefits from the frequent transmission of training symbols within one frame
and hence performs better in the high-speed long-frame case.

4.6.2 Type II Frame Structure: TDD Vs MDD

In this subsection, we compare the performance of MDD and TDD systems operated
with the Type II frame structure. In the following figures, ‘TDD-2’ and ‘MDD-2’ denote
respectively the TDD and MDD systems employing the proposed frame structure as
shown in Fig. 4.2 with τp = 7, τu = 7 and κp = 1.

The performance comparison of MDD and TDD with respect to symbol index is plotted
in Fig. 4.8, when Type II frame structure is considered. In conjunction with Fig. 4.2, we
can see that, as the MDD system is able to operate DL and UL simultaneously during
Phase I, DL data symbols can be transmitted while collecting the channel observations
for prediction in Phase II. From Fig. 4.8(A) we observe that the WP in Phase I yields
less prediction errors when compared with the DD-WP in Phase II. This is as expected,
since the pilots used for WP in Phase I are known to BS. In Phase II, although the
performance of channel prediction is better without the effect of SI, TDD system only
activates the UL transmission from the 8-th to the 14-th symbol, leading to lower sum
rate when compared with the MDD system, which is capable of transmitting data over
both DL and UL. At the 15-th symbol, both MDD and TDD systems apply the 7-th DD-
WP and the TDD system attains a higher sum rate, as it uses all the subcarriers for DL
transmission. However, similar to the Type I frame structure, new UL data symbols are
not available for the TDD system to update channel causing the degraded accuracy of
channel prediction. Consequently, its sum rate decreases, as symbol index increases.
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FIGURE 4.7: Average sum rate versus relative velocity, when the Type I frame structure
is used.

In Fig. 4.9, we compare the average sum rate versus the relative speed of the MDD
and TDD systems, when the Type II frame structure is employed. Here, we also con-
sider an optional frame structure for TDD systems, which is shown in Fig. 4.10, where
two groups of pilots are separately inserted into one frame. We can observe from
Fig. 4.9 that owing to the DL transmission occurred in both Phase I and the start of
Phase II, MDD significantly outperforms TDD over the whole velocity, ranging from
20 km/h to 300 km/h, for both the frame-length considered. Specifically, for the TDD
in low-mobility case, the rate achieved by the TDD-2-TG is considerably lower than
that achieved by the TDD-2. However, benefiting from the extra training in the middle
of the frame, the TDD-2-TG finally surpasses the TDD-2 at 240 km/h when T = 28,
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FIGURE 4.8: Performance comparison of the MDD and TDD systems, when Type II
frame structure is applied.

and at 140 km/h when T = 56. The results in Fig. 4.9 imply that in the general com-
munication scenarios where UL training, UL transmission and DL transmissions are
all required at the same time, MDD shows significant advantages over TDD, when the
channel aging problem is encountered.

4.6.3 Influence of Self-Interference Cancellation on IBFD and MDD

In this part, we demonstrate the impact of SIC on the performance of MDD and IBFD
systems. To this end, we consider the conventional IBFD with the Type I frame structure
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FIGURE 4.9: Average sum rate versus the relative velocity, when the Type II frame
structure is used.
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FIGURE 4.10: Distribution of two groups of pilots in TDD Type II frame structure,
when the total number of pilots is 7.



116 Chapter 4. MDD for Mitigation of Channel Aging Problem in Massive MIMO

8 10 12 14 16 18 20 22 24 26 28
Symbol index

0

5

10

15

20

25

30

35

40

 S
um

 r
at

e 
(b

its
/s

/H
z)

MDD-1(7), 
BS

=130 dB

IBFD-1, 
BS

=100 dB

IBFD-1, 
BS

=130 dB

TDD-1

FIGURE 4.11: Sum rate comparison of MDD, IBFD and TDD with respect to OFDM
symbol index, when Type I frame structure and the relative velocity of 150 km/h are
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denoted as ‘IBFD-1’, where UL pilots are unremittingly transmitted over M̄ subcarriers
and a 7-th order WP is applied for channel prediction. Note that, unlike the MDD-1 that
only uses M subcarriers for DL transmission, as stated in Section 4.6.1, IBFD-1 uses all
the Msum subcarriers for the DL transmission, which imposes an extra SIC burden in
digital-domain. According to [21], the digital-domain SIC in IBFD systems is expected
to cancel the main linear signal component by more than 30 dB. By contrast, MDD
systems are almost free from linear SI in the digital-domain owing to the FFT operation,
which separates the UL subcarriers from the DL subcarriers. Based on this observation,
it is sensible to assume that with the same amount of system resources used for SI
suppression, MDD can always achieve 30 dB more SIC than IBFD. From Fig. 4.11, it is
shown that when both IBFD and MDD systems have the same SI mitigation capability5,
IBFD apparently outperforms both TDD and MDD. However, if IBFD can only mitigate
the SI by 100 dB6, the achievable sum rate of IBFD systems drops dramatically, and is
much lower than that of MDD systems.

4.7 Chapter Summary and Conclusions

An MDD-assisted mMIMO has been studied and comprehensively compared with the
TDD-relied mMIMO over fast time-varying channels. Two types of MDD frame struc-
tures incorporated respectively with WP and DD-WP have been proposed to combat

5This means IBFD costs more computation effort and system complexity than MDD for SIC, and hence
achieves lower energy efficient [73].

6Note that 100 dB of SI is often assumed in IBFD systems, which is regarded as the bottleneck value
based on the existing SIC approaches [145, 146].
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channel aging. For comparison, the frames in TDD mMIMO have been structured
according to the 3GPP standards or improved for handling the channel aging prob-
lem. MDD has also been compared with the IBFD by considering their SIC capabili-
ties. Moreover, the approximated lower bounds for the achievable rates of the MDD
and TDD mMIMO systems communicating based on the proposed frame structures
have been derived. According to our studies and performance comparison, we have
the following main observations. First, when the Type I frame structure is employed,
benefiting from the instantly available CSI updating while without involving UL/DL
switching, MDD outperforms TDD over time-varying channels, which is more signif-
icant when mobility becomes higher. Second, the above performance advantage of
MDD over TDD retains under the Type II frame structure, owing to the MDD’s merits
that it can proactively start DL transmission in Phase I, while simultaneously updating
the CSI with the aid of the UL transmission in Phase II. Third, it is shown that SIC is
critical to IBFD systems. By taking the advantage of near-free SI in the digital-domain,
MDD is capable of achieving better performance than IBFD in the presence of chan-
nel aging, if SIC in IBFD systems is imperfect. Additionally, the approximated lower
bounded rates derived in this chapter have been validated by the Monte-Carlo simula-
tions, showing that they agree well with each other.
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Chapter 5

MDD Assisted Cell-Free Massive
MIMO

This chapter studies the spectral efficiency (SE) of multicarrier-division duplex assisted
cell-free (MDD-CF) massive multiple-input multiple-output (mMIMO), with the em-
phasis on the advantages of MDD over time-division duplex (TDD) and in-band full
duplex (IBFD) when they are operated in CF systems.

5.1 Introduction

As one of the promising techniques integrating the advantages of cloud radio access
network (C-RAN), mMIMO and coordinated multipoint (COMP), CF-mMIMO has at-
tracted the growing attention from both academia and industry in recent years [75].
The studies have demonstrated that CF-mMIMO can efficiently suppress intra-cell in-
terference with the aid of the physical layer techniques, such as beamforming in the
collocated mMIMO. Furthermore, the inter-cell interference, which imposes the main
limit on the performance of the cell-edge mobile stations (MSs) in cellular networks, is
no longer intractable in the CF-mMIMO systems, as the result of no cell boundaries,
and hence leading to the possible seamless coverage [78].

As it is evolved from the collocated mMIMO, CF-mMIMO systems still consider TDD
as the dominant duplexing mode [10,171]. However, TDD has its limitation, especially,
when implemented in fast time-varying environment. First, in TDD, the guard period
(GP) between downlink (DL) and uplink (UL) transmissions is indispensable. In this
regard, when communication channels change quickly in high-mobility scenarios, UL
training has to be frequently performed due to the shorter coherence time (CT) inter-
val, and hence the portion of time for data transmission decreases [73]. Second, the
successive transmission of DL and UL represses the explosive demand of asymmetric
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communications [87]. For instance, several users having high demand on DL data may
have to wait for a single user with a low demand on UL data, which in turn causes
the low utilization efficiency of the time-frequency resources. To mitigate the disad-
vantages of TDD-CF, several full duplex (FD)-style CF systems have been proposed
in the last few years, such as IBFD-CF, dynamic time-division duplex (DTDD)-CF and
network-assisted full duplex (NAFD)-CF. However, according to our brief overview
and analysis in Section 1.3.2, these CF schemes more or less have some defects, which
hinder them from practical implementation. For instance, none of them appropriately
considered the cross-link interference (CLI) suppression in analog domain. Besides,
to the authors’ best knowledge, all the existing FD-style CF schemes operate in a cen-
tralized manner, where the central processor unit (CPU) conducts all signal processing
tasks, while access points (APs) only transmit precoded DL signals from the CPU or
pass the received UL signal to the CPU. In this case, the suppression of CLI imposes
heavy burden on the CPU as well as fronthaul capability. Despite the better scalability
and less dependence on fronthaul, there are few research about the distributed CF sys-
tems. The reason behind is that the suppression of CLI can be highly intractable when
APs work independently without sharing channel information with the CPU.

To alleviate the problem of CLI including inter-AP interference (IAI) and inter-MS inter-
ference (IMI), but maximize the time-frequency resource usage at the same time, in this
chapter, we propose an MDD-CF scheme. According to the principles of MDD, DL and
UL transmissions take place at the same time but on different subcarriers. Therefore,
the IAI/IMI are mutually orthogonal with the desired UL/DL signals in the digital
domain, and can be easily removed during reception without any additional system
overhead. On the other hand, owing to the FD-style operation, MDD allows to concur-
rently implement DL transmission and UL training, which improves the SE even over
fast time-varying channels. To leverage these advantages, however, one of the chal-
lenges is how to efficiently allocate the power and time-frequency resources among
multiple APs and MSs for simultaneously supporting data transmission or training
in two directions. To the best of our knowledge, there is no study in the open liter-
ature that has considered this kind of optimization problem. Therefore, against the
background, we comprehensively study the AP-selection, power allocation (PA) and
subcarrier allocation (SA) issues in the MDD-CF, with the motivation to achieve the
optimal SE performance. In summary, the novelties and contributions of this chapter
can be briefly described as follows:

Firstly, in order to mitigate the interference to enable the FD-style operation in dis-
tributed CF-mMIMO, the MDD-CF scheme is proposed, where the effect of SI, IAI and
IMI are practically modeled. Additionally, to study the optimization of AP-selection,
PA and SA under the constraint of MSs’ quality of service (QoS), two application sce-
narios, which assume that DL/UL transmissions occur in one CT interval or in one
radio frame, are considered.
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Secondly, in the case of DL/UL transmissions in one CT interval, we firstly leverage the
inner association between the continuous variables for PA, and binary variables for AP-
selection and SA, to change the mixed-integer optimization into a continuous-integer
convex-concave problem. Then, a quadratic transform with successive convex approx-
imation (QT-SCA) iterative algorithm is proposed to achieve the SE maximization in
MDD-CF scheme.

Thirdly, in the case of DL/UL transmissions in one radio frame, we consider imperfect
CE. A two-phase CT (TPCT) interval is designed for the CF systems operated in the
MDD and IBFD modes. Since the two phases are tightly coupled and both of them
support simultaneous transmissions in two directions, they lead to a very intricate for-
mulation. Correspondingly, we introduce an iteration factor to build the connection
between the two phases, and transform the original problem to a two-step iterative
optimization with the aid of the bisection method.

Finally, we comprehensively compare MDD-, IBFD- and TDD-CF in distributed CF-
mMIMO systems under the practical network settings. Our simulation results demon-
strate the superiority of MDD-CF over IBFD-CF, due to more effective suppression of
IAI and IMI in the digital domain. Furthermore, the well-designed TPCT interval with
the proposed two-step iterative algorithm enables MDD-CF to achieve much higher SE
than TDD-CF in high-mobility communication scenarios.

The remainder of this chapter is organized as follows. In Section 5.2, our MDD-CF
scheme is proposed. In Section 5.3, we maximize the SE over one CT interval, consid-
ering AP-section, PA and SA. In Section 5.4, we extend our analysis to the case of radio
frame and propose a novel algorithm to optimize the SE performance. The simulation
results are presented in Section 5.5 and chapter is concluded in Section 5.6.

5.2 System Model

We consider an MDD-CF scheme as shown in Fig. 5.1, where the setD = {1, ..., d, ..., D}
of single-antenna MSs and the set L = {1, ..., l, ..., L} of APs of each with N antennas are
operated in the MDD mode that rely on the mutually orthogonal subcarrier sets [69],
namelyM = {1, ..., m, ..., M} with |M| = M and M̄ = {1, ..., m̄, ..., M̄} with |M̄| = M̄,
for DL and UL, respectively. The total number of subcarriers is Msum = M + M̄. Fur-
thermore, we assume that the CF system is operated in a distributed way, where CPU
offloads most of the tasks to APs to relieve its computation burden, and only sends
coded data to APs for DL transmissions or integrates the received UL data from APs
via fronthaul links without any knowledge of channel information. We assume that
pilots and DL/UL data are transmitted in a CT interval Tc in terms of OFDM symbols.
As shown in Fig. 5.2, in the TDD mode, which is deemed as the mainstream duplex
mode in mMIMO systems [10], signal transmissions are performed in sequence, where
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FIGURE 5.1: Illustration of MDD-CF scheme.
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schemes.

UL training, GP and DL/UL transmissions require γP, γG, γDL
TDD and γUL

TDD symbol du-
rations, respectively. Note that, in the TDD mode, the GP between UL and DL is indis-
pensable. By contrast, in both IBFD and MDD modes, after the same training time γP

as that in the TDD mode, DL and UL data transmission time are Tc − γP, which can be
much higher than that in the TDD mode.
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5.2.1 Channel Model

For the convenience of notation, we denote the SI channel at the l-th AP and d-th MS
by HHHll ∈ CN×N and hdd, respectively. These two SI channels are modeled as

(HHHll)i,j =
√︂

ξSI
l αs,

hdd =
√︂

ξSI
d αs,

(5.1)

where αs ∼ CN (0, 1) is the small-scale fading, ξSI
l and ξSI

d ∈ (0, 1] denote the residual
SI levels at AP and MS receivers, respectively. We assume that ξSI

l < ξSI
d , meaning that

the SI at AP receiver can be mitigated to a lower level than that at MS receiver. This is
because APs are capable of employing more complicated circuits and higher resource
budget for SI suppression than MSs.

Remark 5.1. We consider two assumptions for the SI channels. 1) Since the SI link is
relatively short in comparison to the AP-MS link, we assume SI link is of single-path
without suffering from the large-scale fading; 2) The residual SI level (ξSI

l /ξSI
d ) relies

on the SIC capability, which accounts for the propagation/analog- and digital-domain
SIC methods1, such as dual-port polarized antenna [25], antenna circulator [21] and
multi-tap RF canceller [39].

Furthermore, we denote the time-domain CIRs of the communication channels be-
tween the d-th MS and the n-th antenna at the l-th AP, the IAI channels between the
n-th antenna at the l-th AP and the n′-th antenna at the l′-th AP, and the IMI channels
between the d-th MS and d′-th MS by gggn

ld ∈ CU×1, gggnn′
ll′ ∈ CU×1 and gggdd′ ∈ CU×1, respec-

tively, where U is the number of taps of multipath channels. Specifically, the u-th tap of
these channels can be generally modeled as (ggg)u =

√︁
β/U αs with ggg ∈

{︂
gggn

ld, gggnn′
ll′ , gggdd′

}︂
,

where β ∈ {βld, βll′ , βdd′} accounts for the large-scale fading of path loss and shadow-
ing. The channels of different taps are assumed to be independent. Additionally, the
spatial correlation among the antennas of AP is not considered in this chapter, which
will be addressed in the future research.

Given the time-domain CIRs, the frequency-domain channels can be obtained as hhh =

FFFΨΨΨggg with hhh ∈
{︂

hhhn
ld, hhhnn′

ll′ , hhhdd′
}︂

, where FFF ∈ CMsum×Msum is the FFT matrix, ΨΨΨ ∈ CMsum×U

is constructed by the first U columns of IIIMsum . Moreover, the single DL/UL subcarrier
channel can be expressed as h[m] = ϕϕϕT

DLhhh and h[m̄] = ϕϕϕT
ULhhh, respectively, where ϕϕϕDL =

III(:,m)
Msum

and ϕϕϕUL = III(:,m̄)
Msum

are the mapping vectors. Note that here h[m] or h[m̄] denotes
the point-to-point subcarrier channel, which will be further integrated into the vector

1As we mentioned before, MDD systems can be nearly free from the SI in digital domain due to the
FFT operation. By contrast, in order to mitigate the digital-domain SI in IBFD-based systems, the receiver
has to estimate the channel between DAC and ADC, and then reconstruct the transmitted signal, which is
subsequently subtracted from the received signal [42, 43]. This process incurs large overhead, especially
when the system is operated with a large number of subcarriers.
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and matrix for the AP-AP channel (i.e., HHHll′ [m or m̄] ∈ CN×N ), AP-MS channel (i.e.,
hhhld[m] ∈ CN×1 and hhhld[m̄] ∈ CN×1), respectively, as shown later in Section 5.2.B.

5.2.2 Downlink Transmission

Within each CT interval, the data transmitted on the m-th DL subcarrier for the d-th MS
is denoted by xd[m], which satisfies E

{︂
|xd[m]|2

}︂
= 1. The transmitted signal on the

m-th DL subcarrier by the l-th AP is given by

sssl [m] = ∑
d∈D

λldµldm
√

pldm fff ld[m]xd[m], (5.2)

where the binary variable λld denotes the association relationship between the l-th AP
and the d-th MS, with λld = 1 expressing that the d-th MS is associated with the l-th
AP and λld = 0, otherwise. The binary variable µldm explains the operation status of
MS d on the m-th DL subcarrier, with µldm = 1 implying that the m-th DL subcarrier
is activated by the l-th AP for DL transmission to MS d and µldm = 0, otherwise. In
(5.2), fff ld[m] ∈ CN×1 is the precoding vector with ∥ fff ld[m]∥2

2 = 1, and pldm is the power
allocated to the m-th subcarrier of the d-th MS by the l-th AP. The total power budget
at the l-th AP is expressed as Pl , satisfying ∑m∈M ∑d∈D λldµldm pldm ≤ Pl .

The signal received from the m-th DL subcarrier at the d-th MS can be expressed as

yd[m] = ∑
l∈L

hhhH
ld[m]sssl [m]⏞ ⏟⏟ ⏞

Desired signal + MUI

+zSI
d + zIMI

d + nd, (5.3)

where nd ∼ CN (0, σ2) is the additive white Gaussian noise. According to [146, 148],
the residual interference in digital domain arising from SI and IMI

(︁
i.e., zSI

d and zIMI
d in

(5.3)
)︁

are modeled as Gaussian noise [148]. Specifically, zSI
d ∼ CN (0, E

[︂
z̄SI

d

(︁
z̄SI

d

)︁∗]︂
)

with z̄SI
d = hdd ∑m̄∈M̄ µdm̄

√
pdm̄xd[m̄], where xd[m̄] denotes the data transmitted on

the m̄-th UL subcarrier by the d-th MS, pdm̄ denotes the transmitted power. zIMI
d ∼

CN (0, ξIMI
d E

[︂
z̄IMI

d

(︁
z̄IMI

d

)︁∗]︂
) with z̄IMI

d = ∑d′∈D\{d} ∑m̄∈M̄ µd′m̄
√

pd′m̄hdd′ [m̄]xd′ [m̄], where

ξIMI
d denotes the residual IMI level at MS d.

Based on (5.3), it can be shown that the received SINR on the m-th DL subcarrier at the
d-th MS is given by

SINRd,m =

⃓⃓
∑l∈L λldµldm

√
pldmhhhH

ld[m] fff ld[m]
⃓⃓2

MUId,m + var
{︁

zSI
d

}︁
+ var

{︁
zIMI

d

}︁
+ σ2

, (5.4)

where
MUId,m = ∑

l∈L
∑

d′∈D\{d}
λld′µld′m pld′m

⃓⃓⃓
hhhH

ld[m] fff ld′ [m]
⃓⃓⃓2

. (5.5)
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5.2.3 Uplink Transmission

The received UL signal by the l-th AP from the m̄ subcarrier of MS d can be expressed
as

yyyl [m̄] = ∑
d∈D

µdm̄
√

pdm̄hhhld[m̄]xd[m̄]⏞ ⏟⏟ ⏞
Desired signal + MUI

+zzzSI
l + zzzIAI

l + nnnl , (5.6)

where pdm̄ denotes the power allocated by MS d to the m̄-th UL subcarrier, which satis-
fies ∑m̄∈M̄ µdm̄ pdm̄ ≤ Pd. Similar to the received signals at MSs, the residual interference
due to the SI and IAI are modeled as Gaussian noise, where

zzzSI
l ∼ CN

(︃
0, diag

(︃
E

[︃
zzz̄SI

l

(︂
zzz̄SI

l

)︂H
]︃)︃)︃

,

zzzIAI
l ∼ CN

(︃
0, ξIAI

l diag
(︃

E

[︃
zzz̄IAI

l

(︂
zzz̄IAI

l

)︂H
]︃)︃)︃

(5.7)

with zzz̄SI
l = HHHll ∑m∈M sssl [m] and zzz̄IAI

l = ∑l′∈L\{l} ∑m∈MHHHll′ [m]sssl′ [m], where ξIAI
l denotes

the residual IAI level at the l-th AP.

Remark 5.2. zzzIMI
d and zzzIAI

l in (5.3) and (5.6) are mainly attributed to the large-scale fading
of the interfering links, PA and the residual IAI/IMI after the supplementary mitiga-
tion of IAI/IMI in propagation/analog- and digital-domain. In distributed CF sys-
tems, since each AP works independently, the propagation/analog-domain IAI sup-
pression can hardly rely on the coordinated transmit beamforming and successive in-
terference cancellation [86, 172]. Furthermore, the passive methods, such as antenna
cross-polarization, beam separation and absorber can only provide a small part of IAI
suppression [72]. Additionally, due to the employment of single-antenna, the MSs with
less powerful baseband processor may fail to handle any IMI in the propagation/ana-
log domain. However, as seen in (5.3) and (5.6), in our porposed MDD-CF scheme, the
IAI and IMI are mutually orthogonal to the desired UL and DL signals, respectively, in
digital domain. Therefore, aided by the large-scale fading and PA to limit the received
signal within the effective dynamic range of ADC, the followed FFT operation in digital
domain can provide extra mitigation of IAI/IMI [23].

We should mention that like any other multicarrier systems, the FFT operation for the
mitigation of residual SI and IAI/IMI requires accurate time synchronization [68]. As
we know, it is relatively easy to achieve time synchronization between transmitter and
receiver at one side or between different APs via low-latency fronthauls [173], while the
synchronization between MSs is challenging and the excessive time synchronization
error beyond the allowable time window may degrade the performance of the FFT-
relied interference cancellation. However, this issue is beyond the scope of this chapter,
and will be studied in our future work.
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Due to the feature of distributed operation in our proposed system, each AP firstly
processes the received signals from MSs using the local combining vectors, yielding
ỹl [m̄] = wwwH

ld[m̄]yyyl [m̄], where wwwld[m̄] denotes the local combining vector of AP l for de-
tecting MS d. Then, the local estimated data by all APs are further collected by the
CPU for final processing, which can be expressed as ycpu[m̄] = ∑l∈L ỹl [m̄]. The SINR
obtained by the CPU for detecting the data transmitted on the UL subcarrier m̄ of MS
d can be expressed as

SINRd,m̄ =
µdm̄ pdm̄

⃓⃓⃓
www̃d[m̄]hhh̃d[m̄]

⃓⃓⃓2
MUId,m̄ + SId,m̄ + IAId,m̄ + σ2 ∥www̃d[m̄]∥2 , (5.8)

where www̃d[m̄] =
[︁
wwwH

1d[m̄], ..., wwwH
Ld[m̄]

]︁
∈ C1×NL, hhh̃d[m̄] = [hhhH

1d[m̄], ..., hhhH
Ld[m̄]]H ∈ CNL×1,

MUId,m̄ = ∑d′∈D\{d} µd′m̄ pd′m̄

⃓⃓⃓
www̃d[m̄]hhh̃d′ [m̄]

⃓⃓⃓2
, SId,m̄ = ∑l∈LE

[︂⃦⃦
wwwH

ld[m̄]zzzSI
l

⃦⃦2
]︂
, IAId,m̄ =

∑l∈LE
[︂⃦⃦

wwwH
ld[m̄]zzzIAI

l

⃦⃦2
]︂
.

5.2.4 Beamforming Strategy

In this chapter, the zero-forcing (ZF) beamforming strategy is chosen for transmitting
and receiving at APs. Generally speaking, MMSE beamforming outperforms ZF beam-
forming when perfect CSI is available, but when considering the multi-MS interfer-
nece suppression, computation complexity as well as concise formulation, ZF is ap-
plied in the following analysis, and it can be easily substituted by MMSE in our pro-
posed system. Based on the ZF principle [174], the precoder/combiner at the l-th AP,
i.e., FFFZF

l [m] =
[︁

fff ZF
l1 [m], ..., fff ZF

lD [m]
]︁

and WWWZF
l [m̄] =

[︁
wwwZF

l1 [m̄], ..., wwwZF
lD [m̄]

]︁
, can be derived

as FFFZF
l [m] = HHHH

l [m]
(︁
HHHl [m]HHHH

l [m]
)︁−1 and WWWZF

l [m̄] = HHHl [m̄]
(︁
HHHH

l [m̄]HHHl [m̄]
)︁−1, respec-

tively, where HHHl [m] = [hhhl1[m], ..., hhhlD[m]]H, HHHl [m̄] = [hhhl1[m̄], ..., hhhlD[m̄]]. Note that, in
order to ensure that the MUI is fully suppressed, the implementation of ZF beamform-
ing should adhere to the constraint of N ≥ D.2 In this case, the MUI terms in (5.4) and
(5.8) are equal to zero. Therefore, the SINRd,m and SINRd,m̄ can be rewritten as follows

SINRd,m =

⃓⃓
∑l∈L λldµldm

√
pldmωldm

⃓⃓2
ξSI

d ΘDL + σ2
,

SINRd,m̄ =
µdm̄ pdm̄L2

∑l∈L υldm̄
(︁
ξSI

l ΘUL + σ2
)︁ , (5.9)

2For the sake of convenience, we assume that each AP is employed with sufficient antennas so as
to suppress the interference that itself generates. Although an AP is expected to be equipped with a
small number of antennas in CF systems, our assumption is still practical, as each AP can be treated as a
secondary central unit controlling N single-antenna APs operated in a centralized mode through fronthaul
connections.
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where

www̃d[m̄] =
[︂
wwwH

1d[m̄], ..., wwwH
Ld[m̄]

]︂
∈ C1×NL,

hhh̃d[m̄] = [hhhH
1d[m̄], ..., hhhH

Ld[m̄]]H ∈ CNL×1,

MUId,m̄ = ∑
d′∈D\{d}

µd′m̄ pd′m̄

⃓⃓⃓
www̃d[m̄]hhh̃d′ [m̄]

⃓⃓⃓2
,

SId,m̄ = ∑
l∈L

E

[︃⃦⃦⃦
wwwH

ld[m̄]zzzSI
l

⃦⃦⃦2
]︃

,

IAId,m̄ = ∑
l∈L

E

[︃⃦⃦⃦
wwwH

ld[m̄]zzzIAI
l

⃦⃦⃦2
]︃

. (5.10)

For the details of simplification, please refer to Appendix E.

Consequently, the average SE of the MDD-CF scheme in nats/s/Hz can be expressed
as

ΛSE =

(︃
1− γP

Tc

)︃
1

Msum
∑

d∈D

(︂
∑

m∈M
R(SINRd,m) + ∑

m̄∈M̄
R(SINRd,m̄)

)︂
, (5.11)

where R(x) ≜ ln(1 + x).

5.3 Spectral Efficiency Optimization within Single Coherence
Time Interval

In this section, we aim to maximize the SE over one CT interval in the MDD-CF scheme,
as shown in Fig. 5.2. Given the ZF beamforming, the optimization problem can be
stated as:

max
λld,µldm,µdm̄,pldm,pdm̄

ΛSE (5.12a)

s.t. λld ∈ {0, 1} , ∀l ∈ L, d ∈ D, (5.12b)

µldm ∈ {0, 1} , ∀l ∈ L, d ∈ D, m ∈ M, (5.12c)

µdm̄ ∈ {0, 1} , ∀d ∈ D, m̄ ∈ M̄, (5.12d)

∑
m∈M

∑
d∈D

λldµldm pldm ≤ Pl , ∀l ∈ L, (5.12e)

∑
m̄∈M̄

µdm̄ pdm̄ ≤ Pd, ∀d ∈ D, (5.12f)

∑
m∈M

R(SINRd,m) ≥ χDL, ∀d ∈ D, (5.12g)

∑
m̄∈M̄

R(SINRd,m̄) ≥ χUL, ∀d ∈ D, (5.12h)
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where the constraints of (5.12g) and (5.12h) are applied to guarantee the MS’s QoS
requirements for DL and UL so as to avoid unbalanced greedy resource-allocation
among MSs. It can be observed that (5.12) is an optimization problem of AP-selection
and resource-allocation, which is hard to solve because the binary variables

(︁
i.e., λλλ =

{λld} , µµµ = ({µldm} , {µdm̄})
)︁

are tightly coupled with the continuous variables ppp =

({pldm} , {pdm̄}). To circumvent this problem, in what follows, we first focus on the
reduction and approximation of the involved binary variables.

5.3.1 Reduction of Binary Variables

5.3.1.1 Reduction of µldm and µdm̄

Let us first consider the case of µldm. According to (5.4), the relationship between µldm

and pldm at the l-th AP can be provided by the following lemma.

Lemma 5.3. For the potentially optimal solution of (5.12), the only feasible combinations of
µldm and pldm are (µ∗ldm, p∗ldm) ∈ {(0, 0), (1, p̃ldm)}, where p̃ldm ̸= 0.

Proof. For the potentially optimal solution of (5.12), the possible combinations of µldm

and pldm are (µ∗ldm, p∗ldm) ∈ {(0, 0), (0, p̃ldm), (1, 0), (1, p̃ldm)}, where p̃ldm ̸= 0. Then, it
can be easily found that ΛSE

(︁
(λ, µµµ, ppp) |µldm = 0 & pldm = 0

)︁
= ΛSE

(︁
(λ, µµµ, ppp) | µldm pldm =

0 & µldm + pldm ̸= 0
)︁
, since µldm and pldm are tightly coupled in (5.9). When µldm or pldm

is equal to 0, SINRd,m and SINRd,m̄ remain unchanged as µldm pldm = 0. In conclusion,
due to the special relationship between µldm and pldm, these two variables in the optimal
solution of (5.12) can only be either (0, 0) or (1, p̃ldm). This completes the proof.

Based on Lemma 5.3, after the optimization problem (5.12) is solved, all µldm can be
subsequently obtained from the optimal PA, i.e., p∗ldm, which can be given as

µldm =

⎧⎨⎩ 0, p∗ldm
Pl

< κ

1, p∗ldm
Pl
≥ κ

, (5.13)

where κ is a very small number, implying that a small value of p∗ldm can be deemed as
zero. Analogously, we can apply Lemma 5.3 and (5.13) to derive pdm̄ and µdm̄.

5.3.1.2 Reduction of λld

The binary variable λld denotes the association status between AP l and MS d. Intu-
itively, once any of the DL subcarriers is activated at AP l for transmitting data to MS d,
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i.e., ∃m ∈ M, µldm = 1, the communication link between AP l and MS d is established.
Therefore, λld can be obtained as

λld = max {µldm|m ∈ M} , ∀l ∈ L, d ∈ D. (5.14)

5.3.2 Maximization of Spectral Efficiency Based on Quadratic Transform

After the reduction of the binary variables, as shown in Section 5.3.A, the SE optimiza-
tion problem can be transformed to a relatively simple form as

max
ppp

ΛSE (5.15a)

s.t. (5.12b), (5.12c), (5.12d), (5.12e), (5.12f), (5.15b)

SINRd,m ≥ e
χDL
Md − 1, ∀d ∈ D, m ∈ M, (5.15c)

SINRd,m̄ ≥ e
χUL
M̄d − 1, ∀d ∈ D, m̄ ∈ M̄, (5.15d)

where Md and M̄d denote the numbers of DL and UL subcarriers assigned to MS d,
respectively. During the optimization, the values of λλλ and µµµ are initialized to 111 and then
iteratively updated with the results of PA. Furthermore, the ZF precoder/combiner
are also re-computed during each iteration according to the updated results of AP-MS
connection and SA. Note that, the original constraints (5.12g) and (5.12h) contain a sum
of M and M̄ nonconvex components for each MS d, respectively, resulting in extremely
high complexity. Hence, to make the optimization tractable, these two constraints are
simplified to (5.15c) and (5.15d).

It can be shown that the scaled-down objective function (5.15a) belongs to the general
multiple-ratio concave-convex fractional programming (CCFP) problem [175]. How-
ever, the constraints of (5.15c) and (5.15d) are still nonconvex, which have to be ap-
proximated by the convex ones.

Specifically, based on (5.9), the constraint (5.15c) can be equivalently written as

(5.15c)⇐⇒

⎧⎪⎪⎨⎪⎪⎩
SINRd,m ≜ ϖ2

d,m/ψd,m ≥ e
χDL
Md − 1, (5.16a)

0 < ϖd,m ≤ ∑l∈L
√

pldmωldm, (5.16b)

ψd,m ≥ ξSI
d ΘDL + σ2, (5.16c)

where ϖd,m and ψd,m are new variables, while (5.16b) and (5.16c) are linear constraints.
For (5.16a), since the function fca(ϖd,m, ψd,m) ≜ ϖ2

d,m/ψd,m with (ϖd,m, ψd,m) ∈ R2
++

is convex, it can be approximated using the successive convex approximation (SCA)
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properties as [176]

fca(ϖd,m, ψd,m) ≥
2ϖ

(t)
d,m

ψ
(t)
d,m

ϖd,m −
(ϖ

(t)
d,m)

2

(ψ
(t)
d,m)

2
ψd,m := f (t)ca (ϖd,m, ψd,m), (5.17)

where (ϖ
(t)
d,m, ψ

(t)
d,m) is the feasible point obtained at the t-th iteration. Therefore, (5.16a)

can be substituted by the new constraint given by

f (t)ca (ϖd,m, ψd,m) ≥ e
χDL
Md − 1, ∀d ∈ D, m ∈ M. (5.18)

Following the same spirit, (5.15d) can be replaced by the following convex constraints:

(5.15d)⇐⇒

⎧⎪⎪⎨⎪⎪⎩
f (t)ca (
√

ϖd,m̄, ψd,m̄) ≥ e
χUL
M̄d − 1, (5.19a)

0 < ϖd,m̄ ≤ pdm̄L2, (5.19b)

ψd,m ≥ ∑l∈L υldm̄
(︁
ξSI

l ΘUL + σ2)︁ . (5.19c)

To this point, all the constraints in (5.15) are convex, and we can now apply the QT to
deal with (5.15). According to [175, Corollary 2], the sum-of-functions-of-ratio problem
in (5.15a), i.e.,

max
ppp

1
Msum

D

∑
d=1

(︁ M

∑
m=1

Rd,m(
Ad,m(ppp)
Bd,m(ppp)

) +
M̄

∑
m̄=1

Rd,m̄(
Ad,m̄(ppp)
Bd,m̄(ppp)

)
)︁

(5.20a)

s.t. (5.15b), (5.16b), (5.16c), (5.18), (5.19), (5.20b)

can be equivalently described as

max
ppp

1
Msum

D

∑
d=1

(︃ M

∑
m=1

Rd,m
(︁
2zdm

√︂
Ad,m(ppp)− z2

dmBd,m(ppp)
)︁

+
M̄

∑
m̄=1

Rd,m̄(2zdm̄

√︂
Ad,m̄(ppp)− z2

dm̄Bd,m̄(ppp)
)︃

(5.21a)

s.t. zdm ∈ R, ∀d ∈ D, m ∈ M , zdm̄ ∈ R, ∀d ∈ D, m̄ ∈ M̄, (5.21b)

(5.15b), (5.16b), (5.16c), (5.18), (5.19), (5.21c)

where A(ppp) and B(ppp) denote the numerator and denominator of (5.9), respectively.
Since R(x) for all d, m and m̄ is non-decreasing and concave, and for a given ppp, A(ppp)

B(ppp) is
in the concave-convex form, the optimal zzz = ({zdm} , {zdm̄}) can be obtained as zzz∗ =√

A(ppp)
B(ppp) . Then, for a given zzz, the problem (5.21) is a concave maximization problem over

ppp. Therefore, the overall problem can essentially be solved by a block coordinate ascent
algorithm, with zzz and ppp iteratively optimized, until the optimization converges to a
local optimum. Note that our QT-SCA algorithm mainly relies on the QT and SCA
methods, and the details for the proof of their convergence can be found in [175] and
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[176]. Furthermore, the convergence properties and the complexity of the algorithm
will be studied in Section 5.5. In summary, the overall optimization algorithm for SE
maximization is stated as Algorithm 6.

Algorithm 6: QT-SCA Algorithm for SE maximization in MDD-CF scheme

1 Initialization:
2 Set λλλ = 111, µµµ = 111;
3 Compute {ωldm} , {υldm̄} , ∀l, d, m, m̄;

4 Set t = 0, ppp(0) to a feasible value, ϖ
(0)
d,m = 1, ϖ

(0)
d,m̄ = 1, ψ

(0)
d,m = 1, ψ

(0)
d,m̄ = 1, ∀d, m, m̄;

5 [QT Iteration]
6 repeat

7 Compute zzz(t) using zzz(t) =
√

A(ppp(t))
B(ppp(t))

, for a fixed ppp(t) ;

8 Update ppp(t+1) by solving (5.21), for a fixed zzz(t) ;

9 Update ϖ
(t+1)
d,m , ϖ

(t+1)
d,m̄ , ψ

(t+1)
d,m , ψ

(t+1)
d,m̄ ;

10 Set t = t + 1;
11 until Convergence;
12 end
13 Update µµµ and λλλ using (5.13) and (5.14), respectively;
14 Repeat Step 3 to Step 13 until λλλ and µµµ are stable, and obtain the optimal SE, i.e.,

Λ∗SE.
Output: λλλ, µµµ, ppp, Λ∗SE

5.4 Spectral Efficiency Optimization within Radio Frame

The optimization problem addressed in the previous section only considered the single
CT interval and assumed perfect CSI. In this section, we extend our studies by consider-
ing a more complicated scenario, where the radio frame with imperfect CE is assumed.
More specifically, as shown in Fig. 5.3, in our proposed frame structure, starting from
the second CT interval of T2

c , IBFD- and MDD-CF schemes can exploit an extra γP of
time for DL transmission at the beginning of the interval during UL training, owing
to their FD feature. Therefore, for the convenience of illustration, we assume that af-
ter T1

c , each TPCT interval consists of two transmission phases, namely Phase I with
γP of supplementary DL transmission and UL training, and Phase II with (Tc − γP) of
DL/UL simultaneous transmissions. By contrast, in the counterpart TDD-CF scheme,
since pilots and data are sequentially transmitted, the SE performance may deteriorate
quickly in some cases. For example, when the relative velocity between MS and AP in-
creases, UL training has to be implemented more frequently as the result of the shorter
CT intervals, which unavoidably leads to the SE degradation.

However, in order to unleash the full advantages of FD, two paramount challenges
need to be addressed in this case. Firstly, since the channel varies continuously from
one CT interval to the next, the performance of the supplementary DL transmission in
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DLP UL G

: Analog-, digital-domain SI

TDD

IBFD

MDD

P : Pilots

DL : DL on          subcarriers           : DL on          subcarriers           

UL : UL on          subcarriers           

DL : DL on       subcarriers           : DL on       subcarriers           

UL : UL on       subcarriers           : UL on       subcarriers           

G : Guard period           : Guard period           

P G

DL

ULP

DL

ULP

DL

ULP

DL

ULP

DL

DL

……

……

……

DL : DL on       subcarriers with predicted channel          : DL on       subcarriers with predicted channel          

: Analog-domain SI

I II

G UL DL G

FIGURE 5.3: Structure of radio frame of TDD-, IBFD- and MDD- schemes, where Nc
denotes the number of CT intervals within one radio frame.

Phase I hinges on the predicted channel. For this problem, in literature, there are var-
ious channel prediction methods, e.g., Wiener filter [74], Kalman filter [15] and deep
learning [16], which can be applied to predict the required channels with high accu-
racy. Secondly, as depicted in Fig. 5.3, although the extra DL transmission during
Phase I can increase SE due to the added transmission time, it may cause interference
on the receiving of UL pilots, and hence affect the CE accuracy, which in turn leads
to degraded performance in Phase II. Therefore, there exists a trade-off between the
accuracy of channel acquisition and the SE provided by the supplementary DL trans-
mission. To this end, we shall focus on this trade-off problem in the sequel under the
assumption that the CSI used for the supplementary DL transmission is predicted us-
ing the Wiener filter.

5.4.1 Channel Estimation in MDD Cell-Free Scheme

Let us assume that all MSs synchronously transmit their frequency-domain pilot se-
quences (FDPS) over the M̄ UL subcarriers, while all APs transmit DL data to MSs
over the DL subcarriers. Let the FDPS transmitted by the d-th MS be expressed as
xxxp

d =
[︁
xp

d [1], ..., xp
d [m̄], ..., xp

d [M̄]
]︁T. Then, the received training signal at the n-th antenna

of AP l can be written as

yyyn
l =

D

∑
d=1

√︂
pp

dXXXp
dΦΦΦULFFFΨΨΨgggn

ld + zzzn,SI
l + zzzn,IAI

l + nnnn
l , (5.22)

where pp
d denotes the power assigned for sending pilots on each UL subcarrier by MS

d, ΦΦΦUL = III(M̄,:)
Msum

, XXXp
d = diag

{︁
xxxp

d

}︁
, nnnn

l ∼ CN (000, σ2IIIM̄). Note that the transmit power of
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pilots is assumed to be larger than that of UL data, which is fixed during communica-
tion. According to Appendix E, we can obtain zzzn,SI

l ∼ CN
(︂

000,
(︁
cov

{︁
zzzSI

l

}︁)︁
n,n IIIM̄

)︂
and

zzzn,IAI
l ∼ CN

(︂
000,
(︁
cov

{︁
zzzIAI

l

}︁)︁
n,n IIIM̄

)︂
.

Based on the CE approach proposed in Section 2.4, the noisy observation of gggn,d[i] can
be formed as

yyỹn
ld = JJJH

d yyyn
l =

√︂
pp

d M̄

Msum
gggn

ld + JJJH
d (zzz

n,SI
l + zzzn,IAI

l + nnnn
l ). (5.23)

Correspondingly, the MMSE estimate to gggn
ld is given by

ggĝn
ld =

βld

√
pp

d
U

βld pp
d M̄

UMsum
+
(︁
ξSI

l Il + σ2
)︁yyỹn

ld, (5.24)

where Il = ∑m∈M ∑d∈D λI
ldµI

ldm pI
ldm +

ξIAI
l

ξSI
l

∑l′∈L\{l} ∑m∈M ∑d∈D
βll′

Msum
λI

l′dµI
l′dm pI

l′dm de-
notes the summation of SI and IAI. Here the superscript ‘I’ means that the interference
arises from the supplementary DL transmission of Phase I, as shown in Figure 5.3.
Then, according to the properties of MMSE, gggn

ld can be orthogonally decomposed into
gggn

ld = ggĝn
ld + eeen

ld, where eeen
ld is the CE error vector uncorrelated with ggĝn

ld , which has the
covariance matrix

Ξe = cov {eeen
ld} =

⎛⎝βld

U
−

β2
ld pp

d M̄
U2 Msum

βld pp
d M̄

UMsum
+
(︁
ξSI

l Il + σ2
)︁
⎞⎠ IIIU . (5.25)

5.4.2 Spectral Efficiency Maximization within Two-Phase Coherence Time
Interval

As the case of the SE optimization in T1
c has already been addressed in Section 5.4, here

we only study the case of the new designed TPCT interval, i.e., Tn
c , n = 2, ..., Nc, as

shown in Fig. 5.3.

To begin with, the average SE in Phase I can be expressed as

ΛI
SE =

γP

Tc

1
Msum

∑
d∈D

∑
m∈M

R(SINRˇ d,m), (5.26)

where SINRˇ d,m is different from the previous SINR, which depends on the predicted
CSI by Wiener filter. Then, the maximization of the average SE in a TPCT interval
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amounts to the following optimization problem:

max
pppI,pppII,λλλI,µµµI,λλλII,µµµII

ΛTPCT
SE = ΛI

SE + ΛII
SE (5.27a)

s.t. (5.12b), (5.12c), (5.12d), (5.12e), (5.12f), (5.15b), (5.15c), (5.27b)

λI
ld ∈ {0, 1} , ∀l ∈ L, d ∈ D, (5.27c)

µI
ldm ∈ {0, 1} , ∀l ∈ L, d ∈ D, m ∈ M, (5.27d)

∑
m∈M

∑
d∈D

λI
ldµI

ldm pI
ldm ≤ Pl , ∀l ∈ L, (5.27e)

where pppI/II =
{︂

pI/II
ldm

}︂
, λλλI/II =

{︂
λI/II

ld

}︂
, µµµI/II =

{︂
µI/II

ldm

}︂
. The ΛI

SE is only related to pppI,

while the ΛII
SE depends on both pppI and pppII. (5.12b)-(5.12f) and (5.27c)-(5.27e) explain the

power constraints and binary selections for Phase II and Phase I, respectively. (5.15b)
and (5.15c) are the QoS constraints on Phase II, meaning that the objective in Phase I
is to increase the overall SE as much as possible, while the QoS constraints are only
imposed on Phase II. However, as shown in (5.24) and (5.25), pppI in Phase I is included
in the error vector of the time-domain estimated CSI. Hence, it implicitly affects the fol-
lowing DL/UL transmission in Phase II, which makes the above optimization problem
intractable to obtain pppI and pppII at the same time.

In order to circumvent this problem, we introduce a two-step iterative algorithm to
split the original optimization problem of (5.27) into two sub-problems, namely the
optimizations of ΛI

SE and ΛII
SE, which are expressed as follows:

Sub 1: max
pppI,λλλI,µµµI

ΛI
SE (5.28a)

s.t. (5.27c), (5.27d), (5.27e), (5.28b)

ξSI
l Il ≤ ηlσ

2, ∀l, (5.28c)

and

Sub 2: max
pppII,λλλII,µµµII

ΛII
SE (5.29a)

s.t. (5.27b). (5.29b)

Note that, since the above two sub-problems are strongly correlated, we introduce
(5.28c) in the first sub-problem to build the connection between them, where ηl is a
configurable factor for controlling the performance of CE, which is elaborated in the
following remark.

Remark 5.4. The value of ηl directly influences the accuracy of CE, and further affects
the DL/UL transmissions in Phase II. For instance, as ηl decreases, to meet the con-
straint of (5.28c), APs have to decrease their transmit power so as to reduce Il at the
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cost of compromised SE in Phase I. By contrast, a smaller Il results in the smaller esti-
mation error in (5.25), which in turn results in a higher SE in Phase II. Hence, iteratively
updating ηl is essential for the proposed optimization problem. In our implementation,
we resort to the bisection method to find the optimal ηl in the range of [0, ηmax], where 0
implies that the supplementary DL transmission in Phase I is not activated. In this case,

there is no extra burden on the CE in the current CT interval. By contrast, ηmax =
ξSI

l Imax
l

σ2

denotes the maximum effective value, where Imax
l means that all APs transmit at their

highest possible power for the supplementary DL transmission in Phase I.

Therefore, in the proposed algorithm, we first set ηl = 0, and obtain the total initial SE
of ΛTPCT(0)

SE = ΛI(0)
SE + ΛII(0)

SE , where ΛI(0)
SE = 0. Then, ηl is iteratively updated based on

the bisection method until convergence is achieved. The overall algorithm is summa-
rized in Algorithm 7.

Algorithm 7: SE Maximization within TPCT Interval

1 Initialization:

2 Set t = 0, t
′
= 0 ηl ∈ [ηa, ηb], ηa = η

(0)
l = 0, ∀l, ηb = ηmax;

3 Solve Sub 1 and Sub 2 problems in sequence using the QT-SCA method, and obtain

ΛI(t)
SE and ΛII(t)

SE ;

4 Compute ΛTPCT(t)
SE = ΛI(t)

SE + ΛII(t)
SE ;

5 [Bisection Iteration of ηl]
6 repeat

7 Set t = t + 1, and update η
(t)
l = ηa+ηb

2 ;
8 Implement Step 3 and Step 4;

9 if ΛTPCT(t)
SE < ΛTPCT(t

′
)

SE then
10 ηb = η

(t)
l ;

11 else
12 ηa = η

(t)
l , t

′
= t;

13 end if
14 until Convergence;
15 end

Output: pppI, λλλI, µµµI, pppII, λλλII, µµµII, ΛTPCT∗
SE

5.5 Simulation Results and Discussion

In this section, we provide the numerical results for comparison of MDD-, IBFD- and
TDD-CF in distributed CF-mMIMO systems in terms of SE. All the simulations are
implemented on MATLAB using the CVX tool [177].
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FIGURE 5.4: The subcarriers arrangement in MDD-CF scheme.

5.5.1 Parameters and Setup

The following results are obtained based on either one CT interval or one radio frame
consisting of one CT interval and (Nc − 1) TPCT intervals. In our studies, we assume
that the subcarrier spacing is 15 KHz (with the central carrier frequency of 5 GHz), and
each OFDM symbol with cyclic prefix spans ts = 71.35µs [164]. We assume that all
MSs move at a relative speed of v = 5 km/h, while APs are stationary. Hence, the
coherence time is tct ≈ 21.6 ms. In this case, one CT interval can accommodate about
Tc = tct/ts ≈ 300 OFDM symbols. Regarding the frame structure [164,170], we assume
that for all systems, the pilot transmission requires 15 OFDM symbol durations within
one CT (i.e., γP = 15, as shown in Fig. 5.2 and Fig. 5.3), while for TDD systems, the GP
lasts for 15 OFDM symbol durations in a TDD radio frame (i.e., γG = 15).

Assuming the delay spread of 40 ns [178], the coherence bandwidth is Bc ≈ 4.2 MHz.
To make subcarrier signals experience flat fading, we assume that the total number of
subcarriers is Msum = 48 for all systems, while in MDD systems, the numbers of DL
and UL subcarriers are M = 32 and M̄ = 16, respectively. On the basis of Proposition 1,
to guarantee the orthogonal receiving among different MSs during channel estimation,
the 16 UL subcarriers using for UL/pilot transmissions are equally selected from the
48 subcarriers, while the remaining 32 subcarriers are used for DL transmissions, as
shown in Fig. 5.4. This subcarriers arrangement keeps constant during one CT interval
and radio frame. For the sake of fair comparison, in TDD systems, the ratio of DL/UL
transmission times is set to the same ratio of DL/UL subcarrier numbers in MDD-CF,
i.e., γDL

TDD = 180 and γUL
TDD = 90, if the CT interval has 300 symbols, while the other 30

symbols are pilot symbols and GP intervals. Then, the total SE of TDD-CF within one
CT or one radio frame can be expressed as

ΛTDD
SE =

1
Msum

∑
d∈D

(︂ Msum

∑
m=1

γDL
TDD
Tc

R(SINRd,m) +
Msum

∑
m̄=1

γUL
TDD
Tc

R(SINRd,m̄)
)︂

. (5.30)

Owing to the DL transmission in Phase I, as shown in Figure 5.3, the total SE achieved
by the MDD-CF in one radio frame is different from that in one CT interval, which can
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be expressed as

ΛMDD-RF
SE =

1
Nc

ΛSE +
Nc

Nc − 1
ΛTPCT

SE , (5.31)

where ΛSE and ΛTPCT
SE are derived based on (5.11) and (5.27), respectively. The SE com-

putation of IBFD-CF within one radio frame is similar to that of MDD-CF.

We assume that APs in both IBFD-CF and MDD-CF schemes with distributed opera-
tion are capable of providing 30 dB IAI suppression in the propagation/analog domain
with the existing approaches as mentioned previously. Provided that the 12-bit ADC
is employed, MDD-CF can suppress IAI up to 72 dB (i.e., ξMDD-IAI

l = −72 dB, ∀l), of
which 42 dB is attributed to the digital cancellation by FFT. On the contrary, as IBFD-
CF can hardly cope with the IAI in digital domain, we assume that it can provide no
more than 10 dB of digital-domain IAI mitigation3, yielding ξIBFD-IAI

l = −40 dB, ∀l. In
the context of the IMI suppression, since the propagation/analog-domain IMI meth-
ods are relatively complicated to implement at the single-antenna MS, it is assumed
that ξIBFD-IMI

d = 0 dB, ∀d, while ξMDD-IMI
d = −42 dB, ∀d, owing to the FFT-assisted

suppression.

We assume that all APs and MSs are uniformly and randomly distributed within a
square of size (SD × SD) m2. The large-scale fading coefficients β ∈ {βld, βll′ , βdd′}
is given by β[dB] = PL + σshz, where the shadowing is characterized by σshz with a
standard deviation of σsh = 4 dB and z ∼ N (0, 1). The PL exponent is assumed to
be -3.8 [75]. Unless otherwise noted, the other parameters are listed in Table 5.1. The
empirical cumulative distribution function (CDF) of per-MS SE and the average per-
MS SE in the following simulations are obtained based on 1000 random realizations of
AP and MS positions.

5.5.2 Case of One Coherence Time Interval

Given a randomly generated network layout, Fig. 5.5 shows the AP-selection and PA
results attained by Algorithm 6 over one CT interval. The numbers within the blue and
pink squares denote the AP and MS’s transmit power, respectively. The black arrowed
lines denote the DL links with the transmit power larger than 1 W. It can be observed
from the figure that, subject to the limited SIC capability, the transmit power of a MS
for UL transmission is much less than the budget power. Moreover, some APs, such
as AP 1, AP 2 and AP 9, located far away from MSs are controlled by the algorithm to
reduce their transmit power to avoid IAI on the other APs. Furthermore, in Fig. 5.6,
as an example, we show the detailed PA and SA results of AP 11 to MS 3. Explicitly,
based on (5.13), AP 11 allocates different power to the 32 DL subcarriers, where some

3In fact, authors in [86] presented several digital-domain methods to suppress IAI, which end up with
only providing about 10 dB of IAI mitigation. The study implies that the IAI suppression in IBFD-CF
scheme with centralized operation is very challenging, not to mention the CF systems operated in a dis-
tributed way.
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TABLE 5.1: Simulation parameters

Default parameters Value

Number of APs, MSs (L, D) (12, 4)

Number of antennas per AP (N) 6

AP’s and MS’s Power budget (Pl , Pd, ∀l, d) (10, 1) W

UL pilot power (pp
d , ∀d) 0.6 W

MSs’ QoS requirements (χDL, χUL) (0.5, 0.1)

Noise power (σ2) -94 dBm

Delay taps (U) 4

Number of CT intervals within one frame (Nc) 10

Residual SI level at AP (ξMDD-SI
l , ξIBFD-SI

l , ∀l) -130 dB

Residual SI level at MS (ξMDD-SI
d , ξIBFD-SI

d , ∀d) -120 dB

Cell length (SD) 400 m

FIGURE 5.5: AP-selection and PA results obtained by Algorithm 1 in MDD-CF scheme.

subcarriers, namely subcarriers 11, 12, 22, 23 and 24, with very small power are not
assigned to MS 3.

In the following simulations, we focus on the performance comparison of MDD-, TDD-
and IBFD-CF schemes over one CT interval, as shown in Fig. 5.2. First, the perfor-
mance of three schemes is presented in Fig. 5.7. From the results, when v = 5 km/h
(corresponding to Tc = 300 OFDM symbols), TDD-CF slightly outperforms MDD-CF
in terms of the 95%-likely and mean per-MS SE as the result of the IAI and IMI being
not perfectly canceled in MDD-CF. Although IBFD-CF provides substantially higher SE
for the strongest MSs, its 95%-likely performance is only about 0.5 nats/s/Hz, which
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FIGURE 5.6: PA and SA results of AP 11 to MS 3 achieved by Algorithm 1.
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FIGURE 5.7: Cumulative distribution of the per-MS in different CF schemes.

is 10 times lower than MDD- and TDD-CF (5 nats/s/Hz). The rationale is that there
are usually only a small number of MSs that can benefit from IBFD mode. These MSs
should be located far away from the neighboring MSs and their serving APs are also not
close to each other. Otherwise, to meet the QoS requirements, see (5.12g) and (5.12h),
the DL/UL transmit power has to be decreased so as to reduce the negative effect of
IAI/IMI. Furthermore, the performance of these schemes is very different when the rel-
ative speed between MSs and APs is increased to 15 km/h, which corresponds to 100
OFDM symbols transmitted in one CT interval. Fig. 5.7 clearly shows that the mean
per-MS SE of TDD-CF deteriorates to 5.70 nats/s/Hz, as the relative speed increases.
This is because the length of GP is constant, but its proportion within one CT interval
becomes larger when the relative speed goes up, which therefore leads to the reduced
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FIGURE 5.8: Cumulative distribution versus Per-MS SE in MDD- and IBFD-CF
schemes with different SIC.

SE.

The influence of the SIC capability at APs and MSs in the MDD- and IBFD-CF schemes
is demonstrated in Fig. 5.8. Note that the value of ξMDD-SI

d is not shown in the figures,
which is always set to be 10 dB lower than that of ξMDD-SI

l . From Fig. 5.8(a), it can
be seen that the higher SIC capability the APs and MSs have, the better performance
the MDD-CF can attain. Specifically, when ξMDD-SI

l = −140 dB, MDD-CF outperforms
TDD-CF with a higher performance upper bound. This is because MDD mode is free of
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GPs, and hence have more time resource for data transmissions. On the contrary, from
Fig. 5.8(b), the interesting result is that when the ξIBFD-SI

l reaches at 120 dB, the further
increased SIC capability can hardly improve the performance of IBFD-CF. This implies
that the IBFD-CF is mainly IAI/IMI-limited.

Fig. 5.9 evaluates the influence of cell size on the performance of MDD- and IBFD-CF
schemes. It can be clearly seen that as the cell size decreases, meaning that the dis-
tribution of MS and AP become denser, the 95%-likely per-MS SE of the MDD-CF is
increased by 4 nats/s/Hz, while the IBFD-CF fails to obtain the significant gain from
the denser network deployment. The reason is that, in IBFD-CF, the denser distribu-
tion of APs and MSs also means the shorter interference links of AP-AP and MS-MS.
In this case, the large-scale fading is unable to provide enough IAI and IMI mitigation,
consequently, both the APs and MSs have to decrease their transmit power so as to con-
trol the level of interferences. By contrast, the FFT-assisted IAI and IMI cancellation in
MDD-CF can efficiently mitigate the interference in digital domain. Hence, MDD-CF
can benefit significantly from the short-distance communications. Moreover, to fur-
ther illustrate the effect of IAI, we assume that the APs in both MDD-CF and IBFD-CF
schemes have an extra 30 dB of IAI suppression capability, when SD = 100 m. Then, it
can be seen that the IBFD-CF has a significant improvement in terms of both the 95%-
likely and the median per-MS SE. However, the 95%-likely per-MS SE of the IBFD-CF
with extra IAI suppression is still 4 nats/s/Hz lower than that of the MDD-CF without
extra IAI suppression, due to the less IMI mitigation. We can conclude from Fig. 5.8
and Fig. 5.9 that the IBFD is not a desirable mode for FD-style operation in distributed
CF-mMIMO systems, while the MDD mode is more promising.
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FIGURE 5.10: SE convergence behavior of Algorithm 6 in MDD-CF scheme.

The convergence behavior of the Algorithm 6 in MDD-CF is shown in Fig. 5.10, where
each iteration period denotes one cycle, which includes step 3 - step 13 in the Algo-
rithm. The lowest starting point at the beginning of each iteration period is due to
the reinitialization at step 4. From the figure, it can be easily seen that Algorithm
6 can reach convergence only after two iteration periods. Concerning the complex-
ity, Algorithm 6 is mainly attributed to solving the optimization problem (5.21), re-
gardless of the computation of the ZF matrices and the initialization of the involved
variables. Hence, according to [179], the approximated complexity of Algorithm 6 is
O
(︁
(LDM + 2DM + 3DM̄)2(L + D + 3DMsum)2.5 + (L + D + 3DMsum)3.5)︁ per itera-

tion. From these results, one can see that the numbers of MSs and subcarriers are the
two dominant factors limiting the scalability of MDD-CF, where the MSs are densely
distributed with a large number of available subcarriers. To this end, the more scalable
approaches for the MDD-CF scheme deserve further investigation in the future.

5.5.3 Case of One Radio Frame

In this subsection, we demonstrate the advantages of MDD-CF, which can fully exploit
the time resource within one radio frame with the aid of Algorithm 7 to improve the SE
performance, as detailed below.

Fig. 5.11 evaluates the per-MS SE of the three different schemes over a range of relative
speeds. Explicitly, the SE performance of TDD-CF deteriorates quickly, as the relative
speed increases. The explanation is as follows. In TDD mode, DL/UL transmissions
can only be implemented in a sequential manner. When the relative speed between MSs
and APs increases, the reduced CT interval leads to the less time for data transmission.
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FIGURE 5.11: Per-MS SE of one radio frame versus the relative speed.

By contrast, with the aid of our proposed Algorithm 7, both MDD-CF and IBFD-CF
are robust to the high-mobility scenarios, as expected. In particular, as MDD-CF can
benefit from the lower IAI/IMI as well as the FD operation during both Phase I and II,
it doubling the per-MS SE compared to TDD-CF, at the speed of 30 km/h. As shown in
Fig. 5.11, the IBFD-CF is also outperformed by the MDD-CF, due to the larger residual
IAI/IMI, which not only affect the UL and DL communications in Phase II, but also the
CE in Phase I. However, it can eventually surpass the TDD-CF at about 18 km/h and
achieve 1 nats/s/Hz higher per-MS SE than the TDD-CF at 30 km/h, due to the fact
that Phase I becomes increasingly paramount in TPCT interval.

The performance of Phase I and that of the combination of Phase I and Phase II are
demonstrated in Fig. 5.12 and Fig. 5.13, respectively. Due to the limited capability of
IAI/IMI management in IBFD-CF, in order to guarantee the accuracy of CE in Phase
I, the APs have to cut down the DL’s transmit power so as to limit the interference
imposed on the pilot receiving. Consequently, as seen in Fig. 5.12, the IBFD-CF attains
a much poorer performance in Phase I than the MDD-CF. Furthermore, Fig. 5.13 shows
that when the relative speed is increased to 30 km/h, the 95%-likely per-MS SE of the
MDD-CF is nearly two times higher than that of the TDD-CF. Additionally, as seen in
Fig. 5.13, although the IBFD-CF lags behind the TDD-CF in terms of the 95%-likely
per-MS SE, its median performance is higher than that of the TDD-CF at 30 km/h.

Finally, the convergence of Algorithm 7 is shown in Fig. 5.14. Note that η marked in the
figure denotes the average value of ηl , i.e., η = ∑ ηl/L. It can be seen from the results
that when t = 0 and η = 0, only Phase II is activated and there is no data transmission
in Phase I. Then, as η iterates in line 7 of Algorithm 7, the general observation is that if
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FIGURE 5.14: SE convergence behavior of Algorithm 3 in MDD-CF scheme.

the performance of one phase improves, the performance of the other phase degrades.
The reason is that according to (5.28c), if more power is allocated for the DL transmis-
sion in Phase I, it results in not only the SE increase but also a larger CE error, which
leads to the SE degradation in Phase II, and vice versa. The results demonstrate that
our proposed algorithm is capable of attaining the 99% system performance after 6 it-
erations, and fully converging within about 10 iterations. The complexity of Algorithm
7 is mainly attributed by the optimization of (5.27), which has two phases. However,
as indicated by (5.28) and (5.29), the complexity of Phase I is much lower than that of
Phase II, as there are less variables to consider and also less constraints involved in the
optimization of Phase I. Consequently, the complexity of Algorithm 7 is dominated by
the operations in Phase II, which is nearly the same as Algorithm 6.

5.6 Chapter Summary and Conclusions

The MDD-CF scheme has been proposed and comprehensively studied in terms of SE
performance, when AP-selection, PA and SA are taken into consideration. Firstly, the
SE optimization problem has been studied in one single CT interval. We have exploited
the interdependence of the involved variables and transformed the mixed-integer opti-
mization to a continuous-integer convex-concave problem. In order to efficiently solve
the problem, we have proposed a QT-SCA iterative algorithm, which is capable of
quickly achieving a local optimum. The simulation results show that in distributed
CF-mMIMO systems, MDD-CF can significantly outperform IBFD-CF due to the more
efficient IAI and IMI mitigation. Secondly, the case of one radio frame with imperfect
CE has been studied. To fully take the advantages of FD operation in radio frame, we
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have designed a TPCT interval comprised of two tightly coupled phases. Then, a two-
step iterative algorithm based on bisection method has been proposed to maximize the
SE in TPCT interval. According to the simulation results, with the aid of TPCT interval
and Algorithm 7, MDD-CF is more robust to high-mobility scenarios, while the per-
formance of TDD-CF degrades quickly with the increase of the relative speed between
APs and MSs.
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Chapter 6

MDD Assisted Cell-Free Massive
MIMO with Heterogeneous Graph
Neural Network for Power
Allocation

This chapter describes a graph learning based method, in comparison with the clas-
sic method proposed in Chapter 5, for the implementation of power allocation (PA) in
multicarrier-division duplex assisted cell-free (MDD-CF) massive multiple-input multiple-
output (mMIMO) systems. Its achievable performance and scalability will be demon-
strated.

6.1 Introduction

In Chapter 5, we proposed a CF scheme driven by MDD mode, and the quadratic trans-
form with successive convex approximation (QT-SCA) algorithm was presented to deal
with the PA problem in MDD-CF mMIMO. However, according to the analysis of com-
putational complexity in Fig. 5.9, despite the Algorithm 6 can quickly converge to local
optimum, its complexity will exponentially grow as the increase of network size, which
is impractical for timely application over each coherence time (CT) interval. In this re-
gard, the explosive research of machine learning (ML) sheds some light on a new way
to resolving the PA problem in CF systems. As we mentioned in Section 1.3.3, there
have been several papers studying PA based on the state-of-the-art neural networks,
e.g., deep neural network (DNN), reinforcement deep Q-learning network, etc. Never-
theless, most of the existing learning-based PA approaches was shown to prevail over
the traditional methods, they fail to exploit the structure of the wireless communication
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networks, and hence can not be generalized to unseen scenarios such as the networks
with various cell sizes or access point (AP) / mobile station (MS) densities. An ongoing
idea of enabling a scalable and generalizable model is to integrate the structure of the
objective task with the neural network architecture.

To this end, the convolutional neural network (CNN) assisted models in computer vi-
sion fully exploiting the neighbor pixels of an image were judged a great success [180].
This idea has also been brought to study optimization problems in wireless communi-
cation. In [181], authors exploits the users’ geographical location in a 2D Euclidean
space, and proposed spatial convolution, which can deal with the device-to-device
(D2D) networks with thousands of users but cannot handle fading channels. Then,
authors in [182] regarded fading channel matrix as the adjacency matrix of graph and
proposed a random edge graph neural network (GNN), which inhibits a good gener-
alization with varying numbers of users. Since then, GNN reaping the advantages of
scalability, generalization and parallel execution has attracted significant interests from
researchers working in wireless communications. In [183], a wireless channel graph
convolution network (WCGCN) was proposed for dealing with PA and bearmforming
problem in D2D networks. Authors showed that the WCGCN trained on small size
system can be generalized to a large system with higher density of MS and larger cell
sizes. Additionally, [184] studied the PA in ad hoc networks based on GNN. However,
above papers only exploited the homogeneous GNN in ad hoc or D2D networks with
only one type of nodes, which cannot meet the demand of more complicated scenario
like full duplex (FD)-style CF networks, where AP and MS are two different node types
employed with different node features, and each of node is connected with two differ-
ent types of node via communication path and interference path.

Against this background, we propose a CF-heterogeneous GNN (HGNN) network,
namely CF-HGNN, to solve the PA problem in MDD-CF scheme, which is to the best
of our knowledge the first HGNN-based network to handle the PA in multicarrier FD-
style mMIMO systems. The major contributions of this chapter are summarized as
follows:

Firstly, for the sake of generalization and less complexity, we propose CF-HGNN to
deal with the PA problem in MDD-CF mMIMO. The CF-HGNN can handle vary-
ing number of APs, MSs and subcarriers through an adaptive node embedding layer.
Furthermore, the message passing algorithm combined with the meta-path attention
mechanism is introduced in CF-HGNN, which is able to learn the importance of inter-
fering path and data transmission path during information aggregation at each AP/MS
node.

Secondly, we conduct comprehensive experiments to evaluate the effectiveness of CF-
HGNN for PA problem in MDD-CF mMIMO. The training of CF-HGNN is imple-
mented in an unsupervised way with unlabeled data. Simulation results show that
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CF-HGNN is capable of learning nearly the same PA strategy with QT-SCA algorithm
and significantly outperforms the traditional unfair greedy method, without any prior
information. Additionally, CF-HGNN is adaptive to varying number of nodes and
subcarriers, and also generalization ability to different sizes of CF network. Finally, it
is demonstrated that CF-HGNN has an incredible advantage over QT-SCA in terms of
computational complexity and operation time.

The rest of the chapter is organized as follows. In Section II, we reformulate the PA
problem in MDD-CF mMIMO, which is similar to (5.15). In Section III, the CF-HGNN is
proposed to solve the formulated problem in MDD-CF mMIMO systems from a learn-
ing perspective. Simulation results are presented in Section IV, and finally, conclusions
are drawn in Section V.

6.2 Problem Formulation

To begin with, the channel models, DL/UL transmissions as well as beamforming strat-
egy are kept nearly the same with Section 5.2, while the subcarrier allocation (SA) and
AP-selection indicators are omitted. Besides, we only consider the one CT interval
scenario, as shown in Fig. 5.2, in this chapter. For the sake of convenience, here we
reformulate the PA problem, which is given by

max
pldm,pdm̄

ΛSE =
1

Msum
∑

d∈D

(︁
∑

m∈M
ln(1 + SINRd,m) + ∑

m̄∈M̄
ln(1 + SINRd,m̄)

)︁
(6.1a)

s.t. ∑
m∈M

∑
d∈D

pldm ≤ Pl , ∀l ∈ L, (6.1b)

∑
m̄∈M̄

pdm̄ ≤ Pd, ∀d ∈ D, (6.1c)

∑
m∈M

ln(1 + SINRd,m) ≥ χDL, ∀d ∈ D, (6.1d)

∑
m̄∈M̄

ln(1 + SINRd,m̄) ≥ χUL, ∀d ∈ D, (6.1e)

where all the involved variables are defined as Section 5.2. It can be observed that (6.1)
is a NP-hard nonconvex problem with nonconvex constraints as shown in (6.1d) and
(6.1e). Generally, to solve this kind of complicated problem, we have to transform the
main function and constraints into the approximated convex ones and solve them in
an iterative way. With this regard, we proposed a QT-SCA in Section 5.3.2. However,
the complexity of QT-SCA significantly increases as the size of network becomes large,
especially in multicarrier FD-like systems. Next, we will resort to graph neural network
to efficiently deal with this optimization problem.
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6.3 Graph Learning in MDD-CF networks

In order to leverage the structural information of MDD-CF network to solve the compli-
cated problem, as that formulated in (6.1), the heterogeneous graph learning based PA
scheme is introduced. We aim to learn a scalable and transferable HGNN to efficiently
distribute both APs’ and MSs’ transmit power to maximize the SE of the distributed
MDD-CF systems.

6.3.1 Definition of Heterogeneous Graph

A heterogeneous graph can be represented as G = (V , E), where V is the set of nodes,
and E is the set of edges. The heterogeneous graph has a node type mapping function
ϕ : V −→ Q and an edge type mapping function ψ : E −→ P , where Q and P denote
the sets of predefined node types and link types, |Q| + |P| > 2 [185]. Explicitly, we
can write Q = {Q1, Q2, ...} and P = {P1, P2, ...}, where Qi and Pj are the i-th node
type and j-th link type. Let vvvi ∈ RFv×1 denote a node with Fv-dimensional features and
eeei,j ∈ RFe×1 denote an edge pointing from vvvj to vvvi, which has Fe-dimensional features.
Given the mapping function ϕ and ψ, each node belongs to a particular node type of
ϕ(vvv) ∈ Q and each edge belongs to a specific relation of ψ(eee) ∈ P . The neighborhood of
a node vvvi is defined as Ni =

{︁
vvvj ∈ V|eeei,j ∈ E

}︁
. Furthermore, in a heterogeneous graph,

two nodes may be connected via different semantic paths. For example, an AP and
an MS can be connected via two paths, namely the AP-DL-MS and MS-UL-AP links.
Therefore, we introduce the concept of meta-path as in [186]. In detail, a meta-path

Φ is defined as a path in the form of Q1
P1−→ Q2

P2−→ · · · Pn−→ Qn+1, which defines a
composite relation P = P1 ◦ P2 ◦ . . . Pn from node type Q1 to node type Qn+1, where
◦ denotes the composition operator on relations. Once a meta-path Φ is given, the
specific neighbors N Φ

i of node vvvi can be obtained, which are given by the set of nodes
connected with vvvi via meta-path Φ.

6.3.2 Heterogeneous Graph for MDD-CF Networks

Intuitively, as shown in Fig. 6.1, it is straightforward to model an MDD-CF network as
a heterogeneous graph. It can be observed from the figure that there are two types of
nodes, namely AP and MS, each of which is associated with two meta-paths. Specifi-
cally, for AP l, all MSs are connected with it via the meta-path ΦI

1 (MS-UL-AP), and the
remaining APs are connected with it via the meta-path ΦI

2 (AP-IAI-AP). Note that, the
SI caused by AP l itself is classified into ΦI

2 by adding a self-loop. Similarly, the meta-
paths ΦII

1 and ΦII
2 associated with MS d are AP-DL-MS and MS-IMI-MS, respectively.
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FIGURE 6.1: An exemplified graph of CF network.

In the heterogeneous graph of MDD-CF, the node feature vectors of AP l and MS d are
defined as

vvvl ∈ R(DM+3)×1 =
[︂
ωωωT

l1...ωωωT
lM, Pl , ξSI

l , ξIAI
l

]︂T
,

vvvd ∈ R(LM̄+3)×1 =
[︂
υυυT

1d...υυυT
M̄d, Pd, ξSI

d , ξIMI
d

]︂T
, (6.2)

respectively, where ωωωlm = [ωl1m, ..., ωlDm]
T is the m-th DL equivalent subchannel gains

between AP l and all the D MSs, and υυυm̄d = [υ1dm̄, ..., υLdm̄]
T is the m̄-th UL equivalent

subchannel gains between MS d and all the L APs, when the ZF beamforming as in
(5.9) is applied. Moreover, to simplify the model for the sake of reducing complexity,
the attribute of edges is assumed to be the Euclidean distance between any two nodes,
expressed as ei,j = di,j, ∀i, j ∈ V . If i = j, ei,j = 0 denotes the edge feature of self-loop.

Remark 6.1. In the distributed MDD-CF systems, each AP equipped with a baseband
processor is able to independently implement DL/UL beamforming, and the CPU only
needs to collect the processed signals from APs and then accomplish the final data de-
tection. Hence, in order to fully exploit the APs’ computational potentials while avoid-
ing using long-stacked channel vectors as node features, we assume that, each AP first
computes the equivalent DL/UL subchannel gains based on the estimated CSI. Then,
the equivalent DL/UL subchannel gains are transmitted to the CPU as the AP/MS
node features. All these are done during the offline graph training1. Note that in some

1In principle, apart from ZF, the beamforming methods, such as MMSE or matched filtering, may
also be employed. If the number of antennas at individual AP and the numbers of MSs and subcarriers
are small, it is possible to represent the AP and MS node features by their channel vectors, which have
the size of (2DNM + 3) and (2LNM̄ + 3), respectively, when both the real and imaginary parts of the
complex vectors are considered. Correspondingly, the beamforming vectors associated with PA can be
directly learned at the final output layer, rather than choosing one of the known beamforming schemes to
generate the network inputs. However, if the numbers of antennas at each AP, MSs and subcarriers are
large, the huge dimensions of node features will make the model extremely hard to train.
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FIGURE 6.2: Adaptive node embedding layer.

references, such as [181], the authors used the geographic location information (GLI)
as the input of the learning-based network to reduce the training overhead. This ap-
proach has the advantage that the low-dimensional coordinate values of AP/MS can
be directly used as node features without requiring to computing beamformers. How-
ever, in MDD-based systems, power needs to be allocated among different subcarriers,
while the GLI lacks not only the small-scale information of the involved communica-
tion channels but also the multi-antenna characteristics of MIMO systems. Explicitly,
the GLI is unable to provide the required information and hence, is infeasible in MDD-
based systems.

6.3.3 Heterogeneous Graph Learning Assisted Power Allocation in MDD-
CF Networks

In this subsection, we formally present the CF-HGNN to solve the PA problem in MDD-
CF networks. The architecture of CF-HGNN consists of four components: 1) adaptive
node embedding; 2) meta-path based message passing; 3) meta-path based attention;
4) downstream PA learning. The overall CF-HGNN is type-specific and the parameters
for processing AP and MS nodes are not shared.

6.3.3.1 Adaptive Node Embedding

In general, in order to guarantee the scalability of GNN, the size of node feature should
be irrelevant to the number of nodes involved. As we can see in (6.2), the feature di-
mensions of input nodes are related to L and D, which vary with respect to the scales
of CF networks. Hence, they are not feasible to exhibit the scalability and transferabil-
ity. To tackle this problem, we propose an adaptive node embedding layer, which can
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handle graph nodes with varying input feature dimensions through adaptively activat-
ing or deactivating the neurons in the multi-layer perceptron (MLP), i.e., Ξada(vvvl) and
Ξada(vvvd), as depicted in Fig. 6.2. Specifically, before the normalization layer, AP and
MS nodes are transformed by two embedding matrices, which are expressed as

vvv
′
l = WWW(:,1:DM+3)

AP vvvl ,

vvv
′
d = WWW(:,1:LM̄+3)

MS vvvd, (6.3)

where WWWAP ∈ RF
′
AP×FAP and WWWMS ∈ RF

′
MS×FMS map different AP and MS input nodes

into two feature domains with predefined sizes of F
′
AP and F

′
MS. Note that, as the ZF

beamforming is applied, the maximum input size of the embedding layer for AP nodes
is subject to the number of antennas employed at individual AP, having the relationship
of FAP = NM + 3. In the context of MS, we assume FMS = L

′
M̄ + 3, where L

′
denotes

the maximum number of APs that can be deployed in a CF network within a certain
area.

Remark 6.2. In Section 5.2.4, we assumed that, in our proposed distributed MDD-CF
system, each AP having N ≥ D antennas individually communicates with all the D
MSs using ZF beamforming. In this case, the above-mentioned embedding layer im-
poses strict limitation on the maximum number of MSs, which should not exceed the
number of antennas configured at each AP. However, if MSs are densely distributed
or each AP is only equipped a small number of antennas, the AP node features can no
longer be set as (6.2), as the ZF beamforming cannot be achieved in the case of D > N
2. Moreover, in the above model, the number of APs is restricted to L

′
, meaning that the

CF-HGNN cannot be generalized to the CF networks with more than L
′
APs 3. In these

cases, to guarantee the scalability of CF-HGNN and reduce the computational com-
plexity, one possible approach is to transform the dense graph into the sparse graph
with the aid of user-centric clustering [75], where each AP only serves a certain num-
ber of MSs. For example, if ZF beamforming is used, each AP can serve up to N MSs
depending on the channel conditions. Given this constraint, the dimensions of the AP
node features are only related to the number of antennas, while that of the MSs node
features are only relied on a fraction of APs. Hence, our node feature definition of
(6.2) is still applicable. In Section 6.4.4, we will present an example accounting for the
user-centric clustering.

2Although the MMSE beamforming can be applied in the case of D > N, the increasing number of MSs
leads to large multiuser interference and high dimensions of AP node features.

3In principle, L
′

can be predefined to a sufficiently large number so as to make CF-HGNN scalable to
the network with densely distributed APs. However, in doing so, it will significantly increase the training
overhead of the CF-HGNN.
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FIGURE 6.3: The overall architecture of CF-HGNN network.

6.3.3.2 Meta-Path Based Message Passing

According to the example shown in Fig. 6.1, each AP/MS node connects with its neigh-
boring nodes via two meta-paths, and all the meta-paths are mutually independent.
Hence, within each meta-path Φ, the process of message passing from neighboring
nodes to itself is formulated as

zzzΦ
i = Mean

(︂
Ξ2

(︂
vvv
′
i ⊕

1⃓⃓
N Φ

i

⃓⃓Ξ1( ∑
j∈NΦ

i

vvv
′
j · ei,j)

)︂
+ vvv

′
i⏞⏟⏟⏞

Res

)︂
, (6.4)

where Ξ1 and Ξ2 represent two different MLPs, with each including the fully-connected,
activation and normalization layers. The Res vvv

′
i term denotes the residual connection,

which can maintain the original node information after the multi-layer message pass-
ing. ⊕ is the concatenation operation.

6.3.3.3 Meta-Path Based Attention

In general cases, the information update of node i is the summation of the message
collected from all the meta-paths with the same coefficients, expressed as zzzi = ∑Φ zzzΦ

i .
However, in MDD-CF networks, since AP/MS nodes receive information via both the
interfering path and data transmission path, it is intuitive that these two meth-paths
may has quite different impact on the information integration. For instance, if an AP
node is closely surrounded by MS nodes but the other AP nodes are far away from it,
the meta-path ΦI

1 should be more important than ΦI
2. Based on this observation, we

propose the meta-based attention in CF-HGNN to enable the GNN to automatically
learn the importance of the two meta-paths. An example of calculating the attention
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vector of an AP node is as follows [187]:

αΦI
1
=

1
L ∑

l∈L
qqqTΞatt(zzz

ΦI
1

l ),

βΦI
1
=

exp(αΦI
1
)

exp(αΦI
1
) + exp(αΦI

2
)

, (6.5)

where Ξatt is the MLP layer for attention, qqq is the learnable attention vector, zzzΦI
1

l denotes
the aggregated information via meta-path ΦI

1. Then, the final node representation of

AP l is zzzl = βΦI
1
zzzΦI

1
l + βΦI

2
zzzΦI

2
l , where zzzl ∈ RF

′
AP×1. Similarly, zzzd ∈ RF

′
MS×1 at MS d can

be obtained. It is noteworthy that the process of message passing plus attention can
be iteratively implemented for K times by initializing zzz(0)l = vvv′l and zzz(0)d = vvv′d, so as to
collect the high-hop neighbors. Owing to this, our proposed model can also be termed
as the K-layer CF-HGNN.

6.3.3.4 Downstream Power Allocation Learning

After the K-th iteration, the final representation of AP and MS nodes, i.e., zzz(K)l and zzz(K)d ,
are used for the downstream PA learning, which can be expressed as:

pppl ∈ RDM×1 = Relu
(︂

ΞPA(zzz
(K)
l )(1:DM)

)︂
,

pppd ∈ RM̄×1 = Relu
(︂

ΞPA(zzz
(K)
d )

)︂
,

(6.6)

where ΞPA denotes the MLP for PA learning, and Relu(·) is used to constrain the power
to be positive. Corresponding to the adaptive node embedding considered in part 1),
in order to make it feasible for the network with different number of MSs, the adaptive
output layer can support the PA for up to NM elements by activating or deactivating
the neurons. By contrast, for UL PA, provided that the number of available UL subcar-
riers is fixed, the size of the output layer for MS node remains to M̄, as each MS only
needs to allocate UL power.

The overall architecture of the CF-HGNN for an AP node is shown in Fig. 6.3, which
is the same for MS nodes, except the different size of output layer as above-mentioned.
Note that all the MLPs shown in Fig. 6.3 are AP-specific, which means that the MLPs
for MSs are different from that for APs.
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Finally, to perform the CF-HGNN training in an unsupervised way, we define the loss
function as

L(θθθ) = E

[︃
−ΛSE +

D

∑
d=1

(︃
κ1Relu

(︁
χDL − ∑

m∈M
ln(1 + SINRd,m)

)︁
+ κ2Relu

(︁
χUL − ∑

m̄∈M̄
ln(1 + SINRd,m̄)

)︁
+ κ3Relu

(︁
∑

m̄∈M̄
pdm̄ − Pd

)︁)︃
+

L

∑
l=1

κ4Relu
(︁

∑
m∈M

∑
d∈D

pldm − Pl
)︁]︃

, (6.7)

where θθθ denotes all the parameters of the neural network, κi denotes the weighted
factor, and the expectation is taken with respect to the channel realizations. In (6.7),
each ReLU penalty term has a positive value, only if the DL/UL QoS requirements and
transmit power budgets are not satisfied. This will enforce the training process towards
satisfying the given requirements. Additionally, in (6.7), the positive parameters κi give
different priorities to the penalty terms.

6.4 Simulation Results and Analysis

Let us now demonstrate the achievable SE performance of the distributed MDD-CF
systems supported by our proposed CF-HGNN.

6.4.1 Simulation Setup

The large-scale fading model is given by [75]:

β[dB] = −30.5− 36.7 log10 (d) + σshz, (6.8)

where d denotes the distance between any two nodes, σshz is the shadowing fading
with a standard deviation of σsh = 4 dB and z ∼ N (0, 1). Furthermore, we assume
that APs are capable of providing 30 dB of IAI suppression in the propagation/analog
domain by employing the existing approaches [72]. Then, assume that the 12-bit ADCs
are applied, the MDD system can suppress IAI up to 72 dB (i.e., ξMDD-IAI

l = −72 dB,
∀l, in (5.6)), of which 42 dB is attributed to the digital-domain cancellation by FFT 4.
By contrast, as MSs are of lightweight equipments with single antenna and can hardly
share channel knowledge with other MSs, they can not actively suppress IMI. However,
similar to APs, MSs are able to cancel 42 dB IMI in the digital domain (i.e., ξMDD-IMI

d =

4The 12-bit ADC has a maximum dynamic range of 42dB, which means it can accommodate up to 42 dB
of power of IAI, and transform it into digital signal without extra quantization noise. Then, in the digital
domain, since the interference signal is transmitted over DL subcarriers, which is mutually orthogonal to
the desired UL signal, MDD systems supported by the FFT operation can then remove the remaining IAI.



6.4. Simulation Results and Analysis 157

TABLE 6.1: Simulation parameters

Default parameters Value

Cell area (SD × SD) (400× 400)m2

Number of antennas per AP (N) 8

Number of DL/UL subcarriers (M, M̄) (4, 2)

AP and MS power (Pl , Pd, ∀l, d) (40, 30) dBm

QoS requirements (χDL, χUL) (0.5, 0.1) nats/s/Hz

Noise power (σ2) -94 dBm

Delay taps (U) 4

Residual SI level at AP (ξSI
l , ∀l) -120 dB

Residual SI level at MS (ξSI
d , ∀d) -110 dB

−42 dB, ∀d, in (5.3)) with the aid of the FFT operation [148]. Unless otherwise noted,
the simulation parameters of the MDD-CF network are listed in Table 6.1.

As for the settings of the neural network, we adopt a 2-layer CF-HGNN based on Py-
torch Geometric [188]. The general MLPs Ξ1 and Ξ2 in (6.4) during the message passing
stage contains multiple fully-connected linear layers followed by the LeakyRelu activa-
tion layer and batch normalization layer. By contrast, the ΞPA in (6.6) is employed with
multiple fully-connected linear layers without batch normalization layer. Moreover,
the Ξada in (6.3) is a single-layer MLP with one fully-connected linear layer followed
by one batch normalization layer, while Ξatt in (6.5) is a single-layer MLP with only
one fully-connected linear layer. As formulated in (6.7), the overall learning is unsu-
pervised without any ground truth. To optimize the CF-HGNN, we adopt the Adam
optimizer with a learning rate of 0.001 [189]. Furthermore, we empirically set κi in
(6.7) as {0.1, 1, 0.1, 0.1} during training. For the training data, we randomly generate
10000 and 1000 CF network layout samples for training and testing, respectively, under
the assumption that APs and MSs are uniformly distributed within a square area of
(SD × SD)m2 . The batch size for training is 64, and the network parameters are only
updated during training, which stay constant during testing. The CF-HGNN is run on
a GeForce GTX laptop 3080Ti, while the other algorithms are implemented on the 12th
Gen Intel(R) Core(TM) i7-12700H 2.70 GHz.

For comparison, we introduce QT-SCA as a benchmark, which is implemented using
the CVX tool during simulations [177]. In addition, our proposed CF-HGNN is also
compared with the greedy unfair allocation method [151], where the water-filling algo-
rithm is assumed by each AP/MS to distribute their power over the DL/UL subcarri-
ers, regardless of the QoS constraints.
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FIGURE 6.4: Cumulative distribution of SE, when the MDD-CF network has L = 24
APs and D = 6 MSs.

6.4.2 Performance Comparison

In this section, we make a comprehensive performance comparison between different
PA methods in MDD-CF networks, where the numbers of MSs and APs are fixed during
training and testing, and are set to L = 24, D = 6. In this case, the embedding matrices
in Ξada and ΞPA act as identical matrices and are not learnable.

Firstly, we compare the QT-SCA, CF-HGNN and the greedy unfair methods in terms
of the SE distribution obtained from 1000 testing CF network layouts. As shown in Fig.
6.4, the CF-HGNN achieves nearly the same performance as the QT-SCA in terms of
the 95%-likely SE. In more detail, the SE performance gaps between the QT-SCA and
CF-HGNN with regard to these 1000 network layouts are depicted in Fig. 6.5. It can
be observed that the absolute SE gaps between these two methods are lower than 1.5
nats/s/Hz. Furthermore, there are several layouts, where the CF-HGNN outperforms
the QT-SCA, which reflects that the CF-HGNN is capable of learning the near-optimal
solutions for PA in MDD-CF networks. As shown in Fig. 6.4, both the QT-SCA and
CF-HGNN significantly outperform the greedy unfair method. The rationale behind is
that although the greedy unfair method can maximize the SE of the classic HD-based
multiuser OFDM systems [151], it lacks the capability to manage the complicated inter-
ference in the CF FD-like systems, hence leading to poor performance at both APs and
MSs.

Secondly, we randomly select one of the CF network layouts used in the testing sam-
ples, as shown in Fig. 6.6, to deeply investigate the PA attained by the QT-SCA and
CF-HGNN. To make the drawing clear in Fig. 6.6, the DL connections with transmit
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FIGURE 6.5: SE performance gap between QT-SCA and CF-HGNN, when the MDD-
CF network uses L = 24 APs to support D = 6 MSs.

power less than 2W are omitted, and different colored lines are used to denote the DL
connections obtained by either methods or by both. It is not surprise that, as Fig. 6.6
shows, except MS 2, both the CF-HGNN and QT-SCA yield the same subset of the ma-
jor serving APs for each of MSs, and also obtain the similar results of UL PA. As for
MS 2, since it locates relatively far away from APs, more APs are required to transmit
signal to it in order to meet the demand of DL’s QoS. Although different DL connec-
tions are obtained by the two methods, there is in fact no difference between them. For
example, apart from the common connections, the CF-HGNN picks AP 3 and 9 to serve
MS 2, while the QT-SCA chooses AP 8 located between AP 3 and 9 to serve MS 2. Also,
AP 20 and 17 with the similar distances from MS 2 are selected by the CF-HGNN and
QT-SCA, respectively.

It is worth mentioning that the DL power (and UL power) used for Fig. 6.6 is the sum
of power allocated to DL subcarriers (and UL subcarriers). In Table 6.2, an example
showing the detailed PA to subcarriers at AP 1, MS 2 and MS 6 are presented. It can
be observed that the CF-HGNN and greedy unfair methods yield the more consistent
allocation among the subcarreirs, which means that the power distribution is largely
relied on large-scale fading, while the QT-SCA has better capability of exploiting the
small-scale fading. Moreover, from the results of the CF-HGNN and QT-SCA, we can
see that MS 6 has a lower UL transmit power than MS 2. The reason behind is that
MS 6 is in the close proximity of MS 1, the increase of its UL transmit power may
cause not only more SI on the DL reception, but also larger IMI on MS 1, leading to the
degradation of SE. By contrast, the greedy unfair scheme allocates power depending
only on the quality of communication channels regardless of the effect of interference.
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FIGURE 6.6: An MDD-CF network topology with L = 24 APs and D = 6 MSs.
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FIGURE 6.7: SE convergence behavior and operation time of different methods, where
L = 24, D = 6.
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TABLE 6.3: Generalization to Different Cell Sizes. The SE of the CF-HGNN are nor-
malized by that of the QT-SCA.

Cell length (SD) QT-SCA (nats/s/Hz) DCF-HGNN GCF-HGNN

350 37.85 96.64% 95.19%

300 40.64 98.08% 93.13%

250 43.76 98.42% 91.84%

200 46.84 99.91% 91.78%

150 50.10 101.42% 92.79%

The performance of different methods in terms of SE, convergence behavior and op-
eration time is plotted in Fig. 6.7. As expected, the QT-SCA and CF-HGNN achieve
the comparable SE, with a performance gap of only 0.35 nats/s/Hz. However, the
QT-SCA is an iterative algorithm with very high computational complexity, which con-
verges within 6 iterations and takes 7.03s operation time in total. On the contrary, with
the aid of the parallel computation of GPU, the CF-HGNN is capable of reaching 99%
of the SE achieved by the QT-SCA but using only 10−4 times of its operation time. As
to the greedy unfair method, although it has a similar operation time as the CF-HGNN,
due to the fact that only the water-filling algorithm is applied at both APs and MSs, its
SE performance is significantly worse than that of the other two methods.

Next, we evaluate the generalization performance of the proposed CF-HGNN in MDD-
CF networks with different cell sizes. As shown in Table 6.3, the results under the Gen-
eralized CF-HGNN (GCF-HGNN) are obtained by the CF-HGNN model trained on
the specific network with SD = 400, while the results under the Dedicated CF-HGNN
(DCF-HGNN) are obtained by the CF-HGNN models trained correspondingly using
different cell sizes. It can be observed from the table that as the cell size reduces, the
performance of the GCF-HGNN degrades slightly, but is still in the acceptable range.
Note that, the DCF-HGNN finally outperforms the QT-SCA when SD = 150, which
means that the DCF-HGNN is capable of obtaining a better PA strategy in dense net-
works.

The comparison between QT-SCA and CF-HGNN in terms of computational complex-
ity and operation time are then analyzed. According to [179], the approximated com-
putational complexity of the QT-SCA method is O

(︁
(LDM + 2DM + 3DM̄)2(L + D +

3DMsum)2.5 + (L + D + 3DMsum)3.5)︁ per iteration. As to the CF-HGNN, the compu-
tational complexity is mainly due to the matrix computation, as shown in (6.4)-(6.6).
Table 6.4 summarizes the results for the different values of L, D, M and M̄, showing
that when doubling the numbers of APs, MSs and subcarriers, the computational com-
plexity of the QT-SCA increases much more quickly than that of the CF-HGNN, which
is about three orders for the QT-SCA versus one order for the CF-HGNN. The operation
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TABLE 6.4: Computational complexity comparison

APs (L) MSs (D) DL/UL subcarriers (M/M̄)
Methods

QT-SCA CF-HGNN

6 2 4/2 4.48× 108 6.83× 106

12 4 8/4 4.78× 1011 2.75× 107

24 8 16/8 6.79× 1014 1.48× 108

4 5 6 7
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FIGURE 6.8: Comparison of operation time between the QT-SCA and CF-HGNN
methods.

time cost by the QT-SCA and CF-HGNN is plotted in Fig. 6.8. Explicitly, the CF-HGNN
spends much less time than the QT-SCA to accomplish the PA. Moreover, thanks to the
parallel computation of GPU, the CF-HGNN trained on GPU has the lowest operation
time.

6.4.3 Scalability: Case 1

The simulation results in Section IV-B demonstrated that the CF-HGNN is able to
achieve the similar performance as the QT-SCA. However, the CF-HGNN considered
so far can only be applied to the specific MDD-CF networks with the fixed numbers of
nodes and subcarriers, as the fully-connected liner layers in Ξada and ΞPA act as iden-
tical matrices. With this regard, to enable the CF-HGNN to be adaptive to the varying
MDD-CF networks, we now invoke the adaptive node embedding layer and adaptive
output layer. In particular, we consider two cases regarding to the scalability of CF-
HGNN. In Case 1, we still assume that L < L′ = 24 and N = 8, and all MSs are served
by all APs using the ZF beamforming under the constraint of N ≥ D. Specifically,
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10000 MDD-CF network samples with the specific numbers of nodes and subcarriers
are leveraged to train the DCF-HGNN. For fair comparison, to train the Adaptive CF-
HGNN (ACF-HGNN), 10000 MDD-CF network samples consisting of various numbers
of nodes and subcarriers are used.

Table 6.5 shows that by employing the adaptive layers, the ACF-HGNN can attain the
relatively stable performance, when dealing with the various networks. Hence, it is
feasible for implementing dynamic PA in MDD-CF networks. On the contrary, the QT-
SCA and DCF-HGNN have to re-solve the complicated optimization problem or re-
train the CF-HGNN, once the CF network has some changes in terms of the numbers
of APs, MSs and subcarriers. Note that, in the table, the SE decreases with the increase
of the number of subcarriers. This is because the total power allocated to subcarriers
is constrained, while the SE is normalized by Msum, as shown in (6.1). Apparently, the
total SE obtained by multiplying Msum with the value in the table always increases with
the increase of the number of subcarriers, which is attributed to the subcarrier diversity.

6.4.4 Scalability: Case 2

Although the proposed ACF-HGNN can handle the PA in various MDD-CF networks,
it can hardly cut the mustard when the numbers of APs and MSs become too large, i.e.,
when L≫ L′ and D ≫ N, as explained in Remark 6.2. Therefore, in Case 2, we resort to
the user-centric clustering strategy to transform the dense graph into the sparse graph,
thereby maintaining the scalability of the CF-HGNN for operation in the large-scale
MDD-CF networks. For the sake of explanation, here we consider an extreme scenario,
where each AP is only equipped with one antenna and serves only one MS using the
ZF beamforming. Correspondingly, the clustering can be achieved in two steps5: 1)
Initialize the set of APs serving MS d as Ld = ∅, ∀d = 1, ..., D, and the set of MSs
assigned to AP l as Dl = ∅, ∀l = 1, ..., L. To guarantee a non-zero SE, each MS d is
firstly assigned to a master AP by following the optimization of

l = argmax
l∈{1,...,L},m∈{1,...,M}

ωldm, Ld = {l}, Dl = {d} . (6.9)

After this optimization, we have |Ld| = 1, ∀d = 1, ..., D. 2) If there are still idle APs,
which satisfy {l′|Dl′ = ∅}, allocate them to MSs according to the optimization of

d = argmax
d∈{1,...,D},m∈{1,...,M}

ωl′dm, Dl′ = {d}, Ld = Ld ∪ {l′} . (6.10)

5Note that the considered two-stage clustering approach is suboptimal, and becomes less efficient in
the case of N > 1, where each AP can simultaneously serve more than one MS using the increased spatial
degrees of freedom. To this end, our future work motivates to propose a GNN-assisted deep Q-learning
network so as to obtain the optimal user grouping and PA at the same time.
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To train the Large-Scale ACF-HGNN (LSACF-HGNN), we have 10000 training samples
collected from the networks with L = 12 single-antenna APs and D = 6 MSs uniformly
distributed within an area of (200

√
2× 200

√
2)m2. We then increase the number of APs

and MSs in testing samples while the densities of AP and MSs are fixed. Note that all
the involved training and testing samples have been pre-processed by the proposed
clustering algorithm. As shown in Table 6.6, although the performance of the LSACF-
HGNN is much better than that of the greedy unfair method, the gap between the
QT-SCA and the LSACF-HGNN becomes larger as the network size increases. The ra-
tionale behind is possibly because the larger CF network has much more complicated
CLI problem than the smaller one. Hence, the LSACF-HGNN may require extra train-
ing or an improved model structure to manage the CLI. The detailed analysis is out
of the scope of this chapter and is left for the future research. However, we should
mention that, as shown in Table 6.4, the QT-SCA relied optimization is extremely time-
consuming, when it is applied to the large-scale CF networks, while the LSACF-HGNN
is capable of accomplishing PA with high-efficiency.

6.5 Chapter Summary and Conclusions

In this chapter, we proposed a distributed MDD-CF system, and investigated the PA
at both AP and MS sides for SE maximization under the constraints of QoS require-
ments. In order to solve the non-convex and NP-hard PA problem, we first proposed
the QT-SCA algorithm, which achieves the optimization in the classic way. Then, the
CF-HGNN was proposed to solve the optimization from a learning perspective. The
CF-HGNN was trained in an unsupervised fashion with unlabeled data, which sig-
nificantly reduces the system overhead. Our studies and numerical results show that
the CF-HGNN is capable of achieving comparable SE performance to the QT-SCA but
demanding much less operation time and computational complexity. The CF-HGNN
significantly outperforms the greedy unfair method in terms of SE performance. Fur-
thermore, with the aid of adaptive node embedding layer and adaptive output layer,
the CF-HGNN can implement PA in the MDD-CF networks with various numbers of
APs, MSs and subcarriers. Additionally, with the aid of user clustering, the CF-HGNN
trained based on a relatively small-scale MDD-CF network can be generalized for op-
eration in the large-scale MDD-CF networks.
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Chapter 7

Conclusions and Future Research

In this chapter, we first present the overall summary and conclusions of this thesis in
Section 7.1. Then, several potential research topics for future research are discussed in
Section 7.2.

7.1 Thesis Summary and Conclusions

• Chapter 2: This chapter proposed an adaptive beamforming assisted SIC scheme
for both IBFD- and MDD-based MIMO hybrid beamforming systems, where ei-
ther analog precoder at transmitter or analog combiner at receiver can be lever-
aged to mitigate SI, depending on which side has more antenna elements. The
numerical results show that, on the basis of the CCD algorithm, the proposed
hybrid beamforming scheme is capable of providing a big range of SI reduction,
while at only little cost of system performance with the aid of ZF digital precod-
ing and MMSE digital combining. Moreover, the Rician factor of SI channel, the
number of antennas and the angle between transmitter and receiver antenna ar-
rays may significantly affect the SIC performance. Furthermore, by exploiting
the time-domain reciprocity between DL and UL channels and the correlation ex-
isting among subcarriers, a set of frequency-domain orthogonality-achieving PSs
has been designed for the CE in the MDD MIMO systems. Based on the well-
designed PSs, both the LS and LMMSE approaches were introduced for CE. Our
simulation results demonstrate that when the number of MSs is relatively small
and the PSs are evenly distributed over the subcarriers, the LS approach outper-
forms the LMMSE approach in terms of the MSE and the average sum rate. How-
ever, when the Proposition 1 in this chapter is no longer satisfied due to a large
number of MSs, the LMMSE approach is near-optimum and shows significant
advantage over the LS approach.
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• Chapter 3: This chapter studied the RA optimization, including user fairness,
SI suppression and hybrid beamforming design, in the large-scale MDD MIMO
mmWave systems. To solve the NP-hard problem, the joint DL/UL RA opti-
mization problem was divided into the suboptimal SA and PA problems. Specif-
ically, for the SA, an IFG algorithm was proposed, which can fully exploit the
spatial multiplexing gain to attain the sum-rate maximization and coarse fair-
ness. For the PA, the DL PA problem was transformed to a convex solvable prob-
lem with the aid of the full-digital ZF precoding, which is then solved by the
New-Raphson method. By contrast, the UL PA was solved by the conventional
water-filling algorithm. Our studies and simulation results show that the pro-
posed RA algorithm is capable of attaining the near upper bound performance
that is only achievable by the conventional unfair greedy algorithm. Further-
more, to reduce the complexity of the full-digital precoder/combiner, two hybrid
precoding schemes, namely matrix factorization and direct approach, and one hy-
brid combining scheme were proposed for the implementation of RA. The stud-
ies reveal that the direct approach is capable of achieving not only higher sum
rates but also attaining a more robust fairness among the DL MSs than the matrix
factorization, when the number of RF chains is relatively low. Additionally, the
proposed combining scheme exhibits the SIC capability, which enables to enable
the RA operations to be free from SI. Lastly, in order to demonstrate the potentials
of MDD against the HD modes of FDD and TDD, we presented an example of the
MU-SISO system assisted by the unfair greedy RA. The results reveal that MDD
can benefit from a larger multiuser diversity and hence, outperform both TDD
and FDD in terms of the time-frequency usage.

• Chapter 4: This chapter explored the application of MDD in high-mobility sce-
narios. In order to combat the channel aging problem, two types of well-designed
MDD frame structures and the corresponding WPs, namely the general WP and
DD-WP, were proposed and studied. For comparison, the TDD frame structures
related to the 3GPP standards and their variant forms were presented. The stud-
ies and simulation results demonstrate that the MDD employed with the pro-
posed frame structures can significantly relieve the channel aging problem. In
particular, when the Type I frame structure is implemented, as the UL pilots and
DL symbols can be transmitted concurrently, MDD allows to achieve the consis-
tent prediction accuracy. Hence, its achievable performance is not largely affected
by the different time-varying fading situations. It was also shown that when the
relative speed between BS and MSs is not too high, the MDD with partially ac-
tivated pilots can achieve the highest sum rates within one frame. On the other
hand, when the Type II frame structure is considered, since the received UL sym-
bols can be used as the pilots for channel prediction in the principle of DD-WP,
the DL and UL transmissions in MDD still perform better than that in TDD. More-
over, owing to the advantages of SIC in digital domain, MDD can also outperform
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IBFD over fast time-varying channels, provided that the SI mitigation in IBFD
is imperfect. Lastly, the approximated lower bounds for the achievable rates of
the proposed MDD and TDD systems were derived, which were shown to agree
closely with the results obtained from the Monte-Carlo simulations.

• Chapter 5: This chapter studied the MDD assisted CF-mMIMO systems. To
maximize the SE of MDD-CF systems, the optimization of AP-selection, SA and
PA were proposed under the constraints of MSs’ QoS. Two application scenar-
ios were considered, which assume that DL/UL transmissions occur in one CT
interval or in one radio frame, respectively. In the case of one CT interval, to
facilitate the mixed-integer optimization, the inner association between the con-
tinuous variables for PA, and the binary variables for AP-selection and SA were
leveraged to transform the original problem into a continuous-integer convex-
concave problem. Then, a QT-SCA iterative algorithm was proposed to achieve
the SE maximization within one CT interval. Simulation results demonstrate that
the MDD-CF can attain nearly the same performance as the TDD-CF, but signifi-
cantly outperforms the IBFD-CF owing to the advantages of CLI cancellation. In
the case of one radio frame, in light of the capability of simultaneously transmit-
ting pilots and DL symbols, a TPCT interval was specifically designed for MDD-
CF and IBFD-CF systems to transmit extra information. Then, to achieve the SE
maximization within one radio frame, a two-step iterative algorithm based on
bisection method was proposed. According to the simulation results, both MDD-
CF and IBFD-CF schemes are capable of taking the advantage of Phase I in TPCT
to achieve higher sum rates than TDD-CF in high-mobility scenarios.

• Chapter 6: This chapter solved the PA problem in the MDD-CF mMIMO net-
works from a learning perspective. As the computational complexity of the QT-
SCA method proposed in Chapter 5 grows exponentially with the numbers of
APs, MSs and subcarriers in MDD-CF increases, an HGNN assisted PA method,
named as CF-HGNN, was proposed, so as to solve the PA more efficiently. The
CF-HGNN consists of adaptive node embedding, meta-path based message pass-
ing, meta-path based attention and downstream PA learning, and was trained
with unlabeled data in an unsupervised fashion. Our studies and simulation re-
sults show that, in a specific MDD-CF network, the CF-HGNN is capable of using
104 times less of operation time to achieve 99% of the SE achievable by the QT-
SCA. Furthermore, the scalability of CF-HGNN was explored. The studies show
that the CF-HGNN employed with adaptive node embedding and adaptive out-
put layers can adapt to the various MDD-CF networks with different numbers
of APs, MSs and subcarriers. Additionally, with the aid of user clustering, the
CF-HGNN can deal with the PA in large-scale MDD-CF networks, where the cell
size and the numbers of APs and MSs may be very large.
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In conclusion, the research results of the thesis demonstrate that MDD employs a range
of merits to enable it for possible applications in the future wireless communications
systems. MDD is enabled with the advantages of TDD, FDD and IBFD schemes, while
allowing to circumvent their main shortcomings. For example, the more flexible time-
frequency resource usage than TDD and FDD and the more efficient management of SI
and CLI than IBFD make MDD have the potential to achieve high spectral efficiency.
Like IBFD systems, in MDD systems, UL pilots for channel estimation can be trans-
mitted along with the DL data transmission. Therefore, employing MDD can funda-
mentally solve the channel aging problem in high mobility communications scenarios,
while avoiding the SI problem in IBFD systems. Furthermore, owing to its better in-
terference management capability than IBFD, MDD can be deployed with the CF wire-
less networks to achieve high efficiency wireless networking. Owing to its advantages
as demonstrated in this thesis, MDD can be envisaged as a duplexing scheme, which
may be combined with the other multicarrier-based techniques, such as non-orthogonal
multiple access (NOMA), orthogonal time frequency space (OTFS), filter OFDM, etc.,
to support the various types of services, including massive machine type communi-
cations (mMTC), ultra-reliable and low latency communications (URLLC) and ultra-
high-speed communications, in 5G+/6G networks.

7.2 Future Research

Based on the study of this thesis, a few of further research issues are identified, which
are as follows.

• Deep learning aided frame structure design and channel prediction for appli-
cation in high-mobility scenarios: In Chapter 4, we proposed two basic frame
structures as well as two Wiener filter related channel prediction approaches,
namely general WP and DD-WP, for TDD and MDD systems so as to relieve chan-
nel aging problem. However, as shown in Fig. 4.7 and Fig. 4.9, the performance
gaps between various TDD and MDD frame structures differ from velocity to
velocity. For instance, as shown in Fig. 4.7, the MDD with partially activated
pilots (i.e., MDD-1-PA) outperforms that with fully activated pilots (i.e., MDD-
1(1)), when the relative velocity is higher than 280 km/h in the case of T = 28 or
220 km/h in the case of T = 56. Analogously, the pilot distribution in TDD sys-
tems also significantly affects the system performance. Hence, there should exist
an optimal frame structure corresponding to a given mobility scenario. On the
other side, the proposed channel prediction techniques of general WP and DD-
WP are only feasible for the model-based channel aging problem. In practice, the
simplified time-correlated channel fading model cannot capture the precise vari-
ations of CSI, while the complex model allows better achievable performance but
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FIGURE 7.1: The process of CF-HGNN for large-scale MDD-CF networks.

at the expense of high complexity. Furthermore, the model-based methods are de-
pended highly on the channel statistics and Doppler estimation. However, in the
high-mobility communication scenarios, the Doppler estimation is very challeng-
ing. With this regard, due to the possible unstationary factors, the learning-based
methods may be introduced for the optimal designs of both the frame structure
and channel predictor, so that near-optimum performance can be retained in any
cases. Specifically, the combination of long short term memory (LSTM) and deep
reinforcement learning (DRL) may be a promising solution. This is because the
frame structure design in dynamic vehicular environments can be deemed as the
stochastic game described by a finite-state Markov decision process, while LSTM
can be used to capture the CSI variations [190, 191].

• Combination of MDD and orthogonal time frequency space for ultra high-
mobility scenarios: In Chapter 4 we have assumed the time-domain correlation
between different OFDM symbols, as shown in Equation 4.6, and that the mul-
tipath fading within each symbol duration is time-invariant. The reason for us
to use the above assumption is presented as follows. According to 5G NR stan-
dards [164], in an OFDM system having a carrier frequency of 5 GHz and a sub-
carrier spacing of 15 kHz and supporting a relative velocity of 500 km/h, the
maximum Doppler shift is fD = 2.315 kHz and hence the channel’s coherence
interval is about 1/(4 fD) = 108 µs [192], which is much larger than one OFDM
symbol duration equaling to about 80 µs including cyclic prefix. With this regard
and considering that we have mainly focused on the channel prediction between
adjacent OFDM symbols in Chapter 4, the multipath channel within one OFDM
symbol duration can be deemed as time-invariant, which allows to ignore the
inter-carrier interference (ICI) is neglected.

However, 6G networks are expected to support wireless communications in the
ultra high-mobility scenarios with the velocity up to 1000km/h [193]. In this case,
the doubly-selective channel must be considered even within one OFDM symbol
duration. Consequently, when considering the severe ICI problem, OFDM will
be no longer the feasible modulation. Instead, the OTFS can be deemed as a po-
tential candidate for gaining benefit from both the delay and Doppler domains.
The recent studies show that OTFS modulates information in the delay-Doppler
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FIGURE 7.2: The process of CF-HGNN+DRL for large-scale MDD-CF networks.

domain, which is capable of providing a strong delay-resilience and Doppler-
resilience [192]. Therefore, by introducing our proposed MDD to OTFS, we may
substantially solve the channel aging and ICI problems to support reliable com-
munications in ultra high-mobility scenarios, in addition to the benefits provided
by OTFS.

• DRL aided HGNN for user clustering and power allocation in MDD-CF net-
works: According to our studies in Chapter 6, to apply the CF-HGNN in a large-
scale MDD-CF network, where the cell size and the numbers of APs and MSs
are very large, the proposed two-stage user clustering algorithm has to transform
the dense graph into a sparse graph for generating training or testing samples.
Then, the sparse graph is taken as the input of the CF-HGNN to implement PA.
The overall process can be depicted in Fig. 7.1. However, the proposed user
clustering algorithm is suboptimal and also time-consuming when the size of CF
network becomes large. To this end, we may enhance the design by integrat-
ing user clustering into the learning network, as shown in Fig. 7.2, to form the
CF-HGNN+DRL, which implements user clustering and PA at the same time. Al-
though the DRL has been demonstrated to be efficient for solving the user cluster-
ing problem [194], how DRL and HGNN work cooperatively in CF-HGNN+DRL
deserves the in-depth research in the future.

• Resource allocation with integrated sensing and communication in MDD-CF
networks: With the increase of the requirements of sensing in wireless communi-
cations, the integrated sensing and communication (ISAC) in CF networks will be
a promising application scenario in 5G beyond and 6G networks. Specifically, in
MDD-CF networks, each AP equipped with multiple antennas can be deemed
as an individual ISAC transceiver to communicate with MSs or sense targets.
Furthermore, it can also cooperate with neighboring APs via fronthaul links to
provide enhanced sensing and communication (S&C) services. In this kind of
networks, RA is of paramount importance to S&C, as power and bandwidth al-
location are almost related to almost all the performance metrics of S&C, such as
the SE and EE in communications, as well as the range resolution and estimation
accuracy in sensing [195]. Therefore, it is intuitive and essential to carry out the
research of RA with ISAC in MDD-CF networks.
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A possible scenario for researching the ISAC in MDD-CF networks is shown in
Fig. 7.3. The APs operated in MDD mode serve three types of MSs, including
the DL/UL communication MSs, sensing MSs and ISAC MSs. The DL/UL com-
munication MSs, such as smartphones require stable and high-quality DL/UL
communication services. The sensing MSs like the extended reality devices and
humans, which can be either device-free or device-based, require the sensing ser-
vices consisting of detection, localization and tracking. Finally, the ISAC MSs are
mainly device-based, such as UAVs and vehicles relying on both S&C services,
which is particularly the case when the ISAC MSs do not transmit UL signals to
APs. Explicitly, each type of the above-mentioned MSs have different QoS re-
quirements. For instance, the DL/UL communication MSs emphasize SE, while
the sensing MSs demand on the localization accuracy. However, all the QoS re-
quirements can only be met via allocating the corresponding transmitted power
and bandwidth [196]. In order to maximize the performance of ISAC in MDD-CF
networks and provide services tailored for different QoS requirements, the RA
should be comprehensively investigated.
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Appendix A

The Proof of Proposition 1

Given that ξ =
⌊︂

M̄
Dsum

⌋︂
≥ L, and the UL subcarriers are uniformly distributed with

spacing of l = Msum/M̄ number of subcarriers between two adjacent UL subcarriers,
we need to prove that

PPP[m]HPPP[n] =

⎧⎨⎩000L, if m ̸= n,

ϱIIIL, if m = n,
(A.1)

where 000L is a (L× L) all-zero matrix, and ϱ = M̄/Msum is constant.

Since the UL subcarriers are uniformly-spaced with a spacing of l number of subcarriers
between two adjacent UL subcarriers, it can be shown that the matrix ΦΦΦT

ULFFFΨΨΨ is given
by

GGGUL = ΦΦΦT
ULFFFΨΨΨ

=
1

Msum

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 e−j2π
(m̄1−1)
Msum · · · e−j2π

(m̄1−1)(L−1)
Msum

1 e−j2π
(m̄2−1)
Msum · · · e−j2π

(m̄2−1)(L−1)
Msum

...
... · · ·

...

1 e−j2π
(m̄M̄−1)

Msum · · · e−j2π
(m̄M̄−1)(L−1)

Msum

⎤⎥⎥⎥⎥⎥⎥⎥⎦
M̄×L

, (A.2)

where m̄1, m̄2, · · · , m̄M̄ are the indices of UL subcarriers. Note that, to obtain (A.2), the
relationships of m̄2 − m̄1 = ... = m̄M̄ − m̄M̄−1 = l are used. Let

PPP̃ = PPP[m]HPPP[n] = (XXXmGGGUL)
H (XXXnGGGUL) , 1 ≤ m, n ≤ Dsum. (A.3)
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Then, upon applying (2.31) and with the aid of (A.2), we can show that the (u, v)-th
element of PPP̃ is

(︁
PPP̃
)︁

u,v =
1

Msum

M̄

∑
t=1

(XXXm)
∗
t,t(XXXn)t,te

j2π(m̄t−1)(u−v)
Msum

=
1

Msum

M̄

∑
t=1

e
j2π(t−1)(n−m)ξ

M̄ e
j2π(m̄t−1)(u−v)

Msum

(a)
=

1
Msum

M̄

∑
t=1

e
j2π(t−1)(n−m)ξ

M̄ e
j2π(t−1)(u−v)

M̄

=
1

Msum

M̄

∑
t=1

e
j2π(t−1)[(n−m)ξ+u−v]

M̄

=
M̄

Msum
δ[∆uv − (m− n)ξ],

(A.4)

where ∆uv = u− v. In (A.4), and Equation (a) is because of l = Msum/M̄.

Explicitly,
(︁
PPP̃
)︁

u,v = M̄/Msum provided that ∆uv − (m− n)ξ = 0. Hence, when m = n,
we have

(︁
PPP̃
)︁

u,v = M̄/Msum and
(︁
PPP̃
)︁

u,v = 0 for all u ̸= v. Therefore, PPP[m]HPPP[m] = ϱIIIL

with ϱ = M̄/Msum.

By contrast, in the case of m ̸= n, since PPP̃ is a (L × L) matrix, we have −(L − 1) ≤
∆uv ≤ L − 1. Hence, ∆uv − (m − n)ξ ̸= 0, provided that ξ ≥ L. Therefore, we have
PPP[m]HPPP[n] = 000L for all m ̸= n, provided that ξ ≥ L.

In summary, when given ξ ≥ L and that the UL subcarriers are uniformly arranged
with a constant spacing of l between two adjacent UL subcarriers, the set of PSs given
by (2.31) satisfy (A.1), i.e., they are the orthogonality-achieving PSs.
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Appendix B

Conjugate Gradient Computation

According to (3.23), we have

Φ (FFFRF) = ∑
m∈MDL

∑
d∈Dm

⃦⃦⃦
fff d

MMSE[m]− FFFRF fff d
BB
˜ [m]

⃦⃦⃦2

2

= ∑
m∈MDL

∑
d∈Dm

⃦⃦⃦
fff d

MMSE[m]
⃦⃦⃦2

2

− Tr
(︂

fff d
MMSE[m] fff d,H

BB
˜ [m]FFFH

RF + FFFRF fff d
BB
˜ [m] fff d,H

MMSE[m]
)︂
+ 1.

(B.1)

Then, to further simplify the second term in above equation based on (3.22), we have

The second term =
2Tr

(︂
fff d

MMSE[m] fff d,H
MMSE[m]FFFRF

(︁
FFFH

RFFFFRF
)︁−1 FFFH

RF

)︂
⃦⃦⃦

FFFRF
(︁
FFFH

RFFFFRF
)︁−1 FFFH

RF fff d
MMSE[m]

⃦⃦⃦
2

= 2
√︃

Tr
(︂(︁

FFFH
RFFFFRF

)︁−1 FFFH
RF fff d

MMSE[m] fff d,H
MMSE[m]FFFRF

)︂
= 2 ∥bbbd[m]∥2 ,

(B.2)

where bbbd[m] =
(︁
FFFH

RFFFFRF
)︁−1/2 FFFH

RF fff d
MMSE[m]. Hence, the cost function can be trans-

formed to
Φ (FFFRF) = ∑

m∈MDL

∑
d∈Dm

⃦⃦⃦
fff d

MMSE[m]
⃦⃦⃦2

2
− 2 ∥bbbd[m]∥2 + 1. (B.3)

Then, upon taking the derivative of the (B.3) with respected to FFF∗RF, we obtain

∂(Φ)

∂FFF∗RF
= ∑

m∈MDL

∑
d∈Dm

1
∥bbbd[m]∥2

(︂
FFFRFFFFH

RF fff d
MMSE[m] fff d,H

MMSE[m]FFFRF

(︂
FFFH

RFFFFRF

)︂−2
−

fff d
MMSE[m] fff d,H

MMSE[m]FFFRF

(︂
FFFH

RFFFFRF

)︂−1 )︂
.

(B.4)
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Appendix C

Calculation of Self-Interference
Power

C.1 Self-Interference in Equation (4.9)

According to the model for residual SI [148], the covariance of zSI
d [i] is

cov
{︂

zSI
d [i]

}︂
= E

[︂
hSIxd[i]xH

d [i]h
H
SI

]︂
= ξMT pULM̄, (C.1)

when using E
[︁
hSIhH

SI

]︁
= 1. (C.1) is obtained by substituting xd[i] =

√
pUL

M̄
∑

m̄=1
xd[i, m̄].

C.2 Self-Interference in Equation (4.10)

To compute the covariance of zSI[i] in (4.10), we again refer to the residual model in [148]
and have

cov
{︂

zzzSI[i]
}︂
= ξBSdiag

(︂
E
[︂
HHHSIsssDL[i]sssH

DL[i]HHH
H
SI

]︂)︂
. (C.2)
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Upon substituting sssDL[i] =
M
∑

m=1

√
pDLFFFZF[i, m]xxx[i, m] into (C.2), we can obtain the SI

power at the n-th receive element as

cov
{︂

zzzSI[i]
}︂

n,n
= ξBSE

[︂
HHH(n,:)

SI sssDL[i]sssH
DL[i]HHH

(n,:),H
SI

]︂
= ξBSE

[︄
Tr

(︄
pDL

M

∑
m=1

HHH(n,:)
SI FFFZF[i, m]FFFZF,H [i, m]HHH(n,:),H

SI

)︄]︄
(a)
= ξBS pDLE

[︄
M

∑
m=1

⃦⃦⃦
FFFZF[i, m]

⃦⃦⃦2

F

]︄
(b)
= ξBS pDLM, (C.3)

where (a) is obtained using E[HHH(n,:),H
SI HHH(n,:)

SI ] = IIIN and (b) is due to the power normal-
ization

⃦⃦
FFFZF[i, m]

⃦⃦2
F = 1. Consequently, cov

{︁
zzzSI[i]

}︁
= ξBS pDLMIIIN .
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Appendix D

Covariance matrix of predicted UL
subcarrier channels in (4.31)

The covariance matrix ΓΓΓd,i in (4.31) can be written as

ΓΓΓd,i = E
[︂
hhȟ

UL
n,d [i + 1]hhȟ

UL,H
n,d [i + 1]

]︂

=

⎡⎢⎢⎢⎢⎣
E
[︂

ȟ
DD
n,d [i + 1, 1]ȟ

DD,H
n,d [i + 1, 1]

]︂
· · · E

[︂
ȟ

DD
n,d [i + 1, 1]ȟ

DD,H
n,d [i + 1, M̄]

]︂
...

. . .
...

E
[︂

ȟ
DD
n,d [i + 1, M̄]ȟ

DD,H
n,d [i + 1, 1]

]︂
· · · E

[︂
ȟ

DD
n,d [i + 1, M̄]ȟ

DD,H
n,d [i + 1, M̄]

]︂
⎤⎥⎥⎥⎥⎦ .

(D.1)

As for the diagonal elements in ΓΓΓd,i, according to (4.30), we have

hn,d[i + 1, m̄] = ȟ
DD
n,d [i + 1, m̄] + ěDD

n,d [i + 1, m̄]. (D.2)

Hence, the variance of ȟ
DD
n,d [i + 1, m̄] is (ΘΘΘi[m̄])d,d, given in (4.30). For the off-diagonal

elements of ΓΓΓd,i, we have

E
[︂

ȟ
DD
n,d [i + 1, m̄1]ȟ

DD,H
n,d [i + 1, m̄2]

]︂
= E

[︂
(hn,d[i + 1, m̄1]− ěDD

n,d [i + 1, m̄1])(hH
n,d[i + 1, m̄2]− ěDD,H

n,d [i + 1, m̄2])
]︂

(a)
= E

[︂
hn,d[i + 1, m̄1]hH

n,d[i + 1, m̄2]
]︂

(b)
= E

[︂
ψψψm̄1gggn,d[i + 1]gggH

n,d[i + 1]ψψψH
m̄2

]︂
=

βd

L
ψψψm̄1ψψψ

H
m̄2

, m̄1 ̸= m̄2, (D.3)

where (a) is obtained based on the fact that the prediction error of the m̄1-th subcarrier
channel is independent of the m̄2-th subcarrier channel and vice versa, while (b) can
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be derived from the FFT operation. In summary, the covariance matrix ΓΓΓd,i can be
expressed as

ΓΓΓd,i =

⎡⎢⎢⎢⎢⎣
(ΘΘΘi[1])d,d · · ·

βd
L ψψψ1ψψψH

M̄
...

. . .
...

βd
L ψψψM̄ψψψH

1 · · · (ΘΘΘi[M̄])d,d

⎤⎥⎥⎥⎥⎦ . (D.4)
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Appendix E

The simplification of SINRd,m and
SINRd,m̄ in (5.9)

For SINRd,m, since the ZF precoder is employed with the constraint of power normal-
ization, the numerator of (5.4) can be transformed to

⃓⃓
∑l∈L λldµldm

√
pldmωldm

⃓⃓2, where
ωldm = 1

∥ fff ZF
ld [m]∥2

. In the denominator, MUId,m ≈ 0 due to the ZF precoding, when

N ≥ D. Furthermore, var
{︁

zSI
d

}︁
and var

{︁
zIMI

d

}︁
can be obtained as follows

var
{︂

zSI
d

}︂
= E

[︃
z̄SI

d

(︂
z̄SI

d

)︂H
]︃

(a)
= ξSI

d ∑
m̄∈M̄

µdm̄ pdm̄,

var
{︂

zIMI
d

}︂
= ξIMI

d E

[︃
z̄IMI

d

(︂
z̄IMI

d

)︂H
]︃

(b)
= ξIMI

d ∑
d′∈D\{d}

∑
m̄∈M̄

βdd′

Msum
µd′m̄ pd′m̄, (E.1)

where (a) is derived using E
[︁
hddhH

dd

]︁
= ξSI

d according to (5.1), and (b) is obtained using
E
[︁
hdd′ [m̄]hH

dd′ [m̄]
]︁
= E

[︁
(ϕϕϕT

ULFFFΨΨΨgggdd′)(ϕϕϕ
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ULFFFΨΨΨgggdd′)

H]︁ = βdd′
Msum

.

For the SINRd,m̄, since (wwwZF
ld [m̄])HhhhZF

ld [m̄] ≈ 1, the term in the numerator of (5.8) can be
changed to µdm̄ pdm̄L2. In the denominator, MUId,m̄ ≈ 0, while the second term can be
obtained as

∑
l∈L

E
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wwwZF
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zzzSI
l

⃦⃦⃦⃦2
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wwwZF
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zzz̄SI

l
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wwwZF
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(a)
= ξSI
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l∈L

⃦⃦⃦
wwwZF
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⃦⃦⃦2

2
∑

m∈M
∑

d∈D
λldµldm pldm, (E.2)
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where (a) holds since

(︂
cov

{︂
zzz̄SI

l

}︂)︂
i,i
= ∑

m∈M
∑

d∈D
λldµldm pldmE

[︃⃓⃓⃓
HHH(i,:)

ll fff ZF
ld [m]xd[m]

⃓⃓⃓2]︃
(b)
= ∑

m∈M
∑

d∈D
λldµldm pldmTr

{︃
fff ZF

ld [m]
(︂

fff ZF
ld [m]

)︂H
E

[︃(︂
HHH(i,:)

ll

)︂H
HHH(i,:)

ll

]︃}︃
(c)
= ξSI

l ∑
m∈M

∑
d∈D

λldµldm pldm, (E.3)

where we have (b) due to that the ZF precoder only focuses on the desired signal,
and hence the ZF precoding vector is uncorrelated with the SI channel, we have(c)

according to the assumption that
⃦⃦

fff ZF
ld [m]

⃦⃦2
2 = 1 and E

[︃(︂
HHH(i,:)

ll

)︂H
HHH(i,:)

ll

]︃
= ξSI

l IIIN .

Similarly, the third term in the denominator of (5.8) can be obtained as

∑
l∈L

E

[︃⃦⃦⃦
wwwH

ld[m̄]zzzIAI
l

⃦⃦⃦2
]︃
= ξIAI

l ∑
l∈L

υldm̄ ∑
l′∈L\{l}

∑
m∈M

∑
d∈D

βll′

Msum
λl′dµl′dm pl′dm, (E.4)

where υldm̄ =
⃦⃦

wwwZF
ld [m̄]

⃦⃦2
2. Consequently, SINRd,m and SINRd,m̄ can be simplified to the

desired form as shown in (5.9).
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