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Abstract25

Soil moisture (SM) spatiotemporal variability critically influences water resources, agri-26

culture, and climate. However, besides site-specific studies, little is known about how27

SM varies locally (1–100-m scale). Consequently, quantifying the SM variability and its28

impact on the Earth system remains a long-standing challenge in hydrology. We reveal29

the striking variability of local-scale SM across the United States using SMAP-HydroBlocks30

— a novel satellite-based surface SM dataset at 30-m resolution. Results show how the31

complex interplay of SM with landscape characteristics and hydroclimate is primarily32

driven by local variations in soil properties. This local-scale complexity yields a remark-33

able and unique multi-scale behavior at each location. However, very little of this com-34

plexity persists across spatial scales. Experiments reveal that on average 48% and up35

to 80% of the SM spatial information is lost at the 1-km resolution, with complete loss36

expected at the scale of current state-of-the-art SM monitoring and modeling systems37

(1–25 km).38

Plain Language Summary39

Soil moisture (SM) widely varies in space and time. This variability critically in-40

fluences freshwater availability, agriculture, ecosystem dynamics, climate and land-atmosphere41

interactions, and it can also trigger hazards such as droughts, floods, landslides, and ag-42

gravate wildfires. Limited SM observational data constrained our understanding of this43

variability and its impact on the Earth system. Here, we present the first continental as-44

sessment of how SM varies at the local scales using SMAP-HydroBlocks – the first 30-45

m surface SM dataset over the United States. This study maps the SM spatial variabil-46

ity, characterizes the landscape drivers and quantifies how this variability persists across47

larger spatial scales. Results revealed striking SM spatial variability across the United48

States, mainly driven by local spatial variations in soil properties and less so by vege-49

tation and topography. However, this SM variability does not persist at coarser spatial50

scales resulting in extensive information loss. This information loss implicates inaccu-51

racies when predicting non-linear SM-dependent hydrological, ecological, and biogeochem-52

ical processes using coarse-scale models and satellite estimates. By mapping the SM spa-53

tial variability locally and its scaling behavior, we provide a pathway towards understand-54

ing SM-dependent hydrological, biogeochemical, and ecological processes at local (and55

so far unresolved) spatial scales.56

Introduction57

Soil moisture (SM) plays a key role in modulating water, energy, and carbon in-58

teractions between the land and atmosphere. As such, detailed information is essential59

for water resources management, natural hazards risk assessment, and understanding ecosys-60

tem dynamics, among others. However, SM varies strongly in space, with characteris-61

tic length scales ranging from a few centimeters to several kilometers depending on the62

landscape. SM hotspots that emerge from this spatial variability have significant impli-63

cations for the scientific understanding and prediction of many hydrological and biogeo-64

chemical processes and applications. For instance, SM hotspots influence freshwater sources65

and agricultural management, as wet and dry conditions require different irrigation and66

fertilizer interventions for optimal crop growth (Franz et al., 2020; Vergopolan, Xiong,67

et al., 2021; Sadri et al., 2020). SM spatial variability leads to changes in surface tem-68

perature and evapotranspiration (Rouholahnejad Freund et al., 2020), altering drought69

impacts (Vergopolan, Xiong, et al., 2021) as well as the formation of clouds and convec-70

tive storms (Simon et al., 2021; Zheng et al., 2021). SM hotspots can alter runoff gen-71

eration, resulting in faster and peakier flood events (Zhu et al., 2018), and trigger wild-72

fires (Taufik et al., 2017; Holden et al., 2019) and landslides (Wang et al., 2020; Brocca73

et al., 2016). SM spatial variability influences the distribution of soil fauna and flora, by74
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controlling its habitats, food sources, and dynamics (He et al., 2015; Mathys et al., 2014;75

Youngquist & Boone, 2014; Sylvain et al., 2014). Depending on landscape characteris-76

tics (i.e., soils, topography, and vegetation), such SM-driven processes and hazards can77

occur at local spatial scales (1–100 m). Capturing the SM variability at local scales is78

critical to further our understanding of these processes and improve our modeling and79

prediction capabilities.80

To this end, in-situ SM observations provide detailed information. However, net-81

works of sensors are costly to deploy and maintain and, therefore, are not widely avail-82

able over large areas. Microwave-based satellite measurements can provide global SM83

monitoring with 1–2 days revisit time (Chan et al., 2018; Kerr et al., 2012; Gruber et84

al., 2019), but retrievals are too coarse (9–36 km) to capture local-scale SM hotspots.85

Consequently, our current understanding of how SM varies locally is drawn primarily from86

site-specific studies using in-situ observations (Choi & Jacobs, 2010; Brocca et al., 2007,87

2012; Crow et al., 2005, 2012; Famiglietti et al., 2008), airborne remote sensing imagery88

(Famiglietti et al., 2008; Garnaud et al., 2017) and hydrological modeling (Garnaud et89

al., 2017; Crow et al., 2005), or at larger scales using coarse resolution hydrological mod-90

eling (Manfreda et al., 2007; Li & Rodell, 2013) or satellite sensors (Das & Mohanty, 2006;91

Rötzer et al., 2015). These studies have provided a foundational understanding of how92

hydroclimate and landscape characteristics contribute to SM spatial variability and its93

underlining mechanisms (Vereecken et al., 2014). They characterize how SM spatial vari-94

ability is impacted by precipitation (acting as a large-scale driver of runoff (Rosenbaum95

et al., 2012; Sivapalan et al., 1987)), topography (driving surface and subsurface water96

flow to the riparian zones; (Famiglietti et al., 2008)), soil properties (controlling soil wa-97

ter storage, hydraulic conductivity, infiltration, and drying rates (Choi et al., 2007; Crow98

et al., 2012)), and vegetation (with time-varying physiological functioning influencing99

soil-water retention, infiltration, and evapotranspiration rates (Joshi & Mohanty, 2010;100

Mohanty et al., 2000)). However, SM interacts non-linearly with each of these hydro-101

climate and landscape drivers and as a result the impact of their combined interactions102

is complex (Vereecken et al., 2014). Because previous local-scale studies tend to be site-103

specific and with different experiment designs, the transferability of SM spatial variabil-104

ity across different hydroclimate and diverse landscapes is unknown. Consequently, there105

is no consensus on how SM spatial variability plays out across different hydroclimates106

and landscapes, and how it influences water, energy, and carbon processes locally. Fur-107

thermore, little is known about how this variability persists across spatial scales, and whether108

it can be captured at regional scale by, for example, physical models and microwave satel-109

lite observations.110

Here, we present the first characterization of local-scale SM spatial variability at111

a continental extent and we quantify the persistence of this variability across spatial scales.112

This assessment was enabled by SMAP-HydroBlocks – a newly developed 30-m satellite-113

based surface SM dataset for the conterminous United States (CONUS) (Vergopolan,114

Chaney, et al., 2021a). SMAP-HydroBlocks’ detailed and accurate SM estimates lever-115

age recent scientific advances in the availability of data from in-situ SM networks, microwave-116

based satellite remote sensing, gridded meteorological datasets, high-resolution landscape117

physiography data, and hyper-resolution land surface modeling. As such, SMAP-HydroBlocks118

provides a unique tool to investigate the SM variability across scales and landscapes, and119

therefore can help elucidate the role of SM on water, energy, and carbon processes at spa-120

tial scales that have so far been unresolved (Blöschl et al., 2019). Towards this aim, this121

work (i) maps the magnitude of SM spatial variability across the CONUS, (ii) quanti-122

fies the drivers and relationship with hydroclimate and landscape characteristics, and123

(iii) reveals the multi-scale properties and persistence of this spatial variability across124

spatial scales. The SM spatial variability is striking in its complexity. We discuss the im-125

plications of this newly resolved SM variability for quantifying and understanding land-126

atmosphere interactions and applications in water resources, natural hazard risks, and127

ecosystem dynamics.128
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The spatial distribution of 30-m soil moisture across the United States129

SMAP-HydroBlocks (Vergopolan, Chaney, et al., 2021a) is the first hyper-resolution130

satellite-based surface SM product at a 30-m resolution over the conterminous United131

States (2015–2019). It uses a scalable cluster-based merging scheme (Vergopolan et al.,132

2020) which combines microwave satellite remote sensing, high-resolution land surface133

model, radiative transfer modeling, machine learning, and in-situ observations to obtain134

hydrologically consistent SM estimates of the top 5-cm of the soil. SMAP-HydroBlocks135

was built upon NASA’s Soil Moisture Active Passive L3 Enhanced Global 9-km satel-136

lite product (Chan et al., 2018; O’Neill et al., 2019) (SMAP L3E) and HydroBlocks, a137

field-scale resolving land surface model (Chaney et al., 2021). Validation using indepen-138

dent in-situ observations demonstrated its temporal and spatial representativeness and139

accuracy, particularly in capturing spatial extremes (Vergopolan, Chaney, et al., 2021a).140

SMAP-HydroBlocks details are available at Section S1 in the SI.141
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Figure 1. The spatial distribution of surface soil moisture climatology across the CONUS,

as shown by the SMAP-HydroBlocks dataset at 30-m spatial resolution (2015–2019). Insets

highlight the spatial detail for selected locations with different hydroclimatic and topographical

conditions. Water bodies are shown in blue, scale bar is shown at each panel. Interactive visual-

ization of the 30-m data is available at https://waterai.earth/smaphb.
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The SM heterogeneity is demonstrated by SMAP-HydroBlocks substantial spatial142

variability from local to continental scales (Fig. 1). At the continental scale, the SM vari-143

ability reflects the SM interactions with large-scale hydroclimate and topographic fea-144

tures, with distinct drier conditions over the West and Southwest and wetter conditions145

over the Midwest, Corn Belt, Mississippi River basin, and Northeast. At the regional and146

local scales (Fig. 1 insets), SMAP-HydroBlocks reveals detailed variations that emerge147

from the interactions between hydroclimate, topography, soil properties, and land use148

heterogeneity across the landscape. In the White River basin and the Appalachian Moun-149

tains, for example, we observe the imprint of small tributaries and wet riparian corri-150

dors in valleys and wetter conditions over vegetated lowlands. In the Mississippi flood-151

plain the topography, historical meandric dunes, and agricultural fields modulate the SM152

spatial patterns. Over northern California in the Sierra Nevada, the riparian zone con-153

trasts with the dry climate and local aridity.154

What is and what drives the spatial variability in soil moisture?155

The SM spatial variability across the CONUS is diverse. Here, we quantified us-156

ing the spatial standard deviation (σ) – which measures the deviation of local wet and157

dry SM hotspots from spatial average conditions over a given domain. We calculated σ30m158

using the SMAP-HydroBlocks 30-m SM climatology (2015–2019) at each 10-km box across159

the CONUS (details in Section S2 in the SI). Results in Fig. 2a show the largest SM spa-160

tial variability in the US Southern Coastal Plain, the lower Mississippi River, and the161

Great Lakes region, followed by moderate variability in the Northwestern Pacific, the Ap-162

palachian Mountains, and the Northeastern US. The magnitude of this variability is in163

agreement with the in-situ observational studies (Vergopolan et al., 2020; Famiglietti et164

al., 2008). Regions oh high SM variability (shown in orange to red) are linked to wet lo-165

cations with substantial precipitation, shallow water table depth (with abundant streams,166

ponds, wetlands), variable soil characteristics and verdant vegetation, which can exhibit167

significant contrast with respect to their surrounding environment. Low spatial variabil-168

ity is seen in most of the US Southwest (typically dry), and at the Northern of the US169

Great Plains and the Corn Belt, likely due to flat terrain and cropland dominance that170

reduces σ30m.171

To disentangle the relationships between SM spatial variability with the landscape172

and hydroclimate characteristics at each location, we performed a Principal Component173

Analysis (PCA) to identify associations with the magnitude of local wet and dry SM hotspots.174

In this context, the PCA is particularly useful because it indicates the data dominant175

modes of variation (i.e., the principal components) and quantifies how different physi-176

cal characteristics co-vary, thus being particularly helpful for identifying strong patterns177

in big data. Here, in specific, the PCA compared the SM spatial standard deviation (σ30m,178

Fig. 2a) with the spatial mean (µ) and spatial standard deviation (σ) of high-resolution179

variables that modulate SM dynamics, such as soil properties (sand, clay, and silt con-180

tent), vegetation greenness ( e.g., the Normalized Difference Vegetation Index) and land181

cover types, elevation and topographic wetness, and climatologies of air temperature and182

precipitation at the same 10-km box. Section S3 in the SI details the PCA, the charac-183

teristics of these physical drivers, and their spatial distribution (Fig. S1–S5).184

SM variability tend to follow the dry to wet precipitation gradients (Fig. 2a, Fig.185

S5), this pattern is also evident in the PCA (Fig. 2b). Results shows how the SM spa-186

tial variability (points) follows the first principal component (PC1), which is dominated187

by the precipitation (µprecip) at locations with wetlands and shallow water table depths188

(µwetland), the spatial variability in soil texture (σclay, σsand), mean and variability in the189

topographic wetness index (µTWI, σTWI) while the second component (PC2) is domi-190

nated by the soil texture content (µclay, µsand, µsilt). In the West coast and most of the191

East US, precipitation drives SM spatial variability through the generation of runoff that192

is distributed differently across heterogeneous landscapes (Sivapalan et al., 1987) and,193
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a. Spatial variability of soil moisture (σ30m) b. Physical drivers of the spatial variability
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Figure 2. The spatial variability of local-scale soil moisture and its relationship with physical

drivers. (a) As a proxy for soil moisture spatial variability, we calculated the spatial standard

deviation of the 30-m resolution SMAP-HydroBlocks climatological SM (2015–2019) at each 10-

km box across CONUS. Locations in red show where soil moisture spatial variability is highest.

(b) The PCA biplot compares the first two components of the relationship between the spatial

standard deviation of the 30-m SM (points) with physical characteristics’ spatial mean (µ) and

spatial standard deviation (σ) within the same 10-km box (arrows). Similarly, (c) shows the map

of the spatial coefficient of variation of SM (as the ratio between spatial standard deviation and

the spatial mean), also calculated at each 10-km box, and (d) shows the correspondent PCA

biplot. Fig. S1–S5 shows the spatial variation of the physical drivers. Each arrow represents the

loading of a physical driver and its direction of variation represents how strongly each driver

influences a principal component. The angles between the arrows indicate how the physical char-

acteristics correlate with one another. Arrows pointing towards red (blue) dots show the drivers’

direction of high (low) SM spatial variability.
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along with the warm temperatures in the South, influences in the long-term the forma-194

tion of topographic landscapes and soils through climate and chemical weathering (Breemen195

et al., 2002). Soil spatial heterogeneity and variations in its characteristics (e.g., texture,196

organic matter content, porosity, and structure) are largely observed in the US south-197

east and near the US Great lakes, and drive local variations in soil drying rates, hydraulic198

conductivity, and lateral water distribution (Choi et al., 2007; Crow et al., 2012), which199

in turn generates more spatially variable SM content. This spatial heterogeneity in soils200

(Fig. S1) plays a particular role the SM variability in places with shallow water table201

depth, such as the US Southeast, lower and upper Mississippi River valleys (Fig. 1a).202

Vegetation characteristics (e.g., type, density, and uniformity) and their changes in time203

(i.e., seasonal growth and decay) can dynamically influence SM variability as its phys-204

iological functioning and distribution and density of roots can affect soil-water retention,205

infiltration, and evapotranspiration rates (Mohanty et al., 2000). Results show high veg-206

etation greenness (µNDVI) and its spatial variability (σNDVI), correspond to wet locations207

of high SM spatial variability (e.g., at the East and West coast). In contrast, in the West208

the dry conditions and dominant µshrubland and µgrassland types leads to lower SM spa-209

tial variability.210

Topographic characteristics (e.g., surface elevation, slope, topographic wetness in-211

dex, aspect, and curvature) drive SM convergence to riparian zones via surface and sub-212

surface lateral flow (Crow et al., 2012). Results show high SM variability linked to high213

topographic wetness index (µTWI) and its spatial variability (σTWI), demonstrating the214

role of topography in driving SM spatial patterns, particularly at the US Southeast coast,215

lower and upper Mississippi basins. However, topographic control on surface SM tends216

to happen mostly during and after rainfall events (Western et al., 2003). In contrast, dur-217

ing drydown and typical conditions, the influence of soil properties and vegetation will218

dominate (Chang & Islam, 2003; Ryu & Famiglietti, 2005). In fact, the results also show219

locations of high elevation (µelevation) and spatially variable topography (σelevation), as220

in most of the US West, linked to low SM spatial variability (Fig. 2b) because most of221

the locations of high elevation gradients in the West tend to be climatologically drier (Fig.222

S6). In contrast, at climatologically wet locations, such as over the Appalachian moun-223

tains (Fig. 2a and Fig. 1), substantial SM spatial variability is shown. SM spatial vari-224

ability is known to be higher at wetter soils (Famiglietti et al., 2008). To isolate the con-225

tribution of other physical drivers from the influence of dry/wet conditions, we computed226

the SM spatial coefficient of variation (CV30m), which represents the SM spatial vari-227

ability normalized by the soil wetness (Fig. 2c). The PCA of CV30m (Fig. 2d) shows that228

spatial variability in soil texture (σclay, σsand) still dominates with the SM variability,229

followed by air temperature (µtair) and sand content (µsand). This is particularly evi-230

dent over the US Southeast where high spatially variable and quick drying sandy soils231

at the surface interact with a low water table depth and wetlands and results in distinct232

wet and dry SM hotpots. Fig. 2d also shows the topographic drivers (µelevation, σelevation,233

µTWI, and σTWI), vegetation characteristics (µNDVI, σNDVI, µshrubland, µforest), and pre-234

cipitation (µprecip) shifted towards PC2, highlighting their secondary role in driving the235

SM CV30m. As shown here, the strength of SM hotspots and their local spatial variabil-236

ity emerges from the combined and non-linear hydrological processes and their interac-237

tions with climatic conditions, topography, soils, and vegetation dynamics. However, at238

each location, different characteristics and physical processes will contribute differently239

and lead to patterns that cannot be generalized by the independent contribution of a few240

key drivers.241

Where and how does soil moisture variability persists across spatial242

scales?243

Depending on the landscape complexity, the SM spatial variability at the local scale244

may not persist at regional scales and therefore cannot be represented by coarse reso-245
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Figure 3. The scaling of soil moisture spatial variability. Illustration shows how soil spatial

scaling follows a power-law relationship. The graph compares the soil moisture spatial standard

deviation ratio of data at a coarse spatial scale with respect to the 30-m data (σscale/σ30m). As

the spatial scale increases (decreasing spatial resolution), the spatial standard deviation ratio

decreases. The decrease in spatial variability follows a power-law relationship. β quantifies the

strength of the inverse relationship between data scale and spatial variability. The larger the β

slope, the larger is the spatial-scale dependency, meaning that the SM spatial variability does not

persist and there is a larger information loss at coarser spatial scales. We selected seven locations

across the CONUS (shown in Fig. 4b) that illustrate a range of different scaling behaviors (lines).

lution data (e.g., from models or microwave satellite observations). The inability to rep-246

resent this variability dampens the strength of local SM hotspots and could hamper the247

utility of SM information for water resources management and understanding of land-248

atmosphere interactions at local scales. In fact, quantifying how SM spatial variability249

changes across scales and its impact on the Earth system remains a critical unsolved prob-250

lem in hydrology (Blöschl et al., 2019; Crow et al., 2012). Here, we characterize the scal-251

ing properties of SM spatial variability by mapping how this variability changes across252

spatial scales and where it persists. This also helps to identify where high-resolution data253

is critical to capture local-scale variability.254

To this end, we performed a synthetic spatial scaling analysis, which involves up-255

scaling the 30-m SMAP-HydroBlocks data to coarser spatial scales (λscale: 60 m, 90 m,256

. . ., 1 km) and calculating the change in spatial standard deviation (i.e., change in vari-257

ability) at each scale with respect to the 30-m data (σscale/σ30m). Observational stud-258

ies at a few sites have shown that this change in SM spatial variability with data sup-259

porting scale and spacing follows a power-law relationship (Rodriguez-Iturbe et al., 1995).260

This behavior turned out to be the same observed when comparing SM correlation length261

and distance, and it often characterizes complex hydrological fractal nature (Famiglietti262

et al., 2008). As illustrated in Fig. 3, the log relationship between the spatial standard263

deviation ratio and data scale indicates the strength of the SM spatial scale dependency264

through β, and it can be interpreted as an indicator of SM variability persistence across265

scales (Hu et al., 1997). The more negative the β, the larger is the dependency of the266

SM spatial variability on the data scale. Consequently, higher information loss (herein267

defined as 1−σscale/σ30m) and lower variability persistence are expected at coarser spa-268

tial resolutions. Although SM spatial patterns can change over time, its spatial signa-269
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ture persists (Mälicke et al., 2020). As a result, β does not change significantly over time270

(e.g., during SM drydown) making it a stable metric for characterizing multi-scaling SM271

properties (Oldak et al., 2002).272

The scaling relationship for selected sites of varying landscape complexity are il-273

lustrate in Fig. 3 and 4a. The small β value of −0.06 (Location 1, Fig. 3) indicates lit-274

tle change in spatial standard deviation with scale and persistence of local-scale SM hotspots275

across scales. At 1-km resolution, only 21% of the spatial variability is lost with respect276

to the 30-m data (Fig. 4a, first row). In contrast, the scaling relationship at Location277

7 shows a large β (−0.37) associated with a 74% reduction in spatial variability. In fact,278

the imprint of the riparian zone within this site vanishes at 1-km resolution (Fig. 4a last279

row), exemplifying the high spatial scale dependency and lack of spatial variability per-280

sistence. Fig. 4b maps the information loss (as a percentage) when the 30-m SM data281

is averaged to 1-km resolution (Fig. S7 maps the β coefficient) across CONUS. Over-282

all, there is little persistence of SM spatial variability across scales, with an average in-283

formation loss of 48±10%, and a maximum loss of 80%. Importantly, this information284

loss (and the associated β) strongly varies by location, revealing complex context-dependent285

multi-scale properties (Fig. 4b). A PCA in Fig. 4d compares the strength of this infor-286

mation loss with the mean and spatial variability of landscape and climate character-287

istics. Results showed a tendency for high information loss at locations with strong to-288

pographic gradients (such as over the Rocky Mountains, Appalachian Mountains, North-289

western Cascade Range, and the Sierra Nevada) and dominant forest coverage (e.g., most290

of the Northeast). However, for information loss below 60% the results shows no clear291

or generalizable relationship with climatic and physiographic characteristics. We also com-292

pared the relationship between information loss and SM spatial standard deviation (Fig.293

5a). High and low information loss can emerge from either high or low SM spatial vari-294

ability, but with zero correlation. This demonstrates how the complex and non-linear295

hydrological, ecohydrological, and biogeochemical processes that occur at local scales yield296

such unique SM scaling behavior locally that can hardly be transferred to different hy-297

droclimates and landscapes.298

Mapping where SM spatial variability and information loss are highest is critical299

to identify where high-resolution data is needed. Fig. 5b shows low SM spatial variabil-300

ity with high information loss (dark blue) in most of the US Corn Belt and the Missouri301

River basin, driven mainly by cropland dominance and flat terrain. These small-scale302

variations vanish at the 1-km resolution but are critical to capturing intra-field scale ir-303

rigation water demands (Franz et al., 2020). Low variability with high information loss304

is also observed in parts of the Rocky Mountains and the West, where dry conditions lead305

to low SM variability. However, topographic gradients enhance information loss, ham-306

pering the monitoring of (already scarce) freshwater resources. High SM variability and307

information loss (dark orange) are present on the US West coast (e.g., Sierras Nevada308

and the Cascade Range) and most of the Northeastern US (including the Appalachians),309

driven by precipitation interactions with topography that replenishes the riparian zones.310

High SM variability and information loss are also evident near the US Great Lakes, lower311

Mississippi River, and the Southeast coast, driven by heterogeneity in soils driving spa-312

tially variable SM dry-down rates contrasting with wetlands and shallow water table depths.313

Given the high SM variability and information loss, further allocating in-situ monitor-314

ing resources at locations is thus critical for better monitoring and quantifying non-linear315

SM-dependent hydrological, ecological, and biogeochemical processes.316

Implications317

Understanding and modeling land-atmosphere feedbacks318

Studies have shown how neglecting the SM spatial variability at local scales damp-319

ens extremes and introduces errors when quantifying scale-dependent water, energy, and320
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Figure 4. The information loss of soil moisture across spatial scales. (a) Comparison of the

soil moisture data at different spatial resolutions: each panel shows SM at a 10-km box with its

climatological spatial variability (measured by the spatial standard deviation, σ), and information

loss (measured as the percentage change in spatial standard deviation with respect to the 30-m

data). Each row shows a different location (subsetted from the 7 locations in Fig. 3) and each

column shows data at different resolutions. (b) We mapped the information loss of the 1-km

resolution data for each 10-km box across the CONUS. Locations in orange to yellow show where

coarser spatial resolution data fail to capture 60–80% of the spatial variability observed at 30-m

resolution. Subplot (c) shows the distribution of this information loss in the US. (d) PCA biplot

compares the first two components of the relationship between the information loss (points) with

physical characteristics’ spatial mean (µ) and spatial standard deviation (σ) within the same

10-km boxes (arrows). Fig. S1–S5 shows the spatial variation of the physical drivers. Each arrow

represents the loading of a physical driver and its direction of variation represents how strongly

each driver influences a principal component. The angles between the arrows indicate how the

physical characteristics correlate with one another. Arrows pointing towards yellow (blue) dots

show the drivers’ direction of high (low) soil moisture information loss.
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Low  SM spatial variability and high information loss
High SM spatial variability and low  information loss
High SM spatial variability and high information loss

a) b) 

Soil moisture spatial variability (σ30m) vs. Information loss of data at 1-km resolution

Legend
Low  SM spatial variability and low  information loss

R=0.00

Figure 5. Comparison between the spatial variability of SM data at 30-m resolution and in-

formation loss of the 1-km resolution SM data. Panel a) compares the joint distribution of the

SM spatial standard deviation (x-axis) and the information loss (y-axis) of all 10-km boxes across

CONUS. To identify locations with low or high SM spatial variability and information loss, the

data space was partitioned in 4 domains, based on the average SM spatial standard deviation

(0.02) and average information loss (48%). Adjacent top and lateral graphs show the histograms

and cumulative functions of the SM spatial standard deviation and information loss, respectively.

Panel b) maps each of the 4 domains with the same color scheme: blue (orange) colors show

areas of low (high) SM spatial variability, whereas light (dark) colors show areas of low (high)

information loss. In panel b, orange colors emphasize the high SM variability patterns (observed

in Fig. 2a), while the dark (blue and orange) colors emphasize the high information loss patterns

(observed in Fig. 4b).

carbon interactions between the land and the atmosphere. For example, the relationship321

between SM and evapotranspiration under different water and energy constraints is highly322

non-linear (Rouholahnejad Freund & Kirchner, 2017). When wet SM hotspots are re-323

solved at spatial scales closer to their true spatial variability, they enhance evapotran-324

spiration to the atmosphere in comparison to spatially homogeneous drier conditions (Crow325

& Wood, 2002; Rouholahnejad Freund et al., 2020). This higher evapotranspiration fur-326

ther cools the ground surface, and can enhance horizontal atmospheric humidity and tem-327

perature gradients that drive variable boundary layer dynamics, development of large-328

scale eddies, potentially triggering of local convective rainfall (Simon et al., 2021; Ford329

et al., 2015; Zheng et al., 2021; Vergopolan & Fisher, 2016). Spatially variable SM also330

controls plant photosynthesis rates and nutrient cycling, yielding non-linear changes of331

40–80% in carbon uptake (Trugman et al., 2018; Green et al., 2019) and 78% nitrogen332

cycling (Paul et al., 2003). For instance, optimal crop nitrogen uptake is inhibited by333

both very dry and wet SM conditions. While dry SM inhibits mineralization, extreme334

wet SM lead to denitrification and N2O release (Paul et al., 2003) — a greenhouse gas335

298 times more effective at trapping heat in the atmosphere than CO2 (Denman et al.,336

2007). As such, the spatial variability in SM critically changes the flux response of highly337

non-linear and local-scale processes, while grid-average conditions can lead to inaccurate338

assessment and process interpretation. Limited observations have historically constrained339

understanding of the impact of SM variability on these processes. The spatial variabil-340

ity of SMAP-HydroBlocks allows quantifying these processes’ dependencies and iden-341

tifying where fine-scale data is critical for improving our understanding of the land-atmosphere342
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and biogeochemical processes that drive changes in weather and climate and our abil-343

ity to model them.344

Supporting water resources decision-making and natural hazards risks345

Local scale SM spatial variability also impacts management of freshwater resources346

and water-dependent risks. For instance, when local dry or wet SM hotspots are aver-347

aged by coarse-resolution SM data, the perceived intensity of drought conditions or ex-348

tent of waterlogging is reduced. The related underestimation (or overestimation) of crop349

water demands limits farmer decision making on when and where to irrigate (Franz et350

al., 2020; Vergopolan, Xiong, et al., 2021). Capturing SM dynamics at the field scale is351

thus critical to quantify irrigation (Jalilvand et al., 2019; Dari et al., 2020). SM spatial352

variability also impacts on wildfires by controlling the spatial distribution of vegetation353

fuel load and flammability through vegetation water content (Taufik et al., 2017; O et354

al., 2020). As such, the inability to represent wet and dry SM hotspots at sub-kilometer355

scales results in underestimated risks of propagating wildfires (Holden et al., 2019). Sim-356

ilarly, local wet hotspots lead to conditions that trigger landslides and local flash floods.357

Landslides tends to happen at small-scale (e.g., ∼10–100-m2, Zhang et al. (2019)) and358

occur when soil water saturation increases soil-column weight, reduces soil cohesion, and359

leads to gravity-driven mass movements. Wet hotspots that trigger these events are mostly360

averaged out by coarser-resolution data, critically limiting monitoring of slope stability361

and landslide detection accuracy (Wang et al., 2020). Spatially variable SM also drives362

spatial variability rainfall infiltration rates which influence the timing and spatial struc-363

ture of runoff generation and flooding, leading to earlier and more intense floods (Zhu364

et al., 2018).365

Monitoring and understanding biodiversity and species distribution366

SM spatial variability plays a critical role in controlling land ecosystems (Rodŕıguez-367

Iturbe & Porporato, 2007), particularly soil organisms and communities (Sylvain et al.,368

2014; Mathys et al., 2014), but also amphibian movements (Youngquist & Boone, 2014),369

and species distributions more generally (Gardner et al., 2019). Soil organisms that are370

closely coupled with SM are especially important as they comprise 25–33% of Earth’s371

biodiversity (Decaëns et al., 2006), providing vital ecosystem functions such as soil fer-372

tilization, nutrient recycling, pest and disease regulation, and erosion (Qiu & Turner, 2015;373

Wall, 2013). Variability in SM leads to patchy and reduced distribution of suitable habi-374

tats for such soil organisms and influence their dynamics (Wall & Virginia, 1999). Par-375

ticularly in arid and degraded conditions, this leads to reduced local biodiversity and ecosys-376

tem function and to increased susceptibility to disturbances (Wall & Virginia, 1999). There-377

fore, characterization of SM spatial variability and information loss provide insights on378

organisms’ dynamics, behavior, biodiversity richness, and ecosystem service provision379

(He et al., 2015). SM also plays a critical role in determining the degree of drought stress380

of plants (Vergopolan, Xiong, et al., 2021); a failure to account for local variability can381

lead to underestimates of the effects of climate change on future distributions (Midgley382

et al., 2002). In addition, SM play a key role in enabling detailed monitoring of pest in-383

festation food sources and reproduction pathways (Gómez et al., 2020), and supporting384

the assessment and forecasting of infectious disease and pest risks such as West Nile virus,385

malaria, and locust swarms (Keyel et al., 2019; Escorihuela et al., 2018). Understand-386

ing SM variability and scaling at the local scale is therefore critical for improving un-387

derstanding and monitoring of ecosystems dynamics, pest infestations, and biodiversity388

loss in a spatially explicit manner. Furthermore, it supports the development of adap-389

tation pathways towards improving these ecosystems’ resilience to climate variability and390

climate change.391
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Conclusion392

Understanding SM spatial variability, its scaling behavior, and effects on freshwa-393

ter resources is a long-standing grand challenge in hydrology. By mapping SM variabil-394

ity at unprecedented scales, our study reveals the unseen and striking local-scale vari-395

ability across CONUS. The magnitude of this variability and information loss across scales396

varies widely across landscapes, highlighting how SM-dependent water, energy, and car-397

bon processes cannot be reduced to simplistic relations with hydroclimate or landscape398

characteristics. Yet, this local-scale complexity demonstrated by SMAP-HydroBlocks is399

not represented by current SM monitoring and modeling systems (1–25-km resolution)400

and hinders our ability to address a range of scientific questions and applications on land-401

atmosphere feedbacks, water resources management, and biodiversity and species dis-402

tributions. The SM variability and information loss mapped here can critically aid re-403

sources allocation and design of in-situ networks for improved monitoring of non-linear404

and SM-dependent hydrological, biogeochemical and ecological processes. Given recent405

advances in data availability and computing resources, the next generation of SM prod-406

ucts, land surface models, and Earth system models should also consider how to account407

for this local scale variability to more realistically represent hydrological processes, nat-408

ural hazards, and its interactions with climate. By mapping the SM variability and its409

scaling behavior, this work provides a pathway towards improving the understanding and410

quantification of hydrological, biogeochemical, and ecological processes at spatial scales411

that have so far been unresolved.412

Data Availability413

The SMAP-HydroBlocks surface soil moisture dataset at 30-m 6-h resolution (2015–414

2019) comprises a 62 TB dataset (with maximum compression). Due to the storage lim-415

itation of online repositories, we provide the raw data at the Hydrologic Response Unit416

(HRU) level (time, hru) compressed to 33 GB. Python code and instructions for post-417

processing the data into geographic coordinates (time, latitude, longitude) is available418

at GitHub (https://github.com/NoemiVergopolan/SMAP-HydroBlocks postprocessing).419

Data are available for download at Vergopolan et al. (Vergopolan, Chaney, et al., 2021b)420

(https://doi.org/10.5281/zenodo.5206725). The data are provided in netCDF-4 for-421

mat (https://www.unidata.ucar.edu/software/netcdf/), and referenced to the World422

Geodetic Reference System 1984 (WGS 84) ellipsoid. The netCDF-4 files can be viewed,423

edited, and analyzed using most Geographic Information Systems (GIS) software pack-424

ages, including ArcGIS, QGIS, and GRASS. As an illustration example, a 30-m map of425

the SMAP-HydroBlocks annual and long-term climatology can be viewed through an in-426

teractive web interface at https://waterai.earth/smaphb.427
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