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Abstract: Power spectra always play an important role in the theory of inflation. In particular, the
ability to reproduce the galaxy matter power spectrum P(k) and the CMB temperature angular power
spectrum Cl’s to high accuracy is often considered a triumph of inflation. In our previous work,
we presented an alternative explanation for the matter power spectrum based on nonperturbative
quantum field-theoretical methods applied to Einstein’s gravity, instead of inflation models based on
scalar fields. In this work, we review the basic concepts and provide further in-depth investigations.
We first update the analysis with more recent data sets and error analysis, and then extend our
predictions to the CMB angular spectrum coefficients Cl , which we did not consider previously.
Then we investigate further the potential freedoms and uncertainties associated with the fundamental
parameters that are part of this picture, and show how recent cosmological data provides significant
constraints on these quantities. Overall, we find good general consistency between theory and data,
even potentially favoring the gravitationally-motivated picture at the largest scales. We summarize
our results by outlining how this picture can be tested in the near future with increasingly accurate
astrophysical measurements.

Keywords: quantum cosmology; quantum gravity; inflationary cosmology

1. Introduction

In cosmology we know that the Universe is not perfectly homogeneous and isotropic but rather
comprises of fluctuations, in matter density and in temperature, which are congregated and correlated
in a rather specific manner. Detailed measurements of these fluctuations can be characterized by
correlation functions and power spectra [1–10]. The question of why these fluctuations are distributed
the way they are is thus an important one in cosmology. The conventional explanation of the shape of
these power spectra is provided by inflation, which is based on the hypothesis of additional primordial
scalar fields called inflatons [11–13]. The shape of the power spectrum is thus derived from quantum
fluctuation of these primordial inflaton fields, and the agreement of this prediction with observations
to high accuracy has been widely regarded as a great triumph and confirmation for inflation [14].

In our previous work [15], we have offered an alternative explanation based on gravitational
fluctuations alone without inflation, which to our knowledge is the first-of-its-kind. While the
short-distance theory of quantum gravity may still be highly uncertain due to both the flexibility
of higher-order operators consistent with general covariance and the lack of experimental results,
the long-distance or infrared limit of the theory is however in principle well-defined and unique,
governed largely by the concept of universality. Although this long-distance quantum theory of gravity
still suffers from being perturbatively nonrenormalizable, well known field theory techniques have
been extensively developed, applied and tested in many other fields of physics where perturbation
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theory fails, usually due to a non-trivial vacuum structure. As a result, it is thus conceivable that
these nonperturbative methods may find use in deriving physical consequences of perturbatively
non-renormalizable theories such as gravity. Previous efforts [16,17] have shown that many such
effects may manifest themselves and become important on very large cosmological scales. In particular,
we found that much of the matter power spectrum can be derived and reproduced from Einstein
gravity and standard ΛCDM cosmology alone, utilizing nonperturbative quantum field methods,
without the need of additional scalar fields as advocated by inflation. We have shown that not only the
predictions agree quite well with recent data, but also that additional quantum effects predict subtle
deviations from the classical picture, which may become testable in the near future.

In this paper, we further investigate consequences from the above picture. Most importantly,
we translate our quantum gravity prediction of the matter wavenumber power spectrum P(k) to
a prediction for the angular temperature power spectrum coefficients Cl’s. The angular temperature
power spectrum, which expresses the power as coefficients of spherical harmonics (instead of plane
waves, like the matter power spectrum) serves as a more direct comparison with observation, since
after all the CMB measurements are performed over the sky. Unsurprisingly, we again find a general
agreement between the observations and the gravitationally motivated prediction. Furthermore,
additional quantum gravitational effects are expected to affect the low-l regime of the Cl spectrum.
As discussed in [15], new quantum effects become significant when the separation-distances r become
comparable to a characteristic vacuum condensate scale of gravity ξ, which is expected to be extremely
large (∼5300 Mpc), affecting very small l’s in angular harmonic space. The additional quantum
effects include the infrared (IR) regulator effects from the gravitational vacuum condensate and the
renormalization group (RG) running of Newton’s constant G. Here these effects on the angular
spectrum are studied, and we show the occurrence of a dip in power in the low-l regime. Furthermore,
we argue that this may potentially be the cause for the well-known l = 2 anomaly in the Cl spectrum.
Although it is impossible to make conclusive statements so far due to the large cosmic variance in that
region, one might hope that there may be incremental improvements in systematic and experimental
uncertainties in the near future, or that certain statistical likelihood-arguments for this effect can
be made.

In addition, a number of updates will be presented here. In particular, new data sets of the
matter power spectrum P (k) have been released by the Planck collaboration [18], very shortly after
the publication of our first results and predictions. It is interesting here to study the consistency
and improvements, if any, of the data. We find that the refined analyses and results not only remain
consistent with our theoretical result, but a new point was published in [18], which seems to suggest
a downwards dip on the spectrum at low-k, as a running Newton’s constant due to quantum gravity
would suggest. Although the error bars on the points are too large to make conclusive statements, this
remains an interesting development to study.

It is also possible to utilize these latest cosmological observations to constrain the theoretical values
of the microscopic parameters, and thus further shed insight into the underlying theory. A handful
of parameters in the theory are investigated, including the universal critical scaling exponent ν, the
coefficient for the amplitude of quantum effects c0, and the characteristic nonperturbative correlation
length scale ξ. Our analyses show that while the latter (c0 and ξ) may only be constrained up to
an order of magnitude, the data actually puts rather stringent constraints on the universal scaling
exponent ν.

Finally, we present a study of the effect of the RG running of Newton’s constant G
derived from a recent alternative analytical nonperturbative approach—the Hartree-Fock (HF)
approximation [19]—on the power spectra. We find that these results predict the same general
indication of a decrease in the power spectrum amplitude at scales close to the characteristic scale
r ∼ ξ, a behavior which is consistent with the predictions from other nonperturbative methods such
as the Regge-Wheeler lattice formulation and the 2 + ε dimensional expansion results. However
the HF approximation seems to eventually predict an upturn in power at extreme low-k regime and
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diverge from the other methods, which presumably indicates the limit of validity for this particular
approximation method.

The paper is organized as follows. Section 2 serves to outline the key points and results from the
quantum theory of gravity and the resulting non-trivial scaling dimensions. Section 3 summarizes the
main results in deriving the power spectrum from quantum gravity. This section also includes updated
plots with the latest results from experiments, and updated error bars. Sections 4 and 5 investigate
the possibility of constraining the theoretical scaling parameters from cosmology. Section 6 relates the
predictions on the matter power spectrum P(k) to the angular temperature spectrum Cl’s, and the
effects of an RG running of Newton’s constant G on the Cl’s. Section 7 discusses, summarizes and
contrasts the current quantum gravity motivated picture with that of inflation, in view of explaining
the measured power spectra. The section concludes by outlining a number of future issues of interest
to this study.

2. Nonperturbative Approach to Quantum Gravity

Many more details on the nonperturbative approach to quantum gravity used in this paper can
be found in a number of earlier works [16,17], and many references therein. The current section will
therefore only serve to summarize the key points and main results which will become relevant for the
subsequent discussion.

Quantum gravity, in essence the covariantly quantized theory of a massless spin-two particles, is
in principle a unique theory, as shown by Feynman some time ago [20,21], much like Yang-Mills theory
and QED are for massless spin-one particles. In the covariant Feynman path integral approach, only
two key ingredients are needed to formulate the quantum theory—the gravitational action S

[
gµν

]
and

the functional measure over metrics d
[
gµν

]
, leading to the generating function

Z
[
gµν

]
=
∫

d
[
gµν

]
e

i
h̄ S[gµν] , (1)

where all physical observables could in principle be derived from. For gravity the action is given by
the Einstein-Hilbert term augmented by a cosmological constant

S
[
gµν

]
=

1
16πG

∫
d4x
√

g (R− 2λ) , (2)

where R is the Ricci scalar, g being the determinant of the metric gµν(x), G Newton’s constant, and λ

the scaled cosmological constant (where a lower case is used here, as opposed to the more popular
upper case in cosmology, so as not to confuse it with the ultraviolet-cutoff in quantum field theories
that is commonly associated with Λ). The other key ingredient is the functional measure for the
metric field, which in the case of gravity describes an integration over all four metrics, with weighting
determined by the celebrated DeWitt form [22].

There are two important subtleties worth noting here. Firstly, in principle, additional higher
derivative terms that are consistent with general covariance could be allowed in the action, but
nevertheless will only affect the physics at very short distances and will not be necessary here for
studying large-distance cosmological effects. Secondly, as in most cases that the Feynman path integral
can be written down, from non-relativistic quantum mechanics to field theories, the formal definition
of integrals requires the introduction of a lattice, in order to properly account for, the known fact that
quantum paths are nowhere differentiable. It is therefore a remarkable aspect that, at least in principle,
the theory, in a nonperturbative context, does not seem to require any additional extraneous ingredients,
besides the standard ones mentioned above, to properly define a quantum theory of gravity.

At the same time, gravity does present some rather difficult and fundamentally inherent
challenges, such as the perturbatively nonrenormalizable nature due to a badly divergent series
in Newton’s constant G, the intensive computational power required from being a highly nonlinear
theory, the conformal instability which makes the Euclidean path integral potentially divergent, and
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further genuinely gravitational technical complications arising from the fact that physical distances
between spacetime points, which depend on the metric which is a quantum entity, fluctuate.

Although these hurdles will ultimately need to be addressed in a complete and satisfactory way,
a comprehensive account is of course far beyond the scope of this paper. However, regarding the
perturbatively nonrenormalizable nature, some of the most interesting phenomena in physics often
stem from non-analytic behavior in the coupling constant and the existence of nontrivial quantum
condensates, which are hidden and impossible to probe within perturbation theory. It is therefore
possible that challenges encountered in the case of gravity are more likely the result of inadequate
calculational treatments, and not necessarily a reflection of some fundamentally insurmountable
problem with the theory itself. Here, we shall take this as a motivation to utilize the plethora
of well-established nonperturbative methods to deal with other quantum field theories where
perturbation theory fails, and attempt to derive sensible physical predictions that can hopefully
be tested against observations. More detailed accounts on the various issues associated with the theory
of quantum gravity can be found for example in [16,17], and references therein.

For the present discussion, we will mention that the nonperturbative treatment of quantum
gravity via Wilson’s 2 + ε double expansion (in G and the dimension) and the Regge-Wheeler lattice
path integral formulation [23] both reveal the existence of a new quantum phase, involving a nontrivial
gravitational vacuum condensate [16]. Along with this comes a nonperturbative characteristic
correlation length scale, ξ, and a new set of non-trivial scaling exponents, as is common for well-studied
perturbatively non-renormalizable theories ν [24–34]. Together, these two parameters characterize
quantum corrections to physical observables such as the long-distance behavior of invariant correlation
functions, as well as the renormalization group (RG) running of Newton’s constant G, which in
coordinate space leads to a covariant G(�) with � = gµν∇µ∇ν [17]. In particular, in can be
shown [16,35] that for r < ξ, the correlation functions of the Ricci scalar curvatures over large
geodesic separation r ≡ |x− y| scales as

GR(r) = 〈 δR(x) δR(y) 〉 ∼ 1
r2(d−1/ν)

, (3)

where d here the dimension of spacetime. Furthermore, the RG running of Newton’s constant can be
expressed as

G(k) = G0

 1 + 2 c0

(
m2

k2

) 1
2ν

+O

(m2

k2

) 1
ν

 (4)

where 2 c0 ≈ 16.04 is a nonperturbative coefficient, which can be computed from first principles using
the Regge-Wheeler lattice formulation of quantum gravity [36–43].

Here we note the important role played by the quantum parameters ν and ξ. The appearance of
a gravitational condensate is viewed as analogous to the (equally nonperturbative) gluon and chiral
condensates known to describe the physical vacuum of QCD, so that the genuinely nonperturbative
scale ξ is in many ways analogous to the scaling violation parameter ΛM̄S of QCD. Such a scale cannot
be calculated from first principles, but should instead be linked with other length scales in the theory,
such as the cosmological constant scale

√
1/λ. The combination that is most naturally identified with ξ

would be ξ ∼
√

3/˘ ' 5300 Mpc [16,44,45]. The other key quantity, the universal scaling dimension ν,
can be evaluated via a number of methods, many of which are summarized in [41–43,46–66]. Multiple
avenues point to an indication of ν−1 ' 3, which here will serve as a good working value for this
parameter; a simple geometric argument suggests ν = 1/(d− 1) for spacetime dimension d ≥ 4 [17].

It should be noted that the nonperturbative scale ξ should also act as an infrared (IR) regulator,
such that, like in other quantum field theories, expressions in the “infrared” (i.e., as r → ∞, or
equivalently k→ 0) should be augmented by

1
k2 →

1
k2 + m2 (5)
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where m = 1/ξ ' 2.8× 10−4 h Mpc−1, expressed in the dimensionless Hubble constant h ' 0.67 for
later convenience. Consequently, the augmented expression for the running of Newton’s constant
G becomes

G(k) = G0

 1 + 2 c0

(
m2

k2 + m2

) 1
2ν

+O

( m2

k2 + m2

) 1
ν

  . (6)

The aim here is therefore to explore areas where these predictions can be put to a test. The cosmological
power spectra, which are closely related to correlation functions, and thus take effects over large
distances, provide a great testing ground for these quantum gravity effects.

3. Deriving the Matter Power Spectrum

The most straightforward relation to something testable is via the galaxy power spectrum. In this
section, we provide a brief summary of the theory, as well as updated plots of observational results.
More details can be found in our previous paper [15]. A power spectrum is a correlation function
in Fourier or wavenumber space. Thus, the galaxy power spectrum essentially quantifies how
galaxies of various separations are correlated [1,2]. More specifically, consider the distribution of
galaxies described by a matter density field ρ(x, t). The overdensity, or fluctuation, above the average
background density ρ̄ can be quantified by the density contrast δ, defined by

δ(x, t) ≡ δρ(x, t)
ρ̄(t)

=
ρ(x, t)− ρ̄

ρ̄(t)
. (7)

Correlations of such fluctuations between two points can be measured by the two-point matter density
correlation function Gρ(r), defined as

Gρ(r; t, t′) ≡
〈

δ(x, t) δ(y, t′)
〉
=

1
V

∫
V

d3z δ(x + z, t) δ(y + z, t) , (8)

with r = |x− y|. The above correlation function can also be expressed in Fourier-, or wavenumber-,
space, Gρ(k; t, t′) ≡ 〈 δ(k, t) δ(−k, t′) 〉, via a Fourier transform, as recalled below. For our analysis,
it is useful to bring these measurements to a common time, say t0, so that one can compare density
fluctuations of different scales as they are measured and appear today. The resultant object P(k) is
referred to as the matter power spectrum,

P(k) ≡ (2π)3〈 |δ(k, t0)|2 〉 = (2π)3F(t0)
2〈 |∆(k, t0)|2 〉 , (9)

where δ(k, t) ≡ F(t)∆(k, t0). The factor F(t) then simply follows the standard GR evolution formulas
as governed by the Freidman-Robertson-Walker (FRW) metric. As a result, P(k) can be related to, and
extracted from, the real-space measurements via the inverse transform

Gρ(r; t, t′) =
∫ d3k

(2π)3 Gρ(k; t, t′) e−ik·(x−y)

=
1

2π2
F(t)F(t′)

F(t0)2

∫ ∞

0
dk k2 P(k)

sin (kr)
kr

.
(10)

It is often convenient to parameterize these correlators by a so-called scale-invariant spectrum, which
includes an amplitude and a scaling index, conventionally written as

P(k) =
a0

ks , (11)

Gρ(r; t0, t0) =
( r0

r

)γ
. (12)
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It is then straightforward to relate the scaling indices using Equation (10), giving γ = 2(d− 1/ν) = 2
and

s = (d− 1)− γ = 3− γ = 1 . (13)

Note that Gρ(r; t0, t0) is sometimes referred to as ξ(r) in the literature, but here we prefer to avoid
confusion with the gravitational correlation length ξ which will appear later.

Next, to relate the predictions from quantum gravity on the fluctuations of curvature to the
fluctuations of the galaxy matter density, we make use of the Einstein field equations

Rµν − 1
2 gµνR + λgµν = 8πG Tµν . (14)

To a first approximation, by assuming galaxies follows a perfect pressureless fluid, the trace
equation reads

R− 4λ = −8πG T . (15)

(For a perfect fluid the trace gives T = 3p− ρ, and thus T ' −ρ for a non-relativistic fluid.) Since λ is
a constant, the variations, and hence correlations, are directly related as in

〈 δR δR 〉 = (8πG)2 〈 δρ δρ 〉 . (16)

As described in the previous section, quantum gravity predicts that the scalar curvature fluctuations
GR over large distances scale as

GR(r) ≡ 〈 δR(x) δR(y) 〉 ∼ 1
r2 . (17)

Using the relation in Equation (16), the galaxy density fluctuations Gρ then follow a similar
scaling relation

Gρ =
( r0

r

)2
(18)

as r → ∞; or, using Equation (13), equivalently,

P(k) =
a0

k
(19)

as k → 0 for the galaxy power spectrum. As a result, quantum gravity predicts an exponent γ =

2(d− 1/ν) = 2, or s = d− 1− γ = 1 in d = 4. The prediction of γ = 2 or s = 1 is expected to be valid
in a so-called linear scaling regime, where galaxies can be treated as essentially pressureless point
particles, and where long-range gravitational correlations are expected to be dominant. Quantitatively
one observes that typical galaxy clusters have sizes around r ∼ 3–10 Mpc (or equivalently k ∼ 2π/r ∼
3.0–0.9 Mpc−1). For separations below this scale, nonlinear dynamics is expected to dominate, but
beyond separations r > 50–100 Mpc (k < 0.2–0.1 h Mpc−1), any effects of such nonlinear dynamics
should become unimportant, and long-range gravitational correlations are expected to dominate. It is
over these large distances that one expects gravitationally induced scaling to take effect.

Nonlinear effects can be expected to modify the scaling in two ways. Firstly, including pressure
to the Freidman equations induces fluctuations about the general scaling trend, known as baryonic
acoustic oscillations (BAOs). Secondly, for distance scales below the size of galaxy clusters, nonlinear
multi-body dynamics become important. Nevertheless, despite the computational complexity,
such nonlinear dynamics basically follow Newtonian dynamics and are thus well-understood
and well-studied in standard literatures such as [1,67–69]. At these scales, neither quantum nor
general-relativistic effects are expected to play a huge role (see Appendix A). From the observational
side, Figure 1 shows recent results of the power spectrum from the 14th data release (DR14) of the Sloan
Digital Sky Survey (SDSS), a galaxy survey which charted over 1.5 million galaxies, covering over
one-third of the celestial sphere [70], with separations roughly from k ' 0.02 h Mpc−1 (r ' 500 Mpc)
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to k ' 0.30 h Mpc−1 (r ' 30 Mpc). Notice as k decreases (r increases), the data appears to approach a
constant on the k× P(k) vs. k plot, which agrees with an s = 1 scaling law

k · P(k) = a0 . (20)

One then obtains a value of a0 ≈ 686± 87 (Mpc/h)2, which parameterizes the amplitude of the galaxy
power spectrum. In particular, focusing on the linear scaling regime r ∼> 50 Mpc (k ∼< 0.15 h Mpc−1),
all of the corresponding 13–15 data points lie within a 3σ (∼15%) variance of a0. On the other hand, as
expected, for separation distances smaller than 50 Mpc (k ∼> 0.17 h Mpc−1), the spectrum deviates from
the s = 1 scaling law, giving rise to a transient behavior into the nonlinear regime. In addition, rough
oscillations from BAOs can also be observed about the average value given by a0.

Figure 1. The observed galaxy power spectrum in k× P(k) versus wavenumber k. The data points
are taken from the Sloan Digital Sky Survey (SDSS) collaboration’s 14th Data Release (DR14) [70].
Quantum gravity predicts that in the linear regime (k ∼< 0.15 h Mpc−1), as r → ∞ (or k → 0), P(k)
should approach a scale-invariant spectrum with ν = 1/3 (i.e., s = 1), as in Equation (19). In other
words, k× P(k) should approach a constant. The solid line represents the asymptotic value of the s = 1
spectrum, with a one-parameter fit for the amplitude in Equation(19) giving a0 ' 686 (Mpc/h)2. The
gray bands represent a 3σ (∼±15 %) variance to the fit. It can be seen that, below k < 0.15 h Mpc−1, the
data generally approach a constant of approximately a0 ∼ 686 (Mpc/h)2, but beyond k > 0.15 h Mpc−1

the data shows a transient region where the points deviate from the linear scaling, due to the relevant
correlation function probing distances smaller than the linear scaling regime.

One can further extend the above analysis by doing a phenomenological fit over the linear regime
with two parameters, a0 and s, using again the scale-invariant ansatz P(k) = a0/ks. Such fit gives
s ' 1.09± 0.08, i.e., about 9.0 (± 8.0)% around the predicted s = 1 value, and a0 = 540± 115 (Mpc/h)2.
This is a decent expectation given a first order prediction, neglecting BAOs and other dynamical
effects superimposed on the linear scaling. Further analysis by applying the fit over the full range of
observational data (k = (0.02, 0.30) h Mpc−1) gives s ' 1.31± 0.04, i.e., about 30% of the predicted
s = 1 value, and a0 = 280± 24 (Mpc/h)2. The larger discrepancy in s is also expected, given that
the nonlinear regime is now included in the fit. Nevertheless, it is still overall consistent with an
s ∼ 1 trend, satisfying the general trend created and set by the gravitational correlations. To even
more accurately extrapolate the results to the nonlinear regime (k > 0.15 h Mpc−1), the full nonlinear
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dynamics has to be addressed and solved. In fact, we will see that the nonlinear solutions can be
extrapolated to even larger scales (k < 0.02 h Mpc−1) into a radiation dominated era of the Universe.
This will be the topic of the next section.

It should be noted here that the amplitude a0, just like the scaling dimension ν or s, is in principle
calculable from the lattice treatment of quantum gravity, as discussed for example in [16] and references
therein. Nevertheless, unlike the universal, scheme-independent, scaling dimension s, a0 represents a
non-universal quantity, and will therefore depend to some extend on the specific way the ultraviolet
cutoff is implemented in the quantum theory. This fact is already well known from other lattice gauge
theories such as lattice QCD. Therefore it seems more appropriate here to take this non-universal
amplitude a0 as an adjustable parameter, to be fitted and constrained by astrophysical observational
data. Nevertheless, quantum gravity provides a direct prediction for the general s = 1 scaling of
galaxy correlations.

Notice that since galaxy scales from the SDSS survey are of the order 50–500 Mpc, which is at
least one to two orders of magnitude below ξ ' 5300 Mpc, the RG running of Newton’s G as governed
by Equation (4) is highly suppressed, and Newton’s constant can be treated as a constant. Later on we
will explore these additional effects as we turn to fluctuations on even larger scales in the next section.

4. Matter Power Spectrum in the Small-k Regime

It is possible to extrapolate the quantum gravity predictions in the linear regime of galaxies
to both larger and smaller k via a solution of the appropriate nonlinear evolution equations. The
calculation is one that is rather complex algebraically and is often done via numerical programs such
as CAMB. A semi-analytical treatment can be found in [67], which was adopted in our previous paper,
and which will be used here as well. More details of the calculation can be found throughout our
previous work [15], and we will simply outline the key steps in this section, as well as present the
latest observational results.

Already mentioned is the challenge of extending to smaller, nonlinear, scales (k > 0.15 h Mpc−1).
But a second challenge is to extend to larger distances (k < 0.02 h Mpc−1). Larger distances in the sky
correspond to earlier epochs of the Universe, which eventually transits from a matter dominated one
to a radiation dominated one, which takes place around keq ' 0.014 h Mpc−1 [18]. For such distances
(k < keq) which correspond to a Universe that is constitute predominately out of radiation, it will be
difficult to find fully formed galaxies. Therefore the main source of observational data that involve
such large separations comes from the observed cosmic microwave background (CMB).

However, the map of the CMB represents fluctuations in temperature, which are essentially
fluctuations in radiation, not matter, density. The quantum gravity prediction of GR ∼ 1/r2 for the
scaling of curvature fluctuations is in principle valid for all scales of separations (up to r < ξ =

5300 Mpc, or k > 1.8 × 10−3 h Mpc−1). However, whereas the scalar curvature correlation GR is
easily related to the matter density correlation Gρ using the trace of the Einstein field equations in
k > keq (where the Universe is matter dominated), it is not easy to relate to a radiation correlation
Grad for k < keq (where the Universe starts to become radiation dominated), since the trace of the
energy-momentum tensor for radiation is zero. In this case the full Einstein field equations, not just
their trace, is needed.

Both challenges can be circumvented via existing numerical calculations of the nonlinear cosmic
evolution equations. For minimal confusion, we will strictly adhere to the notation in [67] for the
derivations and expressions for P(k), and later Cl ’s, unless otherwise stated. Their general solution for
P(k) is given by the form

P(k) = C0

(
R0

k

)2
k4 [T (κ)]2 , (21)
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where C0 ≡ 4(2π)2C2(ΩΛ/ΩM)/25 Ω2
M H4

0 , a prefactor of cosmological parameters. An initial
condition is imposed on the factorR0

k , and the rest is the so-called transfer function T (κ), a well-known
result from standard cosmology literature [71]. A semi-analytical formula for T (κ) is given by

T (κ) ' ln[1 + (0.124κ)2]

(0.124κ)2

[
1 + (1.257κ)2 + (0.4452κ)4 + (0.2197κ)6

1 + (1.606κ)2 + (0.8568κ)4 + (0.3927κ)6

]1/2

, (22)

in [67], with κ =
√

2 k/keq, and will be used here for simplicity. The remaining initial condition
functionR0

k is usually parameterized in the form of a scale-invariant spectrum [72–74]

(R0
k)

2 = N2 1
k3

(
k

kR

)ns−1
(23)

which then forms the only ungoverned part of the power spectrum P(k). In other words, the full
power spectrum, over a full scale of k, is now parameterized by only two theoretical parameters, N2

and ns. The rest is then fully governed by classical physics and measured cosmological parameters.
The quantity kR is sometimes referred to as the “pivot scale”, and here is simply a reference scale,
conventionally taken to be kR = 0.05 Mpc−1.

One can now normalize the spectrum from the galaxy regime (see [15] for details), and then the
full power spectrum up to r < ξ = 5300 Mpc (k > 1.8× 10−3 h Mpc−1) is fully determined. Figure 2
shows this prediction by the middle blue curve with the CMB data from the Planck satellite data
(2018) [18], combined with the earlier galaxy data from SDSS (DR 14). As one can see, the middle blue
curve is in good agreement with all the current CMB and Galaxy data points. This shows that applying
quantum gravity results, together with standard cosmology derived from the Boltzmann transport
equations and general relativity, provides a complete derivation of the power spectrum P(k).

Now, at scales above r ∼ ξ = 5300 Mpc (or k below m ∼ 2.8 × 10−4 h Mpc−1), additional
quantum effects are expected to be significant in the quantum theory of gravity. These effects can form
potentially testable predictions for this picture which deviate from the current classical predictions.
Indeed, at small k, two additional genuinely quantum effects becomes important. Firstly, similar to
QCD, an infrared (IR) regulator must be included to regulate expressions near vanishing k. This is
implemented, in close analogy to QCD, by promoting in various expressions

1
k2 →

1
k2 + m2 (24)

where the scale m ∼ 1/ξ ∼ 2.8× 10−4 h Mpc−1. Secondly, the effects of renormalization group (RG)
running of coupling constants will become significant at small k, which involves promoting Newton’s
constant G to

G → G(k) = G0

[
1 + 2c0

(
m2

k2 + m2

)3/2

+O
((

m2

k2 + m2

)3)]
. (25)

Both effects are plotted in Figure 2, with the top pink curve showing the first effect of an IR regulator,
and the bottom green curve incorporating both effects together. Note that the combined effect is a dip
below the classical (blue curve) results at scales of around k ∼ m. The deviation in these curves can
potentially form a testable prediction of the quantum gravity picture, with increasingly precise results
expected in the near future.

It is worth comparing the above results to the inflation-motivated picture. In essence, the inflation
picture postulates a scalar field that is dominant in the early Universe (with some power-law potential),
whose quantum fluctuations sets the scale of the fluctuations of the (Newtonian) gravitational potential
Φ. The inflaton field then needs to be “turned-off”, after some Ne number of e-foldings, and the
spectrum for gravity Φ continues to govern the spectrum for matter, resulting in the observed matter



Universe 2019, 5, 216 10 of 28

spectrum today. It should be noted that the success of inflation has been largely attributed to its
ability in explaining this power spectrum. Prior to inflation, the origin of this spectrum has long been
a mystery. At the time, models such as a fractal Universe [1] provided the best motivation for the
Harrison-Zel’dovich spectrum of P(k) ∼ 1/k in the galaxy regime. Nevertheless, the origin of this
fractal behavior remained a mystery. With the invention of inflation, finally comes a quantum theory
that is able to set the initial scale, and provides an explanation with a “primordial spectrum” that leads
to (R0

k)
2 = N2k−3(k/k∗)ns−1 having a value ns = 1− 2/Ne ≈ 0.96 for basic scalar models assuming

Ne ≈ 60 e-foldings. This prediction, which provided the first explanation for the shape of the power
spectrum, has thus been presented as a triumph of inflation [69,75].
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Figure 2. Matter power spectrum P(k) with various quantum effects included. The middle (blue)
curve shows the full matter power spectrum function as predicted by quantum gravity, modulo the
two following effects. The top (orange) curve P(k)reg includes the effect of an infrared (IR) regulator
ξ ∼ 5300 Mpc. The bottom (green) curve P(k)run includes both the effect of the IR regulator and
a renormalization group (RG) running of Newton’s G, characterized by an amplitude of running
2 c0 ∼ 16.04, as given by numerical calculations from the lattice theory [see Equations (4) and (6)].
The blue triangles show the Planck 2018 CMB data [18].

Here we have presented an alternate picture, whereby treating the gravitational field quantum
mechanically one is able to extract the gravitational scalar curvature spectrum GR, which then directly
governs the power spectrum for matter P(k). The scaling of the gravitational spectrum GR is, whether
evaluated numerically or estimated analytically, fully calculable from first principles of quantum field
theory. Furthermore, the relation from the curvature spectrum to the matter spectrum P(k) is also in
principle unambiguous, as presented in this work.

It is interesting to note that the scalar spectral index ns can also be extracted from this picture,
which leads to some interesting comparison. The scaling indices for the gravitational curvature
spectrum γ ' 2 and s ' 1 gives roughly ns ' 1.1 [15]. There are however a number of uncertainties
through this derivation, from the evaluation of the true values of ν, γ and s, to normalizing the full
spectra. It will require more work in the future to narrow down the exact uncertainties in these various
steps. From our first-order calculations, we arrive at a value for ns within ∼15% of the measured value
from Planck [18] and in spite of these uncertainties, which seems reasonable for a very first attempt.
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Despite the crude discrepancy at this stage for ns, which presumably can be improved with
more precise studies, there are a number of advantages for this gravitationally motivated picture,
compared to the inflation motivated one. The gravitational scenario does not require the postulate of
an undiscovered quantum field and its fluctuations, but simply utilizes the quantum fluctuations of the
existing gravitational field, which most current discussions neglect. Secondly, unlike inflation models,
the theory of quantum gravity is at least in principle unique. The number of tunable parameters is
extremely minimal and, most of them, in principle can be nailed down with further studies.

It should also be pointed out that the far left data point (at k = 2.9× 10−4 h Mpc−1) was released by
Planck [18] only around one week after publication of our previous paper [15], suggesting a reduction
in power on the very low k, and thus somewhat supporting the quantum gravity prediction. It is
obvious that the significant magnitude of the error bars for this last point makes it vastly premature
to make any definite conclusions. However, the fact that the data point was published after the
publication of the first paper could make it a genuine prediction of quantum gravity, instead of a
post-diction, like the rest of the data points. The publication of this new (and previously non-existent)
data point suggests the predictability and testability of the quantum gravity picture presented here. It
is hoped that this can be done via new astronomical experiments and observations in the near future,
which will further improve and narrow down the errors in the small-k, and which may serve to verify
(or falsify) this theory.

As a final note, it should be noted that the inflation picture requires setting the scale of the
spectrum with P(k) ∝ k at small k’s. It would be difficult for at least basic inflation models to reproduce
a dip for k→ 0. As a result, with future observational experiments, further narrowing of errors bars in
the low-k regime may be possible to provide a clear distinction between the competing gravitational
and inflation picture. More detailed comparisons and computations can be found in the previous
paper [15]. In summary, compared to inflation, the gravitationally motivated picture provides in our
view a competing alternative explanation for the power spectrum in terms of both its naturalness and
its uniqueness.

5. Constraints on the Scaling Dimension ν from Cosmology

It should by now be apparent that the universal scaling index ν plays an important role in the
theory of quantum gravity. Section 2 already summarized various methods, both analytical and
numerical, to determine this value. Furthermore, Section 3 described a method to relate this to
cosmological observations, showing that the numerically derived value is in generally good agreement
with recent observational data. It is therefore of interest to see if the logic can be reversed—by taking
advantage of the variance in the data, to provide a constraint on this important theoretical parameter ν.

Figure 3 shows the same plot as in Figure 2 (ignoring the effect of IR regulation and RG running
of Newton’s constant G that is only important in the last three data points) but with a 1% and 2%
variance added to the value ν = 1/3. It can be seen that, should one want to stay within most of the
error bars on the left, only a maximum of 1% variance in ν is allowed. A 2% variance would already
significantly protrude away from the rather stringent vertical error bars in the 4th point from the left.

One can therefore conclude that current cosmological data provides a very stringent constraint on
the theoretical value of the scaling exponent ν—supporting the value of ν ' 1/3, with a maximum
allowed deviation of 1–2%.
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Figure 3. Matter power spectrum P(k) with various choices for the scaling exponent ν. The middle
(blue) curve shows the matter power spectrum as predicted by quantum gravity with a value of
ν = 1/3 as before, with two bands showing variance of 1–2% in the value of ν. Notice that in order
to obtain general consistency with current CMB data, ν cannot deviate by more than ∼2% from the
theoretically predicted value of 1/3. This can be viewed as a rather stringent constraint on the value of
the exponent ν arising from cosmology.

6. Constraining the Running of G from Cosmology

A similar study can be performed for the magnitude of the RG running of G, and specifically the
key quantum amplitude c0. Recall that the running of G is given by

G(k) = G0

[
1 + 2c0

(
m2

k2 + m2

)3/2

+O
((

m2

k2 + m2

)3) ]
, (26)

where G0 is the currently established laboratory value for Newton’s constant, the quantum amplitude
is 2 c0 ≈ 16.04, and the nonperturbative gravitational condensate scale is estimated at ξ ≡ m−1 ∼√

3/λ ' 5300 Mpc. The value of 2 c0 ≈ 16.04 is computed from the Regge-Wheeler lattice formulation
of quantum gravity [41–43]. This is largely in exact analogy, both in concept and in practice (via
the lattice), to the evaluation of the β(g) function in QCD. The latter represents a quantity that has
been extensively tested in collider experiments, and is by now in extremely good agreement with
accelerator experiments. At this stage, unlike β(g) from QCD, the same level of precision has not yet
been achieved for c0, and it seems possible at this stage, given various numerical uncertainties inherent
in the calculation of c0, to have deviations that could modify it by up to an order of magnitude.

As a result, one can parallel the previous study of ν, and utilize cosmological data to provide a
best-fit value, and thus a constraint, on the quantum amplitude c0. Also, the same type investigation
for the variance in ξ will be done at the end of this section. Figure 4 shows the best fit to c0, which
corresponds to roughly 1/7-th, or 15%, of the original value for c0, i.e., 2 c0 = 16.04/7 ' 2.29 (in solid
purple). The bands above and below the solid purple curve represent a further factor of 1/2 and
2 respectively.
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Figure 4. Matter power spectrum P(k) shown for various choices of the quantum amplitude c0. The
middle (purple) solid curve shows a best fit through the last few low-k data points via an RG running
of Newton’s constant G, with an amplitude of running 2 c0 ≈ 16.04/7 ≈ 2.29, i.e., around 15% of
the preliminary value of 16.04 from the lattice. The shaded (purple) band represents a variance in
2 c0 ≈ 2.29 by a factor of 2 and 1/2. The original spectrum with no running (top, blue, dashed) and the
spectrum with running of Newton’s constant G, with the original coefficient of 2 c0 ≈ 16.04, (bottom,
green, dashed) are also shown for reference. Note that the middle (purple) curve with 2 c0 modified
to 16.04/7 can also be mimicked by instead tuning the nonperturbative scale ξ to ∼ 2.5× 5300 Mpc
(≈ 13,000 Mpc) and keeping the quantum amplitude 2 c0 = 16.04.

Note that the middle solid (purple) curve with 2 c0 modified to 16.04/7 can also be mimicked by
instead tuning ξ to ∼2.5× 5300 Mpc (≈ 13,000 Mpc) and keeping the lattice value for the amplitude at
2 c0 = 16.04. The initial association of ξ ∼

√
3/λ ≈ 5300 Mpc is theoretically motivated by connecting

the curvature vacuum condensate scale in the theory,
√

3/λ, to the nonperturbative correlation length
ξ [44,45], and again in close analogy to what happens in QCD (the factor of 1/3 is often accompanied
with λ in the equations of motions, such as the classical Friedman equations). It is thus conceivable
that the order of estimate ξ can be varied by a factor up to an order of magnitude. The above analysis
shows that, if the lattice value of 2 c0 = 16.04 is to be taken rigorously, then an increase of ∼2.5 on the
vacuum scale ξ would best fit the data. In essence, the RG running of Newton’s constant G requires two
parameters, the quantum amplitude c0 and the correlation length ξ, to fully determine its form. The
former is in principle calculable from the lattice, while the latter is best associated with the scale

√
3/λ

provided by the theory, which determines the long-distance decay of Euclidean curvature correlation
functions at a fixed geodesic distance. Nevertheless, the error bars in the last data point in Figure 4
are too wide to provide any definite conclusions at this stage. It is conceivable that further satellite
experiments might put further constrains on the errors in these points, and thus provide more insight
on these fundamental microscopic parameters.

Here we note that it is of some interest to explore analytical (as opposed to numerical) methods
related to the running of Newton’s constant G. One possibility briefly mentioned earlier is the 2 + ε

expansion [46–53], which provides an estimate for the scaling exponent ν−1 to be between 2 and
4.4, through a one- and two- loop double expansion (in G and the dimension) respectively, giving
additional confidence in the numerically computed value ν−1 ' 3. Similar estimates for the exponent
ν are found within a set of truncated RG equations, directly in four dimensions [58–66].
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Another recently explored idea is a nonperturbative approach via a mean field approximation,
which in this context is essentially the Hartree-Fock (HF) self-consistent method applied to quantum
gravity [19], used here for the running of Newton’s constant G. One finds the following expression for
the running of G,

G → GHF(k) = G0

[
1− 3m2

2k2 log
(

3m2

2k2

)]
(27)

The result of this exercise is shown in Figure 5. The middle solid orange curve shows the Hartree-Fock
expression for the running of Newton’s constant G, while the bottom dashed green curve and
the top blue dotted curve show the original lattice running of Newton’s constant G (with original
lattice coefficient 2 c0 = 16.04), as well as no running respectively for reference. It seems that the
Hartree-Fock running of G is in good consistency with the lattice expression, except for the eventual
unwieldly upturn beyond k < 2× 10−4. However, this upturn is most likely an artifact from the
Hartree-Fock expression being just a first-order analytical approximation after all (it is well known that
the Hartree-Fock approximation can be extended to higher order, by including increasingly complex
higher loop diagrams, with dressed propagators and vertices still determined self-consistently by a
truncated version of the Schwinger-Dyson equations). Nevertheless, the Hartree-Fock approximation
shows good consistency with both the latest available observational data sets, as well as with the lattice
results. The fact that it exhibits a gentler dip at small k perhaps also provides support for the reduced
lattice running coefficient of 2 c0 = 16.04/7 ≈ 2.29 from Figure 4.

Figure 5. Lattice versus Hartree-Fock running of Newton’s constant G. The middle solid (orange)
curve shows P(k) implemented with the Hartree-Fock running of Newton’s constant G factor. The
lower dashed (green) curve shows the original lattice RG running of Newton’s constant G (with the
original lattice coefficient 2 c0 = 16.04) for comparison. The original spectrum with no running is also
displayed by the top dotted (blue) curve for reference.

7. Angular CMB Temperature Power Spectrum

The most accurate recent measurements of the CMB are actually represented by the angular
temperature power spectrum, represented by a set of angular Fourier coefficients denoted by Cl . It
is therefore useful to translate the quantum gravity prediction to the angular temperature spectrum
represented by the Cl’s. The angular temperature spectrum Cl coefficients relate to a two-point



Universe 2019, 5, 216 15 of 28

correlation function of the temperature, when expanded in terms of spherical harmonics labelled by l
and m. The Cl coefficients themselves are defined as

Cl ≡
1

4π

∫
d2n̂

∫
d2n̂′ Ll(n̂ · n̂′) 〈 ∆T(n̂)∆T(n̂′) 〉 , (28)

where n̂, n̂′ are two different directions in the sky, and Ll(θ) the Legendre polynomials. Here we avoid
the usual common notation, “Pl(θ)”, for the Legendre polynomials, in order to avoid unnecessary
confusion with the various power spectra. Following [67], fluctuations in the CMB temperature ∆T
can be expanded in plane waves,(

∆T(n̂)
T0

)
=
∫

d3q eiq·n̂ r(tL) ( F1(q) + iq̂ · n̂ F2(q) ) , (29)

where T0 = 2.725 K (the average CMB temperature measured today), tL the time of recombination,
and F1,2(q) form factors given by

F1(q) = −
1
2

a2(tL)B̈q(tL)−
1
2

a(tL)ȧ(tL)Ḃq(tL) +
1
2

Eq(tL) +
δTq(tL)

T̄(tL)
, (30)

F2(q) = −q
(

1
2

a(tL)Ḃq(tL) +
δuγq(tL)

a(tL)

)
, (31)

The B and E functions describe suitable decompositions of the metric perturbations, and δuγ is the
velocity potential for the CMB photons. These form factors simplify for certain gauge choices. In the
synchronous gauge, E = 0, whereas in the Newtonian gauge B = 0 and E = 2Φ, which then gives

F1(q) = Φq(tL) +
δTq(tL)

T̄(tL)
, (32)

F2(q) = −
δuγq(tL)

a(tL)
. (33)

The functions Φ and δuγ, as well as the scale factor a(t) and T(t), can all be obtained as solutions of
the classical Friedmann equations combined with the Boltzmann transport equations, as is done in
standard cosmology, which will then in principle lead to unambiguous predictions for the Cl’s. Note
that F1(q) and F2(q) are referred to as “F(q)” and “G(q)” respectively in [67]. Here we will use the
former in order to avoid confusion with the expression for the running of Newton’s constant G(k), as
it will be implemented below. We also make the usual approximation of a sharp transition at tL during
recombination, which is quite acceptable since we are primarily interested in the general trend, and
not exceedingly precise features, of the spectrum at this stage.

Perturbations in the above form factors are fully governed by the classical Friedmann and
Boltzmann transport equations. These lead to standard solutions in terms of transfer functions T (κ),
S(κ) and ∆(κ), given by

F1(q) =
R0

q

5

[
3 T

(
q dT
aL

)
RL − (1 + RL)

− 1
4 e−

(
q dD
aL

)2

S
(

q dT
aL

)
cos

[
q dH
aL

+ ∆
(

q dT
aL

)]]
, (34)

F2(q) =
√

2
R0

q

5
(1 + RL)

− 3
4 e−

(
q dD
aL

)2

S
(

q dT
aL

)
sin
[

q dH
aL

+ ∆
(

q dT
aL

)]
(35)

where aL = a(tL) = 1/(1 + zL), zL = 1090, dT = 0.1331 Mpc, dH = 0.1351 Mpc, dD = 0.008130 Mpc,
dA = 12.99 Mpc, and RL ≡ 3ΩB(tL)/4Ωγ(tL) = 0.6234. It is noteworthy at this stage that all three
transfer functions are completely determined again by (well measured) cosmological parameters. So
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the only remaining ingredient to fully determine the Cl coefficient is an initial spectrumR0
q, which is

usually parameterized by an amplitude N and spectral index ns,

R0
q = N q−3/2

(
q

qR

)(ns−1)/2
. (36)

Here the reference “pivot scale” is usually taken to be qR = 0.05 Mpc−1 by convention. As a
consequence, once the primary functionR0

q is somehow determined, classical cosmology then fully
determines the form of the Cl spectral coefficients. It is therefore possible to write the Cl’s fully, and
explicitly, in terms of the primary function R0

q. After expanding the original plane wave factor in a
complete set of spherical Harmonics and spherical Bessel functions, one obtains

Cl = 16π2 T2
0

∫ ∞

0
q2 dq

(
R0

k

)2 [
jl(qrL)F̃1(q) + j′l(qrL)F̃2(q)

]2
. (37)

Here rL = r (tL), and we have factored out the functionR0
q explicitly F1(q) = (R0

q) F̃1(q) and F2(q) =
(R0

q) F̃2(q). Recall that, since the matter power spectrum is given by

P (k) = C0

(
R0

k

)2
k4 [T (κ)]2 , (38)

we can useR0
q to obtain a direct relation between the Cl’s and P(k),

Cl = 16π2 T2
0

∫ ∞

0
q2dq P(q)

[
C0 k4 T (κ)2

]−1 [
jl(qrL)F̃1(q) + j′l(qrL)F̃2(q)

]2
, (39)

where q and k are related by q = a0k, and the scale factor “today” a0 can be taken to be 1.
The quantum theory of gravity, as outlined in the earlier sections, predicts the form of the full

matter power spectrum function P(k). Using Equation (39), one can therefore translate the quantum
gravity prediction on P(k) to the angular coefficients Cl’s. Figure 6 shows a plot of the ensuing result,
represented by the top blue curve, for l = 2 to l = 50. One can see that the theoretical prediction
(obtained here by numerical integration) is in generally rather good agreement with most of the
observational data.

Again, it should be emphasized here, again, that reproducing the full expression for the Cl ’s does
not require the inclusion of a scalar field anywhere. Instead, the spectrum for gravitational fluctuations
is used to set the scaling in a particular regime, which is chosen to be the galaxy regime for its most
direct connection, and the rest is then fully governed by classical general relativity and standard kinetic
theory. Another way of expressing this result is that the entire expression for the Cl’s, or for P(k),
except for the spectral index ns and the amplitude N, is fully governed by classical general relativity
and kinetic theory (and by finely measured cosmological parameters such as ΩM, ΩΛ, H0, etc. ...).
That is, ns and N are the only two remaining theoretically undetermined quantities in this framework.
Whereas inflation provides one perspective on how these two parameters can be derived, quantum
gravity provides in our view an equally well-motivated alternative.

However, as before, additional quantum gravity effects are expected to manifest themselves at
very large distances comparable to ξ. In angular space, this corresponds to the widest angles, or very
low-l regime. In this context one can then investigate how the IR regularization and the RG running of
Newton’s constant G affects the standard prediction, thus providing potentially testable predictions
and alternatives, to distinguish between this quantum gravity fluctuation picture and the inflation
one. In the case of the matter power spectrum P(k), the RG running of Newton’s constant G was
implemented by modifying

P(k) →
[

G0

G(k)

]2
P(k) (40)
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where G0 is the Newton’s gravitational constant measured in the laboratory or on solar system scales. In
the angular spectrum coefficients Cl , this will introduce an extra factor of [G0/G(q)]2 in the integrand.
The resulting modification is shown by the lower green curve in Figure 6. As for the case of P(k), the
RG running of Newton’s constant G causes a significant drop in the magnitude of the Cl’s at large
distance scales (low l). The green bands around the curve with the RG running of Newton’s constant
G shows the effects of varying by factor of 2 the quantum running amplitude c0.

Figure 6. Plot of the angular power spectrum coefficients l(l + 1)Cl/2π. The upper (blue) curve shows
the quantum gravity prediction of the angular CMB power spectrum Cl ’s as obtained from the matter
power spectrum P(k) (and thus with scaling exponent ν=1/3), without any IR regulation effect from ξ,
and without the RG running of Newton’s constant G. The bottom (green) curve shows the combined
quantum gravity effect now with IR regulation and the lattice RG running of Newton’s constant G,
with the original lattice quantum amplitude 2 c0 = 16.04. The upper and lower bands on the bottom
curve represent a factor of 2 variance on the quantum amplitude c0, i.e., 2 c0 = (8.02, 32.08).

Note that in particular the last point at l = 2, which corresponds to measuring the CMB on
the largest scales on the sky, is significantly below the classical prediction, and has represented a
well-known anomaly for quite some time. Although that last point is plagued with large uncertainties
due to cosmic variance - the lack of independent samples on this scale from our sky - many do agree
that the error bars as shown already account for our best assessments of the associated variances. If
these judgements are believable, then the classical prediction seems just marginally consistent with
the allowed uncertainties. If the matter power spectrum indeed originates from inflation, then there
are currently no widely agreed solutions that can reasonably explain the sudden drop in power at the
extreme low l’s. This is a general consequence of inflation, providing a scale-invariant normalization
at very large scales.

Quantum gravity, however, tells us that the effects from a running Newton’s constant G must be
included, whether by an expression calculated from the lattice approach as represented by the green
curve above, or by one calculated via the Hartree-Fock approximation. Figure 7 shows a comparison
between them.

So it seems that for distance scales roughly r < ξ, both quantum gravity and inflation produce
a spectrum that agrees rather well with observations. Although one can argue the gravity induced
perspective is more natural to the principle of Ockham’s Razor, being able to explain the same physical
phenomena without the need of a new field, the question of which picture is more desirable remains
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largely a philosophical one. However, for distance scales roughly r > ξ (i.e., small k or small l), both
the observed matter power spectrum P(k) and the corresponding observed angular power spectrum
Cl seem to hint towards the quantum gravity picture. Of course, ultimately, much more precise data
will be needed to conclude this decisively. Nevertheless, the current context presents an intriguing
possibility for a new explanation for the nature of correlations and for the origin of cosmic fluctuations,
and also beyond that an interesting testing ground for quantum gravity.
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Figure 7. A comparison of the lattice versus Hartree-Fock RG running of Newton’s constant G on the
angular spectrum coefficients Cl . The middle (orange) curve shows Cl implemented with a Hartree-Fock
running of Newton’s constant G factor, in comparison with the original lattice RG running of Newton’s
constant G (with the original lattice coefficient 2 c0 = 16.04), represented by the lower (green) curve.
The original angular spectrum with no running of G is shown by the upper (blue) curve for reference.

It is of some interest here to compare the running of Newton’s constant G obtained from the
lattice to the analytical result of the Hartree-Fock approximation. Using the Hartree-Fock expression
Equation (27), the corresponding result is displayed by the orange curve in Figure 7. One notes that,
similarly to P(k), the Hartree-Fock expression analogously (i) predicts a smaller power in the low-l’s
(l < 50), (ii) has a less dramatic dip compared to the lattice running at the very large scales (l < 10),
and finally (iii) predicts a somewhat unwieldly upward turn at the extreme large scales (l < 3). As is
the case of the matter power spectrum P(k), some of these features, especially the unwieldy upturn at
extremely large scales, may be an artifact from the fact that Hartree-Fock is essentially a mean-field
type approximation. Nevertheless, while the lattice prediction may be more trust-worthy due to it
being an exact, numerical evaluation of the path integral, the Hartree-Fock expression provides a good
independent consistency check for this picture.

Finally, it is possible to investigate the effect of varying the lattice quantum amplitude c0 appearing
in the running of G, as in Equations (4) and (6). From the investigation of P(k), the value of c0 that best
fits the large scale data at small k is 2 c0 = 16.04/7 ≈ 2.29. Figure 8 plots the effect of this modification.
As before, this choice seems to fit rather well with most of the data in the low-l regime. Nevertheless
it should be noted that this modification can also be mimicked by modifying the correlation length
ξ ≈ 5300 Mpc to ξ ≈ 13,000 Mpc, or by any combined adjustments of the two parameters ξ and c0.
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Figure 8. Angular power spectrum shown, with a comparison between various choices for the
lattice RG running of G parameters of Equation (6). For reference, the top blue curve represents the
original spectrum with no RG running of Newton’s constant. The bottom green curve shows the
effect of the lattice RG running of Newton’s constant G with a modified value for the lattice amplitude
2 c0 = 16.04/7 ≈ 2.29. This new curve, represented by the modified amplitude 2 c0, appears to fit best
through the last few (l < 10) data points. Here the green bands represent a factor of two in variance
around this modified c0. The last curve reveals that although the original value of 2 c0, as obtained
from numerical lattice simulations, is around the correct order of magnitude, nevertheless when looked
at more carefully, a slightly smaller value seems to be favored by the very low l cosmological data. It
seems therefore that future data from the CMB could be useful in further constraining the precise value
for the quantum amplitude. Note that a coefficient of 2 c0 ≈ 16.04/3.13 will allow the green curve
to precisely go through the last point at l = 2. However cosmic variance suggests ∆Cl ∼ 2/

√
2l + 1,

which disfavors giving too much weighting to the final point.

Although at first sight it may seem impossible to eventually distinguish the difference between
the classical and quantum picture by the still highly uncertain data, it may not be so with better
telescopes in the near future. Table 1 shows the percentage difference between the classical prediction,
and one with the RG running of Newton’s constant G included, in accordance with Equation (6), with
the choice 2 c0 = 16.04/7 ≈ 2.29.

From Table 1, one can see a 58% difference in the Cl for l = 2, which future experiments may be
able to distinguish. However, too much emphasis should not be put in the extreme low-l points due
to statistical limitations arising from cosmic variance, which under reasonable assumptions (mainly
Gaussianity) is expected to grow rapidly as l decreases, by ∆Cl ∼ 2/

√
2l + 1 [67]. Nevertheless,

focusing on the l = 6 to l = 10 points, the narrowing of errors needed to distinguish between the
classical and the quantum predictions may very much be achievable. Thus, for example, for l = 6,
the percentage difference between the predictions is 13%. In comparison, the current errors on the
Planck data for the l = 6 value is +67%

−36% . For l = 10, the current uncertainties in the Planck data is +46%
−29% ,

whereas the difference between the classical and quantum prediction is only 3.53%, which may be
more difficult to resolve with future satellite experiments. Nonetheless, the magnitude of the errors
in the CMB observational data may initially seem unpromising to make any claims, this table shows
there may still be hope in distinguishing the various theoretical predictions. Within the l = 6 to l = 10
points range, the improvements in technology needed to improve the measurements and support the
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validity of the gravitational fluctuation picture may actually be within reach in the next decades, which
provides an exciting prospect for the future.

Table 1. Values of, and percentage differences between, the classical predictions for the angular
spectrum coefficients Cl ’s, and the prediction with a quantum RG running for Newton’s constant G
included. The quantum gravity values for the Cl ’s were computed here with a lattice RG running
quantum amplitude of 2 c0 = 16.04/7 = 2.29.

l l(l + 1)Cl /2π Classical l(l + 1)Cl /2π Quantum Difference %-Difference

2 788.8 328.5 460.3 58.4 %

3 778.4 457.4 321.0 41.2 %

4 772.6 555.4 217.2 28.1 %

5 769.5 623.2 146.3 19.0 %

6 768.6 668.6 100.0 13.0 %

7 769.3 699.5 69.8 9.07 %

8 771.6 721.6 50.0 6.48 %

9 775.2 738.5 36.7 4.73 %

10 780.0 752.5 27.5 3.53 %

In conclusion, in this section we showed how the quantum gravitation prediction for P(k)
unambiguously translates to a prediction for the Cl’s - which is essentially related to the former via a
spherical Bessel transform, weighted by some suitable combination of transfer functions. The transfer
functions in turn are ultimately just solutions to the classical Friedmann equations and associated
Boltzmann transport equations which, apart from the measured values of standard cosmological
parameters such as H0, Ωm, etc., require no further theoretical input. As a result, we were able to show
how the quantum gravity prediction for the matter power spectrum P(k) directly and unambiguously
translates to the angular coefficients Cl . It can be seen that the prediction is rather consistent with
current cosmological data.

We also discussed several theoretical parameters, which in this picture potentially have some
variance and related uncertainties. The first two key parameters in the quantum gravity motivated
picture are the universal scaling exponent ν, and the fundamental vacuum condensate correlation
length ξ. A third additional parameter here is the quantum amplitude c0, which governs the amplitude
of quantum correction in the RG running of Newton’s constant G as given in Equations (4) and (6).
Of the three parameters, as shown above in Section 5, ν is pretty much highly constrained (both
theoretically and observationally) around ν−1 ' 3. The value of this last parameter should also be
the most trustworthy of the three, since, as a universal scaling exponent, it is expected to be entirely
independent of schemes and regularization. On the other hand, the values of ξ and c0 are somewhat
less definite. Here the nonperturbative length scale ξ is quite analogous (via the observed scaled
cosmological constant λ = 3/ξ2), to the vacuum condensate scale in QCD 〈F2

µν〉 ∼ 1/ξ4, or to the
scaling violation parameter ΛM̄S ∝ ξ−1. Which implies that it’s absolute value in physical units is
not determined theoretically, and can ultimately only be fixed by experiment. Current cosmological
data seem to suggest the best - and most consistent - estimate for ξ is roughly ξ ' 2.5× 5300 Mpc,
whereas for the quantum amplitude 2 c0 ' 16.04/7, or some degenerate combination between the
two (as discussed earlier). Finally, we explicitly listed the percentage differences between the classical
prediction and the quantum one implemented with an RG running of Newton’s G, which should
provide a useful guide as to how improved observational data must trend in order to support the
picture advocated here. Although such precision has not been achieved yet, it should hopefully
be attainable in the near future, and thus provide an additional significant test for the quantum
gravity picture.
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Nevertheless, with these flexibilities in mind, the quantum gravity picture outlined here provides a
radically different perspective to the origin of matter and radiation fluctuations, compared, for example,
to inflation. In addition, the inflation picture normalizes the spectrum at large scales (i.e., small-k),
so that for the Cl’s it predicts a flat scale-invariant plateau for small-l’s. If the last point of l = 2 is to
be taken seriously, despite the flexibility inherent in various inflation models, it would be difficult to
account naturally for the reduction in power on the very largest scales. In contrast, the demand of a
renormalization group running Newton’s constant in the quantum gravity picture appears to explain
the dip quite naturally. Of course, due to the large uncertainties in the data at small l’s, significant
improvements on the errors needs to be made before definite conclusions can be drawn.

8. Conclusions

In this paper, we have revisited the derivation of the galaxy and cosmological matter power
spectrum that is purely gravitational in origin, which is to our knowledge is the first of its kind without
invoking the mechanism of inflation. We provided updated observational data, including revised
experimental errors, and outlined an elementary study of the uncertainties involved for the theoretical
parameters in this picture, including the universal scaling exponent ν, the quantum amplitude c0 and
the nonperturbative scale ξ. We also presented the Hartree-Fock results for the running of Newton’s
constant G, in the form of an analytical approximation, for a useful comparison with the Regge-Wheeler
lattice result. We then extended our predictions to the angular temperature power spectrum and
repeated and extended the uncertainty analysis. In both cases, we showed good general consistency
of this purely gravitationally motivated picture with current observational data, and pointed out
a significant deviation from the inflation motivated predictions in the large distance scale regime.
Although experimental errors and cosmic variance are large in this regime, these results provide a
potentially exciting area that can verify, or falsify, the various pictures.

To reiterate, the primary benefit of the quantum gravity explanation over inflation is the
non-necessity for additional and untested physics ingredients, other than standard Einstein’s gravity
and accepted modern quantum field theory methods. The basis of the methods begins with the path
integral formulation of gravity [20,21] which, unlike inflation, provides a very constrained theoretical
framework. Also, given the well-known fact that the theory is not perturbatively renormalizable,
standard nonperturbative methods and approaches must be used. While a lot of the results used here
are derived from the lattice numerical treatment, additional confirmations via analytical methods
are also briefly discussed, including the 2+ε and the Hartree-Fock approximation. The general
consistencies of these numerical and analytical methods gives confidence to the results. The lattice
treatment in particular has a long history of high precision success in other fields, from QCD to
condensed matter and statistical systems, and thus provides us with particularly trustworthy results.

On the other hand, for inflation, a new, minimum of one, inflaton field, usually scalar in nature,
must be invoked. The details of the particular theory are also highly flexible, leading to a myriad of
models, see for example [76] and references therein. In addition, recent studies have shown that a
majority of single-field inflation models have either been ruled out or highly constrained. The amount
of flexibility for inflation has thus led many to question the predictability and ultimate naturalness of
such scalar-field based solutions [77–82]. Although the original model of inflation was invented to
explain the flatness and horizon problem, it has been convincingly argued that it is not a necessary
ingredient to do so [83–95]. We have argued therefore that the gravitational picture provides a more
concrete and natural explanation to the origin and distribution of cosmological matter fluctuations.

Finally, we have pointed out that the gravitational fluctuation picture also provides a clear set
of predictions that diverge from scalar field induced predictions on very large scales. As advanced
satellite experiments are continuously being conducted, and increasingly accurate measurements are
becoming available, the predictions originating in quantum gravity outlined in the previous section
could be verified or disproved in the near future.
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We should add that it is certainly possible for our picture of gravitational fluctuations to
even coexists with inflation, with both effects providing significant contributions to power spectra.
Nevertheless, we do not explore this idea in depth here, as the primary aim of this paper is to show
that the same power spectra can be reproduced purely from macroscopic quantum fluctuations of
gravity, independent of any inflation mechanism, making use of well-accepted and tested methods
for dealing with perturbatively nonrenormalizable theories. Still, this could be a potential avenue for
future explorations.

In addition to the results presented here, there are also a number of exciting future directions
which seem meaningful to explore. For example, the quantum gravity-based explanation is most
certainly not Gaussian, due to the presence of non-trivial anomalous scaling dimensions [16] which
affect all gravitational n-point functions, although they may seem to be Gaussian in certain regimes.
While the corresponding predictions for the two-point functions, or power spectra, are similar to those
motivated by inflation, a divergence will definitely be expected on higher order n-point functions,
commonly known as bispectra and trispectra in the cosmology context. For example, the two-point
function scalar curvature result of Equation (17), derived from quantum gravity, will also determine
the form of the connected reduced three-point function, or bispectrum, for large scale scalar curvature
correlations [16]

〈 R(x1) R(x2) R(x3) 〉c,R ∼
dij � ξ

C123

d12 d23 d31
, (41)

with constant amplitude C123, and relative geodesic distances dij =
∣∣xi − xj

∣∣ in coordinate space. It is
easy to see that this last correlation leads to a Fourier transform in momentum- or wavenumber-space
of the form

BR(k1, k2, k3) ≡ 〈 R(k1) R(k2) R(k3) 〉c,R ∼
ki � m

log (k1 + k2 + k3) + γE
k1 k2 k3

δ(3) (k1 + k2 + k3) , (42)

where k1, k2, k3 are the three momenta conjugate to d12, d23, d31, the scale m = 1/ξ, and γE is Euler’s
constant. The overall multiplicative constant in Equation (42) is C̃123 = C123 × (2π)3 × 2π3/Γ(−9/4),
with the expectation that C123 = O(1) if the curvature two point function of Equation (17) is normalized
to unity (see further discussion below). One can then follow the same line of argument given in
Section 3 to relate this to measured quantities from the CMB. Here we outline the main points of the
argument. Firstly, the Einstein’s field equations of Equation (14) allow this bispectrum for curvature to
directly translate to the bispectrum for matter 〈 δρ δρ δρ 〉. Secondly, the transfer function, responsible
for turning the two-point spectrum from ∼1/k to ∼k when connecting the late-time galaxy regime to
the early-time CMB regime, essentially supplies an extra factor of k for each fluctuating field. This then
leads to the result

B(CMB)
δρ (k1, k2, k3) ≡ 〈 δρ(k1) δρ(k2) δρ(k3) 〉 ∼ki � m [ log (k1 + k2 + k3) + γE ] δ(3) (k1 + k2 + k3) . (43)

Nevertheless, most CMB bispectrum measurements are presented nowadays in terms of the Bardeen
field Φ, which roughly relates (as it describes a specific metric component) to the curvature by R ' �Φ
in the weak field limit. This supplies an additional factor of −k2 for each field, giving the following
explicit prediction for the bispectrum of the Φ field

B(CMB)
Φ (k1, k2, k3) ≡ 〈Φ(k1)Φ(k2)Φ(k3) 〉 ∼ki � m fNL · log(k1+k2+k3)+γE

k2
1 k2

2 k2
3

δ(3) (k1 + k2 + k3) . (44)

Here the quantity fNL here represents an overall dimensionless amplitude for the expected
non-Gaussian effects.

However, these non-Gaussian amplitudes are expected to be rather small, with suppressions by
factors of 1/ξ [16]. This follows simply from the fact that in real space one has for the semiclassical
curvature two-point function 〈 R R 〉 ∼ 1/ξ2r2, whereas for the scalar curvature three-point function
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〈 R R R 〉 ∼ 1/ξ3r3, and also 〈 R R R R 〉 ∼ 1/ξ4r4 etc., where r here represents the relevant and
appropriate combination of relative distances for each reduced curvature n-point function. As a
consequence, in Equation (44) fNL = CT/ξ3 where the remaining amplitude CT inherits additional
transfer function parameters from κ and keq as in Equation (22), so that here fNL ∼ 1/(k3

eq ξ3) ∼ 10−5.
More detailed analyses on this issue, and on the magnitude of these bispectra, shall be left for future
work. Nevertheless, it should be clear at this point that analogous results, as hinted above, can also be
derived for various four-point functions. We note here that the relevance and measurements of such
nontrivial (non-Gaussian) three- and four-point matter density correlation functions in observational
cosmology were already discussed in detail some time ago by Peebles in [2]. The results presented here
imply that further observational constraints on these higher order n-point functions could potentially
provide additional tests on the vacuum condensate picture for quantum gravity as outlined in [16],
and more specifically the implications of a non-trivial gravitational scaling dimensions scenario as
described previously.

In addition, it is clear that the gravitational fluctuation-based explanation presented here should
also give rise to nontrivial tensor perturbations, of magnitude comparable to the scalar one. This could
lead to new insights on the corresponding tensor-to-scalar ratio parameter r [75], and to a number of
potentially interesting and testable consequences to be explored. Here we note that tensor perturbation
require at first the knowledge of the semiclassical Ricci tensor (as opposed to the scalar curvature)
correlation functions,

〈 Rµν(x1) Rρσ(x2) 〉 ∼
d12 � ξ

Pµν,ρσ

(d12)
∆ , (45)

with polarization tensor P and relative geodesic distance d12 = |x1 − x2| in coordinate space. These
correlations have not been measured yet on the lattice, but should be calculable in the near future.
Nevertheless, based on the known scaling dimension for the scalar curvature, one would expect here
the same result for the operator Rµν(x), namely ∆ = 2, as in Equations (3) and (41) for the scalar
curvature R case. In turn, these curvature correlations functions can then be related to suitable matter
and radiation sources, via the quantum equations of motion

Rµν(x) = 8πG
[

Tµν(x)− 1
2 gµν(x) Tλ

λ(x)
]

(46)

with the (trace reversed) Tµν here representing either matter or radiation contributions,
and thus in complete analogy to what was used earlier in Equation (14), and
following, for the scalar (trace) case. Since the scalar curvature correlation function of
Equation (3) involves traces of the Ricci tensor (here we make use of the weak field limit)
〈(R00(x1)+R11(x1)+R22(x1)+R33(x1)) (R00(x2)+R11(x2)+R22(x2)+R33(x2))〉 versus say the tensor
correlation 〈R12(x1) R12(x2)〉, one would expect, based just on Lorentz symmetry, for the ratio of
tensor over scalar correlation amplitudes 1/42 = 1/16. The translation of these simple results into
measurable cosmological predictions is of course a lot more complicated.

In conclusion, the ability to reproduce the cosmological matter power spectrum has long been
considered one of the“major successes” for inflation-inspired models. Although within our preliminary
study, further limited by the accuracy of present observational data, it is not yet possible to clearly prove
or disprove either idea, the possibility of an alternative explanation without invoking the machinery of
inflation suggests that the power spectrum may not be a direct consequence nor a solid confirmation of
inflation, as some literature may suggest. By exploring in more detail the relationship between gravity
and cosmological matter and radiation, together with the influx of new and increasingly accurate
observational data, one can hope that this hypothesis can be subjected to further stringent physical
tests in the near future.
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Appendix A. Magnitude of Quantum Gravity Effects on Solar-System Scales

It is of some interest to investigate the magnitude of quantum gravitational effects on Solar System
scales, and see if they could become potentially significant. This paper utilizes three particular results
from a quantum treatment of gravity—the two-point correlation functions, the infrared (IR) regulator,
and the renormalization group (RG) running of Newton’s constant G. First, it is easiest to see the IR
regulator and RG running of Newton’s constant G play completely negligible roles in the Solar System.
Using ξ ∼

√
3/λ ' 5300 Mpc = 1.093× 1015 AU, the respective modifications

1
k2 →

1
k2 + m2 , (A1)

G → G + δG(k) +O
(

δG2
)

, where
δG
G
≡ 2 c0

(
m2

k2 + m2

)3/2

(A2)

are only significant when below k ' m = 1/ξ, or above r ' ξ. Taking the Solar System size as rsol ≈ 100
AU, such quantum effects in the Solar System are suppressed by large factors of rsol/ξ ' 10−13. For
example, for the running of Newton’s constant G, one can estimate

δG
G
∼
(

rsol
ξ

)3
∼ 10−39 . (A3)

Next, for the scaling of correlation functions, the fluctuations are governed by the Einstein field
equations

〈 δR δR 〉 = (8πG)2 ρ̄2
〈

δρ

ρ̄

δρ

ρ̄

〉
' G2 ρ̄2

( r0

r

)2
, (A4)

where r0 ' 10 Mpc ∼ 10−2 ¸, and ρ̄ the average matter density of the Universe, which is roughly

ρ̄ ' M
ξ3 , (A5)

where M is of the order of the mass of the currently observable Universe, roughly M ' 1080 protons,
and ξ is roughly the size the currently observable Universe. In the following, again, we are just
interested in rough order of magnitude estimates. The value of Newton’s constant G, as argued for ex.
in [21], is roughly

G ' ξ

2 M
. (A6)

So, putting together the numbers one has

〈δR δR〉 '
(

ξ

M

)2 (M
ξ3

)2 (10−2 ξ

r

)2

=
1

ξ2 r2 · 10−4 (A7)

In a semiclassical approach, one can relate fluctuations in the curvature to metric fluctuations via the
weak field relationship

δR ' 1
2 � h , (A8)
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and inserting the value for ξ then gives

〈 δR δR 〉 '
〈

1
2�h 1

2�h
〉
' 10−4

ξ2 r2 ∼
10−34

(1 AU)2 ·
1
r2 . (A9)

Therefore, if we use Poisson’s equation �h ' ∆Φ ' 4πG δρ to relate the metric to the matter density
in the Solar System, it should still obey a 1/r2 scaling law, but with an amplitude suppressed by a
very large factor 10−34. In conclusion, within Solar System scales, any other Newtonian dynamics
will completely dominate over the (very tiny) correlations due to quantum fluctuations of the
gravitational field.
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