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Abstract—Estimating room impulse responses (RIRs) in real
spaces is a time-consuming and expensive process requiring
multiple pieces of equipment, recordings, and processing. A
simple computer-vision-based method from a single 360◦ photo is
proposed to estimate the acoustic material properties of the space
by reconstructing an approximated 3D geometry. A 3D semantic
geometry model is reconstructed from a 360◦ image by monocu-
lar depth estimation and semantic scene completion. The material
properties of semantic objects in the scene are estimated using
the transformer-based dense material segmentation method. This
model is used to simulate a 3D acoustic room model on the Unity
platform with Steam spatial audio plug-in. Acoustic properties
of the space are estimated from this virtual reproduction and
evaluated against the actual ones in the real environment.

Index Terms—3D reconstruction and completion, room acous-
tic modeling, depth estimation, material estimation.

I. INTRODUCTION

Recently, research on combined audio-visual signal process-
ing and rendering systems have been actively exploited as it
gives better user experiences adapted to the human perceptual
system [1]. The classical methods for estimating room acoustic
properties are to use a complete audio system including micro-
phones and loudspeakers, which requires time and resources
[2]. This paper proposes a computer vision-based technique
using a single 360◦ camera image to support room acoustic
parameters estimation from room impulse responses (RIRs)
for indoor scenes. Since a 3D geometry model with material
properties can mimic real world acoustics [3], the proposed
system can efficiently estimate room acoustic properties in a
virtual space.

Many studies have been conducted for room geometry
estimation and acoustic modeling. Some of them rely only on
audio input [4], [5], while studies in [6]–[8] use visual input
for spatial acoustic modelling. [9], [10] are based on combined
audio-visual input. Our preliminary works tried to estimate
room acoustics from a pair of stereo 360◦ images [11],
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[12]. However, these approaches require two synchronised and
aligned 360◦ cameras to reconstruct 3D geometry, and material
properties were manually assigned from object recognition
results. In this paper, a simpler and more efficient system
using only one 360◦ image is proposed by modifying and
integrating our recent works on monocular depth estimation
[13] and material estimation [14]. This single-camera approach
can eliminate the restrictions of camera synchronisation and
alignment, and can be easily extended to work on dynamic
scenes. Material segmentation from visual input has been
considered more difficult than object recognition, but recent
work by [14]–[16] proved that combining contextual informa-
tion (such as material boundary, object or scene labels) with
material features extracted from image patches can boost the
network performance in the material segmentation task.

In scene acoustics design and simulation, room impulse
responses (RIRs) are analysed between a single audio source
and a microphone to estimate room acoustics at the given
location. The Unity virtual platform [17] combined with Steam
Audio plug-in [18] is used for sound rendering and RIR
measurement. Two room acoustic properties, early decay time
(EDT) and reverberation time (RT60) are calculated from RIRs
to evaluate the estimated room geometry and acoustics. The
main contributions of this paper include:

• Present a complete pipeline room acoustic modeling
using a 360◦ image.

• Monocular depth estimation algorithm for a 360◦ image.
• Materials estimation architecture for a 360◦ image.
• An evaluation of room acoustic modeling in a virtual

space.

II. PROPOSED SYSTEM

A. System Overview

This research aimed to develop an end-to-end system for
3D acoustic room modeling from a single 360◦ photo of an
indoor scene to estimate EDT and RT60 in a virtual space.
Figure 1 shows the flow of the proposed pipeline.



Fig. 1. End-to-end system structure: a single 360◦ image input to estimate
monocular depth. Both materials recognition and 3D model reconstruction are
processed in parallel. Results are integrated into Unity for complete 3D scene
with materials labels to estimate and evaluate the acoustics environment

A complete indoor scene is captured using an off-the-shelf
360◦ camera. An omnidirectional monocular depth estimation
using a supervised U-Net encoder-decoder architecture is
applied to estimate the depth of the scene. A complete 3D
geometrical structure is inferred by EdgeNet360 [19] which
was designed for completing invisible parts of the 3D scene.
On the other hand, material properties are estimated based on
local and global features learning. The final acoustic room
model is generated by integrating this information on the
Unity virtual platform for sound reproduction and geometry
rendering. By rendering sound with the 3D model in the virtual
space, RIRs and other acoustic properties (EDT and RT60) are
measured to evaluate the reproduced room model against the
actual recorded sound in the space.

B. Monocular Depth Estimation

A U-Net shape encoder-decoder model for a single 360◦

image depth estimation is proposed by modifying our prelim-
inary work based on domain adaptation [13]. We simplified
the structure by removing the discriminator and focusing
on supervised learning. It can achieve a higher accuracy
of depth maps with more stable performance for predicting
realistic scenes similar to the training dataset. For the encoder,
ResNet50 [20] was used as the backbone, while the decoder
consists of two convolution layers and four bi-linear up-
sampling layers. Feature vectors extracted by the encoder are
passed directly to the subsequent up-sampling layers in the
decoder to infer corresponding depth maps. The training loss
function (Equation 1) is a combination of two loss functions,
including Structural Similarity (SSIM) [21] loss (Equation 2)
and dense depth loss (Equation 3), whereas λ is a factor for
dense depth loss and gt is the ground truth.

Fig. 2. Materials classes by the proposed material recognition module

L(gt, output) = λLdepth(gt, output) + LSSIM (gt, output)
(1)

LSSIM (gt, output) =
1− SSIM(gt, output)

2
(2)

Ldepth(gt, output) =
1

n

n∑
p

|gtp − outputp| (3)

C. Materials Recognition

Inspired by the transformer architectures in [22] and [23]
which take image patches as input and increase the receptive
field by merging adjacent patches, our preliminary work on
material estimation [14] has been modified by adopting win-
dowed self-attention strategy [24] to control the patch size.
In the proposed architecture, we can extract features from
different patch sizes within a single network. The proposed
network decides dependency on four patch sizes based on
the input image rather than manually setting a fixed patch
size for the whole dataset. In the implementation, the window
size is set to two to learn features from image patches of
sizes {8, 16, 32, 64}. To aggregate the features with the
consideration of the input image, a set of attention masks
(A1, A2, A3, A4) are predicted and normalised as in [25] from
the final transformer layer. Finally, the merged feature is
passed into the feature pyramid network [26] to recover the
shape and predict the material labels for each pixel of the
image. With this modification, the proposed method achieved
an improvement of 15.12% on pixel accuracy with the local
material database (LMD) compared with our preliminary work
[14].

D. Semantic 3D Scene completion

Following our preliminary work in [12] and [19], a 3D
voxel structure is reconstructed by projecting all points in
the estimated depth maps into a 3D space. In order to cover
the whole 360 surroundings, the 3D coordinate is partitioned
into eight overlapped view parts from the scene center. The
semantic scene completion using EdgeNet360 [27] is applied
to individual areas and merged into one complete scene. The
final inferred 3D model shows the scene reconstruction with
semantic labels, and these labels are replaced by material
labels inferred by the materials recognition module. Figure
2 shows the output classes of material recognition.

E. Sound Rendering and Room Acoustics Evaluation in a
virtual Space

The reconstructed full 3D semantic scene is imported to the
Unity platform with Steam Audio plug-in for room acoustics



simulation and sound rendering in a virtual space. Binaural
sound is simulated between a virtual sound source and a
listener with head related transfer functions (HRTFs) in the
space. From this setting, binaural room impulse responses
(BRIR) can be measured and analysed. The estimation and
evaluation methods of room acoustic properties are inspired
by [28]–[30]. BRIRs can be segmented into three parts: direct
sound, early reflections, and late reverberations [4]. We anal-
ysed the EDT and RT60 of the generated sounds, as objective
measures of their early reflections and late reverberation,
respectively. EDT is a metric to evaluate the acoustics from
adjacent reflectors by considering the energy carried by the
early reflections. RT60 is related to the average absorption,
location of room boundaries and size of the room, describing
the reverberation from a physical point of view. EDT is
calculated as six times the time required for the energy to
decay 10 dB after the direct sound [31] and RT60 is measured
as the time for the energy to decay 60 dB [32]. The average
values over the 6-octave bands between 250 Hz and 8 kHz are
reported for both EDT and RT60 in this research.

III. EXPERIMENTS

This section shows the experimental results of the individual
modules of the proposed pipeline and estimated acoustic
properties of the scene. The proposed end-to-end system has
been tested on two datasets: CVSSP [33] and 3D60 datasets
[34]. The CVSSP set consists of five scenes with 360◦ image
capture and ground-truth acoustic parameters measurement.
We selected four scenes: Meeting Room (MR); Kitchen (KT);
Usability Lab (UL); and Studio Hall (ST) for our experiments.
The Listening Room (LR) in the CVSSP dataset was elimi-
nated due to the use of acoustically controlled materials in this
room. The 3D60 dataset is mainly used for omnidirectional
depth estimation as it provides ground-truth depth data. All
image sets, audio sources, and audio rendering results in this
section are available at:
http://3dkim.com/research/VR/EUSIPCO.html

A. Omnidirectional Depth Estimation

Stanford2D3D and Matterport3D image sets with a reso-
lution of 512×256 have been tested from the 3D60 dataset.
They are office-room-based and house-based indoor scenes,
respectively. All the scenes are 360◦ RGB images with their
corresponding depth maps. As a pre-processing, scenes with
over 5% of outliers are removed because some ground-truth
depth maps in this dataset have large unknown/outlier areas.
Stanford2D3D dataset ended up with 648 images for training
and 82 images for testing, while Matterport3D contains 2075
images for training and 1144 images for testing.

Table I shows that the proposed model outperforms two
state-of-the-art (SOTA) encoder-decoder models [34], [35]
and get about 4% and 2% improvements in δ1 accuracy,
respectively. Similarly, the proposed method shows the best
performance with the Matterport3D dataset as shown in Table
II.

TABLE I
PERFORMANCE COMPARISON OF DEPTH ESTIMATION (STANFORD2D3D)

(↑:THE HIGHER THE BETTER, ↓ THE LOWER THE BETTER)

Model δ1 ↑ δ2 ↑ δ3 ↑ rel ↓ rms ↓ log10 ↓
RectNet [34] 0.9102 0.9804 0.9902 0.0949 0.8573 0.0434

Alhashim and Wonka [35] 0.9323 0.9835 0.9906 0.0888 0.7956 0.0422
Proposed 0.9519 0.9873 0.9918 0.0752 0.7894 0.0361

TABLE II
PERFORMANCE COMPARISON OF DEPTH ESTIMATION (MATTERPORT3D)

Model δ1 ↑ δ2 ↑ δ3 ↑ rel ↓ rms ↓ log10 ↓
RectNet [34] 0.8885 0.9745 0.9909 0.1087 0.9355 0.0471

Alhashim and Wonka [35] 0.8996 0.9774 0.9918 0.1039 0.9017 0.0442
Proposed 0.9055 0.9779 0.9919 0.0998 0.8755 0.0438

Fig. 3. Depth estimation results (Left: RGB images, Middle: ground-truth
depth maps, Right: Estimated depth maps)

Figure 3 shows the ground-truth data with white parts
representing outliers caused by missing depth pixels. The
proposed model accurately estimates the depth of input scenes
and predicts missing parts in the depth.

B. Materials Estimation

Each 360◦ scene is projected into six partitions before the
material recognition process and composed back to a 360◦

image with the resulting material labels. Table III illustrates
the performance of the proposed materials estimation method
compared with SOTA material segmentation models. The
result reveals that the performance of the proposed method
outperforms SOTA networks which were designed to extract
information from full image rather than image patches. We
also notice that apart from the antique ResNet, the remaining
three SOTA models achieve comparable performance, despite
the number of trainable parameters and the number of flops.
This indicates that these networks reach the bottleneck of
material segmentation task, by training with full images. Our
transformer aggregates the features extracted from dynamic
patches can break the bottleneck and improve the network
generalisation ability, thus achieving a better performance.

C. 3D Acoustics Room Modeling

For acoustic properties evaluation, we followed the setting
in our preliminary works in [11] and [12] and compared with
them as there is no other similar approaches to the best of our
knowledge. For simplicity in comparison, [11] will be referred
to Model (1), and [12] Model (2) hereafter. The proposed sys-
tem provides a full reconstruction from only one image while



TABLE III
PERFORMANCE COMPARISON OF MATERIAL RECOGNITION TRAINED ON

LMD AGAINST SOTA SEGMENTATION NETWORKS

Metric ResNet-152 [20] ResNest-269e [36] EfficientNet-b7 [37] Swin-T [22] Proposed
Pixel Acc 80.57 84.28 84.49 84.44 86.77

Mean Acc 74.12 79.55 78.17 78.60 80.77
# of param. 60.75 111 65.67 29.52 56.03
# of flops 70.27 128 35.30 34.25 41.23

FPS 31.35 11.92 18.87 33.94 27.44

Fig. 4. 3D reconstructed models of the scenes in Figure 3 by the proposed
method (Left: Top view, Right: Free viewpoint)

Model (1) and (2) use stereo image pairs. Therefore, we do
not expect the proposed method outperforms the performance
of Model (1) and (2), but demonstrate how close the proposed
method can catch up with the reference methods with only
one input image. Figure 4 illustrates snapshots of selected
reconstructed models in Figure 3 by this pipeline.

In order to evaluate the estimated room geometry and
acoustics, we simulated the same setting of the actual CVSSP
data recordings in a virtual space with the reconstructed
models, and compared the the virtual recordings with the
actual ones. RIRs for the reproduced scenes in the virtual space
were estimated by playing/recording a swept sine signal [38]
with a virtual sound source and a virtual listener. Both virtual
sound source and listener were located at the same positions
where ground-truth data were recorded in the actual scenes.
The recorded BRIRs are analysed to estimate EDT and RT60
as proposed in Section II-E. EDT is calculated as six times
the energy decay 10 db by early reflections after direct sound
[31]. While RT60 is more relates to room size and average of
materials absorption in the room, considering the time required
for energy to decay 60 dB [32]. Figure 5 and Figure 6 show
the average results of EDT and RT60, respectively, over the 6
octave bands between 250 Hz and 8 kHz.

For both EDT and RT60 comparisons, the proposed single
view method showed competitive performances with other
stereo-based methods (Model (1) and (2)). The proposed
method outperformed Model (1) in EDT with the UL and

Fig. 5. EDTs for 4 CVSSP rooms related to the ground-truth (GT)

Fig. 6. RT60s for 4 CVSSP rooms related to the ground-truth (GT)

ST scenes owing to better estimation of objects and materials
in the scenes. It also showed very good performance in RT60
with the KT and ST scenes. However, RT60 values for the
MR and UL were too high. We found a scale issue in depth
estimation in these cases. Actual MR and UL rooms are much
smaller with low ceilings than most rooms in the training sets.
Therefore, reconstructed scenes were larger than the ground-
truth room volumes. This scene scale problem can be com-
pensated by the scale factor when it’s imported to Unity, but
the scene/depth scale issue of the monocular depth estimation
remains an open problem. Approximated 3D geometry also
affected the reflection and reverberation properties of the room.
Therefore, most of the simulated parameters show higher than
ground-truth, but this happens even for Model (1) and (2).
This can be compensated by tuning the acoustic parameters
of materials, but we used the original material parameters in
our experiments.

IV. CONCLUSION

In this work, an end-to-end acoustic room modelling system
has been proposed to estimate room acoustic properties from
a single 360◦ photo. From the input 360◦ image, real-scale
depth field and scene material properties are estimated in
parallel. A complete 3D geometry with material labels is
constructed from these outputs. The 3D model is imported to
the Unity platform with Steam Audio plug-in for virtual sound
rendering. 3D spatial audio is rendered in the reproduced



virtual space by placing virtual sound source and listener. The
reproduced room geometry and spatial audio were evaluated
against actual data measured and recorded in the original
rooms. The proposed method using only one image achieved
competitive performance compared with the SOTA methods
using aligned stereo image pair input. The proposed method
can be applied more widely due to its simple set-up with only
one camera. It can be extended to dynamic scene analysis with
video streams as this system is free from camera alignment,
calibration and synchronisation issues.

Future work will consider enhancing the depth scale for
better 3D reconstruction. The material estimation part also
requires further enhancement in matching the output material
class types with actual acoustic parameters. Use of multi-
modal audio-visual input for better geometry and acoustic
property estimation will also be considered.
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