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The work presented in this paper is on the development and validation of an analytical-based
model to predict scattering of fan tone noise from a turbofan engine by the airframe fuselage
and refraction due to the presence of a boundary layer on the fuselage. The aim is to avoid
numerical solutions to calculate sound propagation through the fuselage boundary layer which
have been prevalent in previous work on this topic. The work presented here is a continuation
of the work by the authors in which the 1/7th power-law boundary-layer velocity profile was
replaced with a linear profile which enabled an analytical solution of the Pridmore-Brown
equation. The work presented here offers an even simpler alternative solution by replacing the
power-law profile with a step function. This approach once again leads to a far-field solution in
terms of a Fourier series, and a near-field solution expressed in terms of a Fourier series and
an inverse Fourier transform. The two approaches utilising a linear or step-function velocity
profile are compared with each other, and against existing numerical results. The results show
that for sufficiently thin boundary-layers both approaches can approximate a more realistic
power-law boundary-layer profile, while the accuracy of the step-function solution appears
to not deteriorate with thicker layers. A parametric study based on multi-modal simulations
is performed with realistic operating and flight conditions. Predictions for boundary-layer
shielding and the far-field polar directivity are generated with both linear and step-function
profiles, and there is reasonable agreement comparing results for the two velocity profiles.

I. Nomenclature

𝑎 = duct radius, m
𝑎0 = fuselage radius, m
𝑏 = distance between the centreline of the fuselage and centreline of the intake duct, m
𝑐0 = speed of sound, m·s−1

𝐷𝑛 = coefficient for the step-function boundary layer expressions
H(2)

𝑚 = Hankel function of the second kind, order m
𝐼 = denotes an integral
J𝑚 = Bessel function of the first kind, order m
𝐾 = non-dimensional axial wavenumber
𝑘0 = freespace wavenumber, rad·m−1

𝑘𝑧𝑙𝑞 = axial wavenumber, mode (𝑙, 𝑞), rad·m−1

𝑙 = azimuthal order
𝑀∞ = free-stream Mach number
𝑀𝑤 = Mach number at the fuselage surface
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𝑃𝑙𝑞 = pressure amplitude of mode (𝑙, 𝑞), Pa
𝑝′ = acoustic pressure, Pa
𝑞 = radial order
(𝑟, 𝜙, 𝑧) = cylindrical coordinate system centered on the intake duct (or disc source)
(𝑟, 𝜙, 𝑧) = cylindrical coordinate system centered on the fuselage
(�̄�, \̄, 𝜙) = spherical polar coordinate system centred on the fuselage
𝑡 = time, s
𝑊𝑙𝑞 = sound power of mode (𝑙, 𝑞), Watt
𝑊𝑡 = total sound power of source, Watt
Γ = radial wavenumber, rad·m−1

𝛾 = alternative form of radial wavenumber, rad·m−1

Δ0 = wavenumber in real space used in far-field analysis, dependent on \̄, rad·m−1

Δ𝑏𝑙 = difference between sound pressure level with and without the presence of a boundary layer, dB
Δsource = difference between sound pressure level due to different sources
𝛿 = boundary layer thickness, m
𝜖 = non-dimensional error metric
Y = non-dimensional boundary-layer thickness
Z = non-dimensional radial coordinate used to denote location within the boundary layer
^𝑙𝑞 = modal eigenvalue, mode (𝑙, 𝑞), rad·m−1

𝜑 = Mach number distribution inside the boundary layer, dependent on Z
𝜔0 = angular frequency, rad·s−1

Subscripts

𝑓 𝑓 = denotes far-field quantity
𝑖 = denotes incident field
𝑖𝑛 = denotes field inside the linear boundary layer
𝑛 = denotes quantity is a Fourier–Bessel harmonic
∞ = denotes field outside the boundary layer or free-stream value
𝑠 = denotes scattered field
𝑡 = denotes total field
0 = denotes field inside the step-function boundary layer

Superscripts

′ = denotes differentiation with respect to a function’s argument
ee = denotes source with equal energy per mode
20 = denotes rotor-locked source with dominant mode’s sound power 20 dB higher than all other cut-on modes
30 = denotes rotor-locked source with dominant mode’s sound power 30 dB higher than all other cut-on modes

Symbol

̂ = denotes time-harmonic quantity
¯ = denotes Fourier transformed quantity

II. Introduction

Since the introduction of the turbojet engine seventy years ago, understanding and predicting the generation of aircraft
noise has inspired the work of many researchers. This is evident when one considers that organisations such as the

International Civil Aviation Organisation [1], and the American Federal Aviation Administration, have introduced rules
and regulations that dictate certain standards regarding noise produced by aircraft. In order for the aircraft manufacturing
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industry to meet those standards and keep the noise pollution at the required minimum, while the frequency of flights
keeps on increasing, a variety of accurate noise prediction methods are used. Currently, these approaches are principally
numerical-based methods. The purpose of the work presented in this paper is to provide an alternative theoretical
method that solves a simplified problem producing results in a far shorter amount of time.

Generally, in the field of aeroacoustics, the noise sources on the aircraft can be categorised into three broad groups
as explained. These are engine noise, jet noise and airframe noise. However, the intensity of each of these sources is
dependent on the configuration of the aircraft, such as the shape and dimensions of the fuselage and the wings, the
position of the engines, and the flight conditions. Fan noise is dominant both during take-off and approach. However,
when one considers the work of Hanson [2], Hanson and Magliozzi [3], Fuller [4], Gaffney et al. [5] and Rouvas &
McAlpine [6], it is apparent that predicting the propagation of fan noise radiated from the nacelle into free space is
not sufficiently accurate since the turbofan is installed on the airframe. The noise produced by the engine will interact
with the fuselage and the wings of the aircraft which will alter the resulting sound field. These interactions are called
acoustic installation effects.

As explained in Rouvas & McAlpine [6], in recent years research on installation effects has been focused on fan
noise due to the popularity of the turbofan engine and its dominance over jet noise which has been diminished with the
development of high-bypass turbofan engines. It is therefore of utmost importance for the industry to have tools that
will generate quick trends regarding installation effects of fan noise, since the Effective Perceived Noise Level (EPNL)
metric and community noise exposure is a function of noise generated by the aircraft as a whole. It is also important to
point out that alterations are expected both in the near and the far field, further highlighting the benefit of calculating the
installed sound field instead of the free-field response of the noise source.

Most of the research on fuselage scattering involves the effect of refraction due to the presence of a boundary layer
along the fuselage as illustrated in Fig. (1). Sound is expected to refract away from the fuselage upstream of the source.
That characteristic effect has been investigated before and it has proven to play a major role that cannot be ignored.
McAninch [7] was the first researcher to investigate this effect and the first to point out the difficulties involved in
solving the problem of sound propagating through a shear flow. Tam and Morris [8] proposed a method to bridge the
singularity apparent in the Pridmore-Brown equation [9], which is the equation governing the problem. The method
proposed by Tam and Morris [8] facilitated the use of numerical schemes to solve the equation, as shown by Hanson and
Magliozzi [3], Gaffney et al [5], Lu [11], Belyaev [12] and Brouwer [13]. The last three even extended the methods to
derive far-field results, in contrast with the other researchers whose studies were limited to the near-field and specifically
prediction of the acoustic pressure on the fuselage surface.

Hanson and Magliozzi [3] were the first to develop a model that could predict the total acoustic field on the fuselage
surface due to scattering and refraction of a propeller noise source. Propeller noise sources were used in most of the
previous prediction models (e.g. [4], [11], [12], [13]), until recently with the introduction of fan noise sources by
McAlpine et al. [16] and Gaffney et al [5]. They used a distributed disc source to model a spinning mode exiting a fan
duct. It is important to note that all these studies utilised high-fidelity numerical schemes to solve the Pridmore-Brown
equation, namely Runge–Kutta routines which prove to be very time-consuming. There have been attempts to solve the
problem analytically with asymptotic methods used mainly in duct acoustics by Eversman and Beckemeyer [14] and
Goldstein and Rice [15]. The work by Rouvas and McAlpine [6] uses these asymptotic methods to construct a model
for prediction of fan noise scattering and refraction effects, a model that is extended and improved in the present paper.

The work in this paper is a direct continuation of the work presented in Rouvas & McAlpine [6]. The reflection and
diffraction of fan tone noise by the fuselage was the primary research aim in Ref. [6]. Since fan noise includes strong
tonal components, the analysis was based on time-harmonic spinning modes exiting a cylindrical duct and impinging on
an adjacent cylidrical fuselage. The key aim was to derive analytic expressions that describe the acoustic near- and
far-field from an installed fan noise source adjacent to a cylindrical fuselage as shown in Fig. (2). This configuration
replicates the real-life situation of an engine located adjacent to the fuselage when mounted under the wing. The fan
noise source was modelled as a distribution of monopoles on a disc, simulating a spinning mode. Rouvas and McAlpine
investigated the reflection and diffraction of the sound field by the fuselage, but also a lot of focus was given to the
refraction effect owing to the presence of a boundary layer along the fuselage, as illustrated in Fig. (2) with thickness 𝛿.

The key contribution in Rouvas & McAlpine [6] was the derivation of an analytic expression to solve the problem of
sound propagation through a shear layer which previously had been carried out using high-fidelity numerical methods.
In order to achieve that, a simpler linear velocity profile was modelled. Rouvas & McAlpine employed an asymptotic
approach outlined in Eversman and Beckemeyer [14], which is valid for sufficiently thin boundary layers. They proved
that the asymptotic approach was able to simulate the refraction effect of a realistic turbulent boundary layer, especially
when the layer is sufficiently thin compared to the fuselage radius and the wavelength, and it was implied that even
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Fig. 1 Sketch of refracted rays downstream and upstream of the source. Taken from [17].

simpler profiles could be used instead of the linear one.
This investigation is the main scope of this paper, which simplifies the velocity profile to its most rudimentary form:

a step-function profile [2]. The analysis follows the same methodology as in the linear profile approach outlined in [6].
Analytic expressions are derived for the far-field in terms of a Fourier series and the near-field in terms of a Fourier
series and an inverse Fourier transform integral. The derived expressions are validated by comparing against existing
numerical solutions. The advantage of the step-function approach lies in the fact that it does not require the solution
of the Pridmore-Brown equation [9] reducing the complexity of the problem and the need for high-fidelity numerical
schemes. The entire formulation is based on solving only the convected wave equation.

The second objective of this paper is to compare the two approaches (linear or step-function velocity profile), and
assess their effectiveness in approximating the shielding effect of a 1/7th power-law profile that is representative of a
realistic turbulent boundary-layer. This involves an investigation into which is the optimal method to use, by matching
the equivalent simplified velocity profiles to the power-law profile. Some preliminary work on this has already been
reported by Rouvas & McAlpine [10], and is discussed in more depth in this article. The expressions and equations
derived in this article are validated by demonstrating that very similar results can be generated compared to results that
use numerical schemes to solve the sound propagation through a 1/7th power-law boundary-layer profile.

Thirdly, another objective of this paper is to use the analytical methods for a parametric study that incorporates
realistic aircraft dimensions, configurations and flight conditions. A generic test model is created that represents a
wide-body aircraft that is typically equipped with a high-bypass-ratio turbofan engine and typical flight conditions are
assumed. The ultimate objective of this study is to provide a more cost-effective prediction tool as an alternative to
more common high-fidelity numerical schemes.
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Fig. 2 Sketch of the cylindrical fuselage with radius 𝑎0 adjacent to the disc source with radius 𝑎. The centerlines
of the fuselage and the source are aligned and have distance 𝑏 between them. On the fuselage there is a boundary
layer with thickness 𝛿. Taken from [5].

III. Theoretical Background and Analysis

A. Uniform Flow
Following McAlpine, Gaffney & Kingan [16], and Rouvas & McAlpine [6], the analysis starts by considering a

ducted fan in a cylindrical intake of radius 𝑎. The original Cartesian coordinate system (𝑥, 𝑦, 𝑧) that is used has its
𝑧-axis coincident with the centreline of the intake duct (as shown in Fig. (2)). Also there is a subsonic uniform mean
flow, with Mach number 𝑀𝑧 = 𝑈𝑧/𝑐0, directed in the negative 𝑧-direction. The sound field generated by the ducted
fan is modelled using “spinning modes“ [18]. To avoid any confusion, it is stated that in the following analysis the
time-harmonic convention is exp {+i𝜔0𝑡}. A time-harmonic spinning mode with azimuthal order 𝑙 and radial order 𝑞
has acoustic pressure and axial particle velocity given by eqs.(1)–(4) from [16]

𝑝𝑙𝑞 = 𝑃𝑙𝑞J𝑙 (^𝑙𝑞𝑟)ei(−𝑙𝜙−𝑘𝑧𝑙𝑞 𝑧) , (1)

�̂�𝑧𝑙𝑞 =
b𝑙𝑞

𝜌0𝑐0
𝑃𝑙𝑞J𝑙 (^𝑙𝑞𝑟)ei(−𝑙𝜙−𝑘𝑧𝑙𝑞 𝑧) , (2)

where 𝑃𝑙𝑞 is the modal amplitude, and

b𝑙𝑞 =
𝑘𝑧𝑙𝑞

(𝑘0 + 𝑘𝑧𝑙𝑞𝑀𝑧)
, (3)

with dispersion relationship given by
𝑘2
𝑧𝑙𝑞 + ^2

𝑙𝑞 = (𝑘0 + 𝑘𝑧𝑙𝑞𝑀𝑧)2. (4)

The Bessel function of the first kind and order 𝑙 is denoted by J𝑙 . Also, ^𝑙𝑞 is the set of eigenvalues which satisfy
J′
𝑙
(^𝑙𝑞𝑎) = 0, 𝑘𝑧𝑙𝑞 is the axial wavenumber of mode (𝑙, 𝑞), 𝑐0 is the speed of sound, 𝜌0 is the mean density of the

air inside the duct, and 𝑘0 = 𝜔0/𝑐0. The acoustic field is expressed in cylindrical polar coordinates (𝑟, 𝜙, 𝑧) where
𝑥 = 𝑟 cos𝜙 and 𝑦 = 𝑟 sin𝜙.

From McAlpine et al. [16], the acoustic pressure generated by a fan tone exiting a duct can be modelled by
integrating a distribution of monopole sources over the cross-section of the duct termination. The derivation of the
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incident field is described in [16] and briefly in the appendix of Ref. [6]. In this article, the theoretical formulation is
omitted and only the key equations are given.

The governing equation is the inhomogeneous convected wave equation, which is solved by first transforming to the
Fourier frequency-wavenumber domain. The solution in free space is referred to as the incident field. The coordinate
system is shifted from the duct centerline (𝑥, 𝑦, 𝑧) to the fuselage centerline (𝑥, �̄�, 𝑧), as shown in Fig. (2), using Graf’s
Addition Theorem listed in Abramowitz and Stegun [19]. This adjusts the incident field wavenumber spectrum giving a
solution that is dependent on 𝑟 instead of 𝑟. For the near-field result where 𝑟 < 𝑏, the Fourier-transformed incident
pressure field is dependent on 𝑟 via a Bessel function

𝑝′
𝑖𝑛
(𝑟, 𝑘𝑧 , 𝑡) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (−1)𝑙+𝑛 (𝑘0 + 𝑘𝑧𝑀) Ψ𝑙𝑞 e−i(𝑙−𝑛)𝛽 H(2)

𝑙−𝑛 (Γ0𝑏) J𝑛 (Γ0𝑟) ei𝜔0𝑡 , (5)

where Γ2
0 = (𝑘0 + 𝑘𝑧𝑀)2 − 𝑘2

𝑧 is a radial wavenumber. The function Ψ𝑙𝑞 is given by

Ψ𝑙𝑞 =
Γ0𝑎

^2
𝑙𝑞
− Γ2

0
J𝑙 (^𝑙𝑞𝑎)J′𝑙 (Γ0𝑎), Γ0 ≠ ^𝑙𝑞 , (6)

Ψ𝑙𝑞 =
1
2

(
𝑎2 − 𝑙2

^2
𝑙𝑞

)
J2
𝑙 (^𝑙𝑞𝑎), Γ0 = ^𝑙𝑞 . (7)

McAlpine et al. [16] did not derive the far-field result. In this case, where 𝑟 >> 𝑏, application of Graf’s theorem gives a
modified incident field dependent on 𝑟 via a Hankel function (as derived in Ref. [6]),

𝑝′
𝑖𝑛
(𝑟, 𝑘𝑧 , 𝑡) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (𝑘0 + 𝑘𝑧𝑀) Ψ𝑙𝑞 ei(𝑛−𝑙)𝛽 J𝑛−𝑙 (Γ0𝑏) H(2)

𝑛 (Γ0𝑟) ei𝜔0𝑡 . (8)

The presence of the cylindrical fuselage causes reflection and diffraction of the incident field. Thus the total field is
expressed as the sum of the incident field and a scattered field, where the ‘scattering’ is caused by the rigid, hard-walled
cylinder in the field. The governing equation that describes the scattered field is the homogeneous convected wave
equation, and since the solution must be outward propagating cylindrical waves, it can be expressed in terms of Hankel
functions. By employing a rigid, hard-walled boundary condition at the cylindrical fuselage surface,

𝜕𝑝′𝑡𝑛
𝜕𝑟

=
𝜕𝑝′

𝑖𝑛

𝜕𝑟
+ 𝜕𝑝

′
𝑠𝑛

𝜕𝑟
= 0 at 𝑟 = 𝑎0, (9)

where 𝑝′
𝑖𝑛

is the near-field expression of eq.(5) since the fuselage surface lies in the near-field, the Fourier-transformed
scattered field is obtained

𝑝′𝑠𝑛 (𝑟, 𝑘𝑧 , 𝑡) = − 𝜋2b𝑙𝑞𝑃𝑙𝑞 (−1)𝑙+𝑛 e−i(𝑙−𝑛)𝛽 (𝑘0 + 𝑘𝑧𝑀) Ψ𝑙𝑞 H(2)
𝑙−𝑛 (Γ0𝑏)×

H(2)
𝑛 (Γ0𝑟)

J′𝑛 (Γ0𝑎0)
H(2)′

𝑛 (Γ0𝑎0)
ei𝜔0𝑡 .

(10)

Finally the total field is found by summing the incident field and the scattered field, either in the near-field in which case
equations (5) and (10) are summed together, or in the far-field in which case equations (8) and (10) are summed together.
The total field in real space is found by performing an inverse Fourier 𝑧-transform

𝑝′𝑡 (𝑟, 𝜙, 𝑧, 𝑡) =
1

(2𝜋)2

∞∑︁
𝑛=−∞

∫ ∞

−∞
𝑝′𝑡𝑛 (𝑟, 𝑘𝑧 , 𝑡) e−i𝑘𝑧 �̄� d𝑘𝑧 e−i𝑛�̄� , (11)

where 𝑝′𝑡𝑛 (𝑟, 𝑘𝑧 , 𝑡) = 𝑝′
𝑖𝑛
(𝑟, 𝑘𝑧 , 𝑡) + 𝑝′𝑠𝑛 (𝑟, 𝑘𝑧 , 𝑡).

The near-field case, when 𝑟 = 𝑎0, describes the pressure on the fuselage surface

𝑝′𝑡 (𝑎0, 𝜙, 𝑧, 𝑡) =
b𝑙𝑞𝑃𝑙𝑞

4
(−1)𝑙 e−i𝑙𝛽 ei𝜔0𝑡

∞∑︁
𝑛=−∞

{
(−1)𝑛 ei𝑛𝛽 𝐼𝑛 (𝑎0, 𝑧) e−i𝑛�̄�}, (12)

where
𝐼𝑛 (𝑎0, 𝑧) =

∫ ∞

−∞
(𝑘0 + 𝑘𝑧𝑀) Ψ𝑙𝑞 H(2)

𝑙−𝑛 (Γ0𝑏)
[
(−i(2/𝜋Γ0𝑎0))/H(2)′

𝑛 (Γ0𝑎0)
]

e−i𝑘𝑧 �̄� d𝑘𝑧 . (13)
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This integral cannot be solved analytically and a numerical integration routine is employed.
By following the same process but for the far-field case, where equations (8) and (10) are summed together to

give an appropriate Fourier-transformed total field 𝑝′𝑡 (𝑟, 𝜙, 𝑧, 𝑡), the inverse Fourier 𝑧-transform integral can be solved
analytically by employing spherical polar coordinates (�̄�, \̄, 𝜙), and a large argument approximation for the Hankel
function term as outlined in Rouvas & McAlpine [6]. This expresses the integral in an appropriate form to be solved by
applying the method of stationary phase, the execution of which can be found in full detail in Ref. [6]. The final far-field
expression in terms of spherical polar coordinates is

𝑝′𝑡 𝑓 𝑓 (�̄�, \̄, 𝜙, 𝑡) =
ib𝑙𝑞𝑃𝑙𝑞𝑘0

2�̄�
Ψ𝑙𝑞 (Δ0)

𝑆(\̄)
(1 − 𝑀2 sin2 \̄)

ei𝜔0𝑡 e−i𝑘0 �̄�𝑆 ( \̄ )
∞∑︁

𝑛=−∞
ei(𝑛−𝑙)𝛽 e

1
2 𝑛𝜋i×[ J𝑛−𝑙 (Δ0𝑏)H(2)′

𝑛 (Δ0𝑎0) − H(2)
𝑛−𝑙 (Δ0𝑏) J′𝑛 (Δ0𝑎0)

H(2)′
𝑛 (Δ0𝑎0)

]
e−i𝑛�̄� ,

(14)

where Δ0 =
𝑘0 sin \̄

(1−𝑀2 sin2 \̄ )1/2 and 𝑆(\̄) =
( (1−𝑀2 sin2 \̄ )1/2+𝑀 cos \̄ )

𝜎2 . This far-field expression has been validated by
reducing the disc source to a point source, i.e. stationary monopole. This reduces eq. (14) to the known solution for a
stationary monopole adjacent to a cylinder given by Bowman et al. (page 127, eq. (2.149), Ref. [20]).

B. Step-Function Boundary-Layer Profile Analysis
The first researcher to propose replacing the actual boundary layer profile by a simplified step-function with effective

thickness 𝑑 was Hanson [2]. The effective thickness 𝑑 is usually taken to be equal to the displacement thickness
or momentum thickness, and thus 𝑑 is smaller than the actual boundary-layer thickness 𝛿. Inside the step-function
boundary-layer, 𝑎0 < 𝑟 < 𝑎0 + 𝑑, the flow has a Mach number 𝑀0 which is less than the free-stream Mach number 𝑀∞
outside the boundary layer, 𝑟 > 𝑎0 + 𝑑.

r

d

Moo

oM

a
0

Fig. 3 Boundary layer with step-function velocity profile.

The total field inside the boundary layer, 𝑎0 < 𝑟 < 𝑎0 + 𝑑, is the solution of the homogeneous convected wave
equation expressed in cylindrical polar coordinates (𝑟, 𝜙, 𝑧) centred on the cylinder. Thus the Fourier-transformed
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pressure has the following form,

𝑝′
𝑡0𝑛 (𝑟, 𝑘𝑧 , 𝑡) =

1
2𝜋

(
𝐴𝑛 (𝑘𝑧 , 𝜔0) J𝑛 (Γ0𝑟) + 𝐵𝑛 (𝑘𝑧 , 𝜔0) H(2)

𝑛 (Γ0𝑟)
)

ei𝜔0𝑡 , (15)

where Γ2
0 = (𝑘0 + 𝑘𝑧𝑀0)2 − 𝑘2

𝑧 .
Outside the boundary layer, the solution is the same as in the previous section III.A, namely the sum of the incident

and scattered field 𝑝′𝑡∞𝑛
= 𝑝′

𝑖∞𝑛
+ 𝑝′𝑠∞𝑛

, with the incident field

𝑝′
𝑖∞𝑛

(𝑟, 𝑘𝑧 , 𝑡) = 𝐸𝑛 (𝑘𝑧 , 𝜔0) J𝑛 (Γ∞𝑟) ei𝜔0𝑡 for 𝑎0 + 𝑑 < 𝑟 < 𝑏, (16)

where 𝐸𝑛 (𝑘𝑧 , 𝜔0) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (−1) (𝑙+𝑛) e−i(𝑙−𝑛)𝛽 (𝑘0 + 𝑘𝑧𝑀∞) Ψ𝑙𝑞 H(2)
𝑙−𝑛 (Γ∞𝑏), Γ

2
∞ = (𝑘0 + 𝑘𝑧𝑀∞)2 − 𝑘2

𝑧 and Ψ𝑙𝑞 is
given by eqs. (6,7) with Γ0 replaced by Γ∞ (as shown in [16]). Note the change in the subscript, where ∞ denotes the
involvement of the free stream Mach number 𝑀∞, whereas 0 denotes the involvement of the inner Mach number 𝑀0.
The scattered field outside the boundary layer is once again the solution of the homogeneous convected wave equation,
and in order to satisfy the same outward propagating conditions as in the previous section III.A, only a Hankel function
term is used,

𝑝′𝑠∞𝑛
(𝑟, 𝑘𝑧 , 𝑡) =

1
2𝜋

𝐶𝑛 (𝑘𝑧 , 𝜔0) H(2)
𝑛 (Γ∞𝑟) ei𝜔0𝑡 . (17)

The solutions inside and outside the layer are matched at the edge of the layer. The following boundary conditions are
applied:
(1) hard-wall boundary condition on the surface of the cylinder

𝜕𝑝′
𝑡0𝑛
𝜕𝑟

= 0 at 𝑟 = 𝑎0; (18)

(2) continuity of pressure at the edge of the boundary layer

𝑝′
𝑡0𝑛 = 𝑝′

𝑖∞𝑛
+ 𝑝′𝑠∞𝑛

at 𝑟 = 𝑎0 + 𝑑; (19)

(3) continuity of particle displacement at the edge of the boundary layer (Hanson [2], Mariano [21], Ko [22], Eversman
[14])

𝜕𝑝′
𝑡0𝑛
𝜕𝑟

1(
𝑘0 + 𝑘𝑧𝑀0

)2 =

(
𝜕𝑝′

𝑖∞𝑛

𝜕𝑟
+
𝜕𝑝′𝑠∞𝑛

𝜕𝑟

)
1(

𝑘0 + 𝑘𝑧𝑀∞
)2 at 𝑟 = 𝑎0 + 𝑑. (20)

Using these three conditions, expressions for the coefficients 𝐴𝑛 (𝑘𝑧 , 𝜔0), 𝐵𝑛 (𝑘𝑧 , 𝜔0) and 𝐶𝑛 (𝑘𝑧 , 𝜔0) can be obtained.
With 𝐴𝑛 (𝑘𝑧 , 𝜔0) and 𝐵𝑛 (𝑘𝑧 , 𝜔0) known, the Fourier transformed total field inside the boundary layer can be recovered
from eq.(15). Finally, by setting 𝑟 = 𝑎0 and performing an inverse Fourier 𝑧-transform as in the previous section III.A,
the solution for the pressure on the cylinder surface in real space is obtained:

𝑝′𝑡 (𝑎0, 𝜙, 𝑧, 𝑡) = −b𝑙𝑞𝑃𝑙𝑞 (−1)𝑙 e−i𝑙𝛽 ei𝜔0𝑡
∞∑︁

𝑛=−∞
(−1)𝑛 ei𝑛𝛽 𝐼𝑛 (𝑎0, 𝑧) e−i𝑛�̄� , (21)

where

𝐼𝑛 (𝑎0, 𝑧) =
∫ ∞

−∞

(𝑘0 + 𝑘𝑧𝑀∞) Ψ𝑙𝑞 H(2)
𝑙−𝑛 (Γ∞𝑏)

𝜋2Γ0 𝑎0 (𝑎0 + 𝑑)
(
𝑘0 + 𝑘𝑧𝑀∞

)2
𝐷𝑛 (𝑘𝑧 , 𝜔0) H(2)

𝑛 (Γ∞ (𝑎0 + 𝑑)) J′𝑛 (Γ0𝑎0)
e−i𝑘𝑧 �̄� d𝑘𝑧 , (22)

and

𝐷𝑛 (𝑘𝑧 , 𝜔0) =
[
H(2)′

𝑛 (Γ0 (𝑎0 + 𝑑)) − J′𝑛 (Γ0 (𝑎0 + 𝑑))
H(2)′

𝑛 (Γ0𝑎0)
J′𝑛 (Γ0𝑎0)

]
Γ0(

𝑘0 + 𝑘𝑧𝑀0
)2

−
[
H(2)

𝑛 (Γ0 (𝑎0 + 𝑑)) − J𝑛 (Γ0 (𝑎0 + 𝑑))
H(2)′

𝑛 (Γ0𝑎0)
J′𝑛 (Γ0𝑎0)

]
Γ∞(

𝑘0 + 𝑘𝑧𝑀∞
)2

H(2)′
𝑛 (Γ∞ (𝑎0 + 𝑑))

H(2)
𝑛 (Γ∞ (𝑎0 + 𝑑))

.

(23)
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Furthermore, with 𝐶𝑛 (𝑘𝑧 , 𝜔0) known, the Fourier transformed scattered field outside the boundary layer is recovered
from eq. (17). The outside scattered field is essential in order to obtain the total far-field.

Performing a similar procedure using the far-field expression for the incident field given by eq. (8) with Γ∞ instead
of Γ0, the final far-field expression is obtained:

𝑝′𝑡 𝑓 𝑓 (�̄�, 𝜙, \̄, 𝑡) =
ib𝑙𝑞𝑃𝑙𝑞 𝑘0 Ψ𝑙𝑞 (Δ∞)

2�̄�
𝑆 (\̄)

(1 − 𝑀2
∞ sin2 \̄)

ei𝜔0𝑡 e−i𝑘0 �̄�𝑆 ( \̄ )
∞∑︁

𝑛=−∞
ei(𝑛−𝑙)𝛽 e

1
2 𝑛𝜋i×[

J𝑛−𝑙 (Δ∞𝑏) +
[

2i (1 − 𝑀2
∞ sin2 \̄) Υ𝑛 (Δ0)

𝜋(𝑎0 + 𝑑) H(2)
𝑛 (Δ∞ (𝑎0 + 𝑑)) 𝑘2

0 𝑆
2 (\̄) 𝐷𝑛 (Δ∞,Δ0)

− J𝑛 (Δ∞ (𝑎0 + 𝑑))
] H(2)

𝑛−𝑙 (Δ∞𝑏)

H(2)
𝑛 (Δ∞ (𝑎0 + 𝑑))

]
e−i𝑛�̄� ,

(24)

where

𝐷𝑛 (Δ∞,Δ0) =
[
H(2)′

𝑛 (Δ0 (𝑎0 + 𝑑)) − J′𝑛 (Δ0 (𝑎0 + 𝑑))
H(2)′

𝑛 (Δ0𝑎0)
J′𝑛 (Δ0𝑎0)

]
× Δ0

𝑘2
0
(
1 + 𝐶 ( \̄ ) 𝑀0

(1−𝑀2
∞ sin2 \̄ )1/2

)2

−
[
H(2)

𝑛 (Δ0 (𝑎0 + 𝑑)) − J𝑛 (Δ0 (𝑎0 + 𝑑))
H(2)′

𝑛 (Δ0𝑎0)
J′𝑛 (Δ0𝑎0)

]
× sin \̄ (1 − 𝑀2

∞ sin2 \̄)1/2

𝑘0 𝑆2 (\̄)
H(2)′

𝑛 (Δ∞ (𝑎0 + 𝑑))
H(2)

𝑛 (Δ∞ (𝑎0 + 𝑑))
,

(25)

andΔ∞ =
𝑘0 sin \̄

(1−𝑀2
∞ sin2 \̄ )1/2 ,Υ𝑛 (Δ0) =

[
H(2)

𝑛 (Δ0 (𝑎0+𝑑))−J𝑛 (Δ0 (𝑎0+𝑑)) H(2) ′
𝑛 (Δ0𝑎0 )
J′𝑛 (Δ0𝑎0 )

]
,𝐶 (\̄) =

(
cos \̄+𝑀∞ (1−𝑀2

∞ sin2 \̄ )1/2
)

𝜎2
∞

,

and finally

Δ0 =
𝑘0

(1 − 𝑀2
∞ sin2 \̄)1/2

√︃
(1 − 𝑀2

∞ sin2 \̄) + 𝐶 (\̄) [2𝑀0 (1 − 𝑀2
∞ sin2 \̄)1/2 − 𝐶 (\̄)𝜎2

0 ] . (26)

The procedure and details of the derivation of eq. (24) is very similar to that used in section III.A, and is given in
full in the appendix of Rouvas & McAlpine [6]. Equations (21) and (24) are validated by reducing the boundary layer to
a uniform flow. Indeed, when 𝑀0 → 𝑀∞, eqs. (21) and (24) converge to eqs. (12) and (14) respectively which are the
uniform flow solutions.

C. Linear Boundary-Layer Profile Analysis
As stated in section II, there are two ways identified to solve analytically the Pridmore-Brown equation by assuming

a linear shear velocity profile. Either the method proposed by Goldstein and Rice [15] or the asymptotic method by
Eversman and Beckemeyer[14]. The work presented here in brief summary is given in full detail in the paper by Rouvas
and McAlpine [6] which uses the asymptotic method proposed by Eversman and Beckemeyer [14].

The analysis begins with the Fourier-transformed Pridmore-Brown equation which describes the total field inside a
linear boundary-layer with slip on the wall 𝑀𝑤 and free stream Mach number 𝑀∞.

d2𝑝′𝑡𝑖𝑛
d𝑟2 +

(
1
𝑟
− 2𝑘𝑧𝑀 ′

𝑘0 + 𝑘𝑧𝑀

) d𝑝′𝑡𝑖𝑛
d𝑟

+
[
(𝑘0 + 𝑘𝑧𝑀)2 − 𝑘2

𝑧 −
𝑛2

𝑟2

]
𝑝′𝑡𝑖𝑛 = 0. (27)

By introducing the variable 𝑦 =
𝑟−𝑎0
𝑎0

and the parameters Y = 𝑑
𝑎0

, Z =
𝑦

Y
, and with the distribution of Mach number

inside the boundary layer 𝑀 (𝑦) = 𝑀∞𝜑(Z) = 𝑀∞ (Z 𝑀∞−𝑀𝑤

𝑀∞
+ 𝑀𝑤

𝑀∞
), eq.(27) can be rewritten as

d2𝑝′𝑡𝑖𝑛
dZ2 +

(
Y

YZ + 1
− 2𝐾𝑀∞

1 + 𝐾𝑀
d𝜑
dZ

) d𝑝′𝑡𝑖𝑛
dZ

+ Y2
[
(𝑘0𝑎0)2

[
(1 + 𝐾𝑀)2 − 𝐾2

]
− 𝑛2

(YZ + 1)2

]
𝑝′𝑡𝑖𝑛 = 0, (28)
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where 𝐾 = 𝑘𝑧/𝑘0. This equation can be solved for small values of the parameter Y using a power series solution,

𝑝′𝑡𝑖𝑛 (Z) = 𝑝0 (Z) + Y𝑝1 (Z) + Y2𝑝2 (Z) + Y3𝑝3 (Z) + . . . (29)

By substituting this solution into eq. (28), the pressure inside the boundary layer can be obtained in terms of integral
equations which are solvable for a linear boundary-layer profile.

r

d

Moo

wM

a
0

Fig. 4 Boundary layer with linear velocity profile.

The solution outside the layer is described as before with eqs. (16) and (17). These are matched with the solution
inside the layer using the same boundary conditions at the edge of the boundary layer as before, namely continuity of
pressure (eq.(19)) and continuity of particle displacement (eq.(20)), which in this case reduces to continuity of pressure
gradient. Finally, by setting 𝑟 = 𝑎0, and then performing an inverse Fourier 𝑧-transform, the expression for the pressure
on the surface of the cylindrical fuselage is obtained:

𝑝′𝑡𝑖𝑛 (𝑎0, 𝜙, 𝑧, 𝑡) =
b𝑙𝑞𝑃𝑙𝑞

4
(−1)𝑙 e−i𝑙𝛽 ei𝜔0𝑡

∞∑︁
𝑛=−∞

{
(−1)𝑛 ei𝑛𝛽 𝐼𝑛 (𝑎0, 𝑧) e−i𝑛�̄�} , (30)

where
𝐼𝑛 (𝑎0, 𝑧) =

∫ ∞

−∞
(𝑘0 + 𝑘𝑧𝑀∞) Ψ𝑙𝑞 H(2)

𝑙−𝑛 (Γ∞𝑏) 𝑆𝑛 (𝑘𝑧 , 𝜔0)e−i𝑘𝑧 �̄� d𝑘𝑧 , (31)

and

𝑆𝑛 (𝑘𝑧 , 𝜔0) =
J𝑛 (Γ∞ (𝑎0 + 𝑑))

𝐺

+

[
J′𝑛 (Γ∞ (𝑎0 + 𝑑)) − 𝑅

𝐺
Y

Γ∞𝑎0
(1 + 𝐾𝑀∞)2J𝑛 (Γ∞ (𝑎0 + 𝑑))

]
[
𝑅
𝐺

Y
Γ∞𝑎0

(1 + 𝐾𝑀∞)2H(2)
𝑛 (Γ∞ (𝑎0 + 𝑑)) − H(2)′

𝑛 (Γ∞ (𝑎0 + 𝑑))
] H(2)

𝑛 (Γ∞ (𝑎0 + 𝑑))
𝐺

,

(32)

𝑅 = `
( 1
𝑔
− 1
𝑠2 + 𝑔

)
− a − Y

[2𝑛2 − `
𝑠2 ln(𝑠2/𝑔 + 1) − 2𝑛2

𝑠2 + 𝑔
+ `
𝑔
− a

2
]
, (33)

𝐺 = 1 + Y2 [` ( 𝑠2

3𝑔
+ 1/2

)
− a

( 𝑠2

4
+ 2𝑔/3 + 𝑔2

2𝑠2

) ]
, (34)

and a = (𝑘0𝑎0)2, ` = a𝐾2 + 𝑛2, 𝑠 = 𝐾 (𝑀∞ − 𝑀𝑤) and 𝑔 = 𝑠(1 + 𝐾𝑀𝑤).
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Equations (30) and (31) have been initially validated. In the limit as the effective boundary-layer thickness reduces
to zero, 𝑑 → 0, equations (30) and (31) reduce to the uniform flow case, namely eqs. (12) and (13) respectively.

Finally, the far-field expression is presented whose full derivation can be found in Ref. [6] The final total far-field in
real space is

𝑝′𝑡 𝑓 𝑓 (�̄�, \̄, 𝜙, 𝑡) =
ib𝑙𝑞𝑃𝑙𝑞𝑘0

2�̄�
𝑆(\̄)
Θ

Ψ𝑙𝑞 (Δ∞) ei𝜔0𝑡 e−i𝑘0 �̄�𝑆 ( \̄ )
∞∑︁

𝑛=−∞
ℭ𝑛 (\̄)e−i(𝑙−𝑛)𝛽e

1
2 𝑛𝜋ie−i𝑛�̄� , (35)

where

ℭ𝑛 (\̄) =
[
J𝑛−𝑙 (Δ∞𝑏) + H(2)

𝑛−𝑙 (Δ∞𝑏)

[
J′𝑛 (Δ∞ (𝑎0 + 𝑑)) − 𝑅 ( \̄ )

𝐺 ( \̄ )
Y (Θ1/2+𝑀∞𝐶 ( \̄ ) )2

𝑘0𝑎0 sin \̄Θ1/2 J𝑛 (Δ∞ (𝑎0 + 𝑑))
][

𝑅 ( \̄ )
𝐺 ( \̄ )

Y (Θ1/2+𝑀∞𝐶 ( \̄ ) )2

𝑘0𝑎0 sin \̄Θ1/2 H(2)
𝑛 (Δ∞ (𝑎0 + 𝑑)) − H(2)′

𝑛 (Δ∞ (𝑎0 + 𝑑))
] ] , (36)

with

𝐺 (\̄) =
{

1 + Y2

[(
𝑛2 + a𝐶

2 (\̄)
Θ

) [𝐶 (\̄) (2𝑀∞ + 𝑀𝑤) + 3Θ1/2

6
(
Θ1/2 + 𝑀𝑤𝐶 (\̄)

) ]
− a

Θ

[𝐶2 (\̄) (𝑀∞ − 𝑀𝑤)2

4
+

(
Θ1/2 + 𝑀𝑤𝐶 (\̄)

) (
𝐶 (\̄) ( 2

3
𝑀∞ − 1

6
𝑀𝑤) +

1
2
Θ1/2

))] ]}
,

(37)

and

𝑅(\̄) =
{

a𝐶2 (\̄) + 𝑛2Θ(
Θ1/2 + 𝑀𝑤𝐶 (\̄)

) (
Θ1/2 + 𝑀∞𝐶 (\̄)

) − a

− Y
[

𝑛2Θ

𝐶2 (\̄) (𝑀∞ − 𝑀𝑤)

[
𝐶 (\̄)

(
𝐶 (\̄) (𝑀∞ − 2𝑀𝑤) − Θ1/2(

Θ1/2 + 𝑀𝑤𝐶 (\̄)
) (
Θ1/2 + 𝑀∞𝐶 (\̄)

) )
+ 1
(𝑀∞ − 𝑀𝑤)

ln
(
Θ1/2 + 𝑀∞𝐶 (\̄)
Θ1/2 + 𝑀𝑤𝐶 (\̄)

)]
+ a

(𝑀∞ − 𝑀𝑤)

[ 𝐶 (\̄)(
Θ1/2 + 𝑀𝑤𝐶 (\̄)

) − (𝑀∞ − 𝑀𝑤)
2

− 1
(𝑀∞ − 𝑀𝑤)

ln
(
Θ1/2 + 𝑀∞𝐶 (\̄)
Θ1/2 + 𝑀𝑤𝐶 (\̄)

)] ]}
.

(38)

Also, Δ∞ =
𝑘0 sin \̄

(1−𝑀∞2 sin2 \̄ )1/2 , Θ = (1 − 𝑀2
∞ sin2 \̄), 𝑆(\̄) =

(
Θ1/2+𝑀∞ cos \̄

)
𝜎2
∞

, 𝐶 (\̄) =
(
cos \̄+𝑀∞Θ1/2

)
𝜎2
∞

and 𝜎2
∞ = 1 − 𝑀2

∞.
Note that eq. (35) is the same as its uniform flow equivalent in eq. (14) apart from the bracketed term ℭ𝑛 (\̄). As

before eq. (35) is validated by taking the limit as 𝑑 → 0. The bracketed term reduces to

ℭ𝑛 (\̄) =
[
J𝑛−𝑙 (Δ∞𝑏) + H(2)

𝑛−𝑙 (Δ∞𝑏)
J′𝑛 (Δ∞𝑎0)

−H(2)′
𝑛 (Δ∞𝑎0)

]
, (39)

which is the same as the bracketed term in eq. (14), showing that the linear-profile expression reduces to the uniform-flow
expression.

IV. Validation
This section includes validation results that demonstrate the validity of the key equations in sections III.B and III.C.

Moreover, the best method of replacing the actual velocity profile with a simplified model profile is investigated. The
aim is to show that the step-function profile can be used to successfully quantify the refraction effect of a realistic
turbulent boundary-layer profile, modelled by a 1/7th power-law profile. In all of the following examples, the geometric
parameters and flight conditions are fixed and representative of typical values. The free-stream Mach number is 0.75
which is typical for cruise flight at 30.000 ft. The non-dimensional frequency represented by a Helmholtz number is
chosen as 𝑘0𝑎 = 20, a value that is relatively high for cruising conditions but quite representative for an aircraft during
climb. All other aircraft dimensions are normalised with the fuselage radius which is taken to be unity, 𝑎0 = 1. The
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dimensions represent a typical wide-body aircraft configuration. The mode of propagation will be fixed at (𝑙, 𝑞) = (4, 1)
which is a well cut-on mode. The results are presented either by SPL pressure contours on the surface of the fuselage, or
in the form of the difference between the SPL with the boundary layer (calculated with eqs. (21) or (30)) and without
the boundary layer (calculated with eq.(12)), defined by Δ𝑏𝑙 = SPL𝑏𝑙 − SPL. Finally, in all of the examples the plane of
the source is located at 𝑧 = 0 and at 𝜙 = 0o.

Rouvas & McAlpine [10] investigated an approach for creating an equivalent linear velocity profile that best simulates
the refraction effects of a 1/7th power-law profile. Three different methods were investigated. Equating the shape factor
of the two profiles, equating boundary-layer and displacement thickness of the two profiles, or equating boundary-layer
and momentum thickness of the two profiles. When each of these methods are applied, appropriate values are obtained
for the equivalent linear boundary-layer thickness (effective thickness 𝑑) and Mach at the wall 𝑀𝑤 . The same applies
for the equivalent step-function boundary-layer, where appropriate values for the effective thickness 𝑑 and internal Mach
number 𝑀0 are obtained. Figure (5) illustrates how these equivalent profiles and their effective thicknesses compare
with the original 1/7th power-law profile with thickness 𝛿. As expected the effective thickness 𝑑 is smaller than 𝛿 for the
shape factor method [2].

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

0

0.5

1

1.5

0.2 0.4 0.6 0.8 1

r
-
a
0

δ

u U

Fig. 5 The three equivalent linear velocity profiles, equal shape factor (dashed line), equal boundary-layer
and displacement thickness (dash-dotted line), equal boundary-layer and momentum thickness (dotted line) are
plotted compared to the actual 1/7th power law profile (solid line).

By examining the Δ𝑏𝑙 in Fig. (6), the importance of the refraction effect caused by the presence of the boundary-layer
upstream of the source is clearly seen. Sound propagating upstream refracts away from the surface and shielding takes
place over the entire upstream area. It is also apparent that the optimal method for matching the turbulent power-law
profile is the equal shape factor. Both the equivalent linear and step-function profiles with equal shape factor to the
original power-law profile give predictions that are remarkably close to the numerical results, for this boundary-layer
thickness. Both these equivalent profiles prove to be able to approximate the amplitude and modal pattern of the
shielding effect. All remaining examples will use the equal shape factor as a matching method to approximate the
power-law profile.

Figures (7) and (8) show the Sound Pressure Level (SPL) on the surface of the fuselage. In both figures the shadow
zone is located at the “back” of the cylinder (𝜙 = 180o) as expected, since the source is located at the near side of
the cylinder (𝜙 = 0o), thus the far side of the cylinder is not in a direct line of sight of the source. In both figures the

12



-1012345

-20

-15

-10

-5

0
Δ

  
  
[d

B
]

b
l

z/a   [-]
0

Fig. 6 Δ𝑏𝑙 at 𝜙 = 0 for the step-function and linear velocity profiles compared with numerical predictions taken
from [17]. Key: Numerical result for a 1/7th power-law profile (solid line); Linear velocity profiles (recreated from
Ref. [10]) with equal shape factor (dashed line), equal boundary-layer and displacement thickness (dash-dotted
line), or equal boundary-layer and momentum thickness (dotted line); Step-function profile with equal shape
factor (solid line(×)). The other parameters are: (𝑙, 𝑞) = (4, 1), 𝑎 = 0.5𝑎0, 𝑏 = 3𝑎0, 𝑀∞ = 0.75, 𝑘0𝑎 = 20 and
𝛿 = 0.01𝑎0.

discrepancies are barely visible on the near side of the cylinder. Both the equivalent profiles successfully simulate the
predicted pressure levels calculated by the numerical method with a 1/7th power-law profile. The only discrepancies
visible are located in the shadow zone. However, the shadow zone generally exhibits pressure levels at least 100 dB
lower than the near side of the cylinder effectively reaching the numerical noise floor. Therefore, these minuscule
differences in the shadow zone are irrelevant.

The results presented thus far are for a relatively thin boundary layer of 1% of the fuselage radius. The accuracy of
the results is expected to deteriorate for thicker layers as is evident from the mathematical formulation of the linear
velocity profile, which assumes that the boundary-layer thickness is sufficiently small compared to the fuselage radius,
(see parameter Y in section III.C and in [6], [10]). This is demonstrated in Fig. (9) where the equivalent linear profile
struggles to approximate the shielding effect of the power-law profile for larger boundary-layer thicknesses. On the other
hand, the equivalent step-function profile exhibits remarkably similar behaviour at thicker boundary layers. This is
because the step-function boundary-layer analysis does not involve the boundary-layer thickness limitation mentioned in
the linear profile analysis, and so the equivalent step-function profile approximation retains the same accuracy regardless
of the thickness. A case could be made here that the equivalent linear profile could be used to approximate thinner
boundary layers, while an equivalent step-function profile should be used for thicker boundary layers.

13



(dB)

z/a0

φ

z/a0
φ

p
la

n
e 

o
f 

so
u
rc

e
Moo

Fig. 7 SPL on the surface of the fuselage, normalised so that the maximum SPL is at 0 dB. Comparison of
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(4, 1), 𝑎 = 0.5𝑎0, 𝑏 = 3𝑎0, 𝑀∞ = 0.75, 𝑘0𝑎 = 20, 𝛿 = 0.01𝑎0 and 1/7th power law profile.

Moo

p
la

n
e 

o
f 

so
u

rc
e

z/a
0

φ

(dB)

φ

z/a
0

Fig. 8 SPL on the surface of the fuselage, normalised so that the maximum SPL is at 0 dB. Comparison
of theoretical results [left] generated using an equivalent step-function profile, and theoretical results [right]
generated using an equivalent linear profile, based on matching the simplified model profiles to a 1/7th power-law
boundary layer. The other parameters are: (𝑙, 𝑞) = (4, 1), 𝑎 = 0.5𝑎0, 𝑏 = 3𝑎0, 𝑀∞ = 0.75, 𝑘0𝑎 = 20, 𝛿 = 0.01𝑎0.
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V. Results
Having established that both the linear and the step-function velocity profiles can approximate the effect of a realistic

turbulent boundary-layer, modelled by a 1/7th power-law profile, further investigation into the shielding effect has
been carried out in the form of a parametric study. This study involves realistic dimensions, configurations, flight
parameters and conditions. The SPL on the fuselage surface is calculated using eqs. (21) and (30), and directivity plots
are calculated using the far-field expressions in eqs. (24) and (35).

A. Construction of the Model
In recent years turbofan engines have tended to become larger with higher by-pass ratios. The dimensions for

a typical wide-body aircraft are chosen since that type of aircraft is more likely to be equipped with an ultra high
by-pass ratio engine. The dimensions of the representative model are shown in table (1). All the length parameters are
normalised by the fuselage radius, 𝑎0.

Parameter Value

𝑎/𝑎0 0.5
𝑏/𝑎0 3.5
𝛽 0o

𝑧𝑝𝑠/𝑎0 0
𝑧𝑒𝑐/𝑎0 4
\̄ 𝑓 𝑓 [5𝑜,175𝑜]
𝜙 𝑓 𝑓 3 𝜋

2
Table 1 Dimensions of parametric study model.

The parameters 𝑧𝑝𝑠 and 𝑧𝑒𝑐, respectively the position of the plane of the source (the plane of the fan inlet), and the
position of the end of the nose cone, also represent the axial range of the calculations for the fuselage surface pressure
results. This range of 𝑧 represents the entire section of the fuselage upstream of the source that can be approximated
by a cylinder with constant radius. Beyond 𝑧𝑒𝑐, the nose cone structure cannot be modelled by the current theoretical
formulation. The parameters \̄ 𝑓 𝑓 and 𝜙 𝑓 𝑓 refer to the grid for the far-field calculations. The expressions in eqs. (24)
and (35) can give the far-field pressure at any point (\̄, 𝜙) on a sphere of radius �̄� centered on the fuselage. In this study,
results for a hemisphere directly beneath the flight path, 𝜙 = 3 𝜋

2 , are produced since this directivity pattern propagates
towards the ground. Note that extreme values of polar angles \̄, close to 0◦ or 180◦, are excluded to avoid any numerical
singularities.

The range of the 𝑧-grid points, from 𝑧𝑝𝑠 to 𝑧𝑒𝑐, dictate the values used for the boundary-layer thickness 𝛿. Flat
plate theory is assumed for the growth of the boundary layer. This means that the relationship 𝛿(𝑥) = 0.37𝑥/Re1/5

𝑥 is
used, where 𝑥 is the distance taken from the nose of the fuselage. In the parametric study, three different constant
boundary-layer thicknesses are considered: thin, thick and average. The thin boundary layer has a constant thickness
equal to that of the boundary layer at the end of the nose cone, whilst the thick boundary layer has a constant thickness
equal to that of the boundary layer at the plane of the source. The constant thickness of the average boundary layer is
calculated by integrating the boundary-layer thickness over the axial range, which gives a more realistic average than a
simple arithmetic mean of the thin and thick layers.

The operating conditions of the study are determined by the cut-off ratio of the dominant rotor-locked mode.
Assuming that there are no instabilities in the fan inlet flow, the rotor-locked mode has azimuthal order equal to the
number of blades of the fan. In the case presented here the number of blades is taken to be 𝐵 = 20, which is a typical
value for a high by-pass ratio engine used on a wide-body aircraft. Therefore the dominant mode is (𝑙, 𝑞) = (20, 1).
For the example presented in this paper, the cut-off ratio of the rotor-locked mode is chosen to be Z = 1.4, which is
reasonably well cut-on. This means that the non-dimensional blade passing frequency (BPF) is equal to 𝑘0𝑎 = 23.6,
which corresponds to approximately 90 % of the engine nominal maximum rpm, (and is a realistic value for an ultra
high by-pass ratio engine). The climbing stage is typically characterised by relatively high engine rpm/high BPF, which
gradually reduce as the aircraft approaches cruising altitude and conditions. Thus, the remainder of the operating
conditions and parameters are chosen to represent a typical climbing stage of the flight. The chosen flight Mach
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number 𝑀∞ = 0.65, and the altitude is set at 7000m. For this flight Mach number and altitude the three boundary-layer
thicknesses are calculated to be: thin 0.032𝑎0, average 0.047𝑎0, and thick 0.061𝑎0.

The simulation results in this paper include the contribution of every mode that is cut-on at the specified operating
condition. To obtain the total contribution of all the modes, their pressures are summed incoherently. However, before
summing the mean square pressures, the modal pressure amplitudes are adjusted (from their default value of unity) to
specify the modal sound power distribution of the cut-on modes. The absolute square of the modal pressure amplitude
is given in [16] by

|𝑃𝑙𝑞 |2 =
2𝜌0𝑐0𝑊𝑙𝑞

𝜋
[
𝑎2 −

(
𝑙
^𝑙𝑞

)2]J2
𝑙
(^𝑙𝑞𝑎) [(1 + 𝑀2

∞) Re(b𝑙𝑞) − 𝑀∞ (1 + |b𝑙𝑞 |2)]
, (40)

where𝑊𝑙𝑞 is the modal sound power. An appropriate value for𝑊𝑙𝑞 must be selected for each mode. In this parametric
study, three types of source distribution are used based on previous findings ([23], [24]). (1) The equal energy source
denoted by𝑊𝑒𝑒

𝑡 , where the total sound power of unity,𝑊𝑡 = 1, is divided equally among the modes, thus each mode has
the same modal sound power𝑊𝑙𝑞 = 𝑊𝑡/number of modes. (2) The rotor-locked source denoted by𝑊20

𝑡 , where the total
sound power of unity,𝑊𝑡 = 1, is divided equally among the modes except for the rotor-locked mode (20,1) which has
100 times larger modal sound power (or 20 dB higher in PWL terms). (3) The rotor-locked source denoted by 𝑊30

𝑡 ,
where the total sound power of unity,𝑊𝑡 = 1, is divided equally among the modes except from the rotor-locked mode
(20,1) which has 1000 times larger modal sound power (or 30 dB higher in PWL terms).

According to previous research ([23], [24]) the most realistic of these prescribed sources is likely to be the𝑊20
𝑡 source,

since in previously reported experimental measurements the dominant rotor-locked mode can exhibit an amplitude
around 20 dB higher than the rest of the cut-on modes. Nonetheless, the equal energy source,𝑊𝑒𝑒

𝑡 , is very useful in
order to create a baseline. It is also not uncommon for the rotor-locked mode to exhibit a level up to 30 dB higher, thus
the source𝑊30

𝑡 should give further insight into the distribution and propagation of sound power.

B. Power Distribution and Thickness Effect
The difference between the sound power distributions of the three sources is demonstrated in Figs. (10) and (11). For

the results in this section, the power-law boundary-layer profile is approximated using a linear equivalent profile via eq.
(30). The differences in the results between the linear and the step-function velocity profiles are investigated in the next
section of this paper. The cylinder plots in Fig. (10) showing the sound pressure levels on the fuselage surface highlight
the importance of the presence of a dominant rotor-locked mode. Source𝑊𝑒𝑒

𝑡 exhibits a largely smooth contour pattern,
which is consistent with multi-modal analysis, and an area of high SPL slightly upstream of the source plane. This is
expected because the modes with higher cut-off ratios have principal lobes with smaller propagation angles. Owing to
this, these modes are incident on the boundary layer further upstream, at shallow angles, making them more susceptible
to refraction and less efficient at transmitting sound energy to the fuselage’s surface. Modes with lower cut-off ratios
have principal lobes with larger propagation angles. Owing to this, these modes are incident on the boundary layer near
the source plane, at steeper angles, making them less susceptible to refraction and more easily able to transmit sound
energy to the fuselage’s surface.

On the other hand, when there is a rotor-locked mode present, the area of the maximum SPL is more distinctive and
localised. This is because that is the area where the dominant mode’s principal lobe is incident on the fuselage, resulting
in high levels at that specific area. For the most realistic source𝑊20

𝑡 , there is a small area downstream of the principal
lobe that exhibits similar pressure levels to the area where the dominant lobe is incident on the fuselage. This is because
further downstream the shielding becomes less and less effective as explained before. This is the contribution from
modes with lower cut-off ratios compared to the rotor-locked mode that are incident on the fuselage near the source
plane. However, for the source𝑊30

𝑡 , also the secondary lobe is observed to contribute a distinctive area on the fuselage
with high pressure levels localised in that area, as well as the dominant principal lobe.

Another metric that can be used to investigate the different results between the sources is the Δsource,

Δ𝑖
source = SPL𝑖 − SPLee, (41)

where SPLee is the SPL calculated with the equal energy source 𝑊𝑒𝑒
𝑡 , whilst 𝑖 denotes either 20 or 30 representing

values calculated for the sources𝑊20
𝑡 or𝑊30

𝑡 respectively. Using this metric and plotting it for 𝜙 = 0 as in Fig. (11), the
difference between the equal energy source and the rotor-locked source is seen. The largest difference occurs upstream
of the source position where the principal lobe of the rotor-locked mode is incident on the cylinder. It is apparent that
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Fig. 10 SPL on the surface of the cylindrical fuselage for the three different sources and average boundary layer
thickness. [(a)]𝑊𝑒𝑒

𝑡 , [(b)]𝑊20
𝑡 , [(c)]𝑊30

𝑡 . Values are normalised so that the maximum SPL is at 0 dB.

around this region there is high pressure levels. However, since the two sources have the same total sound power, away
from the region where the principal lobe of the dominant mode is incident, it is expected that Δ20

source is mainly negative
to compensate for the energy excess carried within the dominant mode.

In order to quantify the shielding effect, the metric Δ𝑏𝑙 is used as defined in section IV. This metric highlights the
areas of shielding, and also gives insight into how the presence of a rotor-locked mode affects the shielding. Figure (12)
demonstrates again the importance of refraction due to the boundary layer. As expected, the thicker the boundary layer
the higher the amounts of shielding upstream. Moreover, it is very important to note that shielding does not seem to be
affected by the presence of a dominant mode. Apart from minor differences in the principal lobe region, in the rest of
the domain the two sources exhibit remarkably similar behavior. Even for the thickest boundary layer case, where any
shielding effect is most pronounced, the presence of the dominant mode only causes minor differences in the region of
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Fig. 11 Δ20
source at 𝜙 = 0 for the average boundary-layer thickness.

the principal lobe. This result implies that it is not possible to manipulate shielding by manipulating the modal output of
the engine.

Finally, the region very close to the plane of source (𝑧/𝑎0 = 0) should not be considered as accurate because in this
region (90◦ to the duct’s axis) the fuselage pressure levels are affected by diffraction around the lip of the duct, but this
is not included in this analysis.

C. Comparison of Linear and Step-function Profiles
The results presented so far have been produced using an equivalent linear profile to approximate the 1/7th power-law

profile. In this section some results generated using an equivalent step-function profile (eq.(21)) are presented, and
compared with their equivalent that use a linear profile (eq.(30)). The contour maps shown in Fig. (13) show many
similarities between the two approaches. Major discrepancies are observed in the shadow zone, however, as explained in
section IV, differences there are largely irrelevant since the levels are very low and the accuracy is highly dependent on
the numerical ‘noise floor’ of the prediction code. The pattern between the two contour maps is very similar, albeit
the step-function exhibits more shielding further upstream. Results in Fig. (13) are for the average boundary-layer
thickness which is 4.7% of the fuselage radius. This thickness value is expected to present discrepancies between the
two approaches as is evident from Fig. (9).

Yet the major differences between the two approaches is seen to be predicted further upstream. This is also evident
in Fig. (14) where for average and thick layers the further upstream the greater the difference between the shielding
predictions with the two profiles. As expected, the discrepancy is much smaller in the case of the thin boundary layer.
Ignoring the inaccurate results in the region very close to the plane of the source, 𝑧/𝑎0 < 1, in the rest of the domain
the two approaches are reasonably close to each other. Up to 𝑧/𝑎0 = 3, for the average boundary-layer the difference
between the predicted shielding with the two profiles is below 1 dB. This is also the case for the thick boundary- layer up
to 𝑧/𝑎0 = 2.5. It is reasonable to conclude that the predictions with the equivalent linear profile are less reliable further
upstream as is evident from Fig. (9), in which case the step-function profile is more reliable. The further upstream
sound propagates, the shallower the angle that it meets the boundary layer, meaning that the effective thickness of the
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Fig. 12 Δ𝑏𝑙 at 𝜙 = 0 for the three boundary-layer thicknesses and two sources,𝑊𝑒𝑒
𝑡 and𝑊20

𝑡 . Key: 𝑊𝑒𝑒
𝑡 source

with thin boundary-layer [solid line - no marker],𝑊𝑒𝑒
𝑡 source with average boundary-layer [solid line - ⃝],𝑊𝑒𝑒

𝑡

source with thick boundary-layer [solid line - ×],𝑊20
𝑡 source with thin boundary-layer [dashed line - no marker],

𝑊20
𝑡 source with average boundary-layer [dashed line - ⃝],𝑊20

𝑡 source with thick boundary-layer [dashed line -
×].

φ φ
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[dB]

Fig. 13 SPL on the surface of the cylindrical fuselage for the average boundary-layer thickness and equal
energy per mode source. [(left)] Equivalent step-function profile, [(right)] equivalent linear profile. Values are
normalised so that the maximum SPL is at 0 dB.

layer is larger since the sound wave travels a greater distance to meet the fuselage at a shallower angle. This inevitably
leads to a deterioration of the accuracy of the equivalent linear profile approach whose validity depends on the layer
being sufficiently thin (see section III.C and Fig. (9)). However, for the axial range and boundary-layer thicknesses
considered in the parametric study, the two approaches with the different velocity profiles show good agreement.
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Fig. 14 Δ𝑏𝑙 at 𝜙 = 0 for the three boundary-layer thicknesses and two equivalent profiles and𝑊20
𝑡 source. Key:

Equivalent linear thin boundary-layer [solid line - no marker], equivalent linear with average boundary-layer
[solid line - ⃝], equivalent linear thick boundary-layer [solid line - ×], equivalent step-function thin boundary-
layer [dashed line - no marker], equivalent step-function average boundary-layer [dashed line - ⃝], equivalent
step-function thick boundary-layer [dashed line - ×].

D. Far-Field Polar Directivity
The results in this section are generated from the far-field eqs. (24) and (35). Far-field polar directivity plots are

presented for the upstream area beneath the flight path, 0◦ < \̄ < 90◦, for the operating conditions discussed in V.A.
Figure (15) shows the directivity for a thick boundary-layer using both equivalent linear and step-function velocity
profiles. The source is the𝑊20

𝑡 as is evident by the presence of a distinctive lobe at about 55◦ which is very close to the
group velocity modal propagation angle of the dominant mode (20,1). The rest of the directivity is much smoother
which is consistent with a multi-modal source. As can be seen from Fig. (15), the predictions from the two different
velocity profiles coincide, which supports the notion that in the far-field the type of fuselage boundary-layer profile used
for the predictions does not matter, even for the thick layer case.

Figure (16) illustrates the effect of the boundary layer on the polar directivity. By comparing the predicted directivity
patterns of the uniform flow case and the average boundary layer case, a phase shift is immediately apparent. The
amplitude is unchanged as both far-field expressions (eqs. (14) and (35)) have an amplitude dependence proportional to
1/�̄�, as expected. It is fair to conclude that the effect of the boundary layer on the far-field is not as pronounced as in the
near-field. Despite this, the phase shift which is especially pronounced in the lobe area that exhibits the highest sound
pressure levels, cannot be ignored.
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Fig. 15 Polar directivity of𝑊20
𝑡 source and thick boundary-layer using equivalent linear profile [solid line - no

marker] and equivalent step-function profile [solid line - ⃝].
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Fig. 16 Polar directivity of𝑊20
𝑡 source for average step-function boundary-layer [dashed line] and uniform flow

[solid line].
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VI. Summary
To summarise the work presented in this paper, two analytical-based models are presented that predict fan noise

scattering by the fuselage, and the shielding effect owing to the presence of a boundary layer on the fuselage. The
velocity profile is simplified by an equivalent linear or step-function profile with an effective thickness. This enables
an analytical solution to the Pridmore-Brown equation (linear profile), or eliminates the need to solve this equation
altogether (step-function profile). Therefore, both approaches avoid using time-consuming high-fidelity numerical
schemes. The optimal method of matching the equivalent profiles to a power-law profile is investigated, and matching
the shape factor proves to be the most effective.

Theoretical results produced using the two approaches are compared with existing numerical results, and reveal that
both of them can effectively approximate the shielding effect of a realistic turbulent boundary-layer, modelled by a 1/7th
power-law profile. The two approaches have their limitations regarding the thickness of the boundary layer, however
they can still be used to produce fairly accurate and very quick predictions, giving valuable insight into the physics of the
problem. Moreover, the accuracy of an equivalent step-function profile does not deteriorate with increasing thickness,
making it an ideal candidate to use in parametric studies, as well as being the fastest method to compute because only
the convected wave equation is solved.

Theoretical predictions are generated using the two approaches for a scenario based on a model aircraft operating
in realistic flight conditions. Results from the multi-modal analysis show that the predictions of the fuselage surface
pressure with either of the simplified model velocity profiles are in good agreement, suggesting that it may not be
necessary to solve the Pridmore-Brown equation since the step-function results are comparable with those obtained
solving with the linear shear. Moreover, the results of the multi-modal analysis suggest that the presence of a dominant
rotor-locked mode does not affect the shielding, albeit its effect cannot be ignored on the total SPL on the fuselage
surface. Finally, results for the far-field multi-modal analysis show minuscule differences between the predictions with
either of the simplified model velocity profiles, but it is seen that modelling the refractive effect of the boundary layer
for far-field simulations is necessary to ensure the correct phase of the lobes and nulls in the directivity, compared to
simulations with uniform flow only.
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