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ABSTRACT
The nuclear magnetic resonance (NMR) spectra of spin-1/2 pairs contain four peaks, with two inner peaks much stronger than the outer peaks
in the near-equivalence regime. We have observed that the strong inner peaks have significantly different linewidths when measurements were
performed on a 13C2-labelled triyne derivative. This linewidth difference may be attributed to strong cross-correlation effects. We develop the
theory of cross-correlated relaxation in the case of near-equivalent homonuclear spin-1/2 pairs, in the case of a molecule exhibiting strongly
anisotropic rotational diffusion. Good agreement is found with the experimental NMR lineshapes.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0107221

I. INTRODUCTION

If a nuclear spin system is perturbed from a thermal equilib-
rium state, it slowly returns to equilibrium through nuclear spin
relaxation. Such relaxation processes are driven by fluctuations in
the interactions between the nuclear spins and the thermal molecu-
lar environment. In general, many types of fluctuating interactions
are involved, and these interactions may be correlated with each
other. For example, in solution nuclear magnetic resonance (NMR),
the fluctuations of nuclear spin interactions are caused by random
molecular tumbling, and since the rotation of a molecule modu-
lates all intramolecular interactions at the same time, the fluctuations
of these interactions are correlated. Such cross-correlation effects
are well-documented in solution NMR.1–8 Cross-correlation gives
rise to differential line broadening and line narrowing and differ-
ences in the longitudinal relaxation behavior of individual multiplet
components.1–4,6,8 Cross-correlation effects have been used to esti-
mate the relative orientations of nuclear spin interaction tensors,
allowing the estimation of molecular torsional angles.9–11 A partic-
ularly important set of cross-correlation effects is associated with
the so-called TROSY techniques (transverse relaxation-optimized
spectroscopy), which have important applications, especially in
biomolecular NMR.12,13

Cross-correlation often takes place between the fluctuations
of internuclear dipole–dipole (DD) couplings and chemical shift
anisotropy (CSA) interactions. Such DD-CSA cross-correlation
effects are well-known for heteronuclear spin pairs and under-
pin important techniques, such as TROSY.4,12,13 In this paper we
demonstrate strong DD-CSA cross-correlation effects in the solu-
tion NMR of a system containing homonuclear pairs of 13C nuclei,
at the limit of near-magneticequivalence, implying that the chemical
shift difference between the coupled nuclear sites is much smaller
than the internuclear J-coupling.

The system of interest is the 13C2-labelled triyne deriva-
tive referred to here as I, which has the following systematic
name: 1-methoxy-4-((4-methoxymethoxy)phenyl)hexa-1,3,5-triyn-
1-yl)benzene. Its molecular structure is shown in Fig. 1(a). Each
molecule of I has a rod-like shape, with two 13C labels at the central
pair of carbon atoms, in the center of the triyne moiety. The two end
groups are different, endowing the two 13C nuclei with slightly dif-
ferent chemical shifts (Δδ = 0.16 ppm). Since the 13C–13C J-coupling
is large (JCC = 214.15 Hz), the 13C pair is in the near-equivalent
regime at all accessible magnetic fields.14

The 13C NMR spectrum of a 0.3M solution of I in CDCl3 is
shown in Fig. 2. This corresponds to the expected AB four-peak
structure, although the two outer peaks are too weak to be observed.
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FIG. 1. (a) The molecular structure of I, with 13C labeled sites depicted by black
circles. (b) The rank-2 part of the 13C–13C dipole–dipole coupling tensor, repre-
sented by an ovaloid.21,22 (c) The calculated 13C CSA tensors of the 13C labels,
represented by ovaloids. (d) The inertia tensor of the molecule, represented as an
ovaloid, superimposed on the molecular structure. The gray atoms are C, the red
atoms O, and white H. The graphics were generated in SpinDynamica.23

The two strong central peaks are only partially resolved, and form a
strongly asymmetric line shape, as shown by the inset in Fig. 2. As
discussed below, the asymmetry of the central peak pair is due to
strong DD-CSA cross-correlation effects.

An analysis of cross-correlated relaxation in I must take into
account its rod-like shape, which causes strongly anisotropic rota-
tional diffusion in solution. The theory of nuclear spin relaxation
has been developed in the context of model-free treatments of
biomolecules with anisotropic internal motions.15–20 However, most
existing treatments of cross-correlated relaxation in small molecules
assume approximately isotropic rotational diffusion, which is clearly
not applicable here. In the following sections, we develop the
theory of cross-correlated relaxation in systems with anisotropic
rotational diffusion. We provide analytical formulae for the NMR
spectrum of a near-equivalent homonuclear spin pair undergoing
cross-correlated relaxation in the presence of anisotropic rotational
diffusion. The observed spectral asymmetry is reproduced with good
agreement between theory, experiment, and numerical simulations.

II. EXPERIMENTAL
A. Sample

The synthesis of I is described in the supplementary material.
19 mg of I was made up to a 200 μl 0.3 M solution in CDCl3. Five
freeze-thaw degassing cycles were performed on the solution.

B. NMR
The experiments were performed on a 400 MHz (9.4 T) Bruker

Avance Neo spectrometer. The pulse sequence was a simple 90○

FIG. 2. 13C spectra of a 0.3M solution of I in CDCl3, at a magnetic field of 9.4 T.
(a) Overview of the 13C spectrum. (b) Black line: Expanded view of the central
doublet, showing the strongly asymmetric linewidths of the doublet components.
Dark blue line: Numerical SpinDynamica simulation,23 using the theory given in
the text and parameters in Table I. Green line: Superposition of two Lorentzians
with amplitudes, frequencies, and linewidths specified by Table V and Eq. (53).

pulse-acquire. The 13C nutation frequency was 6.68 kHz and 1 scan
was performed. The NMR signal was sampled with 131 k data points
with a spectral width of 81.46 ppm.

C. Computational chemistry
Geometry optimization and simulation of the magnetic shield-

ing tensors of I were performed at the B3LYP/aug-cc-PVTZ24–26

level of theory in the Gaussian 09 suite of programs.27 After
geometry optimization, the dipole–dipole coupling tensor between
the two 13C nuclei was calculated from the internuclear distance.
The parameters obtained from the computations are presented in
Table I.
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TABLE I. Spin system parameters for I in solution.

Parameter Value Note

Jjk 214.15 Hz Experimentala

Δδiso 0.16 ppm Experimentalb

bjk/(2π) −4152.84 Hz Estimatedc

{αjk
PD,βjk

PD, γjk
PD} {0,−2.5, 0}○ Frames obtained by

diagonalizing calculated tensors
δCSA

j −145.7 ppm Calculated
ηj 0.020 Calculated
{αj

PD,βj
PD, γj

PD} {0,−2.6, 0}○ Frames obtained by
diagonalizing calculated tensors

δCSA
k −145.4 ppm Calculated
ηk 0.023 Calculated
{αk

PD,βk
PD, γk

PD} {0,−2.6, 0}○ Frames obtained by
diagonalizing calculated tensors

τ� 136.5 ps Estimated from the parameters
in this table and experimental T1

aObtained from a 90○ pulse-acquire spectrum on a 700 MHz spectrometer (see the
supplementary material).
bEstimated from the 13C spectrum of natural abundance material.
cEstimated from the internuclear distance, rjk = 122 pm.

III. THEORY
A. Anisotropic rotational diffusion

To analyze the relaxation behavior of this system, I is approx-
imated as a rigid molecule undergoing anisotropic rotational diffu-
sion in solution and is presented in the vein of Huntress.28,29 We
treat the molecule as a rod-shaped symmetric top, corresponding
to a strongly anisotropic inertia tensor depicted by the ovaloid21,22

shown in Fig. 1(d), with a rotational diffusion tensor coincident with
the inertia tensor.

The ovaloid representation of the inertia tensor, shown in
Fig. 1(d), has the form of a dimpled disk, or a doughnut with an
incomplete hole. This shape may be interpreted as follows: Take
a vector starting from the molecular center of mass and pointing
in any direction. The vector intersects the ovaloid surface at some
point. The distance from the center of mass to the intersection point
is proportional to the moment of inertia for a rotation around that
vector. Rotations around an axis, which is perpendicular to the long
axis of the molecule, are associated with a large moment of inertia,
so that the surface is relatively far from the center of mass. A rotation
around the long axis, on the other hand, has a small moment of iner-
tia, so that the surface is close to the origin in that direction. Hence,
the ovaloid has the appearance of a dimpled disk, with dimples along
the long axis of the molecule.

The principal axis system of the rotational diffusion tensor is
denoted D and is depicted in Fig. 3. A laboratory reference frame
L may be defined such that its z-axis is aligned with the exter-
nal magnetic field (see Fig. 3). The relative orientation of the D
and L frames may be described by using the Euler angle triplet
ΩDL = {αDL,βDL, γDL}. In this article, the z-y-z convention for
Euler angles is used throughout.30 Due to the molecular tum-
bling, these Euler angles are in general stochastic functions of time,

FIG. 3. Relevant frame transformations illustrated using the DD-tensor as an exam-
ple. On the left, the coordinate system is the molecule-fixed P-frame of the DD
interaction, with the z-axis parallel to the internuclear vector. The set of anglesΩjk

PD
orientate the P- and D-frames. The molecule-fixed D-frame is given by the principal
axis frame of the inertia tensor with its z-axis parallel to the molecular long axis.
The laboratory frame L is defined such that its z-axis is parallel to the applied
magnetic field. The angles ΩDL(t) orient the D- and L-frames with respect to
each other. These angles are time-dependent since the L-frame is space-fixed and
stochastic molecular tumbling continuously alters the orientation of the D- and L-
frames with respect to one another. The angles parameterizing the transformation
between the P- and L-frames will be time-dependent for the same reason.

ΩDL = ΩDL(t), since the D-frame is molecule-fixed while the
L-frame is space-fixed.

The stochastic time-dependence of the Euler angles ΩDL may
be expressed in terms of the time-correlation functions of the rank-l
Wigner D-matrices,

Gll′
mm′nn′(t0, τ) = D(l )mn (ΩDL(t0))D(l

′)∗

m′n′ (ΩDL(t0 + τ))

=∬ dΩDL(t0) dΩDL(t0 + τ)

× D(l)mn(ΩDL(t0))D(l
′
)∗

m′n′ (ΩDL(t0 + τ))
× P(ΩDL(t0))P(ΩDL(t0 + τ)∣ΩDL(t0)), (1)

where P(ΩDL(t0)) = (8π2
)
−1 is the probability density that the

molecule hosting the spin system will be at orientation ΩDL(t0) at
time t = t0, and P(ΩDL(t0 + τ)∣ΩDL(t0)) is the conditional proba-
bility that the molecule will be at orientation ΩDL(t0 + τ) at time
t = t0 + τ, given that it was at orientationΩDL(t0) at time t = t0. If the
stochastic process is assumed to be stationary, these probabilities are
independent of t0, allowing the arbitrary choice of time origin t0 = 0.
The expression for the conditional probability is given by Favro,31

and is

P(ΩDL(τ)∣ΩDL(0)) =∑
ν
ψ∗ν (0)ψν(τ)e

−Eντ , (2)

where ψν(t) are eigenfunctions of the operator Hrot diff = L ⋅D ⋅ L,
with corresponding eigenvalues Eν, where L and D are the angular
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momentum vector and the diffusion tensor, respectively. For a
symmetric top, we may write

Hrot diff = D�(L2
x + L2

y) +D∥L
2
z , (3)

where D� and D∥ are rotational diffusion constants associated with
axes perpendicular and parallel, respectively, with the molecular
long axis. Note that Eq. (3) is written in the D-frame.

Equation (3) is of the same form as the rigid-rotor Hamiltonian
for a symmetric top. As such, the eigenfunctions and eigenvalues in
Eq. (2) are those of a quantum mechanical rigid-rotor,32,33

ψν(t)→ ϕJ
K,M(t) ≡ (−1)M−K

√
2J + 1

8π2 D(J)−M−K(Ω(t)), (4)

Eν → EJ
K ≡ D�J(J + 1) + K2

(D∥ −D�). (5)

For our specific system, we will see that J ≡ l = 2 and K = 0. The only
non-vanishing term in the correlation function is then E(2)0 = 6D�,
and related to the rotational correlation time τ� ≡ (6D�)−1. Rota-
tional motion around the molecular long axis does not modulate
the interactions responsible for relaxation. This is a consequence
of the coincidence of the P- and D-frames. The secularized
time-correlation function becomes

Gl
mnn′(τ) = Gll′

mm′nn′(0, τ) = δll′δmm′
(−1)n+n′

2l + 1
e−τ/τ�. (6)

B. Coherent Hamiltonian
The coherent spin Hamiltonian describes those spin interac-

tions, which are the same for all members of the spin ensemble at a
given point in time. For a homonuclear spin-1/2 pair in solution, it
may be written in the rotating frame of the Zeeman interaction as

Hcoh =
1
2
ωΣ(I1z + I2z) +

1
2
ωΔ(I1z − I2z) + ωJI1 ⋅ I2, (7)

with

ωΣ = ω1 + ω2,
ωΔ = ω1 − ω2,
ωJ = 2πJ12,

(8)

where J12 is the isotropic part of the spin–spin coupling tensor, and
ωj is the precession frequency of spin Ij,

ωj = ω0(1 + δiso
j ) − ωrf. (9)

Here, ω0 is the Larmor frequency of the isotope, δiso
j is the isotropic

chemical shift for the jth spin, and ωrf is the radio frequency carrier
frequency.

The Hamiltonian may be diagonalized by using the perturbed
singlet–triplet basis, B′ST, defined as

B′ST = {∣S
′
0⟩, ∣T

′
+1⟩, ∣T

′
0⟩, ∣T

′
−1⟩}, (10)

with elements

∣S′0⟩ = cos
θ
2
∣S0⟩ − sin

θ
2
∣T0⟩,

∣T′+1⟩ = ∣T+1⟩,

∣T′0⟩ = sin
θ
2
∣S0⟩ + cos

θ
2
∣T0⟩,

∣T′−1⟩ = ∣T−1⟩,

(11)

where the singlet and triplet states are given by

∣S0⟩ =
1
√

2
(∣αβ⟩ − ∣βα⟩),

∣T+1⟩ = ∣αα⟩,

∣T0⟩ =
1
√

2
(∣αβ⟩ + ∣βα⟩),

∣T−1⟩ = ∣ββ⟩,

(12)

and θ is the singlet-triplet mixing angle, defined by

tan θ = ωΔ/ωJ. (13)

The eigenvalues of Hcoh are

ωS′0 = −
1
4
(ωJ + 2ωe),

ωT′
+1
= +

1
4
(ωJ + 2ωΣ),

ωT′0 = −
1
4
(ωJ − 2ωe),

ωT′
−1
= +

1
4
(ωJ − 2ωΣ),

(14)

where

ω2
e = ω

2
Δ + ω

2
J . (15)

These eigenvalues are used in Sec. III F to analyze the signal,
allowing the assignment of coherence-peak correspondence.

C. Fluctuating Hamiltonian
The fluctuating Hamiltonian is a sum of contributions from

the anisotropic spin interactions. These interactions differ between
ensemble members at a given point in time due to the ran-
dom molecular tumbling. The current analysis is restricted to the
intra-pair dipole–dipole (DD) and chemical shift anisotropy (CSA)
interactions,

Hfluc = HDD +HCSA, (16)

as well as the cross-correlation between the two mechanisms.
The spin Hamiltonian for interactionΛmay be written in terms

of irreducible spherical tensor operators as34

HΛ(t) = cΛ
+2

∑
l=0

+l

∑
m=−l

AΛ∗
lm (t)XΛ

lm, (17)

where cΛ is an interaction-dependent constant, AΛ
lm(t) are time-

dependent components of a spatial spherical tensor, and XΛ
lm are

components of a spin or spin-field spherical tensor.
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Spatial spherical tensors may be transformed between arbitrary
reference frames F and G by using the Wigner matrices and the Euler
angles relating the two frames,

[AΛ
lm]

G
=

+l

∑
m′=−l

[AΛ
lm′]

F
D(l)m′m(ΩFG). (18)

This process may be repeated for a chain of any number of refer-
ence frames. Figure 3 depicts the transformations from the prin-
cipal axis frame of a spin interaction to the laboratory frame.
The laboratory-frame spatial components acquire a stochastic time-
dependence through the motional modulation of the Euler angles
ΩDL(t), representing the rotational diffusion of the molecules in
solution.

1. Direct dipole–dipole coupling
In the case of the dipole–dipole interaction between spins Ij

and Ik (Λ = jk), the tensor components Xjk
2m are equal to the rank-2

spherical tensor spin operators,

Xjk
2m = Tjk

2m, (19)

as given in the laboratory frame in Table II. Assuming a rigid
molecular geometry, the interaction constant for the dipole–dipole
coupling is given by

cjk = bjk = −(
μ0

4π
)h̵γjγkr−3

jk , (20)

where rjk is the internuclear distance. In the current case, the
13C–13C internuclear distance of rjk = 122 pm corresponds to a
direct dipole–dipole coupling of bjk/(2π) = −4152.84 Hz.

The principal axis system Pjk of the dipole–dipole coupling
tensor is aligned such that its z-axis is along the 13C–13C internu-
clear vector (see Fig. 3). In general, the relative orientation of the
dipole–dipole principal axis system, and the molecular diffusion ten-
sor is defined by an Euler angle triplet Ωjk

PD = {α
jk
PD,β jk

PD, γ jk
PD}, as

shown in Fig. 3. In the current case, the rod-like geometry of the
molecule causes near-coincidence of the principal axis systems of
the 13C–13C dipole–dipole coupling and that of the inertia tensor, so
that the angle βjk

PD is very small.

TABLE II. Irreducible spherical spin and spin-field tensor components for l = 2 in the
L-frame.37

Interaction, Λ m [XΛ
2m]

L

DD, spins Ij and Ik 0 1
2
√

6
(4IjzIkz − I−j I+k − I+j I−k )

±1 ∓ 1
2(I
±
j Ikz + IjzI±k )

±2 1
2(I
±
j I±k )

CSA, spin Ij 0
√

2
3 B0Ijz

±1 ∓ 1
2 B0I±j

±2 0

The rank-2 spherical tensor representing the spatial part of
the dipole–dipole interaction has the following components in its
principal axis frame:

[Ajk
2m]

P
=
√

6 δm0, (21)

where δab is the Kronecker-delta.

2. Chemical-shift anisotropy
In the case of the chemical shift anisotropy of spin Ij (Λ = j),

spin-field tensors Xj
lm of ranks l = 1 and l = 2 are formed by cou-

pling the rank-1 spherical tensor spin operators Tj
1m with the rank-1

spherical components of the external magnetic field,8

Xj
lm = ∑

m′ ,m′′
Cl11

mm′m′′T
j
1m′B1m′′ , (22)

where Cl11
mm′m′′ are Clebsch–Gordon coefficients.35 Explicit expres-

sions for the case l = 2 are given in the laboratory frame in
Table II.

The magnetic shielding tensors are given in the supplementary
material. From these, the Haeberlen convention36 is used to define
the anisotropy and biaxiality parameters, respectively, as

δCSA
= δP

zz − δ
iso (23)

and

η =
δP

xx − δP
yy

δCSA , (24)

with tensor components defined by

∣δP
zz − δ

iso
∣ ≥ ∣δP

xx − δ
iso
∣ ≥ ∣δP

yy − δ
iso
∣. (25)

The values of these parameters are given in Table I.

D. Relaxation superoperator
The semi-classical relaxation superoperator takes the form

Γ̂(t) = −∫
0

−∞
dτ ˆ̃Hfluc(0) ˆ̃Hfluc(τ), (26)

where ˆ̃Hfluc(t) is the fluctuating Hamiltonian commutation super-
operator in the interaction representation of the Zeeman Hamilto-
nian, defined by the transformation

ˆ̃Hfluc(t) = exp(iĤZt)Ĥfluc(t) exp(−iĤZt), (27)

and the overbar denotes an ensemble average.
To describe the relaxation effects giving rise to the asymmet-

ric line shapes in Fig. 2, the interaction constants and irreducible
spherical spin and spatial tensor components in Table III are used.
By Eq. (16), the relaxation superoperator may be written as a sum
over auto- and cross-correlated mechanisms as

Γ̂ = ∑
Λ,Λ′

Γ̂ΛΛ
′

= Γ̂DD
+ Γ̂CSA

+ Γ̂DD×CSA. (28)
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TABLE III. Irreducible spherical spatial tensor components for l = 2, p = 0 in their
principal axis frame.37

Interaction, Λ cΛ [AΛ
20]

P

DD, spins Ij and Ik bjk
√

6
CSA, spin Ij −γj

√
3
2δ

CSA
j

Using Eq. (17), the relaxation superoperator for rank-l interactions
Λ and Λ′ becomes

Γ̂ΛΛ
′

l = −cΛcΛ
′

∑
m

JΛΛ
′

lm (ω0)[X̂ Λ
lm]

L
[X̂ Λ′†

lm ]
L
, (29)

with spectral density functions given in our case by

JΛΛ
′

lm (ω0) = [AΛ∗
ln ]

D
[AΛ′

ln′]
D
∫

0

−∞
dτ Gll′

mm′ nn′e
−im′ω0 ∣τ∣

=∑
nn′

(−1)n+n′

2l + 1
[AΛ∗

ln ]
D
[AΛ′

ln′]
D τ�

1 +m2ω2
0τ2
�

, (30)

where [AΛ
ln]

D
are nth-components of lth-rank irreducible spherical

tensors in the diffusion frame, and τ� is the rotation correlation time
about an axis perpendicular to the molecular long axis. The compo-
nents [AΛ

ln]
D

are known in the P-frame and may be expressed in the
D-frame using the transformation in Eq. (18).

E. Liouvillian
The evolution of the spin ensemble is described by the

Liouville–von Neumann equation, which may be expressed as

d
dt
∣ρ(t)) = ℒ̂ (t) ∣ρ(t)), (31)

where ∣ρ(t)) is the ensemble-averaged density operator, and ℒ̂ is
the Liouvillian itself given by

ℒ̂ (t) = −iĤcoh(t) + Γ̂(t), (32)

where Ĥcoh(t) is the coherent Hamiltonian commutation superop-
erator defined by

Ĥcoh(t) ∣Q) = [Hcoh(t), Q]. (33)

If the Hilbert space of the spin system has dimension NH,
then the corresponding operator (Liouville) space has dimension
NL = N2

H. It follows that the Liouvillian has a set of NL eigenvalues
and eigenoperators,

ℒ̂ ∣Qq) = Λq ∣Qq), q ∈ {0, 1, . . . , NL − 1}, (34)

with

Λq = −λq + iωq, (35)

where λq and ωq are both real. In the case where ωq ≠ 0, the eigenop-
erators correspond to quantum coherences (QC), which decay with a
rate constant λq and oscillate at a frequency ωq. Eigenoperators with
real eigenvalues (ω = 0) represent a particular configuration of spin
state populations with decay rate constant λq.

F. NMR spectrum
1. Signal

The signal may be written in terms of the eigenvalues of
Eq. (35) as38

s(t) =∑
q

aqeΛqt , (36)

with aq being the peak amplitude given by

aq = (Qobs∣Qq)(Qq∣Ûexc∣ρeq), (37)

where Ûexc is the total propagator for the excitation sequence and
∣ρeq) is the thermal equilibrium density operator. In quadrature
detection, ∣Qobs) ≈ −

1
2 ieiϕrec ∣I−) with ϕrec being the receiver phase.

Since the experiment here is a 90○ pulse-acquire, we make the
approximation

Ûexc ∣ρeq) = R̂x(π/2)Iz = −Iy, (38)

ignoring constant numerical factors.
Non-vanishing peak amplitudes are associated with (−1)-

quantum eigenoperators ∣Qq), as defined by the eigenequation

Îz ∣Qq) = − ∣Qq), (39)

where Îz is the commutation superoperator of the angular momen-
tum operator Iz .

In the absence of relaxation, these observable operators are the
(−1)-quantum eigenoperators of the commutation superoperator
Ĥcoh and are given by elements of the basis,

BQ = { ∣∣S′0⟩ ⟨T
′
+1∣), ∣∣T

′
−1⟩ ⟨S

′
0∣), ∣∣T

′
0⟩ ⟨T

′
+1∣), ∣∣T

′
−1⟩ ⟨T

′
0∣)}, (40)

which is a subset of the 16-element basis of all outer products of
elements in B′ST.

In the absence of relaxation, the Liouvillian eigenvalues are
purely imaginary and are given by Λq = +iωq, where ωq are the peak
frequencies. These are given, in general, by

ωq = −(ωr − ωs), (41)

with r, s ∈ {S′0, T′+1, T′0, T′−1}, as given in Table IV.
The two eigenoperators corresponding to (−1)-quantum

coherences between the perturbed triplet states are particularly
important in the current context since these coherences give rise to
the two components of the spectral doublet shown in Fig. 2, as can

TABLE IV. Coherence eigenoperators of Ĥcoh along with the associated eigenfre-
quencies and peak amplitudes.

∣Qq ) ωq aq

∣∣S′0 ⟩ ⟨T
′
+1∣)

1
2(ωΣ + ωJ + ωe)

1
2 sin2 θ

2
∣∣T′−1 ⟩ ⟨S

′
0∣)

1
2(ωΣ − ωJ − ωe)

1
2 sin2 θ

2
∣∣T′0 ⟩ ⟨T

′
+1∣)

1
2(ωΣ + ωJ − ωe)

1
2 cos2 θ

2
∣∣T′−1 ⟩ ⟨T

′
0∣)

1
2(ωΣ − ωJ + ωe)

1
2 cos2 θ

2
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be seen from their amplitudes in Table IV. These two eigenoperators
are denoted as follows:

Q+ = ∣∣T′0⟩ ⟨T
′
+1∣),

Q− = ∣∣T′−1⟩ ⟨T
′
0∣).

(42)

The corresponding Liouvillian eigenvalues are as follows:

Λ± = −λ± + iω±. (43)

In general, the superoperators Ĥcoh and Γ̂ do not commute.
The presence of the relaxation superoperator Γ̂ may therefore mod-
ify both the eigenvalues and the eigenoperators of the Liouvillian ℒ̂ .
Indeed, the modification of the peak frequencies by relaxation effects
has been documented in the literature in a different context.39 In the
current case, the eigenvalues of the (−1)-quantum eigenoperators
are only slightly modified by the relaxation superoperator. This is
because the off-diagonal elements of the (−1)-quantum Liouvillian
block are much smaller than the corresponding eigenvalue differ-
ences, as discussed in the supplementary material. Hence, in the
following discussion, we assume that the (−1)-quantum eigenoper-
ators of the full Liouvillian, including relaxation, are given to a good
approximation by the operators in Eq. (40).

The correspondence between the two triplet–triplet coherences
and the NMR spectrum is depicted in Fig. 4.

2. Frequencies
The coherence frequencies are given by the imaginary parts of

the Liouvillian eigenvalues. As shown in the supplementary material,

FIG. 4. The correspondence between the single-quantum triplet–triplet coherences
(wiggly lines) and the NMR spectrum. The coherence represented by the operator
Q+ is associated with the narrow peak, while the coherence represented by Q− is
associated with the broad peak.

the off-diagonal parts of the (−1)-quantum Liouvillian block may
be ignored. With this approximation, the coherence frequencies are
as specified in Table IV. The frequencies of the two triplet–triplet
coherences are given by

ω± =
1
2
(ωΣ ± ωJ ∓ ωe). (44)

The splitting between the two inner peaks is given by

Δω = ω− − ω+ = ωe − ωJ ≃
ω2
Δ

2ωJ
, (45)

where the approximation applies to the near-equivalence regime.

3. Linewidths
Since the off-diagonal elements of Γ̂ are small in the basis BQ,

relative to the corresponding differences in the diagonal elements,
the real parts of the Liouvillian eigenvalues are given by

Re(Λq) ≃
(Qq∣Γ̂∣Qq)

(Qq∣Qq)
, (46)

where the Liouville bracket is defined by40

(Qq∣Qq′) = Tr{Q†
qQq′}. (47)

The real positive quantities λq = −Re(Λq)may be interpreted as the
coherence decay rate constants for the eigenoperators ∣Qq ). After
Fourier transformation of the NMR spectrum, the peak associated
with the eigenoperator ∣Qq ) has amplitude aq, center frequency ωq,
and has a Lorentzian shape with half-width-at-half-height equal to
λq, in units of rad s−1. Its full-width-at-half-height is given by λq/π
in units of Hz.

The relaxation superoperator Γ̂ may be written as a sum
of auto-correlation terms for the DD and CSA interactions and a
DD × CSA cross-correlation term [Eq. (28)]. The coherence decay
rate constants λq may therefore be written as a superposition of
terms

λq = λDD
q + λ

CSA
q + λDD×CSA

q . (48)

The computed CSA biaxiality parameters η are very small for both
13C sites of system I (see Table I). Making the approximation that
ηj ≃ ηk ≃ 0, all components of the spatial tensor associated with the

CSA interaction vanish except for [ACSA
20 ]

P
=
√

3/2 δCSA, and the
transformation in Eq. (18) reduces to

[ACSA
2n ]

D
= [ACSA

20 ]
P
D(2)0n (Ω

j
PD)

= [ACSA
20 ]

P
, (49)

where the last line is obtained by noting that the P- and D-frames are
coincident, and all Euler angles may be set to zero.

For the two triplet–triplet coherences, each term in Eq. (48) is
given by

λDD
± =

3
20

b2
jkτ�(3 +

3
1 + ω2

0τ2
�

+
2

1 + 4ω2
0τ2
�

), (50)
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λCSA
± =

1
20
ω2

0τ�{([δ
CSA
j ]

2
+ [δCSA

k ]
2
)

5 + 2ω2
0τ2
�

1 + ω2
0τ2
�

+ δCSA
j δCSA

k
3

1 + ω2
0τ2
�

}, (51)

and

λDD×CSA
± = ±

3
20
ω0bjkτ�(δ

CSA
j + δCSA

k )
3 + 2ω2

0τ2
�

1 + ω2
0τ2
�

. (52)

Equations (50)–(52) depend on the correlation time τ� for
molecular rotation around an axis perpendicular to the long axis of
the molecule. Rotational diffusion around the molecular long axis
does not modulate the spin interactions, under the approximation
of a rigid symmetric top undergoing rotational diffusion, and does
not lead to spin relaxation.

In the current case, the chemical shift anisotropies of the
two spins are very similar, allowing the simplification δCSA

≃ δCSA
j

≃ δCSA
k .

The limiting regimes of the correlation time τ� are as follows:

1. In the extreme narrowing limit, ∣ω0τ�∣≪ 1, Eq. (48) may be
written as

λ± ≃
3

10
(4bjk ± 3ω0δCSA

)bjkτ� + λ
CSA, (53)

where the CSA-induced decay rate constant λCSA is given by

λCSA
≃

13
20
ω2

0[δ
CSA
]

2
τ�. (54)

The field-dependence of the two rate constants λ± is illustrated
in Fig. 5(a). The decay rate constant λ+ is minimized at a mag-
netic field such that ∣4bjk∣ = ∣3ω0δCSA

∣, in which case the first
term in Eq. (53) cancels out. At this field, the dipole–dipole
contribution to the decay rate constant vanishes, and λ+
becomes equal to the limiting CSA relaxation rate constant
λCSA [Eq. (54)]. The decay rate constant λ+, on the other hand,
increases monotonically with increasing magnetic field.

2. In the long correlation time limit, ∣ω0τ�∣≫ 1, Eq. (48) may be
written as

λ± ≃
1

20
(3bjk ± 2ω0δCSA

)
2
τ�. (55)

The field-dependence of the two rate constants λ± is illustrated
in Fig. 5(b). In this regime, the linewidth parameter λ+ goes to
zero at a magnetic field such that ∣3bjk∣ = ∣2ω0δCSA

∣. The strong
narrowing of one of the two doublet components resembles
the TROSY effects exploited in biomolecular NMR.12,13

IV. RESULTS
Using Eq. (37), the peak amplitudes associated with the (−1)-

quantum singlet-triplet coherences are given by∝ sin2
(θ/2), while

those associated with the (−1)-quantum triplet–triplet coherences
are given by ∝ cos2

(θ/2). In the current case, the singlet-triplet

FIG. 5. Plots of the linewidth parameters λ± against external static field for the
parameters in Table I. (a) The extreme-narrowing limit, based on Eq. (53), showing
the minimum λ+ = 8.47 × 10−2 s−1 at B0 = 1.84 T. (b) The long-τ� limit, with
a minimum λ+ = 0 at B0 = 4.0 T. The DD and CSA mechanisms cancel in the
long-τ� limit at this magnetic field. The cancellation is incomplete at the extreme-
narrowing limit.

mixing angle is small (θ = −0.0750 = −4.30○), and the amplitudes
are

aS′0→T′
+1
= aT′

−1→S′0 ≃ 0.686 × 10−3,

aT′0→T′
+1
= aT′

−1→T′0 ≃ 0.499,
(56)

with the sum of all amplitudes equal to 1. The spectrum is there-
fore dominated by the strong peaks from the two triplet–triplet
coherences.

From Eqs. (15) and (44), the frequency ω+ is less than ω−.
This indicates that the left peak of the doublet is associated with
the Q+ coherence, while the right-hand peak is associated with the
Q− coherence, after taking into account the sign of the Larmor fre-
quency.41 This assignment is shown in Fig. 4. The split between the
peaks is given by Δω/(2π) = 0.60 Hz.

From Eqs. (50)–(52), since bjk, ω0, δCSA
j and δCSA

k are all neg-
ative, we see that the cross-correlation contributions reduce the
value of λ+ while increasing the value of λ−. For the experimen-
tal parameters, the coherence decay rate constants are given by
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TABLE V. Parameters used to plot the analytical spectral function in Fig. 2.

Parameter Value Note

λ+ 0.583 s−1 Equation (53)
λ− 1.19 s−1 Equation (53)
a± 0.499 Equation (37)
ω± ∓1.90 rad s−1 Equation (44)

λ+ ≃ 0.583 s−1 and λ− ≃ 1.190 s−1. These correspond to full peak-
widths at half-height of 0.186 and 0.379 Hz for the left-hand and
right-hand doublet components, respectively.

The green curve in Fig. 2 is a plot of the analytical spectral
function

S(ω) = a+
λ+

λ2
+ + (ω − ω+)

2 + a−
λ−

λ2
− + (ω − ω−)

2 , (57)

using the parameters in Table V. There is good agreement with the
experimental 13C NMR spectrum (black).

The blue curve in Fig. 2 shows the result of a numerical calcu-
lation using SpinDynamica23 in which the full Liouvillian is diago-
nalized. There is good qualitative agreement between the numerical
simulations, the analytical theory, and the experimental result. The
minor differences between the SpinDynamica simulation and the
analytical theory may be attributed to the neglect of the off-diagonal
Liouvillian elements in the analytical theory [see discussion after
Eq. (43)].

V. CONCLUSIONS
The results and theory reported here show that cross-correlated

relaxation can have a strong effect on the NMR spectra of homonu-
clear spin-1/2 pairs in the near-equivalence regime. This has strong
relevance to NMR experiments on long-lived states, which are often
performed on spin systems of this kind.42–45

In the following paper, we explore the influence of cross-
correlated relaxation on the longitudinal relaxation of spin systems
of this kind, including the relaxation of long-lived states.

SUPPLEMENTARY MATERIAL

See the supplementary material for the 700 MHz spectrum, the
derivation of the relaxation superoperator in more detail, and the
synthesis details of I.
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