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ABSTRACT A critical challenge in image restoration is the presence of various types of noise. Meanwhile,
noise detection is a crucial step in mixed noise removal. This paper tackles the challenge of restoring images
corrupted by a mixture of additive Gaussian and multiplicative Gamma noise. In the proposed method,
we integrate the noise detection process into a variational model using a dual formulation of a maximum
a posteriori (MAP) estimator. The variational model consists of a novel adaptive fidelity term and a plugin-
and-play regularization term. The fidelity term contains an adaptive weight that can automatically detect
the noise types, levels, and pollution ways for each pixel. There is flexibility in choosing a plugin-and-play
regularization term. For example, we can use a model-based regularizer or a deep learning-based regularizer.
In addition, we present a splitting algorithm to minimize the proposed cost functional. This splitting
technique enables us to transfer a mixed noise removing problem to several subproblems, including noise
removal and detection. The noise detection process can be iteratively estimated by the proposed algorithm
itself. Therefore, in the numerical experiments, the proposed model outperforms the existing Rudin-Osher-
Fatemi (ROF), Aubert-Aujol (AA), BM3D, and deep learning-based single type denoiser. Experimental
results show that the proposed model can remove noise more efficiently and better preserve details in images.
Compared to the existing best-performing single type denoiser, on average, the improvements of PSNR

values range from 0.33 dB to 0.81 dB under noise mixture ratios o = 0.4, 0.6.

INDEX TERMS Image denoising, mixed noise, regularization, deep learning, dual algorithm.

I. INTRODUCTION

Image denoising is an important research topic in image
processing. Its task is to remove as much noise as possible
while preserving the original images information. Image
denoising is challenging because noise removal is an ill-posed
inverse problem. Over the years, image denoising has been
widely applied in medical images [1], [2], synthetic aperture
radar images [3], [4], and remote sensing images [5], [6].
In the literature, according to different ways of noise
pollution, two noise models, the additive [7]-[13] and
the multiplicative [14]-[17] models have been extensively
studied.
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The additive noise (AN) model is formulated as
f=u+n, (h

where f,u,n: 2 — R are mappings from the domain
of the images to the intensities of the observed image,
original image, and additive noise, respectively. Common
additive noise includes white Gaussian noise, uniform noise,
and impulse noise. Many methods have been developed to
remove additive noise, including variational-based methods
[71-[9], boosting techniques for variational-based methods
[10]-[13], wavelet-based methods [18], nonparametric esti-
mation [19], chronological techniques [20], [21], nonlocal
methods [22]-[24], and deep learning-based algorithms
[25]-[27], to name a few. Amongst these methods, a promi-
nent variational model is the Rudin-Osher-Fatemi (ROF) [7]
model. It is worth noticing that there are many adaptive
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approaches. Thanh et al. [10] proposed an adaptive method
based on the high-order total variation. A fast and adaptive
regularization was proposed in [11]. More related methods
can refer to [12], [13]. He er al. [18] proposed an auto-
matical estimation of the noise levels based on maximum a
posterior (MAP) estimation and wavelet generic Gaussian.
Khmag et al. combined the clustered batches of noisy images
and hidden Markov models (HMMs) to remove AWGN
in [20]. Furthermore, they proposed an adaptive denoising
framework based on second-generation wavelet domain
using hidden Markov models (SGWD-HMMs) in [21].
BM3D [22] is a well-known nonlocal method and can obtain
a good performance to restore images corrupted by the
additive Gaussian noise. Recently, CNN deep learning-based
method (e.g. [27]) was designed to remove AWGN, and could
significantly improve the quality of the reconstructed images.
The multiplicative noise (MN) model is formulated as

f=uv, @

where v : © — R denotes multiplicative noise, which
follows some standard distribution such as Poisson [28], [29],
Gamma [14], and Nakagami distributions [30]. The Aubert-
Aujol (AA) variational model [14] is well-known for the case
where v follows a Gamma distribution. The AA model is
conditionally convex. Although the existence of a minimizer
can be proven by the variational method [14], many convex
optimization algorithms can not be applicable to the AA
model due to its non-convexity. Therefore, many studies have
focused on the construct of a convex model. For example,
using the exponential transformation through replacing u by
e", Huang et al. [31] and Jin et al. [32] converted the AA
model to a convex variational model. Moreover, Jin et al. [32]
provided some theoretical analysis. Ullah et al. derived a
new data term under the assumption that the noise followed
Nakagami distribution instead of Gamma distribution in [30].
Huang et al. [33] applied higher-order curvature variation
to a convex model, which was superior to others in image
edge and corner preserving. More variational models for
multiplicative noise removal can refer to TABLE 1. in [33].
However, in reality, the noise type is not necessarily
either additive or multiplicative. Rather, it can be a mixture
of the same type [34]-[37] or a mixture of these two
types [38]-[43]. Tackling these mixture models is even
more challenging, and the methods mentioned above can-
not straightforwardly solve this problem. Recently, several
methods have emerged for this purpose. For a mixture of
additive noise (MoAN), new approaches were for reducing
a mixture of Gaussian-Gaussian noise [34], [35], and a
mixture of Gaussian-impulse noise [35]-[37]. Especially,
Wang et al. [35] proposed an adaptive algorithm named
EM-CNN based on CNN deep learning-based algorithm. The
algorithm in [35] combined the previous fidelity term [34]
and CNN deep learning-based algorithm [27], where the
fidelity term identifies the two different additive noise. It can
achieve a desirable quality of the reconstructional images. For
a mixture of additive and multiplicative noise (MoAMN), the
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model is usually formulated as
f=u+kon+ kiuv, 3)

where kg, k1 are fixed constants, n, v are components of
additive noise and multiplicative noise, respectively. Several
methods have been developed to deal with a mixture
of Poisson-Gaussian noise [38]-[40], to name a few.
Thanh et al. [40] proposed a model based on total variation
and applied a linear combination of log-likelihood functions
of Poisson and Gaussian distributions through manual
settings. For the removal of mixed Gaussian-Gamma noise,
some works have also been raised. Chumchob er al. [41]
proposed a variational model based on total variation (TV)
and a linear combination of the fidelity terms in [7] and [32].
In their model, the parameter that balances the fidelity terms
of the additive and multiplicative noise contributions was
chosen empirically. Ullah et al. [42] proposed a new model
with a linear combination of fractional-order total variational
(FOTV), FoE image prior, and the data fidelity term in [7].
The parameters that balance the above three terms were
also chosen empirically. As a result, the performance of
these two variational models depended strongly on manual
intervention. A similar method is in [43]. There are other
recent reports on mixed Gaussian and Gamma noise removal
techniques in [44]-[46].

This paper is devoted to restoring images that are corrupted
by a mixture of additive Gaussian and multiplicative Gamma
noise. The proposed approach provides a unified framework
for a mixture of additive and multiplicative noise (MoAMN).
The first challenge is the automatic detection of the
noise type, level, and pollution way at each pixel. This
paper provides a unified variational model with statistical
parameters to discriminate against the distribution and noise
level. Operator splitting is adopted to tackle this problem.
The corresponding algorithm includes several iterative steps:
noise removal, parameter estimation for noise type and level,
and denoising adjustment.

The contribution of this paper is threefold:

o This paper proposes a unified variational method
to remove MoAMN. The weighting function in the
proposed model is adaptive because it can be iteratively
determined by the cost function itself. Additionally, the
weighting function in our model plays the role of a
detector for types and levels of noise. Moreover, this
paper provides different interpretations of the weighting
function with the EM and soft-max from statistics and
convex optimization, respectively.

o The existence of a minimizer and the convergence of the
algorithm are proved under some mild conditions.

o The proposed model can integrate TV, BM3D, and
DCNN regularizers into its corresponding algorithm.
Significantly, the proposed method with DCNN reg-
ularization combines the variational models and deep
learning using the plugin-and-play method. The idea of
the algorithm in this paper can be described as follows.
The mixed noise removal problem is decomposed
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into three steps: noise detection, noise removal, and
image synthesis. The noise removal can be solved
by the deep learning method (CNN regularization),
and the noise detection and image synthesis are solved
by the variational method.

Organization of the Paper: The related works are reviewed
in Section 2. Section 3 provides a process of deriving
the proposed model, including mathematical assumptions,
fidelity construction, and theoretical analysis. An algorithm
is designed for the proposed method using splitting methods
in Section 4. Section 5 presents some convergence analyses
of the proposed algorithm. In Section 6, we present the
numerical results. Section 7 shows the conclusion.

Il. RELATED WORK

A. METHODS OF REMOVING ADDITIVE NOISE (AN)

In image processing, there are some classical methods to
remove additive noise (AN), such as ROF [7], BM3D [22],
DCNN [27] and their variants. They all focused on removing
additive Gaussian noise. Rudin et al. [7] proposed the ROF
model

min {/ |Duldx + A / o — u)zdx} , 4
u Q 2 Q

where fQ |Du|dx is the total variation of u, and A > O is a
fixed parameter. The drawback of the ROF model is that it
will create some artifacts. BM3D [22] is a nonlocal method
that combines wavelet shrinkage and inter-patch correlation.
However, the BM3D method may over-smooth the patches
that do not have self-similarity properties in the image.
Other nonlocal methods can refer to [23], [24]. To improve
the quality of the reconstructed images, Zhang et al. [27]
proposed the IRCNN algorithm that could deal with the
model

1 N
min {a@) = YW -G —w . ©
i=1

where x;, y; are N noisy-clean patch pairs. For space reasons,
other methods to remove AWGN are no longer described
here.

B. METHODS OF REMOVING MULTIPLICATIVE NOISE
(MN)

AA model [14] is a well-known variational method to remove
multiplicative Gamma noise. The mathematical expression is

min{/ <logu +Ji>dx+)»/ |Du|dx}, (6)
u Q u Q

where A > 0 is a fixed parameter. To convert the AA model
to be convex, Huang et al. [31] proposed the following model

min {/ (u + fe "“)dx + )L/ |Du|dx} ) @)
u Q Q

Jin et al. [32] provided some theoretical analyses about
the model (7). Under the hypothesis of Nakagami noise,
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Ullah et al. [30] changed the data term and proposed a new
model as

min{ﬂ / Qu+ f2e 2 dx
u 2 Q
+a—2/(62”—2f2u)dx+/ |Du|dx}. ®)
2 Jo Q

For page limitation, many other variational methods are
omitted here, and one can refer to TABLE 1. in [33].

C. METHODS OF REMOVING A MIXTURE OF ADDITIVE
NOISE

Wang et al. [35] proposed a model (EM-CNN) to remove a
mixture of additive noise (MoAN), which can achieve better
performance than the other existing methods like weighted
K-SVD [34] and so on. The model combined the EM method
and the IRCNN algorithm. The general model can be written
as

min max {HW,O,w)+ < u,v—u >
u,v,®,weS 1

+gl|u — I3+ 1J ) + AzTV(u)}, ©)

K
where S = (w00 < wi(x) < 1Y wi(x) = 1,Vx €

k=1
Q}; p is Lagrange multiplier; and 7 is a penalty parameter.

Then they applied the alternating minimization scheme to get
iterative formulas. Especially, the iterative formula of u is a
problem of removing AWGN. They chose the IRCNN [27]
to update u". In addition, the expression of H for the mixture
Gaussian model can be expressed as

o — f(x))?
H(w, ©,w) = - > %wk(x)

xeQ k=1
K 1 K
2
_ ZZwk(x)lnrk + 3 Z Zwk Inoy
xeQ k=1 xeQ k=1
K
+ )0 w0 Inwg(x), (10)
xeQ k=1

where u(x), f (x) are clean and noisy images, respectively.

D. METHODS OF REMOVING A MIXTURE OF ADDITIVE
AND MULTIPLICATIVE NOISE

Chumchob et al. [41] proposed a variational model to remove
mixed additive Gaussian and multiplicative Gamma noise.
Their mathematical model is

. o] 2
Duld — — d
i [ ipax+ %5 [ g upan
b / <u+fe—")dx}, (11)
Q

where o, ao > 0 are two parameters used to balance
the fidelity terms of additive and multiplicative noise. These
parameters are often chosen empirically. Ullah et al. [42]
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TABLE 1. Comparison of image denoising methods using different techniques.

Method Main Methodology Noise Highlight Limitation
ROF[7] MLE and TV regularizer AN SmO(.)thing pixels inside imag?s while keeping Creat‘ing water?olor-like artifa({ts; The fidelity
the difference between edge pixels term is only suitable for removing AN
BM3D [22] Wavelet shrinkage and AN Keeping internal images prior while removing Over-smoothing the patches that do not have
inter-patch correlation as much noise as possible self-similarity property in images
IRCNN [27] CNN deep learning AN Lc?amir%;‘g e.xternal Aimages prior by using CNN; O‘ver—Asmoothing some pixels for other kinds
High efficiency with GPU of noise
AA[14] MAP and TV regularizer MN A new fidelity f:or MN; Keeping the difference Creat‘in“g watercolor-like aft?facts; The fidelity
between edge pixels term is just for MN; Conditionally convex
HMW [31] Replacing u by " on AA MN Convex and theoretical guarantees Creating artifacts; Only suitable for MN
Detecting th: ise t f MoAN adaptive- The fidelity t ly for detecting th is
EM-CNN [35] EM algorithm and IRCNN regularizer MoAN etec 1ng énOlQe yge o o‘ adaptive e fidelity term on y or detecting the noise
ly; Learning images prior by using CNN type of MoAN adaptively
CCB [41] Combination of ROF [?J and MoAMN A new variational model for MOAMN instead Creating watercolorjlike artif'acts; Depending
HMW [31]; TV regularizer of AN and MN strongly on manual intervention
Fractional order total variation (FOTV); Removing much more noise while keeping Depending strongly on the manual interven-
UCKS [42] FoE-image prior; A combination of MoAMN more images prior; Removing MoAMN tion; Three parameters need to be set manu-
fidelity terms for AN and MN instead of AN and MN ally.

proposed another variational model. The model is expressed
as

N
min {E(u) - / [Vuldx + 1) Oip(ki x u)
u Q

i=1

+ﬂ/(f—u)2dx+%/ logu+1 ) dx
2 Q 2 Q u

+2 / W — 2% log u)dx}, (12)
2 Ja
Set u = €". (12) can be written as
N
min {E(w) = / Ve |dx + 11 Y Oip(ki * ")
i=1
—i—ﬂ f (f — e")dx + ® / (w + fe™")dx
2 Ja 2 Ja
+8 f (@ — 2f2w)dx}, (13)
2 Ja

where i, o, o1, a2, oz > 0 are parameters.

In order to see the comparison of methods more intuitively,
TABLE 1 summarizes the main methods mentioned above.

In the above models, the parameters that balance the
fidelity terms are fixed. Therefore, these models cannot
detect the noise type and level. Thus, an inadequate prior
to the mixed noise would subvert the very foundation of
the models such that they are not able to produce desirable
reconstructions. To improve this situation, we propose an
adaptive MoAMN denoiser in the next section.

lll. THE PROPOSED METHOD

According to the literature survey, the existing variational-
based works on MoAMN removal depend strongly on manual
intervention. To automatically update noise parameters, an
adaptive variational model with selectable regularization is
derived for restoring images corrupted by a mixture of
additive Gaussian and multiplicative Gamma noise in this
section. The adaptivity is accomplished by the weights in the
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fidelity term, which is derived by adopting a dual formulation
of the MAP estimation. The regularization term can be chosen
among TV, BM3D, and IRCNN regularizations.

A. THE NOISE MODEL
There are some assumptions in the following:

A1 The images are corrupted by mixed Gaussian-Gamma
noise with a ratio of «. In particular, the additive noise n
follows Gaussian distribution with mean 0 and variance o 2.
The multiplicative noise v follows Gamma distribution with
mean 1 and shape parameter L. The parameters ;, o2, and L
are unknown.

A2 The noise is the realization of a random variable.

A3 The original clean image follows a Gibbs prior
distribution.

Throughout the paper, %, .4, ¥, % denote the random
variable of the pixels in the clean image, additive noise,
multiplicative noise, and the observed image, respectively.
Meanwhile, denote u, n, v, f as the corresponding samples
of these random variables. P4 (x) and p g (x) denote the
cumulative distribution and probability density functions of
random variable Z°, respectively.

Let A be the event that the noise is additive and its
complement A be the event that the noise is multiplicative.
The unknown mixture ratio « = P(A). Then, the forward
problem in our model is represented as

7 wU+ N when e.Vent A occurs, (14)
wUYV otherwise.

For a better understanding, FIGURE 1 shows three noisy
images corrupted by additive Gaussian noise, multiplicative
Gamma noise and mixed Gaussian-Gamma noise, separately.
It is unknown for any pixel how likely the clean image is to
be corrupted by an additive noise or a multiplicative noise.
In other words, « is unknown.
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(a) Clean (b) Noisy (AG)

(d) Noisy (MoAMN)

(C) Noisy (MG)

FIGURE 1. From left to right: (a). Clean image, (b). Noisy images with additive Gaussian (AG), (c). Multiplicative Gamma
noise (MG) and (d). A mixture of these two kinds of noise (MVoAMN).

By assumption Al, the probability density function of
additive noise ./ at each pixel is

a2

e 22, s5)

1
pi(n) =
V2mo?
and the probability density function of multiplicative noise ¥
at each pixel is

LE |
P(v) = —F e 0. (16)

I'(L)
Here T is the well-known I' function parameterized by L.
According to A3, the probability density function of the latent
image u is

1
par () = ;e*y"““), (17)

where T is the normalized parameter and ¢ is a given
potential function. This Gibbs prior is widely used to model
natural images, for example, in [14].

B. THE PROPOSED FIDELITY
In this subsection, an adaptive fidelity term is proposed
to detect noise types and levels automatically for the
mixed Gaussian-Gamma noise. There are two propositions
regarding the probability density function of the additive and
multiplicative noise in the MAP.

Proposition 3.1 (additive Noise): Assume F = U + N
in which % and .4 are mutually independent. Let p;(n) be
the probability density function of .#"; then,

=pi(f —w. (18)

Proposition 3.2 (multiplicative Noise, [14]): Assume
F = 9V in which % and ¥ are mutually independent. Let
p2(v) be the probability density function of #; then,

pa (flw)

1
prw(flu) = —p2 (2) (19)

Let m, n be the row and column numbers of a clean image,
respectively. The total number of pixels is denoted by N =
m x n. The original image ¥ = (ug, u1,...,uny—1) and
the observed image f = (fo, f2,...,fv—1) are realizations
of the random variables = (%, %, ..., %y—1) and
F = (%y, F1, ..., FN_1), respectively. The corresponding
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inverse problem is to maximize P(% |,9 ) for a given f in
terms of the MAP.

By the Bayes’ law and logarithm operation, the MAP can
be converted to the following maximization problem

max InP(F|%)+InP%). (20)

Because the noise values of the pixels are assumed to be
mutually independent, we obtain

N—-1
PF %) = || P(Filu) @1)
i=0
Furthermore, the prior is
P) =[] P (22)
ceC

where C is the numbers of clicks in the graph representation
of the prior. By plugging (21) and (22) into (20), the
problem (20) is equal to the following minimization problem

N-—1
mm [ Z IHP%%(leuz) - Z Inpe (uc)} (23)

ceC

where ® = (o, 02, L) is a parameter vector of the distri-
bution for noise. According to the law of total probability
and Propositions 3.1 and 3.2, the problem (23) can be

rewritten as
N—1

Y In [Olpl(fi — u;)

i=0
L= a)ps ( ) |- lnPU(uc)} 24)
ceC

Note that its first term is an In-sum term, which is difficult to
handle in the minimization problem. Next, we will expand it
by employing the following result reported in [47], which is
equivalent to the EM algorithm.

Proposition 3.3 [47]: Given a positive matrix with
elements §;; > 0, then

e
mig| . ©)

2

_;ln;cﬁu_wnenArL{ ;Z wij Ing;;

N—1

||M|\)

wij In wij}, (25)
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where AT = W0 < wy; < L,>wy; = L,Vi =

0,1, — 1}

By settmg 5it = api(fi — u) and 82 = (1 — @) Lps (
in Proposition 3.3, the problem (24) can be converted to the
following form

fi

N-1

> [w,-l In (ap1(fi — up))

i=0

cvain(a ot (1))

N-1 2
+ZZWUIHWIJ ZIHPU(MC)} (26)

i=0 j=1 ceC

min +{J(u,®,w) = —

u,0,weA

Plug the probability density functions (15), (16) and (17) into
the above formula. For ease of notation, denote w;; = w; and
wip = 1 —wj; = 1 — w;. With some simplifications, the
minimization problem can be written as

N-1
min {j(u, O,w) = Z [M

u,® weAt P 202

Lf;
A= (Linu 45 )]

1
4 Z wl< In(27) + —lno - lna)

N—1
+ 2(1 — wi)[ln I'(L) — (L — 1)Inf;
i=0
N—1
—In(l — ) — LlnL] + 3 twilnw,
i=0

(1 —wln(l —w)] = Y yqb(uc)}. 27)
ceC

It should be noted that there are some differences between
the discrete model (27) in this paper and that in [35], which
is recalled in part C of Section II. The fidelity terms in (27)
and the formula (10) in [35] are different. The reason for
the difference is that the mathematical problems are totally
different. Specifically, the types of mixed noise in this paper
are addition and multiplication, while those in [26] are only
addition. Furthermore, the differences of those two models
also make the corresponding algorithms different, shown in
the next section.

The continuous version of the functional J in the
problem (27) can be written as

_ 2
T, ©. w) = f W(X)(I‘(JZC)2 u(x)) dx
Q o
+f <Llnu( y+ U ))(1—w<x))dx
Q u(x)

( 1n(27r)+ ! Ino? —lna)/ w(x)dx
Q
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+/ (lnF(L) —In(l —a)—LInL

Q

—(L—1)In f(x))(l — w(x))dx

+/(1 — w(x)) In(1 — w(x))dx
Q

+/ w(x) lnw(x)dx—}—y/ d(u(x))dx (28)
Q Q

Therefore, the proposed model for removing the mixture of
additive and multiplicative noise (MoOAMN) can be written as

i 5®5 ) 29
e, S ey 70 &) @

where K = {® = (0,02, 1)[0 < « < 1,0 < o'r%zin =
02,0<LminfLfLmax}sWZ{W:Q_)RwSW(x)S

1,Vx € @}, and X is a function space.

C. SOFT-MAX INTERPRETATION OF THE PROPOSED
FIDELITY
Note that the weight w in the cost of the problem (27) can
adaptively detect the noise type and level according to the
noise parameters ®. This section is devoted to interpreting
the weight w from the viewpoint of convex optimization.
Although 7 is not convex with respect to (u, ®,w), it is
convex with respect to the single variable # or w. We show
that this non-convex problem can be derived by a dual
method of convex functions. There are some definitions and
propositions.

Definition 3.1 (Soft-Max): Given a vectory = (y1,y2, ..
yum), for all € > 0, the soft-max operator is defined by

M .
max.(y) := ¢ln Ze?/. (30)

j=1
It is easy to check that hm maXx.(y) = max{y}.

Proposition 3.4: Let F e (y) max,(y). Then for any fixed
e > 0, F¢(y) is convex with respect to y.

The proof of Proposition 3.4 is deferred to Subsection S1
in the submitted supplementary material.

Definition 3.2 (Fenchel-Legendre Transformation): F* is
the Fenchel-Legendre transformation of F', defined by

F*(w) := m;lx{< y,w> —F(y)} (31)

Proposition 3.5: [48] A function F : RM — R U {+o0}
is convex and lower semi-continuous if and only if F = F**.

Proposition 3.6: For any fixed ¢ > 0, if F} is the
Fenchel-Legendre transformation of the soft-max function
Fe, then

Fiw) = max{<y,w > —F¢(y)}
y
SZlenwj, we AT,

J=1
+00, else.

(32)
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where AT = (w = (wi,wa,....,wy) : 0 < wj <
1, %wj = 1}, and thus
j=1
M
Fe(y) = F**O,)—mix <wy>—sjzlw,lnwj ,

(33)

where F}* is the Fenchel-Legendre transformation of F;.
The proof of Proposition 3.6 is deferred to Subsection S2
in the submitted supplementary material.
The problem (26) can be derived from (24) by applying
the Proposition 3.6. Set M = 2,y = y; i1, yi2)

with yit = e In(@pi(f; — w). v = eln[(1 =) Lpa(d)],
then

N-1 2 N-1
i
24 i — T = i
@4 & min) =) In) et — > Inpuw)
i=0 j=I i=0
(33) =
¢ %{—Zogwﬂzz:{ <we>
2
—SZwUlnw,]} Zlﬂpu(uz)}
j=1
N-T
@m'n{ — min [— w;,V;
u,}a ZO 3 wielA"' =wi¥i=
2 N-1
+e > wy 1nw,-j} -y lnpU(u,-)} & (26).
j=1 i=0

In this procedure, the weight w is a dual variable that can
be used to classify noise.

D. REGULARIZATION

There are many choices for the regularization term ¢(u). For
example, we can use p-norm (p > 1), p-pseudo-norm (0 <
p < 1) or 0 pseudo-norm [49] of the gradient of u, i.e. p(u) =
fQ |Vu(x)|Pdx. To preserve textures, one may set ¢(u) as
detail-preserving [50] regularization or image patches-based
nonlocal operators such as nonlocal TV [23], BM3D [22], and
low rank [24]. Moreover, to use the nonlinear prior in nature
images, CNN-based methods [27] may be integrated. This
can be done by considering the variational of ¢ with respect
to u as a nonlinear convolution neural network. In this paper,
we will use TV [7], BM3D [22], and CNN [27] regulariza-
tions for comparison. For the model-based regularizers such
as TV and BM3D, we will prove the existence of a minimizer
for the proposed model. For the data-driving regularizer such
as CNN, we present some numerical results to demonstrate its
performance.

E. EXISTENCE OF A MINIMIZER
In this section, we prove the existence of a minimizer of (28)
by setting ¢(u) = TV (u). In this case, X is the well-known
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BV space. Without loss of generality, let y = 1. Denote X =
{u e BV(Q2) | u(x) > 0 for any x € Q}.

Theorem 3.1: Assume that f € L*®°(Q) and 0 <
infof, supgf < 400, then there exists a minimizer of the
problem (29) in = {(#,®, w) |lu € X, 0 € K,w € W}.

We defer the proof of the theorem to Subsection S3 in the
submitted supplementary material.

In conclusion, there are three points to highlight in the
proposed model. Firstly, we propose a new adaptive fidelity
term to detect the noise types and levels automatically.
Secondly, compared with TV and FOTV regularizations
in [41]-[43], the proposed model with DCNN regularization
can take advantage of the CNN deep learning algorithm to
eminently learn images prior. That is, the adaptive fidelity
term and the DCNN regularization work together to remove
as much noise as possible while retaining much images’ prior
information. Thirdly, we prove the existence of a minimizer
in Theorem 3.1.

A block diagram in FIGURE 2 is shown in advance to
demonstrate the main structure of the proposed model clearly.
The related algorithm is introduced in the next section for
more details.

IV. RELATED ALGORITHM

This section presents an algorithm for the variational
model (29) using the splitting technique. The discretization
schemes for the variational terms are standard. For inte-
gration, we use the rectangular formula. For the derivative
that appeared in the TV regularization, we use a central
difference scheme. For better representation, set a =

{ag,a1,...,an—1}, b = {bo,b1,....,bn_1}, ¢ =
{co,c1, ..., cn—1} be vectors in RV . Denote
N-1 - N—1
2 2 2 2
lall = Z jail. lal3 = Y lail. lal3, = ) cilail®,
=0 i=0

<a, b>—2ab

Using these notations, (29) can be rewritten as

min J(u, ©, w), 34
u, O, w

where
J(u,®,w)

= ﬁﬂu —f||2’w +L<lnu + l:’ 1 —W>

1 1
+ (— Ina + Elna2 + Eln(Zn)) <1l,w>
+[—In(l —@) —LInL+InTL)] <1,1—w>
—(L-1D<Inf,1—-w>+<w,lnw >
+ <1—w,In(1 —w) > +1d).
The above problem can be decomposed into three subprob-

lems according to the alternating minimization algorithm.
Denote v =0, 1, ... as an iteration step.
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> ) —
w? Denoiser
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FIGURE 2. Block diagram of the proposed model, where v is the iteration step. The final

calculated image & outputs until convergence.

Subproblem 1:

w7 = argmin J(u, ®', w")
u
. 1 )
= argmin {m”u =5
LY <lnu S w“> + Mﬁ(u)}. (35)
u
Subproblem 2:

®v+1
= arg rrgn Jw't, e,w)

. 1 v+1 2 1
= argmin{ — ||lu’™" — v+ L <Inuw’t
g U {202 I FlIz

f v 1 2 1
+m, 1—-w'>+| —Ina + Elno + 51n(271)
<1,w>+[-In(l —a)—LInL +1InT(L)]
<1,1—w”>—(L—1)<lnf,1—w”>}. (36)
Subproblem 3:
WU—H

= arg n}gn T’ et w)

= argmin It —£113,,

{ 1
W 2(62)v+1

v+1 v+1 f
—L <lnu + uV+1’w>

+ (— Ina’t! + %111(02)”“ + %1n(27r)> <l,w>
+[n(1 — "t + L’ In L —InD@th)
<1lw>+CL"T— 1) <Inf,w>
+ <w,Inw>+ <1—-—w,In(l1 —w) > }
(37)

Note that for giving w”, ®", Subproblem 1 is for updating
the clean image u'*!. Under this circumstance, it can be
regarded as a MoAMN denoiser. By employing the aug-
mented Lagrange method, Subproblem 1 can be transformed
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into the following problem

min

1 2 v f v
b {2(0—2)‘)||d —f||2’wv + L <lnd+ d,l w >

+A¢(u)} st u=d.
The corresponding augmented Lagrange function is

Lo, d:p) = ld —£113

1
2(02)1)
+LY <lnd +J‘;, 1 —w">
+rpu)+ <p,u—d >

r 2
+35 llu —d|3, (38)

where p is a Lagrange multiplier and r > 0 is a penalty
parameter. By the ALM algorithm, problem (38) can be
solved by the following inner iterative scheme

@+, d“l“) =argmin L,(u,d; p*'),
u,d 39)
pv1+1 =pv1 + .L,(uv1+1 —dv1+]).

where T > 01is a constant, and v = 0,1,2--- is an inner
iteration number. By applying ADMM, (39) can be calculated
by the following iterative scheme

uitl = argnhinﬁr(u,d”;pvl),
d"t! = arg n}jin L@t d;p'), (40)
pUHl = pt @t g,
For u"*1,
Wit = argﬂ}}n [M&(u)—i— <p" u>
+5lu—d" 3] @
By simple calculation, (41) can be rewritten as
W =argmin (g + Slu—g" 3}, @)

V1
where g'' =d"! — P—. Note that this is a Gaussian denoiser

so that we can appfy one of ROF [7], BM3D [22], and
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IRCNN [27] algorithms in the proposed method. For d"1+!,

4" = arg ngn{ Id —F13,0

1
2(02)1)
+LY <lnd +§, 1—- w”>

+<pu—d> +%||u—d||§}. (43)

We only need to solve a cubic equation

o LENER (LL) (1=w")—p" +r(d—u"*1)=0.
(02"

d d?
(44)
That is,

w' 3 (W v w41\ 42
<(02)v+rl>d <(02)U +p" + ru” )d
FLY(1 —w'd — L'(1 —w")f =0. (45)

Once there is a converged u”'*! with the inner iteration
scheme (40), we set u’+! = u"1*! to get the solution to the
u-subproblem.

Updating w¥+!, @+! depends on the fidelity term, which
is mainly derived by the dual method. So the process of
updating w”+!, @"*! can be called a dual process.

Now, for Subproblem 2, by using the first-order optimiza-
tion condition of & and o2, the closed-form solutions for «
and o2 can be easily obtained as:

't = ﬂ (46)
e
”uv—H _ ”2 ,
et = W Il @7)
<1l,w >

Generally, it is difficult to calculate the exact parameter L
in the I" distribution. However, Subproblem 2 only requires
an estimation of the parameter in the I" distribution by given
w". Thus, we can derive L"! by employing the parameter
estimation method for the I distribution [51].

v+l _ . v+1 f Y
L _argmLm{L<lnu +uv+1,1 w >

+(nT"(L) —LInL) <1,1 —w’ >
—(L -1 <Inf,1—w"> }

By the first-order optimization condition of L, the above
problem can be converted to

uu—i—l f )
<1H f —I—F,I—W >

+P (L) —IL—1) <1,1-w' >=0,

d
where Y (L) := L InI"(L). This equation can be rewritten as
InL —y(L)=M",
where
uv+1 f

MY <ln f + uv+1
o <1,1—w’>

—1,1—w“>
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According to [51], [52], we can approximate L *! as follows

3— M+ /(MY —3)2 +24M"
12Mv
which is within 1.5% confidence.
Subproblem 3 also has a closed-form solution

v+1)

Lv+1 ~

, (48)

1
vhl a'Tpi(v

- ()l”+1p1(v”+1) + - av+1)(uv+l)—1p2(vv+l)’
49)

w

where

U+1) —

(uv+1 _f)2
e w )

1
/27 (o 2+ exp (_ 2o 2yrFl

JRax! LVt epvtl g v+l
vy L WO Xp( f)_

F(L”+1) (uv+l)Lv+1 - uv+1

Above all, the proposed algorithm consists of a MoAMN
denoiser and a dual process that can update noise parameters
and weights with iteration steps. So the proposed method can
be named an adaptive MoAMN denoiser.

Finally, we summarize the proposed method and present it
as Algorithm 1 below. A flowchart of Algorithm 1 is shown
in FIGURE 3.

p2(v

Algorithm 1 An Adaptive MoAMN Denoiser

1: Set initial values. Given u® = f, 0. Calculate
w? through (49). Set v = 0.

2: Denoising step. Update u”*! by calculating the iteration
formulation (40) until convergence. This inner iteration
mainly includes three sub-steps:

a. Smoothness: Gaussian denoiser (42), which is chosen
directly among ROF [7], BM3D [22], and IRCNN [27].

b. Synthesis: choosing suitable fidelity by (44) based on the
updated noise parameters and weight. The parameter r is set
appropriately to adjust the level of correction of u.

c. Balance: Updating p'*! to balance u and d by
comp- uting the second formulation of (39) with 7 =
r. 3: Parameters estimation. Update a**!, (¢2)"+!, L"*1 by
calculating (46), (47), (48).

4: Noise classification. Update noise detection function w"*!
by calculating (49).

v+l_uv||2

5: Convergence checking. If 1% T

return to step 2.

< ¢, stop; Else,

V. CONVERGENCE ANALYSIS
In this section, we show that Algorithm 1 is an energy
descent. Moreover, the inner iteration of the u—subproblem
can converge to the minimizer of the subproblem (35).
Recalling the derivation of the proposed model in
Section III, we use a dual formulation of the MAP estimation
to derive the problem (24). Due to the existence of the In-
sum term, we use Proposition 3.3 to obtain the problem (26).
Then, the problem of the minimization of  is replaced by the
problem of optimizing 7. We have the following property of
H and 7.

168877



IEEE Access

C. Zhao et al.: Dual Model for Restoring Images Corrupted by Mixture of Additive and Multiplicative Noise

e e e — e ————

Smoothness

Synthesis

____________________

FIGURE 3. Flowchart of the proposed MoAMN denoising algorithm.

Theorem 5.1 [34]: The functionals H and J have the
same global minimizer with respect to (u*, 6*).

Theorem 5.2 (Energy Descent): The sequence (u",0")
generated by the Algorithm 1 satisfies

H@', 0" < Hw', 6"). (50)

Proof: The proof can be followed as Theorem 1 in [34].

The two following theorems are discussed under setting
¢(u) = TV (u) and u in the discrete BV space.

Theorem 5.3: In each v-th outer inner, i.e., for fixed
(¥, L',w’" € AT, A > 0, r > 0. Assume f >
0, Ifllcc < oo . Let u* be the minimizer of the
problem (35). 0 < u < 2f, VO < t© < 2r; then,
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l Gaussian Denoiser

Noise Estimation

the sequence u"! generated by the iteration scheme (39)

converges to u*,i.e., lim u"' =u*.
V] —>1+00

Proof: The prooflcal—: be followed as Theorem 1 in [53].
Theorem 5.4: Assume that (02)”, L', w', A, r, f,u", u
satisfies the same conditions as Theorem 5.3, and let T = r;
then, the sequence u"! generated by the iteration scheme (40)

converges to u*,i.e., lim u"' =u*.
V1 —+00

Proof: The proof can be followed as Theorem 2 in [53].

VI. NUMERICAL RESULTS

In this section, we present the performance of the proposed
model on the test images corrupted by a mixture of additive
Gaussian and multiplicative Gamma noise. Algorithm 1 with
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IRCNN regularization adopts a trained and plugin-and-play
Gaussian denoiser in [27]. The training set is the same as [27]
that includes 400 BSD images, 400 selected images from
the validation set of the ImageNet dataset and 4744 images
of Waterloo Exploration Dataset. Algorithm 1 is tested on
a dataset that contains 10 test images: Cameraman (256 x
256), House (256 x 256), Peppers (256 x 256), Monarch
(256 x 256), Lena (256 x 256), Man (512 x 512), Barbara
(512 x 512), Couple (512 x 512), Boat (512 x 512), and
Hill (512 x 512). Furthermore, it is also tested on two colour
images: House(256 x 256x3), Lena(512 x 512x3), and
three real medical images. The experiments are run on a
computer with Inter(R) Core(TM) i7-8550U CPUs @ 1.8GHz
(8 CPUs), 2.0GHz. The code is written by MATLAB and
available on https://github.com/CuicuiZhao2018/MoAMN.

There are two evaluation indicators, the peak signal to
noise ratio (PSNR) and structural similarity index (SSIM),
to measure the quality of the restored images. The PSNR is
defined by

mn

PSNR(I, u) = 101og, (Zi’,j’(ui’,j’ — Ii’,j’)2)’
where I and u are the original image and restored image,
respectively, and m and n are the row number and column
number of the clean image’s pixels, respectively. A larger
PSNR value indicates a higher quality of the restored images.

SSIM [54] measures the structural similarity between two
images. It is defined as

Qupphy + c1)2opy + ¢2)

SSIM(I, u) = ,
(MIUZ + c)o} + 02+ c2)

G1Y)

where @y, Wy, 612, au2, and o7y, are the mean value of I, the
mean value of u, the variance of /, the variance of u, and
the covariance of I and u, respectively. The small constants
c1, ¢ > 0 make the computation of the SSIM stable.

We compare the results obtained by the proposed method
with those by the existing methods, including the most closely
related ROF [7], AA [14], BM3D [22], and IRCNN [27]
algorithms. In the following experiments, the restored results
are presented under the mixture of additive and multiplicative
noise. The restored results of the proposed model are obtained
using different regularization terms, including TV, BM3D,
and DCNN. In the experiments, the test images are corrupted
with different mixture ratios « € {0,0.2,0.4,0.6,0.8, 1},
different variances o2 = 0.005,0.01 for Gaussian noise
and different shape parameters L € {10, 20, 30} for Gamma
noise.

In order to demonstrate the effectiveness of the proposed
model, there is a clear visualization of the restored images
in FIGURESs 4 and 5. FIGURE 4 shows the restored images
of image Barbara under the true noise parameters o =
0.2, 02 = 0.01, L = 10. In these figures, we zoom in
for a part of the images. Firstly, the restored image by ROF
method misses some details, as shown in FIGURE 4 (c¢).
There are some speckles in the restored image by the AA
method in FIGURE 4 (d). In comparison, the proposed
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method with TV regularization yields a better-restored image
in FIGURE 4 (e), which not only removes noise more
clearly but also remains much more information of the
original image. Secondly, the restored image by the BM3D
method in FIGURE 4 (f) is over-smoothing, but the proposed
method with BM3D regularization in FIGURE 4 (g) retains
more image information. Similar comparisons can be found
between FIGURE 4 (h) and (i) for the IRCNN regularization.
Similar results can be found in FIGURE 5 and more results
(FIGUREs S1, S2, S3) are available as supplementary
material. In short, with the same regularization term, it is
found that the images restored by the proposed model have
better texture details and fewer impurities than the existing
methods. To further show the effectiveness of the proposed
method, FIGURE 6 exhibits intermediate restored images
and the corresponding PSNR values for image Cameraman
under the true noise parameters « = 0.4, 0> = 0.005,
L =10.

One step of the proposed approach is noise parameters
estimation. TABLE 2 shows the estimated values of @ =
(a, o2, L) by the proposed method on image Cameraman.
The true parameters are « =0 : 0.2 : 1, 0 = 0.005, L =
10. There is just a little difference between the estimations
of L and its true values except for « = 1. Because
the proposed model would degrade into a single additive
denoiser when « equals 1, and there is no multiplicative noise
in this case. It is a challenging task to precisely estimate
all the parameters owing to unknown types and pollution
ways of noise. The estimations of o> and « are not very
good. In fact, the restoration performance mainly depends
on the estimation of the weight w. The estimation of noise
parameters can be rough since they are only used for noise
classification.

The classification of noise is a key step of this approach.
Thus, it is crucial to estimate the weight w accurately.
Comparisons of the proposed method under known or
unknown w are done on image Cameraman as shown
in TABLE 3. Due to the page limitation, only parts of
the experimental results are displayed in this table. For
more similar results, please find them in the related table
(TABLE S1) in the supplementary material. FIGURE 7 shows
the PSNR curves for both known and unknown w in TABLE 3
as increasing @ =0 : 0.2 : 1 among the proposed method and
the two existing best performance algorithms under fixed true
parameters o> = 0.005, L = 10. FIGURE 8 shows the similar
PSNR curves when L = 10 : 10 : 30, « = 0.4, o2 = 0.005.
Although the proposed method with unknown w provides
worse results than those with known w, it is still better
than other existing algorithms. This fact indicates that the
proposed method is applicable.

To show the statistical information, the average PSNR
and SSIM values of the total 10 test images are listed in
TABLE 4. It is obvious to see that the numerical comparison
shows that most of the average PSNR and SSIM values
produced by the proposed model are higher than those
of the existing methods with the same regularizers. The
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(a) Clean (b) Noisy, 18.54dB (C) ROF[7],24.20dB (d) AA[14],23.884B (€) MoAMNTY, 24.51dB

(f) BM3D [22], 28.34dB (2) MoAMNBM3D, 28.70dB (h) IRCNN [27],26.91dB (i) MoAMNIRCNN, 28.22dB

FIGURE 4. Denoising results and PSNR values of image Barbara. The true parameters of the noise are « = 0.2, 2 = 0.01, and L = 10.

(f) BM3D [22], 30.09dB (g) MoAMNBM3D, 30.41dB (h) RCNN [27],29.90dB (i) MoAMNIRCNN, 30.54dB

FIGURE 5. Denoising results and PSNR values of image Hill. The true parameters of noise are « = 0.6, 2 = 0.005, and L = 20.

Noisy, 18.00dB v=2,23.59dB v=4,27.53dB v=6,27.57dB v=8, 28.90dB v=10, 28.88dB

FIGURE 6. The intermediate restored images of the v-th iteration steps for image Cameraman by using MOAMNIRCNN. The true parameters of noise
are « = 0.4,02 = 0.005, and L = 10.
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TABLE 2. Estimations of noise parameters o, o2 and L for denoised image Cameraman by the proposed method with TV, BM3D, and IRCNN

regularizations under the true parameters « =0: 0.2 : 1, 2 = 0.005, L = 10.

« o L Proposed Method
Regularizers
1 1 LT ™v BMID T IRCNN
R R & & L

0 0.005 10 0 0 13.76 0 0 11.41 0.66 0.02 10.02
0.2 0.005 10 0.67 0.01 11.00 0.68 0.01 9.37 0.66 0.02 10.13
04  0.005 10 0.80 0.01 8.72 0.68 0.01 11.38 0.67 0.01 12.00
0.6 0.005 10 0.72 0.01 12.97 0.69 0.01 13.41 0.69 0.01 12.66
0.8 0.005 10 0.76  0.0038 16.13 0.77  0.0048 10.64 0.71 0.0044 16.05

1 0.005 10 1 0.0038 14.03 1 0.0042  24.04 1 0.0043 2.7 % 10%°

TABLE 3. Comparison of the PSNR/SSIM values for denoised image Cameraman under different levels by ROF [7], AA [14], BM3D [22], IRCNN [27], and
MoAMN model with setting different initial values of w. (The highest PSNRs and SSIMs are shown in red, and the second-highest PSNRs and SSIMs are

shown in blue).

a o L Existing Methods Proposed Method
Regularizers
TV BM3D IRCNN
1 1 1 ROF[7] AAT[14] BM3D[22] IRCNN [27] . » 3 . ¢
Initial Parameter w Initial Parameter w Initial Parameter w
Unknown Known Unknown Known Unknown Known
0 0005 10 25.00 25.56 26.64 27.08 25.62 25.62 27.46 27.46 27.88 27.70
0.7006 0.7926 0.7628 0.7886 0.8112 0.8112 0.8307 0.8307 0.8303 0.8300
0.2 0.005 10 25.45 25.78 27.29 27.57 26.16 26.21 27.84 28.18 28.29 28.69
0.7115 0.7631 0.7805 0.7959 0.7875 0.8107 0.8225 0.8375 0.8265 0.8429
04 0.005 10 2590 25.93 27.80 28.01 26.51 27.00 28.43 28.74 28.88 28.93
0.7311 0.7466 0.7927 0.8115 0.7629 0.8148 0.8360 0.8531 0.8368 0.8636
0.6 0.005 10 26.53 26.19 28.57 28.71 27.45 27.74 29.02 29.31 29.41 29.68
0.7517 0.7320 0.8160 0.8110 0.8118 0.8213 0.8381 0.8598 0.8425 0.8682
0.8 0.005 10 27.30 26.49 29.42 29.60 28.12 28.42 29.64 29.76 29.81 30.25
0.7612 0.7229 0.8416 0.8388 0.8121 0.8273 0.8635 0.8701 0.8382 0.8770
1 0005 10 2937 27.49 30.99 31.42 29.55 29.55 30.79 30.79 31.37 31.37
0.8254 0.7621 0.8834 0.8947 0.8494 0.8494 0.8720 0.8720 0.8910 0.8910
E2 ——— 315 ———gwa
MoAMNBMS3D (unknown w) MoAMNBMS3D (unknown w)
MoAMNBMS3D (known w) 31F MoAMNBMS3D (known w)
31 = = =IRCNN y ~ ~ ~IRCNN
MoAMNIRCNN (unknown w) . MoAMNIRCNN (unknown w)
MOAMNIRCNN (known w) 30.5 MoAMNIRCNN (known w)
30 -~

PSNR/dB

26 I I I I
0 0.2 0.4 0.6 0.8 1

«

FIGURE 7. PSNR values for denoising image Cameraman in TABLE 3
under the mixture of additive and multiplicative noise with increasing
ratio o = 0: 0.2: 1. The parameters o2 = 0.005, L = 10 are fixed.

best-performing method is the proposed method with IRCNN
regularization. For the case « = 0.4, the biggest average
improvement is about 0.81 dB between the proposed method
and the original IRCNN algorithm, while the smallest is
0.56 dB. For the case of @ = 0.6, the biggest average
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FIGURE 8. PSNR values for denoising image Cameraman in TABLE 3
under the mixture of additive and multiplicative noise with increasing
ratio L = 10: 10: 30. The parameters « = 0.4 and o2 = 0.005 are fixed.

improvement is 0.62 dB while the smallest is 0.33 dB.
To avoid repetition, more clear illustrations of TABLE 4 can
refer to FIGURESs 9, 10, and their analysis in the following
paragraphs.In addition, the comparison of PSNR/SSIM
values for all test grey images are shown in the table and
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TABLE 4. Average PSNR/SSIM values for all 10 test images under different levels for ROF [7], AA [14], BM3D [22], IRCNN [27], and MoAMN models with

different regularizers. (The highest PSNRs are shown in red, and the second-highest PSNRs are shown in blue.

« o L Existing Methods Proposed Method
Regularizers
1 1 1 ROF [7] AA[14] BM3D [22] IRCNN [27] T T TR T T T T BB - RGN T T
0 0.005 10 25.57/0.7542 25.45/0.7834 27.32/0.8213 27.32/0.8124 25.94/0.8027 27.81/0.8503 28.14/0.8573
0.2 0.005 10 26.03/0.7667 25.72/0.7844 27.98/0.8359 27.93/0.8304 26.58/0.8091 28.41/0.8587 28.72/0.8652
0.4 0.005 10 26.49/0.7836 25.97/0.7857 28.55/0.8517 28.48/0.8449 27.05/0.8222 28.92/0.8684 29.29/0.8742
0.6 0.005 10 27.09/0.8025 26.28/0.7928 29.28/0.8691 29.22/0.8614 27.66/0.8369 29.54/0.8809 29.84/0.8834
0.8 0.005 10 27.89/0.8250 26.66/0.7990 30.23/0.8884 30.24/0.8846 28.35/0.8486 30.37/0.8964 30.49/0.8928
1 0.005 10 29.67/0.8745 27.40/0.8239 31.56/0.9147 31.88/0.9187 29.73/0.8798 31.51/0.9131 31.89/0.9184
0 0.005 20 27.10/0.8032 27.42/0.8376 29.05/0.8633 28.93/0.8534 27.71/0.8459 29.56/0.8833 30.04/0.8895
0.2 0.005 20 27.43/0.8104 27.41/0.8305 29.41/0.8712 29.36/0.8618 28.06/0.8459 29.93/0.8880 30.38/0.8957
0.4 0.005 20 27.79/0.8212 27.39/0.8243 29.81/0.8797 29.84/0.8752 28.34/0.8532 30.25/0.8941 30.61/0.8990
0.6 0.005 20 28.25/0.8360 27.39/0.8222 30.34/0.8910 30.49/0.8902 28.71/0.8611 30.59/0.9004 30.94/0.9041
0.8 0.005 20 28.87/0.8529 27.39/0.8210 30.98/0.9025 31.14/0.9030 29.11/0.8689 31.12/0.9077 31.32/0.9101
1 0.005 20 29.68/0.8742 27.41/0.8232 31.56/0.9148 31.88/0.9187 29.73/0.8798 31.51/0.9131 31.89/0.9184
0 0.005 30 28.00/0.8285 28.52/0.8636 29.92/0.8825 29.88/0.8735 28.70/0.8663 30.52/0.8997 30.97/0.9060
0.2 0.005 30 28.25/0.8346 28.26/0.8491 30.16/0.8854 30.21/0.8834 28.87/0.8638 30.73/0.9022 31.11/0.9081
0.4 0.005 30 28.58/0.8427 28.07/0.8399 30.52/0.8919 30.67/0.8929 29.07/0.8679 30.95/0.9061 31.25/0.9090
0.6 0.005 30 28.90/0.8529 27.84/0.8321 30.88/0.8994 31.06/0.9025 29.28/0.8720 31.07/0.9065 31.44/0.9127
0.8 0.005 30 29.24/0.8620 27.62/0.8267 31.22/0.9071 31.50/0.9108 29.47/0.8761 31.30/0.9105 31.55/0.9140
1 0.005 30 29.68/0.8742 27.41/0.8223 31.56/0.9148 31.88/0.9187 29.73/0.8798 31.51/0.9131 31.89/0.9184
0 0.01 10 25.57/0.7543 25.43/0.7836 27.32/0.8219 27.32/0.8124 25.94/0.8027 27.81/0.8503 28.14/0.8573
0.2 0.01 10 25.96/0.7669 25.44/0.7730 27.84/0.8302 27.84/0.8292 26.42/0.7998 28.21/0.8540 28.59/0.8627
0.4 0.01 10 26.33/0.7763 25.38/0.7663 28.31/0.8453 28.33/0.8417 26.73/0.8123 28.45/0.8572 28.89/0.8651
0.6 0.01 10 26.79/0.7932 25.32/0.7608 28.81/0.8578 28.86/0.8557 27.10/0.8205 28.88/0.8672 29.19/0.8718
0.8 0.01 10 27.31/0.8105 25.28/0.7580 29.38/0.8711 29.53/0.8723 27.51/0.8290 29.43/0.8766 29.58/0.8791
1 0.01 10 28.05/0.8345 25.23/0.7605 29.96/0.8852 30.28/0.8916 28.02/0.8385 29.89/0.8831 30.25/0.8903
32 _EAOF - —m%ANNII\INBM?’D ROF MoAMNBM3D

PSNR/dB
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28
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FIGURE 9. Average PSNR values in TABLE 4 under the mixture of additive
and multiplicative noise with increasing ratio « = 0: 0.2 : 1. The
parameters ¢2 = 0.005 and L = 30 are fixed.

figure in the submitted supplementary materials (TABLE S2.
FIGURE S$4).

However, it is worth noticing that there are some excep-
tions in TABLE 3 and 4, such as when « = 0 and o« = 1.
The reason is that the noise becomes a single multiplicative
noise or additive noise in these two cases, and there will be no
improvement for the proposed fidelity term in this scenario.
If we set all elements of the weight w as O or 1, then the
proposed fidelity will be degraded to ROF’s or AA’s, and the
algorithm will produce similar results to those obtained by
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FIGURE 10. Average PSNR values in TABLE 4 under the mixture of
additive and multiplicative noise with increasing ratio L = 10 : 10 : 30.
The parameters « = 0.6, 2 = 0.005 are fixed.

the existing methods. That is to say, to obtain results similar
to those of the existing methods for removing single noise,
it is necessary to choose appropriate initial values and model
parameters.

To more clear visualization of the relationship between the
PSNR values and the parameters, FIGUREs 9 and 10 show
some PSNR curves in TABLE 4. Specifically, FIGURE 9
shows the relationship between the average PSNR values
and the mixed ratio of additive and multiplicative noise
in increasing order as o = 0 0.2 1 and the fixed
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FIGURE 11. Comparison of computational cost for different methods under the true

parameters o« = 0.4, 02 = 0.005, L = 10.

(a) Clean (b) Noisy, 18.17dB

(f) cBM3D [22],33.36dB (g) MoAMNBM3D, 33.61dB

(C) ROF [71,30.14dB

(d) AA[14],28.80dB

(h) IRCNN [27], 32.55dB

(€) MoAMNTYV, 30.52dB

(i) MoAMNIRCNN, 32.79dB

FIGURE 12. Denoising results and PSNR values of color image House(256 x 256 x 3). The true parameters of the noise are « = 0.6, 2 = 0.005, and

L =30.

noise parameters 0?2 = 0.005, L = 30. When ¢ = O,
the difference between the PSNR values obtained by the
proposed model and the ROF model with the same regularizer
reaches maximum magnitude. As the mixed ratio increases,
the difference decreases. When o = 1, the advantage of the
proposed model almost disappears, and the ROF model was
even slightly better than the proposed model. This outcome
is reasonable because the mixed noise becomes a single
additive noise with a Gaussian distribution in this case.
Furthermore, FIGURE 10 shows the relationship between the
average PSNR values and the difference in the two noise
variances under increasing L = 10 : 10 30 while
fixing the mixed ratio « = 0.6 and variance of Gaussian
distribution 62 = 0.05. One can see that as L increases,
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the advantage of the proposed model decreases, indicating
that the difference between the variances in the Gaussian and
Gamma distribution influences the validity of the proposed
model.

According to the numerical experiments, the running
time of the proposed method changes a little as the noise
parameters change except for « = 1 when the proposed
model degrades into a Gaussian denoiser. FIGURE 11 shows
a histogram of running time among the existing ROF, BM3D,
DCNN algorithms, and the proposed method under the true
parameters o = 0.4, o2 = 0.005, L = 10. The histogram
involves two image sizes, 256 x 256 and 512 x 512. The
proposed method is time-consuming compared with other
methods. The reason is that the proposed method needs to
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TABLE 5. Comparison of the PSNR/SSIM values for color image House denoising. (The highest PSNRs are shown in red, and the second-highest PSNRs

are shown in blue).

[eY o2 L Existing Methods Proposed Method (MoAMN)
Regularizers
1 1 1 ROF [7] AA[14] CBM3D [22] IRCNN [27] TTav T T T CBMBD T IRENN T T
0 0.005 10 25.85/0.7340 25.06/0.7255 28.35/0.8018 27.82/0.7933 26.09/0.7208 28.48/0.8166 28.45/0.8185
0.2 0.005 10 26.59/0.7449 25.69/0.7372 29.22/0.8116 28.72/0.8052 26.83/0.7313 29.54/0.8221 29.44/0.8220
0.4 0.005 10 27.42/0.7488 26.36/0.7437 30.20/0.8149 29.70/0.8123 27.62/0.7409 30.76/0.8333 30.51/0.8291
0.6 0.005 10 28.24/0.7499 27.00/0.7459 31.36/0.8240 30.64/0.8161 28.44/0.7528 31.80/0.8401 31.42/0.8353
0.8 0.005 10 29.22/0.7693 27.79/0.7572 32.64/0.8448 31.71/0.8301 29.32/0.7656 32.73/0.8588 32.17/0.8485
1 0.005 10 31.21/0.8189 28.89/0.7758 34.15/0.8762 33.53/0.8640 30.72/0.7793 34.14/0.8713 33.39/0.8616
0 0.005 20 28.01/0.7595 27.60/0.7731 30.95/0.8207 30.23/0.8131 28.18/0.7488 31.37/0.8367 31.04/0.8350
0.2 0.005 20 28.52/0.7667 27.90/0.7746 31.57/0.8246 30.76/0.8137 28.64/0.7571 31.94/0.8440 31.61/0.8412
0.4 0.005 20 28.99/0.7709 28.17/0.7713 32.10/0.8336 31.23/0.8106 29.13/0.7653 32.50/0.8531 32.01/0.8482
0.6 0.005 20 29.58/0.7796 28.43/0.7693 32.73/0.8458 31.90/0.8224 29.89/0.7498 32.94/0.8616 32.37/0.8540
0.8 0.005 20 30.17/0.7895 28.60/0.7615 33.52/0.8594 32.68/0.8457 30.07/0.7818 33.47/0.8660 32.63/0.8575
0.005 20 31.21/0.8189 28.93/0.7988 34.15/0.8762 33.53/0.8640 30.72/0.7793 34.14/0.8713 33.39/0.8616
0 0.005 30 29.06/0.7734 28.92/0.7968 32.11/0.8338 31.20/0.8178 29.21/0.7650 32.54/0.8545 32.07/0.8489
0.2 0.005 30 29.35/0.7841 28.94/0.7914 32.54/0.8369 31.68/0.8243 29.51/0.7724 32.98/0.8577 32.36/0.8521
0.4 0.005 30 29.73/0.7872 28.98/0.7870 32.88/0.8430 32.07/0.8263 29.84/0.7782 33.27/0.8653 32.56/0.8574
0.6 0.005 30 30.14/0.7824 28.80/0.7650 33.36/0.8557 32.55/0.8373 30.52/0.7892 33.61/0.8715 32.79/0.8610
0.8 0.005 30 30.57/0.7996 28.89/0.7776 33.73/0.8644 33.06/0.8523 30.32/0.7857 33.56/0.8680 32.75/0.8578
0.005 30 31.21/0.8189 28.89/0.7758 34.15/0.8762 33.53/0.8640 30.72/0.7793 34.14/0.8713 33.37/0.8627
0 0.01 10 25.85/0.7340 25.06/0.7255 28.35/0.8018 27.82/0.7933 26.09/0.7208 28.48/0.8166 28.45/0.8185
0.2 0.01 10 26.54/0.7307 25.42/0.7307 29.16/0.8098 28.65/0.8020 26.68/0.7202 29.38/0.8171 29.31/0.8208
0.4 0.01 10 27.25/0.7423 25.81/0.7195 29.88/0.8064 29.54/0.8056 27.35/0.7335 30.35/0.8237 30.18/0.8258
0.6 0.01 10 27.94/0.7535 26.08/0.7172 30.96/0.8205 30.28/0.8174 27.81/0.7284 31.03/0.8222 30.80/0.8243
0.8 0.01 10 28.73/0.7682 26.35/0.7139 32.03/0.8363 31.19/0.8233 28.36/0.7423 31.65/0.8281 31.17/0.8259
1 0.01 10 29.75/0.7957 26.44/0.7225 32.93/0.8486 32.03/0.8420 28.89/0.7179 32.82/0.8415 32.13/0.8407
34.5 ———cBwaD 34 == —cawap
MoAMNCBM3D MoAMNCBM3D
34 (= = =IRCNN d 35|~ TIRCNN
MoAMNIRCNN P MoAMNIRCNN

PSNR/dB

@

PSNR/dB
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L
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FIGURE 13. PSNR values for denoised colorful image House in TABLE 5
under the mixture of additive and multiplicative noise with increasing
ratio o = 0: 0.2: 1. The parameters o2 = 0.005, L = 20 are fixed.

solve cubic equations. Furthermore, the running time of the
proposed method increases as image sizes become bigger.
Hence, the main factors that affect the running time are image
sizes and equipment.

To illustrate the effectiveness of the proposed model on
colour images, the proposed method tests on Lena(512 x
512 x 3) and House(256 x 256 x 3). Specifically, each channel
is dealt with for ROF, AA, and the proposed method based on
the TV regularizer separately, and then the colour channels
are combined to obtain the corresponding restored colour
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FIGURE 14. PSNR values for denoised colorful image House in TABLE 5
under the mixture of additive and multiplicative noise with increasing
ratio L = 10: 10: 30. The parameters « = 0.6, o2 = 0.005, are fixed.

image. For CBM3D and IRCNN, we apply them directly to
the proposed model as regularizers and compare them with
the corresponding original method. FIGURE 12 shows the
restored images of the test colour image House and enlarges
parts of the restored images. One can find that there are
similar analysis results for the colour image House as the
previous grey images.

TABLE 5 shows PSNR/SSIM results for ROF, AA,
CBM3D, IRCNN, and the proposed method with the
corresponding regularizers for the colour image House. Most
results in TABLE 5 show that the proposed method is superior
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(a) Noisy (b) BM3D [22]

(C) MoAMNBM3D

(d) RCNN [27] (€) MoAMNIRCNN

(f) Noise (BM3D) (g) Noise (MOAMNBM3D)

(h) Noise (IRCNN) (i) Noise (MoAMNIRCNN)

FIGURE 15. The denoising results of a real ultrasound image obtained by the proposed model compared with BM3D and IRCNN.

(@) Noisy (b) BM3D [22]

FIGURE 16. The enlarged parts of the red rectangle areas in FIGURE15.

(C) MoAMNBM3D

(d) RCNN [27] (€) MoAMNIRCNN

(a) Noisy (b) BM3D [22]

(C) MoAMNBM3D

(d) IRCNN[27] (&) MoAMNIRCNN

(f) Noise (BM3D)

(g) Noise (MoAMNBM3D)

(h) Noise IRCNN) (i) Noise (MOAMNIRCNN)

FIGURE 17. The denoising results of a real image obtained by the proposed model compared with BM3D and IRCNN.

to other methods, which coincides with the results of the
above grey images. FIGURE 13 shows the curve of PSNR
values in TABLE 5 as increasing =0 : 0.2 : 1 under the true
parameters 02 =0.005, L = 20. FIGURE 14 shows the curve
of PSNR values in TABLE 5 as increasing L = 10 : 10 :
30 under the true parameters o = 0.6, o2 = 0.005. There are
similar analysis results with the grey images. Furthermore,
the restored images of the colour image Lena are shown in
FIGURE S5 and PSNR/SSIM values are shown in TABLE S3
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as supplementary material. It is easy to find that the proposed
method can better preserve details and textures.

We apply the proposed method to real noisy data.
FIGURE 15 shows a real noisy ultrasound image downloaded
from the website http://www.lib.dmu.edu.cn/database/csyx.
jsp- The real ultrasound image contains noise with unknown
types and levels. FIGURE 15 shows the comparison of
the restored images by different algorithms, which contains
the proposed method, BM3D and IRCNN algorithms.
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(a) Noisy (b) BM3D [22]

FIGURE 18. The enlarged parts of the red rectangle areas in FIGURE17.

(a) Noisy (b) BM3D [22]

(C) MoAMNBM3D

(C) MoAMNBM3D

I VAP

(€) MoAMNIRCNN

(d) IRCNN [27]

(d) IRCNN [27] (€) MoAMNIRCNN

(f) Noise (BM3D) (g) Noise (MoAMNBM3D)

(h) Noise IRCNN)

(i) Noise (MOAMNIRCNN)

FIGURE 19. The denoising results of a real CT image obtained by the proposed model compared with BM3D and IRCNN.

(a) Noisy (b) BM3D [22]

FIGURE 20. The enlarged parts of the red rectangle areas in FIGURE19.

As observed from this figure, the proposed method can
preserve more image textures than BM3D and IRCNN while
removing noise efficiently. To see more details, we choose
the same rectangle area for each image marked in red
and enlarge them in FIGURE 16. The structures of the
tissues are observed to be preserved in the restorations
produced by the proposed method, but not the restored
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(C) MoAMNBM3D

(d) RCNN [27] (€) MoAMNIRCNN

images obtained by BM3D and IRCNN. Examination of
the removed noise presented in FIGURE 15 shows that the
noise removed by BM3D and IRCNN is almost uniform
everywhere, while the noise removed by the proposed method
can be inhomogeneous. This scenario is reasonable since the
weighting function in the proposed algorithm can adaptively
detect noise types and levels.
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Similar results can be found in FIGUREs 17, 18, 19,
and 20, which show the denoising results of real noisy CT
images in [55].

VII. DISCUSSION AND CONCLUSION

In this paper, a novel model is proposed to remove mixed
additive and multiplicative noise at different ratios. The
introduced noise type detection function is novel and has a
statistical interpretation. Moreover, The weighting function
for noise detection is a function in dual space from the
convex optimization perspective. We prove the existence of
a minimizer for the proposed variational model with TV
regularization. To design an efficient algorithm, we apply
the popular splitting scheme to separate the proposed
model into several easily solvable subproblems, enabling the
application of many good regularizers such as BM3D and
IRCNN. Significantly, the proposed approach with IRCNN
regularization combined the variational method to detect
noise parameters and CNN deep learning algorithm to learn
images prior. The numerical experiments were done on ten
test grey images, two colour images, and three real noisy
medical images. According to the comparison of the restored
images, the method in this paper can preserve more image
details when removing mixed noise than the existing ROF,
AA, BM3D, and IRCNN algorithms. For the most attractive
cases « = 0.4 and ¢ = 0.6, the biggest improvements
of average PSNR values on 10 test grey images can reach
about 0.81 dB and 0.62 dB respectively between the proposed
approach with IRCNN regularization and the existing IRCNN
algorithm.

Note that accurate detection of a mixture of additive and
multiplicative noise is challenging. Firstly, in the proposed
method, the minimizer may not be unique because the
mathematical model is non-convex with respect to both w
and u. Secondly, the estimation of the noise parameters
is not accurate enough. So the estimation influences the
denoising performance.Thirdly, the update step on denoising
in this paper involves a Gaussian denoiser and a fidelity
selection. It may cause incomplete denoising. Fourthly, it is
well-known that the EM algorithm is locally converging.
Therefore, the performance of the proposed method partly
depends on the initial parameters c, o2, and L. In the
future, a convex mathematical model could be developed,
which can refer to the transformation way of the AA
model into convex. A new splitting way may need to
make a perfect combination of an additive denoiser and
a multiplicative denoiser for the algorithm. In this case,
the existing CNN deep learning algorithm for denoising
multiplicative noise can be integrated into the proposed
model to improve the performance. Some other trendy single
denoisers also can be integrated to improve the presented
model. In addition, one can design a CNN architecture
according to the proposed variational problem by unrolling
technique, and this will let the denoising CNN have physical
significance and interpretability. We leave these as future
research.
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