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Abstract—Satellite communication is capable of supporting
seamless global coverage. However, owing to the reliance on
limited-duration solar power, the high power amplifier (HPA)
is often driven close to its saturation point, which leads to severe
nonlinear distortion in satellite channels. Thus, mitigating the
effect of the nonlinear distortion becomes essential for reliable
communications. In this paper, we propose an efficient joint
channel estimation and data detection method based on message
passing within the associated factor graph modelling the HPA
employed in nonlinear satellite channels. Then, we develop a
combined belief propagation and mean field (BP-MF) method
to cope with the hard constraints and dense short loops on the
factor graph. In particular, the parametric message updating
expressions relying on the canonical parameters are derived in
the symbol detection part. To alleviate the impact of dense loops,
we reformulate the system model into a compact form within
the channel estimation part and then reconstruct a loop-free
subgraph associated with vector-valued nodes to guarantee con-
vergence. Furthermore, the proposed BP-MF method is also ex-
tended to the realistic scenario of having unknown noise variance.
To further reduce the computational complexity of the large-
scale matrix inversion of channel estimation, the generalized
approximate message passing (GAMP) algorithm is employed to
decouple the vector of channel coefficient estimation into a series
of scalar estimations. Simulation results show that the proposed
methods outperform the state-of-the-art benchmarks both in
terms of bit error rate performance and channel estimation
accuracy.

Index Terms—Nonlinear satellite channel, Volterra series, joint
channel estimation and data detection, mean field approximation,
generalized approximate message passing.

I. INTRODUCTION

Satellite communication plays an essential role in next
generation wireless networks by providing seamless global
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coverage [1]–[5]. The onboard high power amplifier (HPA) is
a key component of the transponder, which relies on limited-
duration solar charging. To achieve a high power efficiency,
the HPA is typically operated near its saturation point, which
leads to nonlinear distortion.

The nonlinearity of the HPA has been popularly character-
ized by a frequency-independent memoryless model [6], [7].
The most widely used memoryless HPA model is described
by the AM/AM and AM/PM functions [8]. Nonetheless, the
input multiplexing (IMUX) and output multiplexing (OMUX)
filters placed before and after the HPA introduce memory
into these nonlinear satellite channels. Several models have
been proposed for characterizing nonlinear channels exhibiting
memory, such as the polynomial model [9], the Wiener model
[10], the Hammerstein model [10] and Volterra series [11].
The Volterra series based model has a generic expression and
hence it is widely applied for characterizing nonlinear satellite
channels.

Numerous authors have investigated the design of equalizers
for channels modeled by Volterra series [12]–[17]. The opti-
mal maximum a posteriori (MAP) equalizer is developed in
[12]. However, the complexity of the optimal MAP equalizer
increases exponentially with the channel’s memory length.
To reduce the computational complexity, a nonlinear soft
interference canceller (NL-SIC) is proposed in [13], which
is an extension of the classic SIC designed for linear chan-
nels in [18]. In [14], a linear minimum mean square error
(LMMSE) criterion-based equalizer is used for canceling the
nonlinear distortion. However, the complexity of the LMMSE-
based methods still grows cubically with the length of their
processing window.

Several low-complexity iterative equalizers have also been
developed based on the factor graph (FG) modelling nonlinear
channels [15]–[17]. In [15], a Markov Chain Monte Carlo
(MCMC) equalizer relying on different sampling methods is
employed for reducing the complexity of the sum-product al-
gorithm (SPA)-based forward-backward (FB) equalizer, while
achieves the comparable performance. However, the MCMC
method may suffer from convergence problems resulting from
the sensitivity to the noise fluctuations [19]. In [16], a soft-
input soft-output (SISO) equalizer is proposed to attain a linear
computational complexity, where a simplified Volterra series
model is employed for characterizing nonlinear channels,
resulting in a performance erosion. In [17], a different message
passing algorithm is designed based on FG, which gleans ex-
trinsic information from the associated equalizer. By avoiding
any matrix inversion operation, the computational complexity
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TABLE I
EXPLICITLY CONTRASTING OUR CONTRIBUTIONS TO THE LITERATURE.

Feature This Paper [13], [14] [15] [16] [17] [20] [25] [26]

Nonlinear Channels X X X X X X X

Factor Graph Framework X X X X X X

Joint Channel Estimation and Equalization X X X

Parametric Nonlinear Channel Estimation X

Valuable Use for Estimation Uncertainty X X X X X

Without Linearization X X X X X

Unknown Noise Variance X

of the equalizer can be significantly reduced compared to
the LMMSE equalizer [14] and the FB equalizer [15]. In
[20], a Gaussian message passing receiver is developed for
faster-than-Nyquist signaling over nonlinear channels, where
the channel model is linearized using Taylor expansion, and
thus the problem of symbol detection is reformulated into a
linear state-space model.

Nevertheless, both of the above-mentioned algorithms only
considered the idealized simplifying assumption of perfectly
known channel state information (CSI). In practice, the CSI
has to be estimated by relying on sufficiently long training
sequences. However, due to the inevitable radiation, age-
ing, temperature variations or different mismatch effects, the
characteristics of HPAs are time-varying, which requires re-
estimation of CSI and results in an extra training overhead.
Also, with the increase of the memory length and nonlinear
order of channels, the loss of spectral efficiency imposed by
pilots is even higher. It has been shown [21]–[26] that joint
channel estimation and data detection not only significantly
reduces the number of pilots, but also improves the CSI
estimation accuracy in linear channels. In [27], joint channel
estimation and equalization is proposed for nonlinear MIMO
channels characterized by the Volterra series, where the alter-
nating least squares (ALS) algorithm is employed for both
channel estimation and data detection in an iterative way.
However, this ALS algorithm fails to reach its full potential
due to failing to rely on soft information during its iterations.

Against this backdrop, we propose a joint channel estima-
tion and data detection method for nonlinear satellite channels
based on FGs. The novel contributions of this paper are explic-
itly itemized next and they are also clearly contrasted to the
literature in Table I. Our main contributions are summarized
as follows:

• We construct a FG to represent communications over
nonlinear channels exhibiting memory characterized by
Volterra series. To tackle the problems of message passing
caused by hard constraints and dense short loops, the
FG is intentionally split into belief propagation (BP) and
mean field (MF) regions. Then, we invoke a combined
BP-MF method for deriving messages on a FG. Due to
the nonlinear terms in the system model, the messages are
in non-Gaussian forms. To this end, a parametric message
update with canonical parameters are derived. Moreover,
by reformulating the system model, we conceive a loop-
free subgraph in terms of vectors for performing channel

estimation. Furthermore, the noise variance estimation
using a Gamma a priori distribution is embedded into
the proposed method.

• To circumvent the high computational complexity im-
posed by matrix inversion, we further resort to the gener-
alized approximate message passing (GAMP) algorithm
[28] for estimating the channel coefficients. Accordingly,
the vector estimation process is transformed into scalar
operations. The iterations of the GAMP algorithm may be
incorporated into the iterations between the equalizer and
decoder. The complexity of channel estimation based on
the GAMP algorithm only grows linearly with the number
of channel coefficients.

The rest of this paper is organized as follows. Section
II presents the system model and problem formulation over
nonlinear satellite channels. In Section III, the proposed BP-
MF method of joint channel estimation and data detection over
nonlinear satellite channels is derived in detail, and extended
to the scenario of realistic unknown noise variance. In Section
IV, our GAMP-aided joint channel estimation and data de-
tection algorithm is developed for reducing the computational
complexity. The performance of the proposed algorithms is
evaluated by Monte Carlo simulations in Section V, while our
conclusions are offered in Section VI.

Notations: Boldface capital and lower case letters denote
matrices and vectors, respectively; The operations (·)∗, (·)T
(·)H and (·)−1 represent the complex conjugate, transpose,
conjugate transpose, and matrix inverse, respectively; | · |
denotes the modulus of a complex number; <(x) denotes
the real part of complex number x; The (n,m)th element
of the matrix X is written as Xnm; E{·} and V{·} repre-
sent expectation and variance operations, respectively; Tr{·}
denotes the trace operation; The symbol ∝ denotes equality
up to a constant; CN (x;mx, Vx) denotes a complex Gaussian
probability density function (pdf) of the random variable x
with mean mx and variance Vx.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a coded system communicating over non-
linear satellite channel exhibiting memory, as depicted in
Fig. 1. At the transmitter side, the information bit sequence
b , [b1, b2, ..., bNb

]T is encoded into a coded bit sequence
c , [c1, c2, ..., cNc

]T , where Nb and Nc are the lengths of
information bit sequence and coded bit sequence, respectively.
The sequence c is further mapped to a data symbol vector
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Fig. 1. System model of the coded system communicating over nonlinear
satellite channels.

x , [x1, x2, ..., xN ]T of length N , where we have xn ∈ χ
and χ denotes the 2M -ary symbol alphabet. Then, x is passed
through the shaping filter, whose output signal is transmitted
over the nonlinear satellite channel corrupted by additive white
Gaussian noise (AWGN). The satellite transponder consists of
an IMUX filter, an HPA and an OMUX filter, as shown in Fig.
1. The IMUX filter aims for removing the adjacent-channel in-
terferences, while the OMUX filter is intended for reducing the
out-of-band emissions of spectral expansion. Volterra series
are employed for modelling the satellite channel’s nonlinearity.
Due to the bandpass nature of the satellite communication
channel, only the odd-order Volterra terms are considered [12].
In practice, employing a third-order Volterra series is sufficient
for modelling nonlinear satellite channels [13]–[17], [20].

For a third-order Volterra series [11], the n-th discrete-
time received signal at the output of the matched filter can
be represented as

yn =

L∑
l=0

hlxn−l +

L∑
i=0

L∑
j≥i

L∑
k=0

hijkxn−ixn−jx
∗
n−k + wn,

(1)

where L describes the dispersion of the nonlinear channels, hl
and hijk represent the Volterra channel coefficients, and wn
is the AWGN having zero mean and variance of σ2.

The joint a posteriori distribution of channel coefficients
and information bits can be written as

p(b,h|y) ∝ p(y|h,x)p(h)p(x|c)p(c|b)p(b) (2)

∝
N∏
n=1

p(yn|h, xn, ..., xn−L)p(xn|cn)

×
L∏
l=0

p(hl)
∏
i,j,k

p(hijk)× p(c|b)×
Nb∏
n=1

p(bn),

(3)

where h , [h0, h1, ..., hL, h000, h001, ..., h00L, ..., hLLL]T and
cn , [cn,1, ..., cn,M ]T with cn,k , c(n−1)M+k. The a
priori probability p(bn) of the information bit is assumed to
be uniformly distributed. Furthermore, p(c|b) and p(xn|cn)
denote the deterministic coding function and symbol mapping
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Fig. 2. Factor graph representation of joint a posteriori distribution in (3).

function, respectively, while p(hl) and p(hijk) are the a priori
probabilities of the Volterra channel coefficients hl and hijk,
respectively. The likelihood function p(yn|h, xn, ..., xn−L)
can be expressed as

p(yn|h, xn, ..., xn−L)

∝exp
{
−

∣∣yn− L∑
l=0

hlxn−l−
L∑
i=0

L∑
j≥i

L∑
k=0

hijkxn−ixn−jx
∗
n−k

∣∣2
σ2

}
.

(4)

For the joint a posteriori distribution in (3), the corre-
sponding FG representation is shown in Fig. 2, where the
squares denote the factor nodes (FN) and the circles denote the
variable nodes (VN). In Fig. 2, the FN fM,n corresponding
to p(xn|cn) represents symbol mapping, i.e., fM,n(xn, cn) ,
δ[xn −M(cn)] with M being the symbol mapping function,
and the FN fr,n corresponding to p(yn|h, xn, ..., xn−L) stands
for the likelihood function.

To obtain the marginal distributions of channel coefficients
and information bits, BP may be adopted directly. However,
the FG in Fig. 2 contains short loops, which may result in the
divergence of BP [29]. Although the convergence-guaranteed
MF can be employed, it is not compatible with the hard
constraints involved in the coding and modulation functions.
To this end, we propose a combined BP-MF method for joint
channel estimation and data detection in nonlinear satellite
channels.

III. BP-MF FOR JOINT CHANNEL ESTIMATION AND
DECODING IN NONLINEAR CHANNELS

This section presents the proposed message passing algo-
rithm conceived for jointly estimating the nonlinear channel’s
coefficients and detecting the transmitted information. Given
the associated hard constraints and the FG’s loopy nature, we
split the FG into two regions, i.e., the BP region and the MF
region. For the sake of reducing the computational complexity,
a series of parametric message updating expressions are de-
rived to obtain the estimates of data symbols. By introducing
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Fig. 3. Factor graphs to illustrate (a) the factor nodes classified into BP region
and MF region and (b) the non-loopy subgraph with vector-valued nodes for
channel estimation using the MF approximation.

the vector-valued nodes for eliminating the dense loops of
the FG, a loop-free subgraph is constructed for performing
channel estimation. Furthermore, the proposed algorithm is
also extended to the case of realistic unknown noise variance.

A. The Proposed Joint Channel Estimation and Detection
Algorithm Based on the BP-MF Method

Let us now define the BP region ABP and the MF region
AMF, where we have ABP , {fM,n|n = 1, 2, ..., N} and
AMF , {fr,n|n = 1, 2, ..., N}, as shown in Fig. 3(a). Then,
we can derive the a posteriori beliefs of data symbols and
channel coefficients using the BP-MF method.

First, we consider the message update related to the FNs in
the BP region. According to [30], the message emerging from
fM,n to xn is updated by

µfM,n→xn
(xn) =

∑
cn∈{0,1}M

fM,n(xn, cn)

M∏
k=1

µcn,k→fM,n
(cn,k).

(5)

Since xn is a discrete random variable, the message in (5) is
the probability mass function (PMF) of xn. Thus, the message
µfM,n→xn

(xn) has the form

µfM,n→xn(xn) =

2M∑
j=1

P (xn = s(j))δ(xn − s(j)), (6)

where s(j) is the j-th symbol in χ.
Then, the message passed from xn to fr,i is updated by

µxn→fr,i(xn) = µfM,n→xn(xn)

n+L∏
k=n

µfr,k→xn(xn). (7)

In order to obtain µxn→fr,i(xn) in (7), we have to derive the
expression of µfr,k→xn

(xn) for k = n, ..., n+ L.

According to the MF rules, the message passed from the
likelihood node fr,n to the symbol node xn is updated by

µfr,n→xn(xn) ∝ exp

{ ∑
∼{xn}

∫
h

lnfr,n(h, xn, ..., xn−L)

×
∏

x′
n∈N(fr,n)\xn

µx′
n→fr,n(x′n)

∏
m

µhm→fr,n(hm)

}
. (8)

Substituting the expressions of fr,n in (4) into (8),
µfr,n→xn

(xn) can be rewritten as

µfr,n→xn(xn) ∝exp

{
Ex′

n∈N(fr,n)\xn,hm

[
− 1

σ2
|yn

−
L∑
l=0

hlxn−l −
L∑
i=0

L∑
j≥i

L∑
k=0

hijkxn−ixn−jx
∗
n−k|2

]}
. (9)

Through the detailed derivations in Appendix A, we have

µfr,n→xn(xn)

∝ exp

{
−

∑
a,b

ϕ
(n)
a,bx

a
nx
∗b
n +2<(

∑
m,v

ϕ
(n)
m,vxmn x

∗v
n )

σ2

}
, (10)

where a, b,m, v ∈ {1, 2, 3}, ϕ(n)
a,b and ϕ(n)

m,v denote the canoni-
cal parameters corresponding to the sufficient statistics xanx

∗b
n

and xmn x
∗v
n . Note that the message in (10) is non-Gaussian

distribution, which is different from the Gaussian distribution
in linear channels. Hence, for a third-order Volterra series
associated with memory length L, the corresponding canonical
parameters ϕ(n)

a,b and ϕ
(n)
m,v are computed according to Table

II1, where the detailed derivations of ϕ(n)
a,b and ϕ(n)

m,v are given
in Appendix B. Note that only the canonical parameters have
to be updated in each iteration, which significantly simplifies
the updating of messages. Upon substituting (6) and (10) into
(7), we have

µxn→fr,i(xn) ∝
2M∑
j=1

P (xn = s(j))δ(xn − s(j))

× exp

{
−

n+L∑
k=n

[∑
a,b

ϕ
(k)
a,bx

a
nx
∗b
n +2<(

∑
m,v

ϕ
(k)
m,vxmn x

∗v
n )
]

σ2

}
.

(11)

Since we have fr,i ∈ AMF, the belief of xn equals to the
message µxn→fr,i(xn). Thus, we can obtain the a posteriori
mean mxn

and variance vxn
of xn as

mxn
=

∑2M

j=1 s
(j)µxn→fr,i(xn = s(j))∑2M

j=1 µxn→fr,i(xn = s(j))
, (12)

vxn
=

∑2M

j=1 |s(j)|2µxn→fr,i(xn = s(j))∑2M

j=1 µxn→fr,i(xn = s(j))
− |mxn

|2. (13)

1The term requiring the real part operation in (10) is simplified as
<(xm

n x∗v
n ) in Table II.
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TABLE II
PARAMETERS ϕ

(n)
a,b AND ϕ

(n)
m,v FOR A THIRD-ORDER VOLTERRA CHANNEL WITH MEMORY LENGTH L.

sufficient statistics canonical parameters

|xn|2(a = b = 1) E(|h0|2)−2<(y∗n
L∑

i=1
E(h0i0)E(xn−i))+2<(

L∑
i,j=1

E(h∗
0h0ij+hih

∗
0j0)E(xn−ix

∗
n−j)) +

L∑
i,j=1

E(|h0ij |2)E(|xn−i|2|xn−j |2)

+2<(
L∑

i,j,p>i,q>j
E(h∗

0ijh0pq)E(x∗
n−ixn−jxn−px∗

n−q)) +
L∑

i,j≥i

E(|hij0|2)E(|xn−i|2|xn−j |2)

+2<(
L∑

i,j,p>i,q>j
E(h∗

ij0hpq0)E(x∗
n−ix

∗
n−jxn−pxn−q)) + 2<(

∑
i,j,p≥j,q

E(h∗
0i0hjpq)E(x∗

n−ixn−jxn−px∗
n−q))

|xn|4(a = b = 2) 2<(E(h∗
000)(E(h0) +

L∑
i,j=1

E(h0ij)E(xn−ix
∗
n−j))) +

L∑
i=1

E(|h00i|2)E(|xn−i|2)

+
L∑

i=1
E(|h0i0|2)E(|xn−i|2) + 2<(

∑
i,j>i

E(h∗
00ih00j + h0i0h

∗
0j0)E(xn−ix

∗
n−j))

|xn|6(a = b = 3) E(|h000|2)

<(xn)(m = 1, v = 0) −y∗nE(h0)− y∗n
L∑

i,j=1
E(h0ij)E(xn−ix

∗
n−j) + E(h0)

L∑
j=1

E(h∗
j )E(x

∗
n−j)−yn

L∑
i,j

E(h∗
ij0)E(x

∗
n−ix

∗
n−j)

+E(h0)
∑

i,j≥i,k

E(h∗
ijk)E(x

∗
n−ix

∗
n−jxn−k) +

L∑
i,j,k

E(h∗
i h0jk)E(x∗

n−ixn−jx∗
n−k)+

L∑
i,j,k

E(hih
∗
jk0)E(xn−ix

∗
n−jx

∗
n−k)

+
∑

i,j,k,p,q

E(h0ijh
∗
kpq)E(xn−ix

∗
n−jx

∗
n−kx

∗
n−pxn−q)+

∑
i,j,k,p,q

E(h∗
ij0hkpq)E(x∗

n−ix
∗
n−jxn−kxn−px∗

n−q)

<(x2
n)(m = 2, v = 0) −y∗n

L∑
i=1

E(h00i)E(x∗
n−i) + E(h0)

L∑
i,j≥i

E(h∗
ij0)E(x

∗
n−ix

∗
n−j) +

L∑
i,j=1

E(h∗
i h00j)E(x∗

n−ix
∗
n−j)

+
∑

i,j,p,q≥p

E(h0ijh
∗
pq0)E(xn−ix

∗
n−jx

∗
n−px

∗
n−q) +

∑
i,j,p≥j,q

E(h00ih
∗
jpq)E(x

∗
n−ix

∗
n−jx

∗
n−pxn−q)

<(x3
n)(m = 3, v = 0)

∑
i,j,k≥j

E(h00ih
∗
jk0)E(x

∗
n−ix

∗
n−jx

∗
n−k)

<(xn|xn|2)(m = 2, v = 1) −y∗nE(h000) +
L∑

i=1
E(h∗

0h00i + h0h∗
0i0 + h∗

i h000)E(x∗
n−i) +

L∑
i,j,k=1

E(h00ih
∗
0jk)E(x

∗
n−ix

∗
n−jxn−k)

+
L∑

i,j,k=1

E(h∗
0i0h0jk)E(x∗

n−ixn−jx∗
n−k) +

L∑
i,j,k≥j

E(h0i0h
∗
jk0)E(xn−ix∗

n−jx
∗
n−k) +

∑
i,j≥i,k

E(h000h∗
ijk)E(x

∗
n−ix

∗
n−jxn−k)

<(xn|xn|4)(m = 3, v = 2)
L∑

i=1
E(h∗

000h00i)E(x∗
n−i) +

L∑
i=1

E(h000h∗
0i0)E(x

∗
n−i)

<(x2
n|xn|2)(m = 3, v = 1)

∑
i,j≥i

E(h000h∗
ij0)E(x

∗
n−ix

∗
n−j) +

L∑
i,j

E(h00ih
∗
0j0)E(x

∗
n−ix

∗
n−j)

Similarly, we can derive the messages from the likelihood
function to the channel coefficient according to the MF rules.
To facilitate the calculation of messages, the received signal
in (1) is reformulated into the following compact form

y = Xh + w, (14)

where w , [w1, w2, · · · , wN ]T , and

X =


(xL1 )T (xNL1 )T

(xL2 )T (xNL2 )T

...
...

(xLN )T (xNLN )T

 , (15)

with xLn , [xn, xn−1, ..., xn−L]T , and xNLn ,
[xnxnx

∗
n, xnxnx

∗
n−1, ..., xnxnx

∗
n−L, ..., xn−Lxn−Lx

∗
n−L]T .

In this way, the message passing can be performed in the
non-loopy subgraph with vector-valued nodes, as shown
in Fig. 3(b). Accordingly, the message passed from the
likelihood function fr to the channel coefficient h can be
updated by

µfr→h ∝ exp
{
Eµx→fr

[lnp(y|h,x)]
}
. (16)

Since wn ∼ CN (wn; 0, σ2), n = 1, 2, · · · , N , we have

p(y|h,x) ∝ exp
{
− (y −Xh)H(y −Xh)

σ2

}
. (17)

Substituting (17) into (16) yields

µfr→h

∝ exp
{
Eµx→fr

[
− (y −Xh)H(y −Xh)

σ2

]}
∝ exp

{
− yHy − yHE[X]h− hHE[XH ]y + hHE[XHX]h

σ2

}
∝ exp

{
− (h− m̌h)HČ−1h (h− m̌h)

}
∝ CN (h; m̌h, Čh), (18)

where the mean vector obeys m̌h = 1
σ2 ČhE[X]Hy and the

covariance matrix is given by Č−1h = 1
σ2

[
E(XHX)

]
. With

the estimated a posteriori mean and variance of xn in (12)
and (13), the mean vector m̌h and the covariance matrix Čh

can be computed straightforwardly. Assuming that the a priori
probability ph obeys a multivariate complex Gaussian pdf,
i.e., ph ∝ CN (h;h0,V0

h), the a posteriori pdf of channel
coefficients h is also a multivariate complex Gaussian pdf
CN (h;mh,Vh) with

mh = Vh

[
(V0

h)−1h0 + Č−1h m̌h

]
, (19)

Vh =
[
(V0

h)−1 + Č−1h

]−1
. (20)

Given (19) and (20), the channel coefficients h can be jointly
updated.
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Finally, the message passed from the mapping function
fM,n to the coded bit cn,k can be computed by

µfM,n→cn,k
(cn,k) ∝

∑
∼{cn,k}

fM,n(xn, cn)µxn→fM,n
(xn)

×
∏
k′ 6=k

µcn,k′→fM,n
(cn,k′), (21)

where the message passed from xn to fM,n is updated by

µxn→fM,n
(xn) =

n+L∏
k=n

µfr,k→xn
(xn)

∝ exp

{
−

n+L∑
k=n

[∑
a,b

ϕ
(k)
a,bx

a
nx
∗b
n + 2<(

∑
m,v

ϕ
(k)
m,vxmn x

∗v
n )
]

σ2

}
.

(22)

The message µfM,n→cn,k
(cn,k) can be viewed as the extrinsic

soft information passed to a SISO decoder and it is treated
as the a priori information used for decoding. Once the
SISO decoding is terminated, it will produce extrinsic soft
information, which is used as the a priori information in (5)
to determine the a priori probabilities of the data symbol at
the next iteration. Upon using the message µfM,n→cn,k

(cn,k),
the log-likelihood ratio (LLR) of coded bits can be computed
by

LLR(cn,k) = ln
µfM,n→cn,k

(cn,k = 0)

µfM,n→cn,k
(cn,k = 1)

. (23)

The details of the proposed combined BP-MF method of
joint channel estimation and decoding are summarized in
Algorithm 1.

B. Extension to the Case of Realistic Unknown Noise Variance

The noise variance is always unknown and has to be
estimated in practical wireless communication systems. In this
section, we now harness the MF for estimating the noise
precision λ, which is the inverse of noise variance, i.e.,
λ = 1/σ2. In this case, the joint a posteriori distribution
in (2) is represented by p(b,h, λ|y), the likelihood function
p(y|h,x) becomes p(y|h,x, λ), and the a priori distribution
p(λ) is added to the products in (2) and (3). On the FG
of Fig. 4, the additional VN λ and FN fλ denoting the a
priori distribution of λ are introduced. Then, according to the

Algorithm 1 The Proposed Combined BP-MF Method for
Joint Channel Estimation and Decoding

1: Initialize µcn,k→fM,n
(cn,k) = 1/2 and the a priori dis-

tribution of channel coefficients is obtained using pilots
based on LMMSE;

2: for io = 1 to Iout do
3: Calculate the messages from the mapping node to the

symbol node according to (5);
4: for it = 1 to Iin do
5: Calculate the canonical parameters ϕ

(n)
a,b and ϕ

(n)
m,v

according to Table II;
6: Calculate the messages from the likelihood node to

the symbol node according to (10);
7: Calculate the belief of variable xn according to (11);
8: Calculate the a posteriori mean and variance

{mxn , vxn} according to (12) and (13);
9: end for

10: Calculate the a posteriori mean vector and covariance
matrix {mh,Vh} according to (19) and (20);

11: Calculate the messages from the mapping node to the
coded bit node according to (21);

12: Calculate the extrinsic LLRs of the equalizer according
to (23) and pass them to the SISO decoder;

13: Perform channel decoding algorithm and the decoder
produces the extrinsic soft information to equalizer;

14: end for

MF rules, the message from the likelihood node fr to noise
precision node λ can be updated by

µfr→λ(λ) ∝ exp

{∫
lnp(y|h,x, λ)µx→fr(x)µh→fr(h)dxdh

}
,

(24)

where

p(y|h,x, λ) ∝ λNexp
{
− λ||y −Xh||2

}
. (25)

Upon substituting (25) into (24), we arrive at

µfr→λ(λ) ∝ exp
{
N lnλ− λE[‖y −Xh‖2]

}
∝ λNexp

{
−λE[‖y −Xh‖2]

}
∝ λNexp {−λCλ} , (26)

where Cλ = E[‖y − Xh‖2] = yHy − yHE[X]E[h] −
E[h]HE[X]Hy+ Tr

{
E[XHX]E[hhH ]

}
. The message in (26)

is proportional to a one-dimensional complex Wishart distribu-
tion with the degree of freedom N+1, and covariance of C−1λ .
In this case, we select a Gamma distribution as the conjugate a
priori pdf [31], i.e., p(λ) ∝ λap−1exp{−λAp}. Due to the fact
that the a priori information of the noise precision is usually
unavailable at the receiver side, we select a non-informative
a priori pdf p(λ) associated with ap = 0 and Ap = 0, i.e.,
p(λ) ∝ 1/λ. Given µfr→λ(λ) in (26), we obtain the belief

bλ(λ) ∝ λN−1exp{−λCλ}. (27)
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With the belief of λ in (27), the noise precision can be
calculated as

λ̂ =
N

Cλ
. (28)

Note that for the update of data symbols x and channel
coefficients h, we only have to replace σ2 by 1/λ̂.

IV. GAMP-AIDED COMPLEXITY REDUCTION OF BP-MF
FOR JOINT CHANNEL ESTIMATION AND DECODING

Although the proposed BP-MF algorithm is capable of
accurately estimating both channel coefficients and transmitted
symbols, it still suffers from a high computational complexity
on the order of O(L3

h) resulting from the matrix inversion
operation of (20) involved in channel estimation, where Lh de-
notes the number of channel coefficients. This computational
complexity could be a challenging task for communication
systems having a large channel dispersion. To circumvent
the matrix inversion, we further resort to the computationally
efficient GAMP algorithm [27] to develop a low-complexity
channel estimation method. With the aid of the central limit
theorem and Taylor series expansion, the GAMP decouples
the vector-valued channel estimation problem into a sequence
of scalar operations, and its asymptotic behavior under i.i.d.
transforms can be exactly described by a simple set of state
evolution equations.

To commence, we replace X in (14) by X̂, where X̂ is the
result of replacing all the {xn} in X by its a posteriori mean
mxn

. Then (14) becomes

y = X̂h + w. (29)

Let us now define zn , X̂nh, where X̂n denotes the nth
row of matrix X̂, and the corresponding likelihood function is
given by p(yn|zn) = CN (zn; yn, σ

2). Then, the approximate
marginal distribution of zn is expressed as

p(zn|y; p̂n, γ
p
n) ,

p(yn|zn)CN (zn; p̂n, γ
p
n)∫

z′n
p(yn|z′n)CN (z′n; p̂n, γ

p
n)
, (30)

where the quantities p̂n(t) and γpn(t) at the t-th iteration are
updated by

p̂n(t) =
∑
m

X̂nmĥm(t)− γpn(t)ŝn(t− 1), (31)

γpn(t) =
∑
m

|X̂nm|2γhm(t). (32)

At the first iteration, ĥm(t) and γhm(t) are initialized based on
the pilot-aided LMMSE estimator. The parameter ŝn(t − 1)
related to the a posteriori mean of zn is set to 0. Then, they
can be updated by exploiting the equation in (31)-(41). Upon
using (30), the a posteriori mean and variance of zn are

ẑn(t) = E{zn|y; p̂n(t), γpn(t)}

= p̂n(t) +
γpn(t)

γpn(t) + σ2
(yn − p̂n(t)), (33)

γzn(t) = V{zn|y; p̂n(t), γpn(t)} =
γpn(t)σ2

γpn(t) + σ2
. (34)

Based on the GAMP rules, the output scalar estimation func-
tion gout(·) is calculated by

gout[p̂n(t), yn, γ
p
n(t)] =

1

γpn(t)

[
E{zn|y; p̂n(t), γpn(t)} − p̂n(t)

]
=
yn − p̂n(t)

γpn(t) + σ2
, (35)

and ŝn(t) , gout[p̂n(t), yn, γ
p
n(t)]. The negative partial deriva-

tive of gout(·) becomes

γsn(t) = − ∂

∂p̂n(t)
gout[p̂n(t), yn, γ

p
n(t)] =

1

γpn(t) + σ2
. (36)

Similarly, the approximate marginal distribution of hm is
updated by

p(hm|y; r̂m, γ
r
m) ,

p(hm)CN (hm; r̂m, γ
r
m)∫

h′
m
p(h′m)CN (h′m; r̂m, γrm)

, (37)

where the quantities r̂m(t) and γrm(t) at the t-th iteration can
be formulated as

r̂m(t) = ĥm(t) + γrm(t)
∑
n

X̂∗nmŝn(t), (38)

γrm(t) =
[∑

n

|X̂nm|2γsn(t)
]−1

. (39)

The input scalar estimation function gin(·) can be written as

gin[r̂m(t), γrm(t)] = E{hm|y; r̂m(t), γrm(t)}

=
v0hm

r̂m(t) + γrm(t)h0m
v0hm

+ γrm(t)
, (40)

and ĥm(t + 1) = gin[r̂m(t), γrm(t)]. Meanwhile, the partial
derivative of gin(·) satisfies

γhm(t+ 1) = γrm(t)
∂

∂r̂m(t)
gin[r̂m(t), γrm(t)]

= V{hm|y; r̂m(t), γrm(t)} =
ν0hm

γrm(t)

ν0hm
+ γrm(t)

. (41)

Finally, the outputs {ĥm(t + 1)} and {γhm(t + 1)} are the
mean and variance of the approximate marginal distribution
of channel coefficients, respectively, which are invoked in the
next iteration. The GAMP algorithm proposed for updating
the estimates of channel coefficients can be embedded into
the iteration between the equalizer and the decoder. Note that
the complexity of the GAMP algorithm is dominated by the
matrix-vector multiplications in (31), (32), (38), and (39), and
hence its complexity is proportional to Lh. The proposed
joint channel estimation and decoding algorithm based on
the GAMP-aided BP-MF method is referred to as BP-MF-
GAMP, which is summarized in Algorithm 2. Though the
GAMP method is computationally efficient, it may diverge
in the case of ill-conditioned or correlated matrices. To this
end, a series of pioneering work have emerged for mitigating
the convergence problem of GAMP [32]–[34]. Specifically,
the memory approximate message passing algorithm proposed
in [35] can circumvent the strong sensitivity of the ill-
conditioned matrices to small perturbations, while it retain a
low computational complexity. Note that benefiting from the
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TABLE III
VOLTERRA CHANNEL COEFFICIENTS

h0 h1 h2

0.78085 + 0.41347i 0.40323− 0.0064i −0.15361− 0.08961i
h000 h001 h002

−0.16− 0.036i −0.14 + 0.14i 0.156 + 0.088i
h110 h220 other hijk

0.004− 0.068i 0.072− 0.072i 0

convergence-guaranteed property, the proposed BP-MF algo-
rithm with robust convergence is also appropriate for a more
general transform matrix. To verify the convergence behavior
of the proposed BP-MF and BP-MF-GAMP algorithms in
the considered nonlinear channels, we show the convergence
curves of the proposed algorithms in the following Section V.

Algorithm 2 The BP-MF-GAMP Method for Joint Channel
Estimation and Decoding

1: The same as BP-MF except replacing the step (10) in
Algorithm 1 with the following steps:

2: Inputs: priors {p(hm)}, likelihood {p(yn|zn)}, maxi-
mum iterations IGAMP, {X̂nm}, initial channel estimate
{h0m, v0hm

}
3: Initialization: ĥm(1) = h0m, γhm(1) = v0hm

, ŝn(0) = 0
4: for t = 1 to IGAMP do
5: for each n, do
6: Calculate p̂n(t) and γpn(t) according to (31) and (32);
7: Calculate ẑn(t) and γzn(t) according to (33) and (34);
8: Calculate ŝn(t) and γsn(t) according to (35) and (36);
9: end for

10: for each m, do
11: Calculate r̂m(t) and γrm(t) according to (38) and

(39);
12: Calculate the a posteriori mean ĥm(t + 1) and

variance γhm(t+ 1) according to (40) and (41);
13: end for
14: end for

V. SIMULATION RESULTS

We consider an LDPC-coded system having the code length
of Nb = 1440 and code rate of R = 5/7. The encoded bits are
mapped to QPSK symbols. Moreover, the third-order Volterra
series model associated with L = 2 is considered in Table
III, the corresponding channel coefficients of which are given
in [15] but with stronger linear and nonlinear ISI [17]. The
initial estimates of channel coefficients are obtained from the
pilots using the LMMSE method, where the ratio of pilots
is 5%. In the proposed algorithms, the inner iterations within
the symbol detection are embedded into the outer iterations
between equalization and LDPC decoding. Unless otherwise
specified, the maximum number of iterations of the proposed
algorithms are set to Iout = 20 and Iin = 2, respectively, for the
outer and inner iterations. Furthermore, the number of GAMP
iterations is IGAMP = 20.

The bit error rate (BER) performance of the proposed joint
channel estimation and decoding methods is evaluated in Fig.
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Fig. 5. BER performance of different algorithms.

5. For comparison, the performance of ALS, LMMSE-NL-
SIC and LMMSE-BP-MF are also plotted. In the LMMSE-
NL-SIC and LMMSE-BP-MF algorithms, LMMSE is used
for channel estimation based on pilots, and the NL-SIC as
well as the BP-MF are employed for equalization, respectively.
Furthermore, the BER performance of the NL-SIC and BP-MF
having perfect CSI (PCSI) is considered as a benchmark. It
is observed that, for the PCSI scenario, the BP-MF equalizer
outperforms the NL-SIC equalizer. This is because the NL-SIC
equalizer uses the Gaussian approximation for calculating the
extrinsic soft information gleaned from the equalizer, and the
third-order Volterra terms are ignored when calculating the
variance of the estimation error. For the unknown CSI sce-
nario, the LMMSE-NL-SIC and LMMSE-BP-MF outperform
the ALS as a benefit of exploiting soft information. We can
observe that, by gleaning information from both pilots and
the transmitted symbols recovered in the previous iterations,
the proposed BP-MF and BP-MF-GAMP perform close to the
PCSI scenario, and they significantly outperform the pilot-
based LMMSE-BP-MF method. The performance gap between
BP-MF and BP-MF-GAMP arises due to the fact that the
former explicitly takes estimation uncertainty of data detection
by updating the second-order moments of transmitted symbols
for calculating the parameters m̌h and Čh. By contrast,
the BP-MF-GAMP directly ignores the variance vxn

upon
calculating the parameters among the GAMP method.

In Fig. 6, the normalized mean square error (NMSE) of
the proposed channel estimation algorithms is evaluated. For
comparison, the performance of the ALS and LMMSE meth-
ods is also presented. Observe that the NMSE monotonically
decreases as the value of Eb/N0 increases. The proposed
BP-MF and BP-MF-GAMP algorithms have a significant
NMSE performance gain over the LMMSE and ALS meth-
ods. Benefiting from accounting for the symbol estimation
uncertainty, the proposed BP-MF algorithm outperforms the
BP-MF-GAMP in terms of NMSE performance. Moreover,
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Fig. 6. NMSE performance of channel estimation of different algorithms.

with the increase of SNR, the NMSE performance of BP-MF-
GAMP converges to that of the BP-MF method. This is due to
the fact that the symbol detection becomes more accurate at
high SNRs, and thus the performance loss imposed by ignoring
the uncertainties of the estimated symbols in the BP-MF-
GAMP method become negligible. Although the proposed BP-
MF-GAMP method obtains the similar NMSE performance
with the BP-MF at high SNRs, it still suffers from a non-
negligible BER performance loss, as shown in Fig. 5. This is
because superior channel estimation cannot always guarantee
better BER performance.

In Fig. 7, we show the noise variance estimated by the
proposed algorithm at different Eb/N0. Since the BP-MF
and the BP-MF-GAMP have similar noise variance estimation
characteristics, only the results of BP-MF are given for brevity.
As seen in the figure, after several iterations, the proposed
noise variance estimator significantly outperforms its pure
pilot-based counterpart.

The NMSE convergence behavior of the proposed BP-
MF and BP-MF-GAMP algorithms by the SNR is shown in
Fig. 8. Observe that both the BP-MF and BP-MF-GAMP
can converge fast after about 10 iterations at high SNRs.
Moreover, as a benefit of its convergence-guaranteed property
as well as due to taking into account the uncertainty of data
detection, the BP-MF method converges faster than the BP-
MF-GAMP method. The extrinsic information transfer (EXIT)
curves of the proposed BP-MF method are illustrated in Fig.
9. As expected, an open tunnel emerges between the curves
of the equalizer and channel decoder at Eb/N0 = 2.4dB,
which demonstrates that the proposed algorithm is expected
to converge.

In Fig. 10, the BER performance of the proposed BP-
MF method relying on different numbers of inner and outer
iterations is evaluated. It may observe that, increasing Iout
significantly improves the BER performance. When Iout is
higher than 16, however, the performance gain attained by
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Fig. 7. Estimated average noise variance versus Eb/N0.

2 4 6 8 10 12 14 16 18 20

The Number of Outer Iterations I
out

-28

-26

-24

-22

-20

-18

-16
N

M
S

E
 (

dB
)

BP-MF-GAMP
BP-MF
E

b
/N0=1.8dB

E
b
/N0=2.2dB

E
b
/N0=2.6dB

Fig. 8. NMSE convergence behavior of BP-MF and BP-MF-GAMP
algorithms.

increasing Iin and Iout becomes marginal. Hence, the number
of inner and outer iterations can be adjusted and optimized to
strike a performance versus computational complexity trade-
off.

We now further evaluate the BER and NMSE performance
of the proposed BP-MF and BP-MF-GAMP algorithms in
the face of stronger nonlinearity. The corresponding channel
coefficients are given in Table IV. Fig. 11 shows the BER
performance of the aforementioned algorithms. Compared to
the results in Fig. 5, the stronger nonlinearity degrades the
BER performance of all algorithms. Specifically, the ALS,
LMMSE-NL-SIC and NL-SIC with PCSI fail in the face
of stronger nonlinearity. The proposed BP-MF and BP-MF-
GAMP methods perform close to the BP-MF having PCSI,
and outperform the LMMSE-BP-MF. Fig. 12 shows the NMSE
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TABLE IV
VOLTERRA CHANNEL COEFFICIENTS WITH STRONGER NONLINEARITY

h0 h1 h2

0.78085 + 0.41347i 0.40323− 0.0064i −0.15361− 0.08961i
h000 h001 h002

−0.2− 0.045i −0.175 + 0.175i 0.195 + 0.11i
h110 h220 other hijk

−0.005− 0.085i 0.09− 0.09i 0

performance of channel estimation at different SNRs. We can
see that the channel estimation performance of the proposed
BP-MF and BP-MF-GAMP algorithms is not sensitive to
the stronger channel nonlinearity, which is a benefit of the
superior symbol detection performance. They still significantly
outperform the ALS and LMMSE schemes.
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Fig. 11. BER performance of different algorithms in system with stronger
nonlinearity.
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in system with stronger nonlinearity.

VI. CONCLUSIONS

Message passing-aided iterative receivers were designed
for joint channel estimation and data detection in nonlinear
satellite channels characterized by the Volterra series. To
address the problems of hard constraints and dense short loops
on factor graph, we beneficially decomposed the factor graph
into the BP and MF regions. Specifically, BP was exploited
for calculating the messages harnessed from the factor node
associated with hard constraints, while MF was employed at
the observation node. The calculation of marginal distributions
of the data symbols was significantly simplified by performing
parametric message passing. In the channel estimation part,
we reformulated the system model into a compact form and
transformed the densely connected subgraph into a loop-free
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subgraph associated with vector-valued nodes. The proposed
BP-MF method was also extended to the realistic scenario
of unknown noise variance. To avoid the high complexity of
matrix inversion in the BP-MF method, we further employed
GAMP to transform the vector estimation problem into a scalar
one, and proposed a BP-MF-GAMP algorithm. Simulation
results showed that the proposed BP-MF and BP-MF-GAMP
algorithms achieved superior BER and NMSE performance
compared to the state-of-the-art benchmarks. Moreover, our
work provides a theoretical reference for solving the chal-
lenging joint channel estimation and data detection problem
of other emerging nonlinear systems.

APPENDIX A
DERIVATIONS OF (10)

First, we expand the term |yn −
L∑
l=0

hlxn−l −
L∑
i=0

L∑
j≥i

L∑
k=0

hijkxn−ixn−jx
∗
n−k|2 as

|yn −
L∑
l=0

hlxn−l −
L∑
i=0

L∑
j≥i

L∑
k=0

hijkxn−ixn−jx
∗
n−k|2

= y∗nyn − 2<(y∗n

L∑
l=0

hlxn−l + y∗n
∑
i,j≥i,k

hijkxn−ixn−jx
∗
n−k)

+

L∑
l=0

hlh
∗
l xn−lx

∗
n−l + 2<(

L∑
i=0

L∑
j>i

h∗i hjx
∗
n−ixn−j)

+ 2<(

L∑
l=0

∑
i,j≥i,k

h∗l hijkx
∗
n−lxn−ixn−jx

∗
n−k)

+
∑
i,j≥i,k

h∗ijkhijkx
∗
n−ix

∗
n−jxn−kxn−ixn−jx

∗
n−k

+ 2<(
∑

i,j,k,a,b,c

h∗ijkhabcx
∗
n−ix

∗
n−jxn−kxn−axn−bx

∗
n−c).

(42)

In (42), y∗nyn is a constant, and all the combinations can
be split into two parts, namely those with and without real
operation. Then, we take the expectation of (42) with respect to
the beliefs of all xi for i 6= n and all hl and hijk. Accordingly,
these variables can be replaced by their expectations extracted
from the a posteriori pdfs. After some further manipulations,
the message µfr,n→xn

(xn) can be written in the form of
its sufficient statistics and the canonical parameters in (10),
where the canonical parameters ϕ(n)

a,b and ϕ(n)
m,v consist of the

combinations of expectations of the related variables.

APPENDIX B
DERIVATIONS OF PARAMETERS ϕ

(n)
a,b AND ϕ

(n)
m,v

For the derivations of parameters ϕ(n)
a,b and ϕ

(n)
m,v , we take

<(xn|xn|4) as an example. Considering real-valued operations
and the form of this term, we focus our attention on the last
term 2<(

∑
i,j,k,a,b,c

h∗ijkhabcx
∗
n−ix

∗
n−jxn−kxn−axn−bx

∗
n−c) in

(42). Then, we have 2<(
L∑
i=1

h∗000h00ix
∗
nx
∗
nxnxnxnx

∗
n−i) and

2<(
L∑
i=1

h∗0i0h000x
∗
nx
∗
n−ixnxnxnx

∗
n). When the expectations

are calculated, all variables except for xn are replaced
by their expectations, e.g., E(h∗000h00ix

∗
nx
∗
nxnxnxnx

∗
n−i) =

E(h∗000h00ix
∗
n−i)x

∗
nx
∗
nxnxnxn. Since the moment of the

product of two statistically independent random vari-
ables is equal to the product of the two moments of
the corresponding independent random variables, we have
E(h∗000h00ix

∗
n−i) = E(h∗000)E(h00i)E(x∗n−i). Accordingly,

the parameters ϕ(n)
m,v(m = 3, v = 2) can be obtained. Given

the above derivation, all the ϕ(n)
a,b and ϕ(n)

m,v can be derived.
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