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Abstract
In sequential experiments, subjects become available for the study over a period
of time, and covariates are often measured at the time of arrival. We consider
the setting where the sample size is fixed but covariate values are unknown until
subjects enrol. Given a model for the outcome, a sequential optimal design approach
can be used to allocate treatments to minimize the variance of the estimator of
the treatment effect. We extend existing optimal design methodology so it can be
used within a nonmyopic framework, where treatment allocation for the current
subject depends not only on the treatments and covariates of the subjects already
enrolled in the study, but also the impact of possible future treatment assignments
within a specified horizon. The nonmyopic approach requires recursive formulae
and suffers from the curse of dimensionality. We propose a pseudo-nonmyopic
approach which has a similar aim to the nonmyopic approach, but does not involve
recursion and instead relies on simulating trajectories of future possible decisions.
Our simulation studies show that, for the simple case of a logistic regression with
a single binary covariate and a binary treatment, and a more realistic case with
four binary covariates, binary treatment and treatment-covariate interactions, the
nonmyopic and pseudo-nonmyopic approaches provide no competitive advantage
over the myopic approach, both in terms of the size of the estimated treatment
effect and also the efficiency of the designs. Results are robust to the size of the
horizon used in the nonmyopic approach, and the number of simulated trajectories
used in the pseudo-nonmyopic approach.

KEYWORDS
design of experiments; optimal design; dynamic programming; sequential design;
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1. Introduction

How treatments should be allocated in sequential experiments in the presence of co-
variates is a highly debated topic, particularly within the clinical trials community
[1,2]. We find and compare designs for experiments where subjects become available
sequentially, covariates are measured at the time of arrival, and treatment is assigned
soon after. We assume that a response is measured before the next subject arrives, and
we assume a fixed sample size. At any point in the experiment, the covariate values
for the subjects yet to enrol in the experiment are unknown. Such a set-up is often
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characteristic of large Phase III trials, but is also common in experiments in the social
sciences, such as political psychology lab experiments [3]. A specific example is an ob-
stetrics trial to investigate three different techniques for pain relief during labour and
their impact on normal vaginal delivery rates [4]. They recruited nulliparous women
who requested epidural for pain relief during labour in two maternity units between
August 1997 and April 2000. Age (categorized into five groups) and ethnicity (catego-
rized into three groups) of the mothers were important covariates, and the size of trial
(n = 1054) was determined at the start to achieve an anticipated power of 80% for
estimating the change in rate of normal vaginal delivery. In such settings, covariates
should be included in the analysis as their omission can result in bias [1].

From an optimal design point of view, the allocation of treatments should be done
to maximize precision, or equivalently minimize variance, of the parameter estimators
[5], which often results in balance, or equal replication, across groups defined by the
distinct combinations of the covariate values. The optimal design approach aims to
minimize the variance of the estimator of the treatment effect under the statistical
model which is assumed to describe the relationship between the treatments, covariates
and response. Atkinson [5] developed sequential optimal design methods for a linear
model using DA-optimality to make decisions for treatment allocation. In Section 2,
we extend this approach to the generalized linear model case, which can be applied
using any standard variance-based optimality criterion.

Minimization [6,7] is an alternative approach that directly targets equal replication
across covariate groups, and is used extensively in clinical trials. It has received some
criticism for being based on measures of imbalance of covariates which are not theo-
retically grounded [8] and it does not directly consider the precision of the parameter
estimators in a statistical model.

The aforementioned design approaches are myopic in the sense that treatment allo-
cation decisions are made using information about past subjects’ covariates, treatments
and, sometimes, response and the current subject’s covariates. Treatment allocation
for the current subject is made assuming that the experiment will terminate after its
response is obtained, ignoring the fact that there are further subjects which will enter
the trial, and that the estimators of interest will be based on data from the entire ex-
periment. In contrast, nonmyopic approaches incorporate the potential impact of the
current treatment decision on future possible decisions [9] in terms of efficiency of the
final estimators. In this paper, we assess whether there is an efficiency benefit to taking
into account the impact of future possible decisions. Dynamic programming is used
to evaluate some expected loss, where the expectation is taken over unknown quanti-
ties from future subjects [10, p. 323]. Most applications of nonmyopic approaches in
clinical trials aim to maximize a measure which combines efficiency and benefit of the
treatment to the subject. An example is the Gittens index, which is a deterministic
rule for allocating treatments to patients that aims to balance learning and efficiency
with patient benefit [11,12,13,14]. Nonmyopic approaches in general and the specific
case of a nonmyopic approach to logistic regression is described in Section 3.

The nonmyopic approach is computationally expensive which limits its use in prac-
tical settings. We propose a pseudo-nonmyopic approach in Section 4, which has a
similar aim but does not require recursive formulae for the evaluation of the expected
utility. We compare how it fares against the myopic and nonmyopic approaches in two
simulation studies in Section 5. We discuss our findings and potential extensions of
our work in Section 6.
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2. Myopic Sequential Design for Generalized Linear Models

Suppose there are n subjects in total in an experiment, fixed in advance. For i =
1, . . . , n, we observe values,

zi =
(
zi,1, ..., zi,s

)T
, (1)

for the s covariates associated with unit i and we select a treatment ti from a set of
possible treatments T . Following application of the treatment, we observe response yi.
For subjects 1, . . . , i, define

Zi =


zT1
zT2
...
zTi

 ,

ti =
(
t1, t2, ..., ti

)T
,

yi =
(
y1, y2, ..., yi

)T
,

to be the i × s matrix of covariate values, the i-vector of treatments and i-vector of
responses, respectively.

For i = 1, . . . , n, we assume a generalized linear model (GLM) with the yi following
independent exponential family distributions, with expectation µi related to a linear
predictor ηi = xT

i β via a link function g(µi) = ηi. The q-vector xi includes known
functions of the treatment ti and covariates zi, while the q-vector β includes the
unknown model parameters. In later examples, yi will be binary, with zero denoting
the favourable response and xi will hold a constant, linear effects of the treatment and
covariates and sometimes treatment-covariate products.

The information matrix for a GLM up to the allocation of the ith treatment can
be written as Mi = XT

i WiXi, with Xi the i × q model matrix with jth row xj and
Wi = diag {var(yj)}, j = 1, . . . , i; i = 1, . . . , n. The information matrix, which is the
asymptotic inverse variance-covariance matrix for the maximum likelihood estimator
β̂, can be used to define the class of D-optimality design selection criteria.

In a sequential setting, for the ith enrolled subject, a standard D-optimal design
chooses treatment ti to minimize the determinant of the inverse information matrix
given covariate values zi and the current state Si−1 = (Zi−1, ti−1,yi−1), the treatments
ti−1, covariates Zi−1 and responses yi−1 from subjects 1, . . . , i−1. That is, a D-optimal
design minimizes

ΨD(ti | zi, Si−1) =
∣∣∣(XT

i WiXi

)−1∣∣∣ , (2)

where |·| denotes matrix determinant. A D-optimal design minimizes the volume of
the confidence ellipsoid for β [15, p. 53]. The dependence of the design on responses
yi−1 is indirect, typically through estimates of β which are required to obtain the
entries var(yj) of matrix Wi.
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Suppose interest is confined to a subset of the model parameters, e.g. corresponding
to treatment effects, or in some linear combination of the parameters. In either case,
we can express the target of inference as ATβ, where A is a q×m matrix with m < q,
and define a DA-optimal design as

ΨDA
(ti | zi, Si−1) =

∣∣∣AT
(
XT

i WiXi

)−1
A
∣∣∣ , (3)

see Atkinson [15, p.137]. For precise estimation of a single treatment effect, A is a
q-vector with a single non-zero entry one corresponding to the treatment effect.

We adopt the common “biased coin” approach to optimal design in a clinical setting,
extending the work of Atkinson [16] for binary treatments, and assign treatment t ∈ T
to subject i with probability

P (ti = t | zi, Si−1) =
Ψ(t | zi, Si−1)−1∑

u∈T Ψ(u | zi, Si−1)−1
, (4)

where Ψ(·) denotes any variance-based optimality criterion. The probability of
selecting treatment t is a decreasing function of Ψ(·), meaning designs with lower
generalised variance will be preferred. The random element to selection avoids any
suspicion of selection bias [5].

There are two practical issues that arise in the application of sequential design for
GLMs. Firstly, for count or, especially, binary data, separation can occur where a
linear combination of covariates perfectly predicts the response. Separation can result
in the likelihood function becoming monotonic and maximum likelihood estimates of
the regression coefficients tending to plus or minus infinity [17]. It can be particularly
prevalent for small experiments, as in the early stages of a sequential study, and when
treatment factors and covariates are binary. A common approach to overcome this
issue is the introduction of a prior distribution for β to shrink parameter estimates
towards zero and hence reduce the bias introduced by separation. Common choices
include Jeffreys’ prior [18] and independent Cauchy priors [19]. Under either of these
choices, the inverse information matrix still provides a measure of dispersion of the
estimator. We adopt the latter approach.

Secondly, the objective functions (2) and (3) depend on values of the model param-
eters through matrix Wi [20]. To overcome this issue, for the initial n0 < n subjects
we assign treatments under the assumption that β is a vector of zeros. Responses from
these first n0 subjects are then used to obtain estimates of the model parameters which
are used for the selection of tn0+1. For the selection of subsequent treatments, all re-

sponses available up to that point are used to obtain estimates β̂i = (β̂0,i, . . . , β̂q−1,i)
T

(i = n0+1, . . . , n) which are used to evaluate probability (4). Algorithm 2 in Appendix
D outlines the steps in constructing a sequential optimal design.

3. Nonmyopic Approach

A nonmyopic approach to treatment allocation assesses the impact of a proposed allo-
cation for subject i using the impact on inference at the current stage and also across
future stages accounting for yet unmade allocation decisions. The number of future
subjects considered is called the horizon, with the number of subjects in the hori-
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zon denoted by N . A nonmyopic approach balances two conflicting aims in treatment
allocation:

(1) Exploitation: choose the treatment that leads to the most precise estimates of β
at the current state.

(2) Exploration: choose treatments which may not be optimal at the current state,
but leads to model-based exploration to increase information about the param-
eters.

Dynamic programming is an approach for solving multistage optimization problems
(see, for example, Powell [21]). The overall problem is broken into different stages,
which often correspond to points in time, and each stage of the problem can be
optimized conditionally on past states. The key idea is that the overall sequence of
decisions for treatment selection will be optimal for the entire experiment [10, p.
320]. The optimal design can be obtained by forward or backward induction. We
focus on backward induction since it is the approach that is usually most appropriate
in problems involving uncertainties [10, p. 328]. In backward induction, we start
by finding the optimal decision at the end of the sequence of decisions, taking into
account all possible treatments and covariates that may have been observed up until
that point. Then, one can work backwards and obtain the optimal design taking
expectations of unknown quantities [10, p.330]. See Huan and Marzouk [9] for a
recent overview of approximate dynamic programming in the context of Bayesian
experimental design. Dynamic programming has been used in some clinical trials
applications where one wishes to balance the aim of estimating the parameters
(exploration) with the aim of giving subjects the best possible treatment or obtaining
maximum total benefit to the patient (exploitation). See, for example, [22], [23], [24]
or [25].

We now describe the nonmyopic approach for the binary response. To keep
notation simple, we assume that we have linear predictor of the form 1 + zi + ti
where ti and zi are binary treatments and binary covariates, respectively. We begin
by constructing an initial design Xn0

with n0 subjects using the exchange algorithm.
We assume β = 0 as an initial guess for evaluating the objective function in the
construction of Xn0

. We then obtain responses for the first n0 subjects, yn0
, and fit the

model to obtain the initial maximum likelihood estimates of the model parameters, β̂0.

Now, supposing that we have a design for i − 1 subjects, and we have obtained
parameter estimates β̂i−1 as a result of that design. We observe covariate value zi for
the ith subject and wish to evaluate the impact of assigning treatment ti on decisions
on future possible subjects. For example, for horizon N = 1, we consider the expected
value of the objective function after i + 1 subjects. Suppose treatment ti is assigned
to subject i. Since the objective function depends on yi, we need to consider the two
possible responses that yi may take, and then consider the possible values that zi+1 can
take. For a given covariate value zi+1 for subject i+ 1, we denote by t∗i+1(zi+1, ti, yi |
zi, Si−1) the optimal choice of treatment for subject i+ 1 given zi+1 and ti:

t∗i+1(zi+1, ti, yi | zi, Si−1) = arg min
ti+1

Ψ(ti+1 | zi+1, Si), (5)

where t∗i+1 denotes a hypothetical future treatment decision, as opposed to ti, which
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denotes an actual treatment decision in the design. From here on, we suppress the
conditioning and write t∗i+1(zi+1, ti, yi) for simplicity. Now, we take the expectation of
the objective function over two possible responses which may be obtained to find an
expected value of the objective function Ψ(·) over the unknown response:

Eyi
Ψ(ti+1 | zi+1, Si) = P(yi = 0 | zi, ti, Si−1)Ψ(ti+1 | zi+1, Si)

+ P(yi = 1 | zi, ti, Si−1)Ψ(ti+1 | zi+1, Si),

where yi ∼ Bernoulli(πi) with πi given by:

πi =
exp

(
xiβ̂i−1

)
1 + exp

(
xiβ̂i−1

) , (6)

where xi =
(
1, zi, ti

)
is the ith row of the design matrix. Now, we consider the

possible covariate values that we may observe for the next subject. We denote by
P(zi = z) the probability that the ith subject has covariate value z. In some cases,
the distribution of the covariates may be known; if not, the distribution can be esti-
mated by the empirical distribution of the covariates of the first i subjects. We denote
by Ψi(ti | zi, Si−1) the expected value of the objective function when treatment ti is
assigned to subject i, taking into account the impact of the decision on one further de-
cision in the future. We obtain an expectation over the possible covariate combinations
of the optimality criterion:

Ψi(ti | zi, Si−1) = Ezi+1
Eyi

Ψ(t∗i+1(zi+1, zi, yi, ti, Si−1) | zi+1, zi, yi, ti, Si−1)

=
∑
z

P(zi+1 = z)
∑
y

P(yi = y)Ψ(t∗i+1(zi+1, Si) | zi+1, Si) ,
(7)

where t∗i+1(zi+1, Si) = arg mintΨ(t | zi+1, Si) and Si = (Zi, ti,yi).
For a horizon N greater than 1, we can use the following recursive relationship to

find the optimal treatment for subject i. The expected value of the objective function
after i + N subjects, when treatment ti has been assigned, is given as follows, for
k ∈ {i, i+ 1, ..., i+N − 1}:

Ψk(tk | zk, Sk−1)
= Ezk+1

Eyk
Ψk+1(t

∗
k+1(zk+1, Sk−1) | zk+1, Sk−1)

=
∑
z

P(zk+1 = z)
∑
y

P(yk = y)Ψk+1(t
∗
k+1(zk+1, Sk) | zk+1, Sk)

(8)

Ψi+N (ti+N | zi+N , Si+N−1) = Ψ(ti+N | zi+N , Si+N−1), (9)

where t∗i+1(zi+1, Si) = arg mintΨi+1(t | zi+1, Si) and Si = (Zi, ti,yi).
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The recursion the non-myopic approach makes it computationally expensive, in par-
ticular with increasing N . For illustrative purposes, we compare the CPU time for the
myopic and non-myopic approach (with horizon ranging from 1 to 5) for constructing
a DA-optimal design with 25 patients in Table 1. The design has one binary covariate
and a binary response, and the initial design is 10 patients. We observe that the non-
myopic approach is more time consuming than the myopic approach, and the CPU
time increases dramatically with increasing N .

4. Pseudo-nonmyopic approach

We now explore a pseudo-nonmyopic approach which involves evaluating an objective
function with a similar aim to that of the nonmyopic approach, without the use
of recursion which leads to the curse of dimensionality. In the pseudo-nonmyopic
approach, in order to make a decision about the treatment of the ith patient, we
generate M possible trajectories of covariate values for patient i + 1 until patient n.
For each of the M trajectories, we construct a pseudo-design in which we have the
i patients and (n − i − 1) patients in the trajectory, and treatments allocated using
an approach that we describe below. We look at the average value of the objective
function of the M pseudo-designs where we assign ti = 1, and compare it to the
average value of objective function the M pseudo-designs when ti = −1; we select
ti according to a probability that is weighted by these averages. The computational
burden is reduced as nested expectations and minimizations are not necessary but we
are still able to incorporate information about future possible decisions. We describe
this novel approach for the logistic model case and provide a simulation to show how
it compares to the myopic approach.

This approach takes averages over simulated values of the covariates for subjects
i+ 1 up to n. Optimization based on Monte Carlo simulations of unknown quantities
is typically conducted in a Bayesian setting for design of experiments [26], where
values of the unknown parameters may be simulated from a prior distribution. See
Gentle [27] for an overview of Monte Carlo methods and Ryan [28] for an application
to Bayesian design of experiments.

In order to create a design using the pseudo-nonmyopic approach for the logistic
model, just like in the sequential myopic and nonmyopic algorithms, we begin by
constructing an initial design Xn0

. This involves an exchange algorithm where we
assume β = 0 as an initial guess. We then generate responses yn0

, and fit the model

to obtain the initial estimates β̂n0
.

Then, to select a treatment for subject i, for i ∈ {n0 + 1, ..., n}, we observe zi. Based
on the assumed covariate distribution fz, we generate M possible trajectories for the
covariates, Z1

(i+1):n,Z
2
(i+1):n, ...,Z

m
(i+1):n, where

Zm
(i+1):n =


zmi+1

T

zmi+2
T

...
zmn

T

 , (10)
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for m ∈ {1, 2, ...,M}. We assume, as for the nonmyopic approach, that we have a
distribution fz for the covariate z. This may be the true distribution in the population
(if it is known), or an empirical approximation based on the subjects in the trial up
until the ith subject. The covariate distribution may depend on time, in which case
we refer to it as a dynamic covariate. We then allocate treatments sequentially along
each trajectory.

Given the first subject in the trajectory, zmi+1, we choose the treatment t∗
m

i+1 which
minimizes the objective function Ψ given ti, and the treatments and covariates of
previous subjects and estimates β̂i−1 based on the responses of the previous subjects,
yi−1:

t∗
m

i+1

(
zmi+1, ti | zi, Si−1

)
= arg min

ti+1

Ψ
(
ti+1 | zi, zmi+1, ti, Si−1

)
. (11)

To allocate a treatment for the next subject in the trajectory with covariate values
zmi+2, we then assume that t∗

m

i+1 has been allocated to subject zmi+1 and choose the
treatment t∗

m

i+2 which minimizes the objective function. We make the assumption that
the future decisions are independent of the future responses. This means that we
assume the same estimate for β as in Equation (11) and do not update it, as it would
seem circular to use responses generated from a particular estimate of the parameters
to re-estimate the same parameters. We continue in this way until all subjects in the
trajectory have been allocated a treatment:

For each j in {i+ 2, i+ 4, ..., n}, we define:

t∗
m

j

(
zmj , t

∗
j−1 | zi,Zm

(i+1):(j−1), ti, t
∗
(i+1):(j−2), Si−1

)
= arg min

tj
Ψ
(
tj | zi,Zm

(i+1):(j), ti, t
∗
(i+1):(j−1), Si−1

)
. (12)

For the mth trajectory, we obtain a pseudo-design with n subjects where the ith
treatment is 1, as well as a pseudo-design where the ith subject receives treatment −1.
We denote the objective function of the two designs as follows:

Ψ
(
tn | zi,Zm

(i+1):n, ti = 1, t∗
m

(i+1):(n−1), Si−1

)
, (13)

Ψ
(
tn | zi,Zm

(i+1):n, ti = −1, t∗
m

(i+1):(n−1), Si−1

)
. (14)

We define the average objective function for i = n0 + 1, ..., n − 1 across the M
designs, for ti = t:

Ψ(ti = t) =
1

M

M∑
m=1

Ψ
(
tn | zi,Zm

(i+1):n, ti = t, t∗
m

(i+1):(n−1), Si−1

)
, (15)

For i = n, we do not generate any future covariates so we have:
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Algorithm CPU time (seconds)
Myopic 0.124

Nonmyopic

N = 1 0.552
N = 2 3.862
N = 3 31.454
N = 4 272.821
N = 5 2165.024

Pseudo-nonmyopic
M = 10 2.307
M = 50 10.787

Table 1.: CPU time in seconds for myopic, nonmyopic (with horizon N ranging from
1 to 5) and pseudo-nonmyopic (with the number of trajectories M equal to 10 or 50)
approaches to constructing a DA-optimal design with 25 patients, where there is one
binary covariate and binary response. The initial design is 10 patients. Simulations
were performed on a Linux machine with a 64-bit processor and 16 GB of memory.

Ψ(ti = t) = Ψ (tn = t | zn, Sn−1) . (16)

for t ∈ {−1, 1}.

We sample ti from the set {−1, 1} where the probability of selecting 1 is given by

Ψ(ti = 1)−1

Ψ(ti = 1)−1 + Ψ(ti = −1)−1
. (17)

We then observe the response yi and refit the model to obtain β̂i.

We compare the CPU time for the myopic, nonmyopic and pseudo-nonmyopic ap-
proaches to constructing a DA-optimal design in Table 1. The design has 25 patients,
one binary covariate and a binary response, and the initial design is 10 patients. The
pseudo-nonmyopic approaches with 10 or 50 trajectories take into account decisions
up until the end of the experiment, but since they require no recursion, run faster than
the nonmyopic approaches with horizon 2 or greater.

5. Simulations

We conduct two simulation studies to compare the myopic, nonmyopic and pseudo-
nonmyopic approaches to constructing sequential DA-optimal designs. Specifically, we
aim to compare estimates of the model parameters across the three methods, as well
as the efficiencies of the nonmyopic and pseudo-nonmyopic approaches relative to the
myopic approach. We define the DA-efficiencies of a design Xi relative to another
design X∗i with parameter values β̂i in the logistic model case as
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EffDA
=

ΨDA

(
X∗

i , β̂i

)
ΨDA

(
Xi, β̂i

)


1/m

, (18)

where m is the number of parameters of interest.

The first simulation explores a simple setting where there is a single covariate
and no treatment-covariate interactions. We compare a number of settings for the
sequential design approaches, including the size of the initial design, the horizon for
the nonmyopic approach and the number of trajectories for the pseudo-nonmyopic
approach. The second simulation explores a more realistic setting with four covariates,
where treatment-covariate interactions are of interest. A few select settings for the
nonmyopic and pseudo-nonmyopic approaches are chosen and the applicability of
these approaches to this more complex setting is demonstrated.

5.1. Single covariate setting with no interaction

In the first simulation, we have a simple set-up with 250 units, where a single covariate
is observed. There are two parameters of interest: the effect of treatment and the
effect of the covariate. The covariate can take values in {−1, 1} and is generated
such that P(zi = 1) = 0.5 and P(zi = −1) = 0.5 for all i. We assume the true
model for the response is yi ∼ Bernoulli(πi) with logit(πi) = zi + ti, and generate
responses according to this model. We fit the models using the R function bayesglm

in the arm package [29], with Cauchy prior distribution with center zero and scale
given by 2.5 for both the treatment and covariate parameters. We generate responses
ensuring that the data generating mechanism is the same across simulations compar-
ing the myopic, nonmyopic and pseudo-nonmyopic designs as described in Appendix A.

Since the responses are generated with a logistic model, the information matrix
and the objective function depend on values of the model parameters, so estimates
of parameters are needed in order to design the experiment aimed to estimate these
parameters in the first place. An initial design is constructed with the exchange
algorithm with DA optimality as the objective function, under the assumption that
β is a vector of zeros. We consider four possible sizes for the initial design: 10 units,
20 units, 50 units and 100 units.

We consider the following approaches for constructing a sequential DA-optimal de-
sign:

• A myopic DA-optimal design.
• A nonmyopic DA-optimal design with horizon N = 1, with the correct covariate

distribution assumed.
• A nonmyopic DA-optimal design with horizon N = 2, with the correct covariate

distribution assumed.
• A nonmyopic DA-optimal design with horizon N = 3, with the correct covariate

distribution assumed.
• A nonmyopic DA-optimal design with horizon N = 1, with the empirical covari-
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ate distribution assumed.
• A nonmyopic DA-optimal design with horizon N = 2, with the empirical covari-

ate distribution assumed.
• A nonmyopic DA-optimal design with horizon N = 3, with the empirical covari-

ate distribution assumed.
• A pseudo-nonmyopic DA-optimal design with M = 10.
• A pseudo-nonmyopic DA-optimal design with M = 50.

Designs are evaluated using the efficiency relative to the myopic design, given by
Equation (18), at each sample size between the initial sample size and 250, inclusive.
The true values of the parameters are used to calculate ΨDA

. The simulation is repeated
100 times.

5.1.1. Results

Figure 1 displays the estimates of βi for all methods when initial sample size is 10.
Across all methods, as sample size increases, the estimates converge towards the true
value and the variability of the estimates reduces. We observe that the MC error bars
include the true value of the estimates at a smaller sample size for the myopic approach
compared to the other approaches. This is particularly evident for the treatment effect.
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Figure 1.: Estimates of β̂i for the simulation with a single covariate, no treatment-
covariate interactions and initial sample size of 10. Results for the myopic approach,
the nonmyopic approach and pseudo-nonmyopic approach to constructing DA-optimal
designs are shown. For the nonmyopic approach, we consider the horizon equal to N =
1, 2 and 3, and we consider both the the case where the correct covariate distribution
is known, and when it is unknown so the empirical covariate distribution is used
(nonmyopic learn). For the pseudo-nonmyopic approach, we consider M = 10 and 50.
Blue dots indicate the median of the estimate across simulations, and the grey area
indicates ±1.96× MC error. The true values of β are indicated in red.

In Figure 2, we plot the efficiencies of the nonmyopic and pseudo-nonmyopic ap-
proaches relative to the myopic approach with initial sample size of 10. We observe that
initially, the nonmyopic approach and pseudo-nonmyopic approaches are less efficient
than the myopic approach. When sample size is roughly 150, there is no noticeable
difference between the nonmyopic approaches and the myopic approach. Further, there
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efficiencies for the nonmyopic approaches appear to be similar regardless of the choice
of N and whether the true or empirical distribution of the covariates is used. For the
pseudo-nonmyopic approach, however, the performance is significantly lower than the
myopic approach until sample size is over 230. Increasing the number of trajectories
from 10 to 50 has very little effect on the efficiency.
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Figure 2.: Relative efficiencies of the nonmyopic and pseudo-nonmyopic DA-optimal
designs relative to the myopic DA-optimal designs for the simulation with a single
covariate, no treatment-covariate interactions and initial sample size of 10. Blue dots
indicate the median of the estimate across simulations, and the grey area indicates
±1.96× MC error. The red line indicates equal efficiency to the myopic approach.

We observe in this simulation that there appears to be no benefit to the nonmyopic
and pseudo-nonmyopic approaches in this setting where we have one binary treatment
and one binary covariate, and the covariate is generated such that P (zi) = 0.5 for all
i. Results for initial sample sizes of 20, 50 and 100 are shown in Appendix B. With a
larger initial sample size, the initial estimates of β are closer to their true values and
the initial efficiencies are closer to 1.

5.2. Multiple covariates and treatment-covariate interactions

In the second simulation, we explore a more complex setting which could realistically be
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observed in a clinical trial scenario, to demonstrate the practicality of this method. In
this simulation, there are 250 patients and four binary biomarkers are measured on each
patient. Such a setting could realistically be observed in a clinical trial; for example,
the FOCUS 4 trial recruited patients registered with newly-diagnosed, advanced or
metastatic disease from colorectal cancer, from four different molecular cohorts [30].
There are nine parameters in the model: the effect of treatment, the effect of the
four biomarkers and the four treatment-biomarker interactions. We assume that the
effect of treatment and the four treatment-biomarker interactions are of interest. The
covariates take values in {1,−1} and generated such that:

P(zi,1 = 1) = 0.5

P(zi,2 = 1) = 0.4

P(zi,3 = 1) = 0.7

P(zi,4 = 1) = 0.2.

We assume the true model for the response is yi ∼ Bernoulli(πi) with logit(πi) =
3zi,2 + 4zi,4 + 2zi,4ti and generate responses according to this model. We fit the model
with bayesglm and try to control sources of variability as described in Appendix A.
The initial design is constructed with an exchange algorithm to allocate treatments to
50 units, under the assumption that β is a vector of zeros.
We consider the following different approaches for constructing a sequential DA opti-
mal design:

• A myopic DA-optimal design.
• A nonmyopic DA-optimal design with horizon N = 3, with the correct covariate

distribution assumed.
• A pseudo-nonmyopic DA-optimal design with M = 10.

5.2.1. Results

In Figure 3, we see the estimates of β for the myopic approach, the nonmyopic
approach with N = 3 and the pseudo-nonmyopic approach with M = 10, where the
initial sample size is 50. We observe that, across all three methods, the second and
fourth biomarkers, which have a strong effect on the response, are poorly estimated;
the effect is attenuated towards zero. The myopic approach is able to estimate the
interactions better than the nonmyopic and pseudo-nonmyopic approaches; the inter-
action between the treatment and fourth biomarker is estimated well by the myopic
approach, but it is attenuated towards zero for the nonmyopic and pseudo-nonmyopic
approaches. Further, the interaction between the treatment and second biomarker is
not estimated well for all approaches, although the myopic approach achieves a value
closer to the true value than the nonmyopic or pseudo-nonmyopic approaches.

In Figure 4, we plot the DA-efficiencies of the nonmyopic and pseudo-nonmyopic
approaches relative to the myopic approach. The nonmyopic approach and pseudo-
nonmyopic approaches are generally less efficient than the myopic approach, and we
observe that the pseudo-nonmyopic approach achieves a higher efficiency than the
nonmyopic approach at the end of the experiment.
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Figure 4.: Relative efficiencies of the nonmyopic and pseudo-nonmyopic DA-optimal
designs relative to the myopic DA-optimal designs for the simulation with a four
covariates, treatment-covariate interactions and initial sample size of 50. Blue dots
indicate the median of the estimate across simulations, and the grey area indicates
±1.96× MC error. The red line indicates equal efficiency to the myopic approach.

In this more complex example, we observe that the myopic approach is better
able to estimate the interaction effects, and is more efficient than the nonmyopic
and pseudo-nonmyopic approaches. We found that, under this particular setting, the
pseudo-nonmyopic approach is more efficient than the nonmyopic approach. Simula-
tions with other covariate settings and choices in optimality criteria were explored by
Tackney [31], which showed consistently that the myopic approach is more efficient
than the nonmyopic and pseudo-nonmyopic approaches.

6. Discussion

This paper extended the sequential optimal design approach first proposed by
Atkinson [5] for the logistic model case and for any optimality criterion. We then
placed this approach in a nonmyopic framework. We then developed a novel method-
ology called the pseudo-nonmyopic approach which is still able to take into account
future possible subjects, but is less computationally expensive than the nonmyopic
approach. Simulations showed that the nonmyopic approach and pseudo-nonmyopic
approaches do not offer competitive advantage to the myopic approach for the logistic
model case with a binary treatment where there is a single covariate, and also when
there are four binary covariates with treatment-covariate interactions. The presented
method could easily be applied to settings with a different number of covariates; for
example, the obstetrics trial by the COMET Study Group UK used Age (categorized
into five categories) and Ethnic Group (categorized into three groups) as covariates [4].

There are a number of possible extensions to this work which would improve its
ability to be directly applicable to clinical trials and other experiments involving
human subjects. Firstly, we assume responses are measured soon after treatments
are given to subjects. In the particular example of the obstetrics trial, where the
treatment is pain relief during labour and the outcome is mode of delivery, this
assumption may be realistic. However, in many medical settings, there is a long
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period of time between the onset of treatment and measurement of response. Some
method to allow for a delay between treatment allocation and response could be
useful. One modification would be to allow for the method to be batch sequential;
instead of allocating treatments to one subject at a time, a group of subjects may
be given optimal treatments by using the exchange algorithm. It is also possible to
incorporate delay in adaptive designs. Hardwick et al. achieve this by assuming that
subjects arrive according to a Poisson process [32].

Secondly, we do not consider toxicity in our work. We assume that the treatment
which leads to a better response is the more desirable treatment, but it is possible
that such a treatment has unsafe toxicity levels [33]. In our algorithms for treatment
assignment, if the optimality criterion is equal for treatment ti = 1 and ti = −1, we
would assign the treatment at random. In clinical trials, this is less likely to happen as
relative efficiency of the treatments need to be considered in conjunction with relative
toxicity [34]. In general, Rosenberger [33] recommended that adaptive designs should
be considered after previous experiments have been able to establish low toxicity of
the treatments.

Thirdly, while we have assumed a total of 250 subjects in our simulations, clinical
trials typically have stopping rules which determine when the trial should terminate
[35]. See [36] for a frequentist perspective and [37] and [38] for a Bayesian perspective
on stopping rules in interim analysis. Including this element into our designs would
mean that our methodology is more generally applicable to clinical trials. Further,
we may be able to make statements about relative numbers of subjects and costs
required in order to detect a significant difference in treatment effect for each method.

We have presented the nonmyopic and pseudo-nonmyopic algorithms in the setting
where the response and treatments are binary. Natural extensions include allowing
for more complex treatment structures, such as factorial designs, or allowing for a
continuous response. Computing the expected objective function for a continuous
response would require Monte-Carlo simulations. Extending our framework for the
nonmyopic approach to allow for a more general response will require greater computa-
tional efficiency in our algorithms. This is also true of the pseudo-nonmyopic approach.

Appendix A. Generation of simulated data

In the simulations in Section 5.1 and 5.2, the generation of responses can be a source
of unnecessary variability. When comparing the myopic and nonmyopic designs, or
the myopic and pseudo-nonmyopic designs, we generate the responses in the following
way:

(1) Generate a deviate ui from the Unif(0, 1) distribution.
(2) Set

yi =

{
1 if ui ≥ πi
0 if ui < πi

. (A1)

The deviates ui kept the same for the approaches being compared to try to
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minimize sources of random variability in the simulation.
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Appendix B. Further Results
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Figure B1.: Estimates of β̂i for the simulation with a single covariate, no treatment-
covariate interactions and initial sample size of 20. Results for the myopic approach,
the nonmyopic approach and pseudo-nonmyopic approach to constructing DA-optimal
designs are shown. For the nonmyopic approach, we consider the horizon equal to N =
1, 2 and 3, and we consider both the the case where the correct covariate distribution
is known, and when it is unknown so the empirical covariate distribution is used
(nonmyopic learn). For the pseudo-nonmyopic approach, we consider M = 10 and 50.
Blue dots indicate the median of the estimate across simulations, and the grey area
indicates ±1.96× MC error. The true values of β are indicated in red.
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Figure B2.: Relative efficiencies of the nonmyopic and pseudo-nonmyopic DA-optimal
designs relative to the myopic DA-optimal designs for the simulation with a single
covariate, no treatment-covariate interactions and initial sample size of 20. Blue dots
indicate the median of the estimate across simulations, and the grey area indicates
±1.96× MC error. The red line indicates equal efficiency to the myopic approach.
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Figure B3.: Relative efficiencies of the nonmyopic and pseudo-nonmyopic DA-optimal
designs relative to the myopic DA-optimal designs for the simulation with a single
covariate, no treatment-covariate interactions and initial sample size of 50. Blue dots
indicate the median of the estimate across simulations, and the grey area indicates
±1.96× MC error. The red line indicates equal efficiency to the myopic approach.
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Figure B4.: Relative efficiencies of the nonmyopic and pseudo-nonmyopic DA-optimal
designs relative to the myopic DA-optimal designs for the simulation with a single
covariate, no treatment-covariate interactions and initial sample size of 100. Blue dots
indicate the median of the estimate across simulations, and the grey area indicates
±1.96× MC error. The red line indicates equal efficiency to the myopic approach.

Appendix C. R code

We refer readers to Chapter 8 of [31] for a vignette of the R code and examples of
how to implement the the myopic, nonmyopic and pseudo-nonmyopic approaches to
optimal design. The function for the nonmyopic approach to optimal design for logistic
regression is described in Section 8.2.2, and the function for the pseudo-nonmyopic
approach is described in Section 8.3.
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Appendix D. Myopic design algorithm

Algorithm 1 Myopic sequential optimal design: returns a design matrix for a sequen-
tially conducted experiment. Inputs are the covariate values, Zn, and the number of
subjects in initial design, n0.

1: function SeqOptL(zn, n0)

2: Initialization
3: Construct initial design Xn0

using an exchange algorithm for the first n0 sub-
jects assuming β = 0.

4: Observe responses yn0
=
(
y1, y2, . . . , yn0

)T
.

5: Fit the required generalized linear model to obtain a penalised MLE β̂n0
.

6: for i in n0 + 1 to n do
7: Observe zi = (zi,1, ..., zi,s)

T

8: Calculate Ψ(t | ti−1,Zi,yi−1) for each treatment t ∈ T .
9: Sample treatment allocated to subject i with probability (4).

10: Observe response yi.
11: Refit model with responses yi and updated design matrix Xi.
12: Obtain updated parameter estimates β̂i.
13: end for

14: return Xn

15: end function
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Appendix A. Generation of simulated data

In the simulations in Section 5.1 and 5.2, the generation of responses can be a source
of unnecessary variability. When comparing the myopic and nonmyopic designs, or
the myopic and pseudo-nonmyopic designs, we generate the responses in the following
way:

(1) Generate a deviate ui from the Unif(0, 1) distribution.
(2) Set

yi =

{
1 if ui ≥ πi
0 if ui < πi

. (A1)

The deviates ui kept the same for the approaches being compared to try to
minimize sources of random variability in the simulation.
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Appendix B. Further Results
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Figure B1.: Estimates of β̂i for the simulation with a single covariate, no treatment-
covariate interactions and initial sample size of 20. Results for the myopic approach,
the nonmyopic approach and pseudo-nonmyopic approach to constructing DA-optimal
designs are shown. For the nonmyopic approach, we consider the horizon equal to N =
1, 2 and 3, and we consider both the the case where the correct covariate distribution
is known, and when it is unknown so the empirical covariate distribution is used
(nonmyopic learn). For the pseudo-nonmyopic approach, we consider M = 10 and 50.
Blue dots indicate the median of the estimate across simulations, and the grey area
indicates ±1.96× MC error. The true values of β are indicated in red.
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Figure B2.: Relative efficiencies of the nonmyopic and pseudo-nonmyopic DA-optimal
designs relative to the myopic DA-optimal designs for the simulation with a single
covariate, no treatment-covariate interactions and initial sample size of 20. Blue dots
indicate the median of the estimate across simulations, and the grey area indicates
±1.96× MC error. The red line indicates equal efficiency to the myopic approach.
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Figure B3.: Relative efficiencies of the nonmyopic and pseudo-nonmyopic DA-optimal
designs relative to the myopic DA-optimal designs for the simulation with a single
covariate, no treatment-covariate interactions and initial sample size of 50. Blue dots
indicate the median of the estimate across simulations, and the grey area indicates
±1.96× MC error. The red line indicates equal efficiency to the myopic approach.
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Figure B4.: Relative efficiencies of the nonmyopic and pseudo-nonmyopic DA-optimal
designs relative to the myopic DA-optimal designs for the simulation with a single
covariate, no treatment-covariate interactions and initial sample size of 100. Blue dots
indicate the median of the estimate across simulations, and the grey area indicates
±1.96× MC error. The red line indicates equal efficiency to the myopic approach.

Appendix C. R code

We refer readers to Chapter 8 of [31] for a vignette of the R code and examples of
how to implement the the myopic, nonmyopic and pseudo-nonmyopic approaches to
optimal design. The function for the nonmyopic approach to optimal design for logistic
regression is described in Section 8.2.2, and the function for the pseudo-nonmyopic
approach is described in Section 8.3.
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Appendix D. Myopic design algorithm

Algorithm 2 Myopic sequential optimal design: returns a design matrix for a sequen-
tially conducted experiment. Inputs are the covariate values, Zn, and the number of
subjects in initial design, n0.

1: function SeqOptL(zn, n0)

2: Initialization
3: Construct initial design Xn0

using an exchange algorithm for the first n0 sub-
jects assuming β = 0.

4: Observe responses yn0
=
(
y1, y2, . . . , yn0

)T
.

5: Fit the required generalized linear model to obtain a penalised MLE β̂n0
.

6: for i in n0 + 1 to n do
7: Observe zi = (zi,1, ..., zi,s)

T

8: Calculate Ψ(t | ti−1,Zi,yi−1) for each treatment t ∈ T .
9: Sample treatment allocated to subject i with probability (4).

10: Observe response yi.
11: Refit model with responses yi and updated design matrix Xi.
12: Obtain updated parameter estimates β̂i.
13: end for

14: return Xn

15: end function
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