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We study certain infinite families of two-particle operators exchanged in 4pt correlators
hOp1

Op2
Op3

Op4
i of tensor multiplets living on the AdS3 × S3 background. This is the weakly curved,

weakly coupled SUGRA theory dual to the D1-D5 system with RR flux. At tree level in Mellin space, all
these correlators are nicely determined by a single amplitude, which makes manifest the large p limit, the
connection with the flat space S-matrix, and a six dimensional conformal symmetry. We compute the

ð1; 1Þ × ð1; 1Þ superconformal blocks for the two-dimensional N ¼ ð4; 4Þ conformal theory at the
boundary, and then we obtain a formula for the anomalous dimensions of the two-particle operators
exchanged in the symmetric and antisymmetric flavor channels. These anomalous dimensions solve a
mixing problem which is analogous to the one in AdS5 × S5 with interesting modifications. Along the way

we show how the ð1; 1Þ × ð1; 1Þ superconformal blocks relate to those in N ¼ 4 SYM in four dimensions,
and provide new intuition on the known data for AdS5 × S5.

DOI: 10.1103/PhysRevD.104.126022

I. INTRODUCTION

Understanding what are the possible UV completions of
classical gravity is one of the most exciting and challenging
problems of modern theoretical physics. Valuable help
might come from solving the same problem, but in spaces
with an AdS factor, where the AdS/CFT correspondence
plays an important role [1]. In such circumstances, would a
low energy field theorist be able to reconstruct the under-
lying curved string theory, let us say, out of scattering data
of gravitons and single particles operators? and how?.
Recent work, based on analytic bootstrap techniques in

the dual conformal field theory (CFT), has shown how to
address this question in AdS5 × S5 SUGRA, away from the
classical regime [2–10] and up to one-loop in Newton’s
constant. Most notably, the simplest one-loop amplitude for
four gravitons (supermultiplets) was computed in [4] by
implementing a bootstrap program which, in order to
determine the amplitude, used the self-consistently of the
operator product expansion (OPE) for all spins. The main

observation in [4] was to notice that when scattering states
are single particle operators, such as gravitons and Kaluza-
Klein modes, the operators flowing in the OPE with leading
order CFT data are two-particle operators, and the latter can
be studied by solving a well-defined mixing problem at tree
level [11]. The CFT data of the two-particle operator
can then be used to construct the leading discontinuities
of the one-loop correlator and, with the help of crossing
symmetry, bootstrap the full correlator.
Even though the two-particle bootstrap does not com-

pletely fix the amplitude, the left over ambiguities were
shown to be very constrained, with finite spin support.1

Interpreted as an effective field theory computation, this
result encourages the idea that the presence of ambiguities,
at least in some theories of gravity, might not be as severe as
naive considerations would suggest. In fact, the same two-
particle bootstrap program was then extended to compute
one-loop 4pt amplitudes of arbitrary external single particle
operators, carrying Kaluza-Klein charge under the sphere.
The one-loop 4pt amplitudes so constructed were shown to
pass spectacular consistency checks [8].
With analogous surprise, the spectrum of anomalous

dimensions of two-particle operators in AdS5 × S5 is not
completely lifted by tree level supergravity [11,14], but
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1In the case of four gravitons (supermultiplets), the only spin
zero ambiguity was resolved independently in [12,13].
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remains partially degenerate. Only α0 corrections lift this
partial degeneracy uniquely [15–17], despite the fact that
the curved Virasoro-Shapiro amplitude [18] is not uniquely
determined within the bootstrap approach, because
of ambiguities similar to those mentioned previously.
Again, we seem to converge on the concrete possibility
that a rich mathematical structure lies within AdSdþ1 ×
Sdþ1 supergravity, as for the beautiful hidden conformal
symmetry discovered in [19].
In this paper we will continue exploring the structure of

AdSdþ1 × Sdþ1 gravity, by studying the case of AdS3 × S3.
In particular, by studying tree level amplitudes of (chiral
primaries) single particle fields in the weakly curved
SUGRA regime of the D1-D5 system with Ramond-
Ramond fluxes [20–22]. Currently, this is the only other
SUGRA background in which the spectrum of the dual
(strongly coupled) CFT theory can be investigated in great
detail with our method. In fact, we will proceed in parallel
with AdS5 × S5, first by developing the necessary super-
conformal block technology, with N ¼ ð4; 4Þ super-
conformal symmetry, and then use it to extract OPE data
from the tree level correlators hOp1

Op2
Op3

Op4
i boot-

strapped in [23–27].
The single particle operators Op living on AdS3 × S3

originate from a number n of tensor multiplets in the 6d
supergravity compactified on S3, denoted by sI in [28–31],
and therefore have also a flavor index, besides the Kaluza-
Klein charge p. Following the unmixing approach of
[11,14], we will compute tree level anomalous dimensions
of certain two-particle operators with flavor, denoted
afterwards by Oþ

ðrsÞ, exchanged in hOp1
Op2

Op3
Op4

i. We

will find a very simple answer, which, apart for the factor of
D explained in due course, takes the following form,

ηþτ;l;½ab�ðrsÞ ¼ −
2

N

Dτ;l;½ab�
ðl6d þ 1Þ2

l6d ¼ lþ 2r − a − 1 −
1þ ð−1Þaþl

2
ð1Þ

where the AdS3 quantum numbers τ, l are the free theory
dimension and spin, then ½ab� are the S3 quantum numbers,
and finally ðrsÞ is a pair of integers indexing the two-
particle operator. Remarkably, l6d is essentially the only
quantity controlling the anomalous dimensions, and it has
the interpretation of a 6d effective spin. In particular, it only
depends on r, rather than ðrsÞ. Thus, similarly to what
happens in AdS5 × S5, anomalous dimension with a
structure like (1) are degenerate as long as the AdS3 × S3

quantum numbers give the same value for l6d.
The tensor multiplet correlators hOp1

Op2
Op3

Op4
i on

AdS3 × S3 in fact benefit from a hidden 6d conformal
symmetry, which nicely resum them all into a single
Mellin amplitude, and simply explains the residual degen-
eracy of the two-particle spectrum in (1). InAdS5 × S5 this is

a 10d conformal symmetry [19]. What is intriguing about
this parallelism is the way the hidden conformal symmetry
actually goes across dimensions. We will show indeed that,
as a byproduct of our studies here, superconformal blocks
for both AdS5 × S5 and AdS3 × S3 can be treated at once by
using the ð1; 1Þ × ð1; 1Þ formalism that we will introduce.

II. TREE LEVEL CORRELATORS

The correlators we are interested in have a (generalized)
disconnected free part and a dynamical contribution of the
form

hOp1
Op1

Op1
Op4

idyn: ¼ kinematics ×Ap⃗ ð2Þ

where A will denote the amplitude of the correlator. We
will clarify in the next section what kinematics stands
for, and what are all the allowed superconformal structures,
such that A is function of the cross ratios U, V in
spacetime, and Ũ, Ṽ on the sphere [32]. Equation (2) is
a non perturbative statement, and the AdS3 × S3 amplitude
we will study fits (2) for a specific choice of kinemat-
ics, hereafter denoted by Aþ

p⃗ .
Parametrising spacetime insertion points with 4d embed-

ding coordinates, these are given by

U ¼ X12X34

X13X24

; V ¼ X14X23

X13X24

ð3Þ

with Xij ¼ Xi:Xj and Xii ¼ 0 for i, j ¼ 1, 2, 3, 4. Similarly,
Ũ and Ṽ are defined as above with the replacement X → Y,
where Yi are null and parametrize internal space insertion
points. Then, the natural language to write Aþ

p⃗ is Mellin

space [34], upgraded for AdSdþ1 × Sdþ1 backgrounds as
done in [33]. Indeed, the following very compact repre-
sentation holds for Aþ

p⃗ ,

Aþ
p⃗ ¼ −

I
dsdt

X
s̃;t̃;ũ

UsVtŨs̃Ṽ t̃ðΓ⊗ ×Mp⃗ðs; s̃;…ÞÞ ð4Þ

where

Γ⊗ ¼ Γ½−s�Γ½−sþ cs�
Γ½1þ s̃�Γ½1þ s̃þ cs�

×
t − channel
t̃ − channel

×
u − channel
ũ − channel

ð5Þ

with2

2That p3 appears singled out is conventional, and will have to
do with kinematics. A trivial change of variables can be used
to implement permutation symmetric conventions, but there is no
point in doing that since superconformal blocks do not have such
a symmetry. In fact, in both cases another change of variables to
fs; s̃;…g is needed to manifest crossing. See Eq. (2.12) of [17].
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sþ tþ u ¼ −p3 − 1; s̃þ t̃þ ũ ¼ p3 − 1

cs ¼
p1 þ p2 − p3 − p4

2
; ct ¼

p1 þ p4 − p2 − p3

2
; cu ¼

p2 þ p4 − p3 − p1

2
ð6Þ

Here s, t, u and s̃; t̃; ũ are a choice of Mellin variables, and
the triplet cs, ct, cu accompanies our choice in charge
space. Note that the sum (4) is restricted to the triangle
s̃ ≥ −minð0; csÞ, t̃ ≥ −minð0; ctÞ, ũ ≥ −minð0; cuÞ due to
the Γ function in the denominator of Γ⊗. It can also be
turned into a contour integral. This is useful since it was
shown in [33] that upon taking pi large the integrals
localize on a classical saddle point whose action is
determined just by Γ⊗. The result matches the computation
of four geodesics shooting from the boundary and meeting
in the bulk. Reading off the momenta at the intersection
point, it was understood that the combinations of Mellin
variables

s ¼ sþ s̃; t ¼ tþ t̃; sþ tþ u ¼ −2 ð7Þ

evaluated at the saddle point, become proportional to actual
Mandelstam invariants of a flat space scattering process in
higher dimensions, where the sphere is decompactified.
This nicely explains that limp→∞M is fixed by the flat
space S-matrix [35,36] and provides a canonical covarian-
tization of M1111 → Mp⃗ onto AdS3 × S3, yielding the
result

M1111ðs; tÞ ¼
δ12δ34

sþ 1
þ δ14δ23

tþ 1
þ δ13δ24

uþ 1
ð8Þ

where the δij ≡ δIiIj are n dimensional Kronecker deltas
referred to the flavor indexes I that we have been omitting
until now. Upon assuming the existence of a 6d conformal
symmetry, (8) becomes the exact result,

Mp⃗ ¼ M1111ðs; tÞ: ð9Þ

In particular, we can read off the Mellin amplitude for
generic charges p⃗ out of the very same M1111.
The flavor structure of the correlators will be decom-

posed in channels, e.g., [37,38]. Thus, we introduce the
singlet, I, the symmetric, S, and the antisymmetric channel,
A. In the order,

MI
p⃗ ¼

1

n

�
1

tþ 1
þ 1

uþ 1

�
þ 1

sþ 1
; I¼ δ12δ34

MS
p⃗ ¼

1

2

�
1

tþ 1
þ 1

uþ 1

�
; S¼ δ13δ24þ δ14δ23−

2

n
δ12δ34

MA
p⃗ ¼ 1

2

�
1

tþ 1
−

1

uþ 1

�
; A¼ δ14δ23− δ13δ24 ð10Þ

Wewill focus onMf
p⃗ with f ¼ S;A, since these are closed

sectors. For the singlet channel one should include other
correlators in the 6d (2,0) supergravity [25,27], such that all
allowed two-particle operators participate.

III. SUPERCONFORMAL SYMMETRY

The dual conformal field theory that we are studying has
N ¼ ð4; 4Þ superconformal symmetry in 2d, and the
relevant superconformal blocks belong to the product
ð1; 1Þ × ð1; 1Þ, where the notation (1,1) refers to super-
conformal blocks of SUð1; 1j2Þ, studied in [39]. These
superconformal blocks are labelled by a Young diagram
κ ¼ ½κ; 1κ0−1� with at most one row and one column, of
length κ and κ0 respectively, thus (1,1). In fact, Heslop and
Doobary wrote in [39] a beautiful determinantal formula
for the more general ðm; nÞ superconformal blocks.
Borrowing that result, we introduce the (1,1) superconfor-
mal block

Bðα;βÞ
γ;κ ¼ g

p1þp2
2

12 g
p3þp4

2

34

hg14
g24

ip1−p2
2

hg14
g13

ip4−p3
2

�x
y

�γ
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
prefactorγ

Fðα;βÞ
γ;κ ð11Þ

where α ¼ max and β ¼ min ðγ−p12

2
; γ−p43

2
Þ,

Fðα;βÞ
γ;κ ¼ δκ;0

�
y
x

�
β

þ ðx − yÞHκðx; yÞ ð12Þ

and the dependence on κ enter through

Hκ ¼
(Pβ−1

k¼0 h
ðα;β;γÞ
−k ðxÞhð−α;−β;−γÞkþ1 ðyÞ κ ¼ 0

ð−Þκ0−1hðα;β;γÞκ ðxÞhð−α;−β;−γÞκ0 ðyÞ otherwise
ð13Þ

with hða;b;cÞk ðzÞ ¼ zk−12F1ðkþ a; kþ b; 2kþ c; zÞ. The
parameter γ specifies, together with the Young diagram
κ, the exchanged representation. It plays an important role
for short representations. However, since we will be mainly
interested in long representation, it will not be essential in
our discussion. It is nevertheless useful to understand his
origin diagrammatically, for example in free theory. Indeed,
as it appears in the prefactor in (11), it counts the powers of
cross ratios x=y ¼ ðg13g24Þ=ðg12g34Þ, and therefore the
number of propagators going from points (12) to (34),
so we can think of it as setting the origin for the dimension
of the exchanged operators in that diagram.
Note that Fγ;κ has a polynomial expansion in both x and

y. In particular, Fγ;∅ ¼ 1þ � � �, since the resummation in x
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is nontrivial whenever β ≥ 1. Note also that κ0 ≤ β, other-
wise Fγ;κ vanishes (in the y). In fact the Fγ;κ is better
defined as an expansion over super Schur polynomials of
the form

Fγ;κ ¼
X
ν∶κ⊆ν

ðTγÞνκsνðxjyÞ ð14Þ

where, by construction, sνðxjyÞ and their multivariate
generalization, solve the superconformal Ward identity,

½ð∂xi þ ∂yjÞsν�xi¼yj ¼ 0 ð15Þ

and thus the superconformal block so constructed.
A basis for the N ¼ ð4; 4Þ superconformal blocks is

obtained by taking products of such F. On the real slice, we
will distinguish among,

B∅ðx; yÞB∅ðx̄; ȳÞ half-BPS

Bκðx; yÞB∅ðx̄; ȳÞ þ c:c: short

Bκ1
ðx; yÞBκ2

ðx̄; ȳÞ þ c:c: long

ð16Þ

In each of these cases the result always fits into the form

G¼Cþ½ðx−yÞSðx;yÞþc:c:�þðx−yÞðx̄− ȳÞHðx;x̄;y;ȳÞ
ð17Þ

where C is a constant, while S and H are the single- and
two- variables contributions, respectively.
The result (17) is also quite intuitive. The special factors

(x − y) and ðx̄ − ȳÞ are simply s□ðxjyÞ ¼ ðx − yÞ for a
single box Young diagram, and its complex conjugate.
Moreover, they vanish on x ¼ y or x̄ ¼ ȳ. Thus H is the
part of the correlator which vanishes when both x ¼ y and
x̄ ¼ ȳ. The rest, necessarily goes with (x − y) or ðx̄ − ȳÞ,
unless it is a constant. In this way, it is also simple to see
that the N ¼ ð4; 4Þ Ward identity,

½ð∂x þ ∂yÞG�x¼y ¼ 0; ½ð∂ x̄ þ ∂ ȳÞG�x̄¼ȳ ¼ 0 ð18Þ

is satisfied for any C, S and H.

IV. LONG REPRESENTATIONS

Long superconformal blocks factorize into their bosonic
components, i.e., conformal and internal. To see this, take
(16) and change basis by considering linear combinations
of the form

1

2
ðB½κ1;1κ

0
1
−1�B̄½κ2;1κ

0
2
−1� � B½κ1;1κ

0
2
−1�B̄½κ2;1κ

0
1
−1�Þ þ c:c: ð19Þ

This change of basis leads to the general decomposition

Hðx; x̄; y; ȳÞ ¼ HþðU;V; Ũ; ṼÞ
þ ðx − x̄Þðy − ȳÞH−ðU;V; Ũ; ṼÞ ð20Þ

where H� will now have a clear relation with bosonic
blocks, since they are symmetric in x; x̄ and y; ȳ, and
therefore writable as function of U, V and Ũ; Ṽ. Before
giving more details, let us make a first remark: The most
general form of a N ¼ ð4; 4Þ correlator, for four half-BPS
external particles, is necessarily given by G in (17), with the
splitting of H as in (20). The dynamical correlator in (2)
thus admits two types of kinematics,

kinematicsþ¼prefactorp3þp4
×ðx−yÞðx̄− ȳÞ

kinematics−¼ðx− x̄Þðy− ȳÞ×kinematicsþ ð21Þ

The tree level correlatorA1111 of [23–25,27] hasAþ
1111 ≠ 0,

and it was shown that A−
1111 is absent, correctly. In fact,

there is no room forA−, as a polynomial in y; ȳ, with such a
minimal assignment of charges. Assuming a 6d conformal
symmetry, Aþ

1111 is promoted to a generating function for
Aþ

p⃗ through (8), but A−
p⃗ cannot be generated this way.

V. ON THE N = 4 SUPERCONFORMAL BLOCKS

To analyze Aþ
p⃗ , we will need an explicit formula for

Hlongþ
κ1;κ2;κ01;κ

0
2
. From (11)–(13) we find

Hlongþ ¼
�
yȳ
xx̄

�γ
2
ð−Þκ01−κ02Bðþp12;þp43Þ

κ0
1
−γ
2
;κ0

2
−γ
2
; ðy; ȳÞ

Ũ

Bð−p12;−p43Þ
κ1þγ

2
;κ2þγ

2

ðx; x̄Þ
U

ð22Þ

with the bosonic (and normalized) block [40]

Bða;bÞ
k1k2

ðz; z̄Þ ¼ zh
ða
2
;b
2
;0Þ

k1
ðzÞz̄hða2;b2;0Þk2

ðz̄Þ þ c:c:

2ð1þ δk1k2Þ
ð23Þ

Note that prefactorγ× (22) does not depend on γ
anymore, since it can be absorbed into the SOð2; 2Þ ×
SOð4Þ quantum numbers of Hlongþ, which are

1þ τ

2
¼ γ

2
þ κ2; l ¼ κ1 − κ2 ≥ 0

b
2
¼ γ

2
− κ01; a ¼ κ01 − κ02 ≥ 0 ð24Þ

where recall that κi¼1;2 ≥ 1 by construction.
A nice surprise, perhaps expected from the fact that

ð1; 1Þ × ð1; 1Þ might contain a (2,2) factor, comes with
Hlong−: This combination of hypergeometrics has bosonic
quantum numbers identified as
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1þ τ

2
¼ γ

2
þ κ2; lþ 1 ¼ κ1 − κ2 ≥ 0

b
2
¼ γ

2
− κ01; aþ 1 ¼ κ01 − κ02 ≥ 0 ð25Þ

where this time κ01 − κ02 ≥ 1, by antisymmetry, and it is
precisely the same combination of hypergeometrics show-
ing up in the long sector of N ¼ 4 SYM [39]. In the latter,
the Young diagrams are (2,2) and come in differently, for
example κ2 ¼ 2þ τ−γ

2
and κ1 − κ2 ¼ l. However, it is

simple to see that the arguments of the 2F1, will coincide
[41]. Thus the set ofHlong− is spanned by the same bosonic
blocks that appear in N ¼ 4 SYM in 4d.

VI. LONG TWO-PARTICLES OPERATORS
WITH FLAVOR

The two-particle operators we want to study are long
operators exchanged in MS and MA, and have the
schematic form

Oþf
ðrsÞ ¼ Pþf

IJ ½OI
r∂l

□
1
2
ðτ−r−sÞOJ

s � ð26Þ

where Pþf is an appropriate projection for the flavor
indexes. At leading order, 4pt diagrams in supergravity
are those of a generalized disconnected free theory, and by
simple counting the two-particle operators above are
degenerate. For given SOð2; 2Þ quantum numbers τ, l,
and SOð4Þ representation R ¼ ½ab�, the number of degen-
erate states is nicely organized into a rectangle

ð27Þ

This rectangle Rτ;l;½ab� is analogous to the one in [14].
Since the two-particle operators (26) are long, i.e.,

nonprotected, they are expected to acquire an anomalous
dimension of order 1=N, i.e., a binding energy in the
gravity picture. We will compute their anomalous dimen-
sions from the consistency of the OPE decomposition of the
4pt functions. We will only need two sets of matrix
equations, given below in (29) and (30), involving three-
point couplings.

Leading three-point couplings of the Oþf
ðrsÞ with the

external single-particle operators fit into a matrix

CðpqÞ;ðrsÞ ðpqÞ; ðrsÞ ∈ Rτ;l;½ab� ð28Þ

where ðpqÞ refers to the pair of external operators OpOq,
while ðrsÞ labels the two-particle operator.
The CðpqÞ;ðrsÞ are found from disconnected Witten

diagrams. These exist only for hOpOqOpOqi. In the
following we will denote by LðpqpqÞ the coefficients of
their superconformal block decomposition in the long
sector. Note that because of the degeneracy, the three-point
couplings are not one-to-one with LðpqpqÞ, rather the data
is organized in the form of matrix multiplication,

Cðp1p2Þ;ðrsÞ ·C
T
ðrsÞ;ðp3p4Þ ¼ δp1p3

δp2p4
½Lðp1p2p3p4Þ� ð29Þ

as can be quickly derived from the OPE. There are L�
because we have two structure. Then, on a given Rτ;l;½ab� the
matrices L� are diagonal.
The anomalous dimensions of theOþ

ðrsÞ enter the leading
logarithmic discontinuity of the tree level correlators,
through the equations

Cðp1p2Þ;ðrsÞ · η
þ ·CT

ðrsÞ;ðp3p4Þ ¼ Mðp1p2p3p4Þ ð30Þ

where ηþ is diagonal and M is defined from the decom-
position

Aþ
p⃗ jlogU ¼

X
a;b

Bðþp12;þp43Þ
−b
2
;−b

2
−a ðy; ȳÞ

Ũ1−p4þp3
2

×

�X
τ;l

Mτ;l;a;bðp⃗Þ
Bð−p12;−p43Þ
1þτ

2
þl;1þτ

2
ðx; x̄Þ

U1þp4þp3
2

�
ð31Þ

Some useful comments on this block decomposition are
in order3

(i) For a given correlator τ ≥ maxðp1 þ p2; p3 þ p4Þ.
It simple to see this inequality from Mellin space:
Assume first p1 þ p2 ≤ p3 þ p4 then cs ≤ 0 and
s ¼ 0 is the first double pole in (4). Since the leading
term from the right-hand side (rhs) of (31) goes like

U
τ−p3þp4

2 we find τ ¼ p3 þ p4. Similarly, if cs ≥ 0
then s ¼ cs ≥ 0 is the first double pole, and by the
same argument we now find the leading twist to
be τ ¼ cs − p3 − p4 ¼ p1 þ p2.

(ii) The matrix M is full, i.e., all entries are non trivial.

3Note that can assume without loss of generality that p⃗ is such
that p43 ≥ p21 ≥ 0. This means for example that the diagram
prefactorγ¼p4−p3

exchanges a dimension ¼ p43 half-BPS
operator, generalizing the identity exchange for equal charges.
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At this point, normalizing M with the square root of Lþ
from the left and the right yields an unmixing matrix whose
eigenvalues are the anomalous dimensions, and the corre-
sponding eigenvectors, the three-point couplings normal-
ized. This is the same procedure adapted from [11,14], and
we will give some explicit example in the next sections.

VII. UNMIXING EXAMPLES

It is useful, before presenting general formulas, to
exemplify the mixing problem in a few cases of interest.
We will discuss first the symmetric flavor channel f ¼ S,
and comment on f ¼ A at the end, since the two will be
related by a transformation.
The simplest rep we can study isR ¼ ½00�. The first case

we can look at is the unique two-particle operator at τ ¼ 2
and even spin l ¼ 0; 2;…2N. This case has no mixing,

Lτ¼2;l;½00� ¼
ðlþ 1Þ!2
ð2lþ 2Þ! × 2; Mτ¼4;l;½00� ¼

ðlþ 1Þ!2
ð2lþ 2Þ! × 4

are 1 × 1 matrices. The first mixing problem is at τ ¼ 4,
where we find two even spin operators. The corresponding
data is

Lτ¼4;l;½00� ¼
ðlþ 2Þ!2
ð2lþ 4Þ!

"
2
3

0

0 1
6
ðlþ 1Þðlþ 4Þ

#

Mτ¼4;l;½00� ¼
ðlþ 2Þ!2
ð2lþ 4Þ!

"
þ4 −4
−4 10þ 5lþ l2

#
ð32Þ

Anomalous dimensions and three point functions are
obtained by rewriting the mixing problem as an eigenvalue
problem. In particular, for τ ¼ 4 we find

L−1
2 ·Mτ¼4;l;½00� ·L−1

2¼c ·

"
−6ðlþ3Þ

lþ1
0

0 −6ðlþ2Þ
lþ4

0

#
·cT ð33Þ

with

cτ¼4;l;½00� ¼

2
64

ffiffiffiffiffiffiffiffi
lþ1
2lþ5

q
þ

ffiffiffiffiffiffiffiffi
lþ4
2lþ5

q
−

ffiffiffiffiffiffiffiffi
lþ4
2lþ5

q ffiffiffiffiffiffiffiffi
lþ1
2lþ5

q
3
75 ð34Þ

an orthogonal matrix. The columns of this matrix c are the
eigenvectors of the mixing problem. The leftmost eigen-
vector corresponds to the most negative anomalous dimen-
sion. We will label it with the leftmost corner of Rτ;l;½00�. As
the value of the anomalous dimension increases we move to
the right of this corner. The rep ½00� has no degeneracy thus
Rτ;l;½00� is simply a line, and all anomalous dimensions are
labeled uniquely.
Next, let us consider the repR ¼ ½10�. This is analogous

to ½00�, but for the fact that only odd spins contribute

l ¼ 1; 3;…; 2Nþ 1. The first two cases are τ ¼ 4 with one
operator,

Lτ¼4;l;½10� ¼
ðlþ 2Þ!2
ð2lþ 4Þ! ×

1

12
ð24þ 25lþ 5l2Þ

Mτ¼4;l;½00� ¼
ðlþ 2Þ!2
ð2lþ 4Þ! × 2ðlþ 1Þðlþ 4Þ ð35Þ

and τ ¼ 6 with two operators. The mixing problem in this
case is found from

Lτ¼6;l;½10� ¼
ðlþ3Þ!2
ð2lþ6Þ!

ð120þ11ðlþ7ÞlÞ
40

2
641 0

0 1
9
ðlþ1Þðlþ6Þ

3
75

Mτ¼6;l;½10�¼ðL1
2cÞ ·

2
64− 120ðlþ4Þðlþ5Þ

ð120þ11ðlþ7ÞlÞ 0

0 − 6ðlþ2Þðlþ3Þ
ð120þ11ðlþ7ÞlÞ

3
75·ðL1

2cÞT

ð36Þ

where

cτ¼6;l;½10� ¼

2
664

ffiffiffiffiffiffiffiffi
lþ1
2lþ7

q
þ

ffiffiffiffiffiffiffiffi
lþ6
2lþ7

q
−

ffiffiffiffiffiffiffiffi
lþ6
2lþ7

q ffiffiffiffiffiffiffiffi
lþ1
2lþ7

q
3
75 ð37Þ

Comparing with the 2 × 2 case from the R ¼ ½00�, the free
theory matrix L½10� has some overall nonfactorizable term.
By construction, this only affects the anomalous dimen-
sions. The matrix c in (37) has instead the same features as
in (34). Quite remarkably, the matrix in (37) is the same
matrix that appears in the unmixing problem of [see [11],
Eq. (138)] inN ¼ 4 SYM in 4d.4 We can help our intuition
here by using Young diagrams. In fact only Young
diagrams that produce an a ≠ 0 in ½ab� can be antisymme-
trized in (19), to yield the same as anN ¼ 4 SYM block, as
follows from the discussion below (25). The case a ¼ 1,
b ¼ 0 is the first case we find: We have originally two (1,1)
Young diagrams κi¼1;2 with two rows, i.e., κi ¼ ½κi1; κi2�,
where

κi2 ∈ f∅;□g; κi1 ≥ 1: ð38Þ

Therefore we find three “þ” blocks from ∅ ×∅;□ ×□,
and ∅ ×□þ□ ×∅ and a single “−” block from
∅ ×□ −□ ×∅. As we discussed, the latter is the same
as the N ¼ 4 block that was used in [[11], Eq. (138)].

4To see this in formulas, we just need to realize that the values
of the spins in (37) are assumed to be odd, while those considered
in [[11], Eq. (138)] were even.
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We close the list of examples by illustrating a mixing
problem with partial degeneracy. The simplest case of
partial degeneracy appears in R ¼ ½02�, even spins l ¼
0; 2;…2N and τ ¼ 6.5 Note that τ ¼ 6 is not the first
available twist in the rep, which is instead τ ¼ 4, but rather

the next one. In fact, Rτ¼6;l;½02� consists of four points, and is
a full rectangle, instead Rτ¼4;l;½02� only covers a −45°
oriented edge. The CFT data we are interested in to see
the partial degeneracy is

Lτ¼6;l;½02� ¼
ðlþ 3Þ!ðlþ 4Þ!

ð2lþ 6Þ! × diag
�
2ðlþ 4Þ

15
;
3ðlþ 1Þðlþ 4Þðlþ 6Þ

160
;
3ðlþ 3Þ

5
;
ðlþ 1Þðlþ 3Þðlþ 6Þ

10

�

and

Mτ¼6;l;½02� ¼
ðlþ 3Þ!ðlþ 4Þ!

ð2lþ 6Þ! ×

2
666666664

2ð15þ4L2Þ
3ð−1þ2LÞ − 23þ4L2

2ð−1þ2LÞ 8 −8

− 23þ4L2

2ð−1þ2LÞ
1715þ40L2þ48L4

128ð−1þ2LÞ −8 55þ4L2

8

8 −8 5þ12L2

1þ2L − 2ð7þ4L2Þ
1þ2L

−8 55þ4L2

8
− 2ð7þ4L2Þ

1þ2L
265−40L2þ16L4

8ð1þ2LÞ

3
777777775

ð39Þ

where we introduced l ¼ L − 7
2
just to simplify expressions. The eigenvalues are

1

10
ητ¼6;l;½02� ¼ −diag

�ðlþ 5Þ
lþ 1

;
ðlþ 2Þðlþ 5Þ
ðlþ 3Þðlþ 4Þ ;

ðlþ 2Þðlþ 5Þ
ðlþ 3Þðlþ 4Þ ;

ðlþ 2Þ
ðlþ 6Þ

�
ð40Þ

The leftmost root is indexed, in Rτ¼6;l;½02�, by the leftmost
corner at ðrsÞ ¼ ð13Þ, then the two (degenerate) middle
ones are indexed by ðrsÞ ¼ ð24Þ; ð22Þ, and the rightmost by
the rightmost corner at ðrsÞ ¼ ð33Þ.
Let us now comment that when we consider f ¼ A, what

happens is that for given R even and odd spin sectors are
exchanged with respect to f ¼ S, but otherwise the mixing
problem is the same. For this reason, we will restrict to
f ¼ S without loss of generality.
Our next task is to find general formulas for the mixing

problem. We will begin with free disconnected theory, and
then move to the anomalous dimensions.

VIII. CAUCHY IDENTITY FOR
DISCONNECTED GRAPHS

The superconformal block decomposition of a free
theory graphs, with gij propagators connecting the various
operators, can be done by decomposing the corresponding
C;S;H�, for levels: first C, then S and finally H�, paying
attention to include at each level the contributions from the
previous ones. For a disconnected Witten diagram, thus a
disconnected graph, the first superconformal block con-
tributing in each level has τ ¼ pþ q, since this equals the

total number of bridges in the graph going from OpOq to
OpOq, i.e., γ ¼ pþ q.
A more illuminating way of performing the same

decomposition is to use a Cauchy identity, as shown in
[39]. If q > p, there is one disconnected graph and the
relevant identity is quite compact,

1¼
X

κ¼½κ;1κ0−1�
Aγ;κþγ

2
;κ0−γ

2
Fðα;βÞ
γ;κ ðx;yÞjγ¼pþq

Aγ;κ;κ0 ¼
Γ½κ�q−p

2
�Γ½2−2κ0�Γ½κ� γ

2
��1

Γ½2κ−1�Γ½1−κ0 �q−p
2
�Γ½γþ1∓1

2
�κ0�

ð−Þκþκ0

Δð2Þ
κ;κ0

ð41Þ

with Δð2Þ
κκ0 ¼ ðκ0 − κÞðκ þ κ0 − 1Þ. The mechanism behind

(41) is quite neat: Recall that Fγ;0 ¼ 1þ � � � for β ≥ 1 thus
the r.h.s. of (41) is nontrivial precisely because it has to
compensate this half-BPS contribution.
From the (1,1) Cauchy identity, we obtain the decom-

position for the corresponding AdS3 graph by taking 1 × 1̄,
expanding the sums and recognising, out of the product, the
relevant superconformal blocks. In the case p ¼ q there is
an additional graph contributing with ½ð1 − yÞ=ð1 − xÞ�γ=2.
Since p12 ¼ p43 ¼ 0, this is related by crossing to (41), and
we find again ð−ÞjκjAγ;κ;κ0 . All together, the decomposition
of disconnected graphs relative to Hlong�, is

5This rep also allows for odd spins, but there is no degeneracy
for odd spins and we will not discuss it.
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L�
τ;l;½ab�ðpqpqÞ
ð1þ δpqÞ

¼ Cκ;κ0Cκ̄;κ̄0 � Cκ;κ̄0Cκ̄;κ0

pq
ð42Þ

where Cκ;κ0 ¼ Apþq;κþγ
2
;κ0−γ

2
, with the labels identified as in

(24) for Lþ and as in (25) for L−. As we pointed out
already, it should be the case that L− is the same as in
N ¼ 4 SYM. Indeed,

L− ∝ Gammas ×
ðlþ 1Þðaþ 1Þðaþ bþ 2Þðτ þ lþ 2Þ

δð8Þ

ð43Þ

where δð8Þ ¼ δð2Þκκ0 δ
ð2Þ
κ̄κ̄0 δ

ð2Þ
κκ̄0 δ

ð2Þ
κ̄κ0 and δð2Þκκ0 ¼ Δð2Þ

κþγ
2
;κ0−γ

2

. This in

fact is the fully factorized formula obtained in [14,19,42],
which we now discover to be secretly a 2-by-2 determinant.

IX. ANOMALOUS DIMENSIONS

Knowing the matrixM, we can determine the anomalous
dimensions. Unfortunately it is hard to find a closed form
expression for M, but working out many cases we have
found that the anomalous dimensions of Oþf

ðpqÞ with f ¼ S

are consistent with the formula6

ηþτ;l;½ab�ðrsÞ ¼ −
2

N
δð8Þ

δð2Þκκ0 δ
ð2Þ
κ̄κ̄0 þ δð2Þκκ̄0 δ

ð2Þ
κ̄κ0

1

ðl6d þ 1Þ2
ð44Þ

l6d ¼ lþ 2r − a − 1 −
1þ ð−1Þaþl

2
ð45Þ

which is the main result of our paper.
The ηþτ;l;½ab�ðrsÞ are simple rational functions of the

quantum numbers, and very reminiscent of the tree level
anomalous dimensions for AdS5 × S5 two-particle oper-
ators found in [14]. Quoting from there

ηAdS5×S
5

τ;l;½aba� ðrsÞ ¼ −
2

N2
δð8Þ

1

ðl10d þ 1Þ6
ð46Þ

l10d ¼ lþ 2r − a − 2 −
1þ ð−1Þaþl

2
ð47Þ

Looking at (44), we see now that AdS5 × S5 tree level
correlators were such that their decomposition in blocks

simplified δð2Þκκ0 δ
ð2Þ
κ̄κ̄0 − δð2Þκκ̄0 δ

ð2Þ
κ̄κ0 in the numerator of L−. In fact,

we also discover that this combination is fully factorized. On

the other hand, δð2Þκκ0 δ
ð2Þ
κ̄κ̄0 þ δð2Þκκ̄0 δ

ð2Þ
κ̄κ0 factorizes only for a ¼ 0,

otherwise it remains generic, as we saw in the unmixing
examples in R ¼ ½10�. Thus only when R ¼ ½0b� we find

the simplification δð8Þ=ðδð2Þκκ0 δ
ð2Þ
κ̄κ̄0 þ δð2Þκκ̄0 δ

ð2Þ
κ̄κ0 Þ ¼ δð4Þ which is

itself fully factorized.
The partial degeneracy of the ηþτ;l;a;bðrsÞ comes from the

fact that they only depend on r, rather than ðrsÞ, thus two-
particle operatorswhose labels are on the samevertical axis in
Rτ;l;½ab� have degenerate tree level anomalous dimension. This
indeed is the samemechanism at work in (46) for AdS5 × S5.
In comparison, the large spin behavior goes like −1=l0, and
−1=l2, in two, and four dimensions, respectively.
Finally, for given R ¼ ½ab�, when b is even, the set of

anomalous dimensions is invariant under l → −l − τ − 1 in
a given spin sector, and when b is odd, the set of anomalous
dimensions in the even spin sector is exchanged with those
of the odd spin sector. This can be checked explicitly in the
unmixing examples, and is just reciprocity symmetry. It
was l → −l − τ − 3 in AdS5 × S5.

X. HIDDEN SYMMETRY

We will now comment on the tree level amplitudes for
AdS3 × S3 (and AdS5 × S5) discussed (and mentioned)
above, from the point of view of a higher dimensional
conformal symmetry. It will be convenient to introduce
θ ¼ 2, 4 to parametrize AdSθþ1 × Sθþ1, then the tree level
amplitudes for generic charges p⃗ descend from a single
generating function, which is Aθ

2
θ
2
θ
2
θ
2
after a replacement of

the cross ratios [19]. This specific Aθ
2
θ
2
θ
2
θ
2
is singlet under

the sphere, and therefore the cross ratios of SOðθ; 2Þ can
be replaced with those of SOð2θ þ 2; 2Þ canonically, e.g.,
using the AdS × S Witten diagrams of [18]. In Mellin
space, this operation is the covariantization Mp⃗ ¼
M1111ðs; tÞ for AdS3 × S3 and Mp⃗ ¼ M2222ðs; tÞ for
AdS5 × S5 [33].
The parameter θ plays the role of dimensions in two

ways. We have θ ¼ d ¼ 2, 4 for the spacetime dimension
of the CFT dual to the AdSdþ1 × Sdþ1 gravity theory. Then
we have θ ¼ D−2

2
where D is the dimension of the flat

background, i.e., D ¼ 2dþ 2 ¼ 2θ þ 2, which is simply
AdSdþ1 × Sdþ1 in conformally flat coordinates. This sug-
gests that Aθ

2
θ
2
θ
2
θ
2
should then have a natural decomposition

not only in long superconformal blocks for the correspond-
ing SCFT, but also in SOð2θ þ 2; 2Þ conformal blocks at
the unitarity bound. Indeed, we find that

Aθ
2
θ
2
θ
2
θ
2





logU

¼
X
l

θΓ½lþθ�2
Γ½2lþ2θ−1�

2F1½θþl;θþl;2θþ2l;P�
Uθ

ð48Þ

where 2F1½θ þ l;…� is a single normalized block in which
we understand the 2F1 as a power series with the replace-
ment zn → P½θþlþn;θ�ðx; x̄; θÞ, and Pð; θÞ being the two-
variables Jack polynomial. A compact way of writing this
polynomial is6The factor D introduced in (1) is the part δ dependent of (44).
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ðθÞk
k!

P½θþk;θ�ðx; x̄; θÞ
Uθ ¼ e−kφ

Xk
j¼0

ðθÞjðθÞk−j
j!ðk − jÞ! e

iðk−2jÞϕ ð49Þ

where x ¼ e−φþiϕ as in [43,44] (and k ¼ lþ n).
Quite remarkably the SOð2θ þ 2; 2Þ decomposition in

(48) only runs over a single sum. In fact, the second row of
Pð; θÞ does not grow. To recover the usual double expan-
sion over twist and spin of SOðd; 2Þ we need to recognize
that within a Pκð; θÞ there are various Pνð; θ0Þ where θ0 ¼
ðd − 2Þ=2 and d ¼ 2, 4 [40], for θ ¼ 2, 4 respectively. In
fact,

PκðθÞ ¼
X
m≥0

P½κ1−m;κ2þm�ðθ0Þ ×
ð−Þm
m!

×

�ðθ − θ0 þ 1 −mÞm × ðκ− þ 1 − 2mÞ2m
ðθ þ κ− −mÞmðθ0 þ κ− −mÞm

�
ð50Þ

where κ− ¼ κ1 − κ2, and ðκ− þ 1 − 2mÞ2m truncates the
sum. Changing from Pνð; θ0Þ to the bosonic blocks [40]
gives the usual type of expansion.
From the generating function, we obtain

Ap⃗ ¼ D̂p⃗½UθAθ
2
θ
2
θ
2
θ
2
�, where

D̂p⃗ ¼ 1

ðUŨÞθ2
X
s̃;t̃

�
Ũ
U

�s̃þθ
2

�
Ṽ
V

�t̃

D̂ð0;0;0Þ
p⃗;ðs̃;t̃Þ D̂

ðcs;ct;cuÞ
p⃗;ðs̃;t̃Þ ð51Þ

is a differential operator. As in [33] we can find its explicit
expression,

D̂ða;b;cÞ
p⃗;ðs̃;t̃Þ ¼

ðU∂U þ 1− θ− s̃− aÞs̃þa

ð−Þaðs̃þ aÞ!

×
ðV∂V þ 1− t̃− bÞt̃þb

ð−Þbðt̃þ bÞ!
ðU∂U þV∂VÞũþc

ðũþ cÞ! ð52Þ

Understanding the action of (52) on Pð; θÞ, for example in
(49), might help finding an explicit formula for the three-
point couplings. Indeed, by acting with D̂p⃗ on a single

2F1½θ þ l;…;P� and summing, yields by construction the
mixing matrix, say on a Rτ;l;½ab� ⊗ Rτ;l;½ab� for reference. As
pointed out in [19], this computation actually gives the
mixing matrix as⊕r ðη ×PrÞ wherePr is a projector built
out of the three-point couplings. In particular, these
projectors descend from the 2F1½θ þ l;…;P� and there
are as many projectors as values of r in Rτ;l;½ab�. However,
only when there is no residual degeneracy the projector is
one-dimensional.
Regarding the lift of the AdS3 × S3 partial degeneracy,

let us comment that from the AdSdþ1 × Sdþ1 Virasoro-
Shapiro action postulated in [18], and specialized to our

d ¼ 2 case, we have found evidence that a mechanism
analogous to that discovered in [16,17], will fix uniquely
the three-point couplings.

XI. OUTLOOK

The D1-D5 system has various tractable corners (see for
example [45–49]), and most notably, the weak coupling
regime has a (world sheet) WZW description. But the 2d
theory at the boundary of AdS3 × S3 with pure RR flux,
whose 4pt correlators we have studied in this paper, is
strongly coupled. The bootstrap approach is therefore quite
natural in this case, since it does not rely on having a
weakly coupled Lagrangian description. In fact, the many
clues of hidden simplicity that we have encountered
encourage the idea that our bootstrap program can tackle
quantitatively this strongly coupled regime, offering new
dynamical insights, beyond tree level. The clues we have
found are neatly summarized by the form of the anomalous
dimensions in (44), and nicely accompanied by the
structure of the generating function (48), which provides
the seed for the leading logarithmic discontinuity at any
loop order. As in AdS5 × S5 we can now start computing
one-loop correlators, and we will do so elsewhere.
On top of the above findings, we noted that the tree level

dynamics (of tensor multiplets) on AdS3 × S3 and that on
AdS5 × S5 are aligned in many details. Worth mentioning
is the fact that the chiral correlators, defined as [40],
Gchiral ≔ Gjȳ¼x̄ ¼ C þ ðx − yÞSðx; yÞ, are actually equal
in both theories, which suggests that the (1,1) super-
conformal blocks “factorize” both theories, and tempts
the idea that maybe there is a mechanism to understand the
correlator, beyond the protected sector [50], which still uses
a Chern-Simons/WZW correspondence.
More speculatively, it is also the case that when

integrability techniques can be applied, some correlators
[51] have a free fermion description [52,53], therefore it
would be very interesting to understand whether the same is
true for the AdS × S correlators we studied in this paper.
Finally, the possibility of having A−

p⃗ ≠ 0 with pi > 1
remains open.
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