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Delay-Doppler and Angular Domain 4D-Sparse CSI
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Abstract—A convenient delay, Doppler and angular-(DDA)
domain representation of the multiple-input multiple-output
(MIMO) wireless channel is conceived for deriving the end
to end relationship in the delay-Doppler (DD)-domain for or-
thogonal time frequency space (OTFS)-based communications.
Subsequently, a time-domain pilot based model is developed for
estimating the DDA-domain channel state information (CSI) of
our MIMO OTFS system. The key differentiating feature of
the CSI estimation model derived is its ability to exploit the
4-dimensional (4D)-sparsity arising in the DDA-domain, given
the limited number of dominant scatterers. Furthermore, the
training overhead of the proposed framework is low, and the
pilot placement is quite flexible, necessitating no guard-interval.
Finally, an orthogonal matching pursuit (OMP) framework is
employed for 4D-sparse CSI acquisition, followed by deriving
the Oracle minimum mean squared error (Oracle-MMSE) and
its Bayesian Cramer-Rao lower bound (BCRLB). Our simula-
tion results confirm the improved CSI estimation performance
attained over the benchmarks.

Index Terms—Angular sparsity, channel estimation, OTFS,
delay-Doppler, BCRLB, high-mobility

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is the
dominant physical layer waveform in the operational 4G/ 5G
cellular systems. Although immensely successful at attaining
high data rates, it can lead to severe performance degradation
in high-mobility use cases [1]–[3]. This can be attributed
to the inter-carrier-interference arising due to the excessive
Doppler shifts arising in the face of high mobile velocities
and carrier frequencies [4]. Thus, it is imperative to conceive
delay-Doppler (DD)-domain resilient modulation techniques.
As a benefit of its enhanced performance in high Doppler
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wireless channels, orthogonal time frequency space (OTFS)
signalling [1], [5]–[8], has gained popularity over conventional
multicarrier modulation techniques. However, accurate knowl-
edge of the DD-domain channel state information (CSI) is the
key to achieving a superior performance in OTFS systems [9],
[10]. Therefore, novel CSI estimation techniques specifically
tailored for achieving a high CSI accuracy at a low pilot
overhead are required for reaping the advantages of OTFS.
A brief description of the state-of-the-art is given next.

A. Literature Survey
The existing treatises, which address channel estimation in

OTFS systems, can be broadly classified into two categories: 1)
Approaches that exploit the 2-dimensional (2D)-circular con-
volution based relationship [1], [9], [11] between the transmit
symbols and the channel in the DD-domain; 2) Alternative
schemes that benefit from the limited number of dominant
multipath components, i.e., the DD-domain sparsity [10], [12],
[13]. The initial solutions of [1], [11] developed impulse-based
CSI estimation techniques for SISO OTFS systems, which
were then extended to MIMO OTFS in [14]. These schemes
employ a complete OTFS frame for CSI estimation, which
is their key disadvantage. Subsequently, Raviteja et al. [9]
developed an embedded pilot (EP) aided channel estimator,
where the training and data symbols in the DD-domain are sep-
arated via suitable guard intervals. However, these schemes do
not leverage the DD-domain sparsity. Furthermore, they need
both a high pilot signal-to-noise ratio (SNR) and high pilot
overheads for estimating the CSI accurately. By contrast, only
a few recent authors [10], [12], [13] have formulated the CSI
estimation problem as a compressive sensing (CS) problem,
which also exploit the DD-domain sparsity for attaining an
enhanced CSI accuracy at low pilot overheads. Furthermore, as
described in [10], [15], [16], the MIMO wireless channel also
exhibits sparsity in the angular domain due to the presence
of only a few non-negligible angles of arrival (AoAs) and
departure (AoDs). However, to the best of our knowledge, the
existing OTFS treatises have not exploited this 4D-sparsity
arising in the delay, Doppler and angular (DDA)-domain. This
motivates us to derive the DD-domain input-output system
and CSI estimation models, which exploit this 4D-sparsity for
improving the existing contributions. Our novel contributions
are presented next.

B. Contributions

• Considering a compact DDA-domain representation of
the MIMO wireless channel and generalized transceiver
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pulse shaping filters, an input-output model is derived for
MIMO OTFS systems.

• Subsequently, we develop a CSI estimation model for
efficiently exploiting the 4D-sparsity, where time-domain
pilot symbols are transmitted for estimating the DDA-
domain CSI. Then, an orthogonal matching pursuit
(OMP) framework has been employed for acquiring the
4D-sparse CSI.

• The unique feature of our proposed CSI estimation frame-
work is that its pilot placement is highly flexible leading
to a significantly reduced pilot overhead.

• Furthermore, the Oracle minimum mean squared error
(Oracle-MMSE) and Bayesian Cramer-Rao lower bound
(BCRLB) benchmarks are also derived for the proposed
estimation framework.

The recent contribution [17] suggested a novel integrated
sensing and communication transmission architecture based on
spatially-spread OTFS modulation, where spatial-spreading/
de-spreading operations facilitate angular-domain discretiza-
tion. The key similarities between the proposed work and
[17] is that both exploit DDA-domain channel modeling and
angular-domain sparsity for cyclic prefix (CP)-aided OTFS
systems. However, they are fundamentally different in the
following aspects. The proposed solution considers a conven-
tional point-to-point MIMO OTFS system from a communica-
tion perspective, where the AoAs and AoDs of the multipath
components are different. This results in 4D-sparsity in the
DDA-domain. By contrast, [17] considers a spatially-spread
OTFS-based co-located radar/ base station and single antenna
users for joint sensing and communication, where the AoAs
and AoDs of the multipath components are identical for radar.
Furthermore, [17] also considers a large antenna array at the
base station and beam-tracking from a radar perspective, while
our design does not consider these aspects, since our focus is
on pure communication.

C. Notation

Boldface lower case and upper case letters denote
column vectors and matrices, respectively. The quantity
diag(a0, a1, · · · , aN−1) represents a diagonal matrix having
the principal diagonal elements given by a0, a1, · · · , aN−1,
and IN denotes the N × N identity matrix. Superscripts
AT , AH , A∗ and A−1 denote the transpose, Hermitian,
conjugation and inverse respectively. The vector equivalent
of the matrix A is denoted by vec(A), which is formed
by stacking the columns to form a single column vector.
⊗ denotes the Kronecker product of two matrices. U(a, b)
denotes uniform distribution between a and b.

II. MIMO OTFS SYSTEM MODEL

A. OTFS Modulation

Let M and N denote the number of symbols placed on
the delay and Doppler axes, respectively. Furthermore, let the
subcarrier spacing of the underlying multicarrier modulation
be denoted by ∆f , whereas T represent the symbol duration,
so that T∆f = 1. Consider a MIMO OTFS system having
Nt transmit antennas (TAs) and Nr receive antennas (RAs).

Let XDD,t ∈ CM×N represent the DD-domain information
symbol matrix corresponding to the tth TA. The corresponding
time-frequency (TF)-domain symbol matrix XTF,t ∈ CM×N
is obtained as XTF,t = FMXDD,tF

H
N [18], where FM and FN

are the normalized discrete Fourier transform (DFT) matrices
of order M and N , respectively. Let ptx(t) be the pulse
shaping filter response of duration T at the transmitter. The
transmit signal matrix ST,t ∈ CM×N in the time domain
is given by ST,t = PtxF

H
MXTF,t = PtxXDD,tF

H
N , where

Ptx = diag
{
ptx

(
qT
M

)}M−1

q=0
∈ CM×M . Finally, these MN -

samples of the transmit signal matrix ST,t are vectorized as

sT,t = vec (ST,t) =
(
FHN ⊗Ptx

)
xDD,t, (1)

where the symbol vector xDD,t obeys xDD,t = vec (XDD,t).

B. DDA-domain Channel Model

The DDA-domain wireless channel H(τ, ν, θ, φ) ∈ CNr×Nt
can be formulated as [4], [15], [16]

H(τ, ν, θ, φ) =

Lp∑
p=1

αpar (θ) aHt (φ) δ(τ − τp)δ(ν − νp)

× δ(θ − θp)δ(φ− φp), (2)

where δ(·) represents the Dirac-delta function, the 5-tuple
(αp, τp, νp, θp, φp) signifies the complex-valued path gain,
delay, Doppler, AoA and AoD of the pth multipath component,
and Lp is the number of dominant multipath components. Note
that due to the presence of only a few dominant reflectors,
Lp is typically very small. The vectors ar (θp) ∈ CNr×1 and
at (φp) ∈ CNt×1 represent the array steering vectors at the
RAs and TAs corresponding to the AoA θp and AoD φp as
described in [4], [15], [16]. For convenience, one can denote
the MIMO channel Hp ∈ CNr×Nt corresponding to the pth
multipath component as

Hp = αpar (θp) aHt (φp) , (3)

and its (r, t)th element as hp,r,t. Furthermore, by appropriately
selecting M and N , the DD-domain parameters can be closely
approximated as τp =

ip
M∆f , νp =

jp
NT , where the indices

ip(<< M) and jp(<< N) are integers. A CP of L time-
domain samples is added to the transmit signal sT,t of (1). On
removal of the CP from the output at the rth RA, the time-
domain signal yT,r comprised of MN -samples is expressed
as [18]

yT,r =

Nt∑
t=1

Hr,tsT,t + wr, (4)

where wr ∈ CMN×1 represents the complex additive white
Gaussian noise of mean zero and variance σ2, and Hr,t ∈
CMN×MN is expressed as

Hr,t =

Lp∑
p=1

hp,r,t (Π)
ip (∆)

jp . (5)

Here, Π ∈ CMN×MN denotes a permutation matrix and ∆ =
diag {ωq}MN−1

q=0 ∈ CMN×MN with ω = ej2π
1

MN .
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C. OTFS Demodulation

Let YT,r = vec−1(yT,r) ∈ CM×N denote the time-domain
received sample matrix. Employing a receiver pulse shaping
filter prx(t) of duration T , the TF-demodulated symbol matrix
YTF,r ∈ CM×N is obtained as YTF,r = FMPrxYT,r, where

Prx = diag
{
p∗rx

(
qT
M

)}M−1

q=0
[18]. Subsequently, the demod-

ulated DD-domain OTFS signal YDD,r ∈ CM×N is expressed
as YDD,r = FHMYTF,rFN = PrxYT,rFN . Alternatively, its
vectorized representation yDD,r is given as

yDD,r = vec (YDD,r) = (FN ⊗Prx) yT,r ∈ CMN×1. (6)

In the above, upon replacing yT,r from (4), and in turn
substituting sT,t from (1), we have

yDD,r =

Nt∑
t=1

HDD,r,txDD,t + vDD,r, (7)

where the quantity HDD,r,t ∈ CMN×MN can be expressed as

HDD,r,t = (FN ⊗Prx) Hr,t

(
FHN ⊗Ptx

)
, (8)

and vDD,r = (FN ⊗Prx) wr ∈ CMN×1. Finally, the end-to-
end MIMO OTFS system model is formulated as

yDD = HDDxDD + vDD, (9)

where we have yDD =
[
yTDD,1, · · · ,yTDD,Nr

]T
, xDD =[

xTDD,1, · · · ,xTDD,Nt

]T
and vDD =

[
vTDD,1, · · · ,vTDD,Nr

]T
.

The DD-domain MIMO OTFS channel matrix HDD ∈
CMNNr×MNNt is given by

HDD = blkmtx
(
{HDD,r,t}Nr,Ntr=1,t=1

)
, (10)

where blkmtx(·) formulates a block-matrix having HDD,r,t in
the rth row and tth column block. Now, upon substituting
HDD,r,t from (8) into (10), we have

HDD = (INr ⊗ FN ⊗Prx) H̄
(
INt ⊗ FHN ⊗Ptx

)
, (11)

where H̄ is formulated as

H̄ = blkmtx
(
{Hr,t}Nr,Ntr=1,t=1

)
. (12)

Furthermore, upon substituting Hr,t from (5) into (12), and
employing the relationship given in (3), we have

H̄ =

Lp∑
p=1

[
Hp ⊗

(
Πip∆jp

)]
=

Lp∑
p=1

αp
[(

ar (θp) aHt (φp)
)
⊗
(
Πip∆jp

)]
. (13)

Finally, substituting (13) into (11) yields the resultant expres-
sion of the end-to-end MIMO OTFS channel HDD. The next
section describes the proposed DDA-domain sparse channel
estimation scheme.

III. PROPOSED 4D-SPARSE CHANNEL ESTIMATION

Let Gτ , Gν , Gr and Gt denote the grid sizes employed
in the delay, Doppler, AoA and AoD domains, respectively,
for formulating the DDA-domain sparse representation of
the MIMO channel. More specifically, the delay grid G(τ)
and Doppler grid G(ν) are defined as G(τ) = {τi : τi =
i

M∆f }
Gτ−1
i=0 ,G(ν) = {νj : νj = j

NT }
Gν−1
j=0 . Similarly, the

AoA grid G(θ) and AoD grid G(φ) are defined as G(θ) =
{θk : θk = k π

Gr
}Grk=1,G(φ) = {φl : φl = l πGt }

Gt
l=1. Let αi,j,k,l

represent the complex-valued path gain corresponding to the
delay-index i, Doppler-index j, AoA-index k and AoD-index
l. The DDA-domain channel of (2) can be expressed as

H(τ, ν, θ, φ) =

Gτ−1∑
i=0

Gν−1∑
j=0

Gr∑
k=1

Gt∑
l=1

αi,j,k,lar (θ) aHt (φ)

× δ(τ − τi)δ(ν − νj)δ(θ − θk)δ(φ− φl).

For convenience, one can represent the MIMO channel Hi,j,k,l

corresponding to the (i, j, k, l)th grid-point as

Hi,j,k,l = αi,j,k,lar (θk) aHt (φl) , (14)

whose the (r, t)th element is denoted by hi,j,k,l,r,t.
For the purpose of CSI estimation, each TA employs Np

pilot symbols, which are placed directly in the time-domain.
Let the pilot vector transmitted by the tth TA be denoted by
sP,t ∈ CNp×1. Upon CP addition/ removal, the pilot vector
yP,r ∈ CNp×1 received at the rth RA is given by

yP,r =

Nt∑
t=1

HP,r,tsP,t + wP,r, (15)

where wP,r ∈ CNp×1 denotes the noise vector. In the above,
the matrix HP,r,t ∈ CNp×Np is formulated as

HP,r,t =
∑
i,j,k,l

hi,j,k,l,r,t

(
Π̃
)i (

∆̃i

)j
, (16)

where Π̃ represents the standard permutation matrix of size
Np ×Np and ∆̃i ∈ CNp×Np is defined as

∆̃i =

{
diag

{
1, ω, · · · , ωNp−i−1, ω−i, · · · , ω−1

}
, if i 6= 0,

diag
{

1, ω, · · · , ωNp−1
}
, for i = 0.

Stacking the various quantities as yP =
[
yTP,1, · · · ,yTP,Nr

]T
,

sP =
[
sTP,1, · · · , sTP,Nt

]T
and wP =

[
wT
P,1, · · · ,wT

P,Nr
]T

,
the resultant channel estimation model is formulated as

yP = HPsP + wP , (17)

where the quantity HP ∈ CNpNr×NpNt is given by

HP = blkmtx
(
{HP,r,t}Nr,Ntr=1,t=1

)
. (18)

Now, upon substituting HP,r,t from (16) into the above
equation, and in turn utilizing the relationship in (14), one
can express the matrix HP , similar to (13), as

HP =
∑
i,j,k,l

αi,j,k,l

[(
ar (θk) aHt (φl)

)
⊗
(
Π̃i∆̃j

i

)]
. (19)
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Algorithm 1 OMP-based sparse CSI estimation
Input: Dictionary matrix Φ, observation vector yP
Initialization: I = [ ], residue r−1 = 0NpNr×1, r0 = yP ,
α̂OMP = 0GτGνGrGt×1, ΦI = [ ], set counter i = 0

while
(
‖ri‖2 ≥ σ2NpNr

)
do

1) i = i+ 1
2) j = arg max

k=1,··· ,GτGνGrGt

∣∣ΦH(:, k)ri−1

∣∣
3) I = I ∪ j
4) ΦI = Φ(:, I)

5) α̂iLS =
(
ΦI
)†

yP

6) ri = yP −ΦIα̂iLS

end while
α̂OMP (I) = α̂iLS
Output: α̂OMP

Furthermore, upon substituting HP into (17), we obtain

yP =
∑
i,j,k,l

φi,j,k,l αi,j,k,l + wP , (20)

where the quantity φi,j,k,l ∈ CNpNr×1 obeys:

φi,j,k,l =
[(

ar (θk) aHt (φl)
)
⊗
(
Π̃i∆̃j

i

)]
sP .

Note that the number of multi-path components Lp is very
small. Therefore, very few, i.e., Lp, out of GτGνGrGt,
elements in the set {αi,j,k,l} are non-zero. Hence, one can
now formulate the MIMO OTFS CSI estimation problem of
Eq. (20) as the 4D-sparse signal recovery problem:

yP = Φα + wP , (21)

where the dictionary matrix Φ ∈ CNpNr×GτGνGrGt is
comprised of φi,j,k,l as its columns, whereas the vector
α ∈ CGτGνGrGt×1 is a sparse vector, which is comprised of
the corresponding coefficients αi,j,k,l. To this end, the least-
square (LS) and minimum mean square error (MMSE)-based
CSI estimation techniques, which although are very popular
for conventional MIMO systems, fail to exploit the DDA-
domain sparsity. Hence, the next subsection employs a low-
complexity OMP-based CSI estimation technique for MIMO
OTFS systems, which exploits this sparsity for enhanced
accuracy.

A. OMP-Based Sparse CSI Estimation

The popular OMP technique of solving the sparse signal
recovery problem of (21) is presented in Algorithm-1. In
Step-2 of the ith iteration, the previous residue vector ri−1

is correlated with the columns of the dictionary matrix Φ.
Subsequently, the column index j is obtained, which is highly
aligned with the residue ri−1. Thus, this index j corresponds
to a potentially active multipath component. Step-3 and Step-
4 update the basis-set I and the basis-matrix ΦI by adding
the selected index j and the corresponding column of Φ,
respectively. In Step-5, an LS solution α̂iLS is determined,
which is employed in Step-6 for updating the residue ri.
Furthermore, this work considers a beneficial stopping rule that

TABLE I
SIMULATION PARAMETERS

System-I System-II
Carrier frequency (GHz) 4 28
Subcarrier spacing (KHz) (∆f) 15 40
# of TAs (Nt) 4 4
# of RAs (Nr) 4 8
# of subcarriers (M) 32 16
# of OFDM symbols (N) 16 32
Pilot length (Np) 300 150
CP length (L) 8 6
# of multipath components (Lp) U(5, 8) U(5, 8)
Grid-size along delay-axis (Gτ ) 6 8
Grid-size along Doppler-axis (Gν) 6 8
Grid-size along AoA (Gr) 8 8
Grid-size along AoD (Gt) 8 8

is free from any threshold tuning. As seen under the while-
condition of Algorithm-1, the proposed OMP algorithm stops,
when the l2-norm-square of the residue becomes smaller than
the noise power, viz. Trace

(
E
[
wPwH

P
])

= σ2NpNr. The
OMP algorithm described above is seen to converge faster and
to a more accurate solution with the aid of this rule. Finally, the
estimate α̂OMP can be employed for constructing the estimate
ĤDD using Eq. (11) and (13).

Note that we perform the DDA-domain CSI estimation
using the discrete-time input-output relationship of (15). Fur-
thermore, the DDA-domain relationship of (9) is utilized
exclusively for the end-to-end symbol detection. Thus, in our
work, the CSI estimation and data transmission procedures
are performed in two separate frames. Interestingly, since we
employ the discrete-time input-output relationship of (15) for
DDA-domain CSI estimation, the proposed CSI estimation
framework can also be readily employed in an OFDM system.
However, the conventional OFDM systems have no mecha-
nism to exploit the estimated Dopplers of the multipath com-
ponents. By contrast, exploiting this is the key motivation of
developing the proposed 4D-sparse CSI estimation technique
for MIMO OTFS systems, since it can readily exploit the
estimated Doppler values of the multipath components for
overcoming the time-selectivity of mobile wireless channel.
The key challenge here is to additionally exploit the AoA and
AoD information of the multipath components along with both
the delay as well as the Doppler for developing the end-to-
end system and channel estimation models. To the best of our
knowledge, these have hitherto not been explored in the OTFS
literature. Hence, the proposed designs are ideally suited for
MIMO OTFS systems.

IV. SIMULATION RESULTS

To illustrate the performance of the proposed 4D-sparse
CSI estimation framework, this section considers a pair of
different MIMO OTFS systems, as parameterzied in Table-I.
The delay and Doppler values of the channel are assumed to
coincide with their integer grid-points, whereas both integer
and fractional angular indices are considered for AoAs and
AoDs. The performance of the proposed OMP framework is
compared to that of the popular FOCUSS-based [19] sparse
signal recovery scheme and also to the ‘sparsity-agnostic’
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Fig. 1. NMSE vs. SNR comparison for (a) System-I, (b) System-II (‘frac-ang’ signifies fractional angular indices).

MMSE (SA-MMSE), which is the conventional MMSE es-
timator relying on the correlation matrix set to IGτGνGrGt .
The performance is also compared to the hypothetical Oracle-
MMSE and BCRLB benchmarks, which can be derived assum-
ing the a priori knowledge of the delay, Doppler and angular
parameters of the underlying MIMO channel. Let H denote
the set comprising the indices of the non-zero elements in
the sparse vector α, and Φo = Φ (:,H). The Oracle-MMSE
estimator is formulated as

α̂O-MMSE =
(
ΦH

o Φo + σ2ILp
)−1

ΦH
o yP . (22)

Furthermore, the BCRLB corresponding to the estimate
α̂O-MMSE is obtained as [20]

MSE ≥ Tr
[
σ2
(
ΦH

o Φo + σ2ILp
)−1
]
. (23)

Furthermore, the state-of-the-art EP-based estimator of [9] is
also considered for comparison. The SNR in decibels (dB)
is defined as 10 log10

(
1
σ2

)
, whereas the normalized MSE

(NMSE) is defined as
‖ĤDD−HDD‖2

F

‖HDD‖2F
.

Fig. 1(a) and 1(b) plot the NMSE achieved by the various
competing schemes with respect to the SNR. Firstly, we note
that the dictionary matrices Φ corresponding to System-I and
System-II are of sizes [1200 × 2304] and [1200 × 4096],
respectively, which result in highly under-determined channel
estimation models, since there are only 1200 pilot observa-
tions, whereas the lengths of the parameters α to be estimated
are {2304, 4096}. Observe from both these plots that the
proposed OMP framework yields a reasonably low NMSE for
this ‘ill-posed’ CSI estimation scenario. This can be attributed
to the key property of the CS algorithms, which can recover
sparse signals from much fewer observations. Furthermore, the
proposed framework has a significantly improved NMSE with
respect to the FOCUSS [19], EP [9] and SA-MMSE schemes.
The dependency of the FOCUSS-based CS technique on the
regularization parameter as well as the resultant convergence

-15 -10 -5 0 5
SNR (dB)

10
-6

10
-4

10
-2

S
E

R

OMP

PCSI

EP

System-I (4x4)

System-II (8x4)

Fig. 2. SER vs. SNR comparison for System-I.

errors lead to its degraded performance. The poor performance
of both the EP-based scheme and of the conventional SA-
MMSE estimator is attributed to the fact that they do not lever-
age the sparsity. By contrast, the proposed OMP algorithm
does not employ any regularization parameter and also exploits
the 4D-sparse structure of the DDA-domain CSI leading to the
best NMSE amongst all. Furthermore, the NMSE of the OMP
scheme approaches that of the Oracle-MMSE and BCRLB
benchmarks, which are derived under the perfect knowledge of
the DDA-domain sparsity profile, whereas the proposed OMP
framework does not require this knowledge. The improved
CSI estimation performance of the OMP framework is also
seen in its resultant symbol error rate (SER) versus SNR plot
of Fig. 2, where the MMSE-based linear detectors have been
constructed using the estimated CSI. The SER achieved using
the detector designed from the OMP-based estimated CSI is
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TABLE II
PILOT OVERHEAD COMPARISON: (PROPOSED, EP), ‘NA’ REPRESENTS

‘NOT APPLICABLE’

Nt 2 4

System-I (0.369, 0.507) (0.369, 0.863)
System-II (0.226, 0.863) (0.226,NA)

seen to be close to that designed using the perfect CSI (PCSI).
Finally, Table-II compares the pilot overhead of the pro-

posed framework to that of the EP-based method of [9].
Note that for our method, the pilot overhead is given by

Np
MN+Np

. By contrast, for the EP-based technique, it is given

by (NtGτ+Gτ+Nt)(2Gν+1)
MN , which arises due to the require-

ment of multiple guard symbols. Furthermore, it can also be
readily observed that the pilot overhead of [14] is already
significantly higher in comparison to [9], since the former
does not place any data symbols along with pilots in the
same OTFS frame, while the latter does this intelligently. It
can be readily observed from Table-II that the pilot overhead
of our proposed framework is significantly lower than that
of the EP-based scheme of [9], since our estimation model
does not require any DD-domain guard intervals, except for
the CP addition in time-domain. Furthermore, the lower pilot
overhead is also attributed to the compressive sensing (CS)-
based problem formulation. Interestingly, upon increasing the
number of transmit antennas Nt, and the DD-domain spread of
the wireless channel, the EP-based technique becomes highly
inefficient, since its pilot overhead tends to 100%. This is due
to the fact that it cannot accommodate any data symbol along
with the pilot and guard symbols in the same OTFS frame.
Thus, the enhanced NMSE and SER performance compared to
EP, as demonstrated in Fig. 1 and 2, coupled with lower pilot
overhead of the proposed 4D-sparse CSI estimation frame-
work, as illustrated in Table-II, make it eminently suitable for
practical implementation in MIMO OTFS systems.

V. CONCLUSIONS

This paper conceived a delay-Doppler-angular domain rep-
resentation of the wireless channel for deriving the end-to-end
relationship in a MIMO OTFS system, followed by developing
a time-domain pilot aided channel estimation model to exploit
the inherent 4D-sparse structure. The proposed sparsity based
OMP framework was seen to achieve superior NMSE of the
estimated channel both in comparison to the state-of-the-art EP
as well as to that conventional FOCUSS and MMSE schemes.
Furthermore, the bandwidth efficiency of the proposed OMP-
based 4D-sparse channel estimation model was seen to be
significantly higher than that of the conventional MIMO OTFS
CSI estimation schemes, since its pilot overhead is very low.
A promising future direction is to extend this work for the
millimeter wave band and large-antenna regimes, where the
angular-sparsity is more dominant. Furthermore, one can also
extend this work to handle fractional-Dopplers by constructing
a virtual Doppler-grid as considered in [21].
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