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Abstract—The multi-panel array, as a state-of-the-art antenna-
in-package technology, is very suitable for millimeter-wave
(mmWave)/terahertz (THz) systems, due to its low-cost deploy-
ment and scalable configuration. But in the context of non-
uniform array structures it leads to intractable signal processing.
Based on such an array structure at the base station, this paper
investigates a joint active user detection (AUD) and channel
estimation (CE) scheme based on compressive sensing (CS) for
application to the massive Internet of Things (IoT). Specifically,
by exploiting the structured sparsity of mmWave/THz massive
IoT access channels, we firstly formulate the multi-panel mas-
sive multiple-input multiple-output (mMIMO)-based joint AUD
and CE problem as a multiple measurement vector (MMV)-
CS problem. Then, we harness the expectation maximization
(EM) algorithm to learn the prior parameters (i.e., the noise
variance and the sparsity ratio) and an orthogonal approximate
message passing (OAMP)-EM-MMV algorithm is developed to
solve this problem. Our simulation results verify the improved
AUD and CE performance of the proposed scheme compared to
conventional CS-based algorithms.

Index Terms—Massive IoT access, multi-panel mMIMO, active
user detection, channel estimation, millimeter-wave, terahertz.

I. INTRODUCTION

Multi-panel massive multiple-input multiple-output (mMI-
MO) is a viable array configuration to realize the future
millimeter-wave (mmWave)/terahertz (THz) communications
[1], [2]. Specifically, the antenna elements are integrated into
a uniform planar array (UPA) to create a panel, and multiple
panels are juxtaposed to form the multi-panel mMIMO array
shown in Fig. 1. As a partially-connected hybrid MIMO
architecture relying on a modest number of RF chains, multi-
panel mMIMO schemes exhibit high energy efficiency [2].
Moreover, compared to conventional mMIMO arrays having
half-wavelength antenna spacing, multi-panel arrays have ad-
vantages of low-cost deployment and flexible configurations
[2]. However, the resultant non-uniformly spaced arrays pose
challenging on signal processing [3].

In addition, the next-generation communications are ex-
pected to support the high-throughput uplink transmission,
including the applications of Internet of Things (IoT), Internet
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of Vehicles (IoV), and meta-universe, where efficient massive
IoT access protocols are a prerequisite [4]–[6]. Sophisticated
techniques have been proposed in the literature [7]–[10], [12]–
[14] for the joint active user detection (AUD) and channel
estimation (CE) in support of massive IoT access. In [7],
by exploiting both the active user sparsity and the joint
sparsity structures observed at multiple receive antennas, a
modified Bayesian compressive sensing (CS) algorithm was
proposed for joint AUD and CE. The authors of [8] proposed
an orthogonal matching pursuit (OMP)-based joint AUD and
time-domain CE technique for grant-free massive IoT access.
Similar to other greedy algorithms, this detector fails to
effectively harness any a priori information, and the asso-
ciated high-dimensional matrix inversion imposes excessive
complexity. To reduce the complexity, an approximate message
passing (AMP) algorithm based joint AUD and CE scheme
was developed in [9], but this AMP design requires the prior
distributions of wireless channels and the noise variance to
be known, which are hard to acquire in practice. In [10],
by exploiting both the active user sparsity and the joint
sparsity observed at the multiple receive antennas, an efficient
low-complexity expectation propagation-based algorithm was
proposed under the Bayesian framework for joint AUD and
CE. In [11], the authors proposed a deep learning based
AUD and CE in the grant-free non-orthogonal multiple access
(NOMA) systems, where deep learning figured out the direct
mapping between the received NOMA signal and the indices
of active devices and associated channels using the long short-
term memory. However, the schemes in [5]–[11] have not
considered mMIMO systems. As a further advance, the authors
of [12] designed an mMIMO-based three-phase transmission
protocol, which consist of joint AUD and CE conceived for
uplink and downlink data transmission in massive cellular IoT
access. To solve the joint AUD and CE problem in grant-free
random access over a given coherence interval, the authors of
[13] proposed a logarithmic smoothening method for handling
a non-smooth objective function. Based on the structured
sparsity of the channel matrix, a generalized multiple mea-
surement vector (GMMV)-AMP algorithm was proposed for
the uplink of broadband massive IoT access systems [14].
However, the fully-digital mMIMO considered in [12]–[14]
suffer from prohibitively high hardware cost and power con-
sumption. We provide a brief summary of the related literature
in Table I. Furthermore, when the sensing matrices are ill-
conditioned, the mean square error (MSE) performance and the
convergence speed of the orthogonal AMP (OAMP) algorithm
proposed in [15] outperforms the existing AMP algorithms.
However, the conventional OAMP algorithm is restricted to
the single measurement vector (SMV) CS problem. Moreover,
the OAMP algorithm requires the a priori distribution to be
known, whose parameters are difficult to obtain in the realistic
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Table I: A brief comparison of the related literature

Contents
Literature

[2], [3] [7]–[11] [12]–[14] Proposed

BS
1/2/4 Antennas X

Fully-digital mMIMO X
Multi-panel mMIMO X(Linear Array) X(Planar Array)

Processing at BS CE X X X X
AUD X X X

communication systems.
In this paper, we study the multi-panel mMIMO operating

at mmWave/THz frequency for high-throughput massive IoT
access. Specifically, a CS-based joint AUD and CE scheme is
proposed in support of the high-efficient uplink access, where
the multi-panel MIMO array at the BS adopts a partially-
connected hybrid architecture. We introduce the mmWave/THz
multi-panel mMIMO channel model for the first time. By
exploiting the structured sparsity of massive IoT access chan-
nels, the joint AUD and CE problem can be formulated as a
multiple measurements vector (MMV) problem under the CS
framework. To solve this MMV-CS problem in the massive IoT
access based on the multi-panel mMIMO system, we develop
an OAMP-expectation maximization (EM)-MMV algorithm,
where the EM algorithm can adaptively learn some unknown
parameters, i.e., the noise variance and the sparsity ratio.
Moreover, the sensing matrix of the multi-panel system can
be easily designed to be a partially unitary matrix, so that the
computational complexity of the proposed OAMP-EM-MMV
algorithm can be reduced and the signal processing challenges
of the associated non-uniform array can be mitigated. Finally,
our simulation results verify that the OAMP-EM-MMV algo-
rithm proposed for joint AUD and CE has a better performance
than conventional CS-based algorithms.

Notations: Boldface lower and upper-case symbols denote
column vectors and matrices, respectively. The superscripts
(·)T, (·)H, and (·)−1 denote the transpose, conjugate trans-
pose, and matrix inversion operators, respectively; ∥a∥2 and
∥A∥F are the ℓ2-norm of a and the Frobenius norm of A,
respectively; ⊗ denotes the Kronecker product operation; 0N

and IN represent the vector of size N with all the elements
being 0 and the N×N identity matrix, respectively; vec[A]
stacks the columns of A on top of each other; tr(A) is the
trace of A that calculates the sum of the diagonal elements of
A; CN (x;m,σ2) denotes the complex Gaussian distribution
with expectation m and covariance σ2. DN denotes the N×N
discrete Fourier transform matrix with (m,n)th element equal
to e−j2π(m−1)(n−1)/N . Finally, E(·), var[·], and ℜ{·} denote the
expectation, the variance, and the real part of the argument,
respectively.

II. SYSTEM MODEL

We consider a multi-panel mmWave/THz mMIMO system,
where the BS equipped with a rectangular array serves K
potential single antenna UEs in uplink massive IoT access
scenarios, as shown in Fig. 1. The BS adopts the multi-
panel structure in conjunction with a partially-connected hy-
brid MIMO. The specific configuration of the rectangular
antenna array is as follows. The number of subarray panels
is NP= IhIv with each of the subarray panels being a UPA,
where Ih and Iv are the numbers of panels in the horizontal
and vertical directions, respectively. We define Nh (Mh) and
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Fig. 1. Multi-panel mMIMO based massive IoT access system.

Nv (Mv) as the numbers of antennas in the horizontal and
vertical directions of the rectangular array (subarray panel),
respectively, i.e., Nh = IhMh and Nv = IvMv. Therefore,
the total number of antennas of the rectangular array is
NBS = NhNv (MBS = MhMv). The BS is equipped with
NP radio frequency (RF) chains, and each of them connects
the corresponding subarray panel via the partially-connected
phase shift network. Furthermore, the adjacent antenna spacing
d within each panel of Fig. 1 is equal to λ/2, where λ is the
wavelength, and the adjacent panel spacing ∆ is equal to an
integer multiple of d, yielding ∆=Dd for D≥2.

To combat the multipath effect at the BS caused by different
scatterers in the communication environment, an orthogonal
frequency-division multiplexing (OFDM) scheme having Nc

subcarriers is applied for massive IoT access. Explicitly, P
subcarriers uniformly selected from the Nc available subcar-
riers can be utilized to transmit pilot signals for joint AUD
and CE. Taking the special multi-panel mMIMO structure
into consideration, the mmWave/THz channel hp,k ∈ CNBS

between the BS and the kth UE at the pth pilot subcarrier can
be formulated as

hp,k=
L∑

l=1

βk,laMP(µk,l, νk,l)e
−j2πϖk,l

(
−Bs

2 +
(
pNc

P −1
)
Bs

Nc

)
,

(1)
where 1 ≤ k ≤ K, 1 ≤ p ≤ P , L is the total number of
paths, aMP(µk,l, νk,l) ∈ CNBS is the array response vector
evaluated at the horizontal and vertical virtual angles µk,l

and νk,l. Furthermore, βk,l ∼ CN (0, 1) and ϖk,l denote
the complex gain and path delay associated with the lth
path, respectively, Bs is system bandwidth, and Nc/P is an
integer. Specifically, by defining the horizontal and vertical
virtual angles µk,l = π sin θk,l cosϕk,l and νk,l = π sinϕk,l
with θk,l and ϕk,l being the azimuth and elevation angles,
respectively, aMP(µk,l, νk,l) in (1) can be acquired by the
vectorization of A(µk,l, νk,l) = ah(µk,l)a

T
v (νk,l). Explicitly,

we have aMP(µk,l, νk,l) = vec [A(µk,l, νk,l)] = av(νk,l)⊗
ah(µk,l), while ah(µk,l) = aIh(µk,l)⊗aMh (µk,l) ∈ CNh and
av(νk,l) = aIv(νk,l)⊗aMv (νk,l) ∈ CNv are the horizontal and
vertical steering vectors, respectively, in which the vectors
aIh(µk,l) ∈ CIh , aMh (µk,l) ∈ CMh , aIv(νk,l) ∈ CIv , and
aMv (νk,l)∈CMv can be further written as

aIh(µk,l) =
[
1, ej(Mh+D−1)µk,l , · · · , ej(Ih−1)(Mh+D−1)µk,l

]T
,

aMh (µk,l) =
[
1, ejµk,l , · · · , ej(Mh−1)µk,l

]T
,
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aIv(νk,l) =
[
1, ej(Mv+D−1)νk,l , · · · , ej(Iv−1)(Mv+D−1)νk,l

]T
,

aMv (νk,l) =
[
1, ejνk,l , · · · , ej(Mv−1)νk,l

]T
.

Due to the inherently sporadic traffic pattern of typical
massive IoT access, only a small fraction of the total UE
population K is activated, where the number of active UEs
is Ka (usually Ka≪K). We define a binary activity indicator
flag αk as the activity of the kth UE, i.e., αk = 1 when the
kth UE is active, and αk = 0 otherwise. The signal vector
y
(g)
p ∈ CNP received at the BS from the K UEs at the pth

pilot subcarrier of the gth OFDM symbol can be expressed as

y(g)
p =

(
W

(g)
RFWBB

)H ∑K

k=1
αkhp,ks

(g)
p,k + n(g)

p

=
(
W

(g)
RFWBB

)H
Hps

(g)
p + n(g)

p , (2)

where W
(g)
RF ∈ CNBS×NP and WBB ∈ CNP×NP denote the

analog and digital combining matrices, respectively, Hp =
[α1hp,1, α2hp,2,· · ·, αKhp,K ]∈CNBS×K is the channel matrix,
s
(g)
p =

[
s
(g)
p,1, s

(g)
p,2,· · ·, s

(g)
p,K

]T ∈ CK denotes the pilot signal
vector, which is randomly selected from the columns of
DK . and n

(g)
p =

(
W

(g)
RFWBB

)H
n̄
(g)
p is the noise vector with

n̄
(g)
p ∈CNBS being the additive white Gaussian noise (AWGN),

i.e., n̄
(g)
p ∼ CN (0NBS , σ

2INBS). Observe that when αk = 1,
the elements of the kth column of Hp are nonzero. With
the definition of the binary activity indicator flag αk and
the combination between αk and hp,k in Hp, the activity of
UEs can be fully embedded in the channel matrix Hp, which
inspires us to jointly estimate the channel and detect the UEs’
activity simultaneously.

We assume the digital combining matrix to be an identity
matrix, i.e., WBB= INP . To design W

(g)
RF, we first construct

a partial unitary matrix Z(g) = DNv ⊗DNh
P ∈ CNBS×NP ,

where the modulus of the elements in Z(g) is 1 and P is a
permutation matrix which consists of NP columns randomly
extracted from INBS

. For our partially-connected multi-panel
array architecture at the BS, we initialize the npth column of
W

(g)
RF that corresponds to the npth RF chain as w

(g)
np =0NBS ,

then let [w
(g)
np ]Inp

= 1√
MBS

[z
(g)
np ]Inp

, where the ordered set
Inp having a cardinality of MBS denotes the antenna index of
the npth subarray panel. Note that the design of fully-digital
MIMO architecture does not have the constraints of W(g)

RF. By
contrast, this paper considers the multi-panel mMIMO with
partially-connected hybrid MIMO architecture, which leads to
the extra hardware constrains and poses the challenging on
algorithm design. In Section III, we will formulate the joint
AUD and CE scheme in the massive IoT access with multi-
panel mMIMO system.

III. PROPOSED JOINT AUD AND CE SCHEME

In this section, we will formulate the joint AUD and CE
scheme as a CS-based MMV problem with the utilization
of the structured sparsity of massive IoT access channels.
Furthermore, to solve this MMV-CS problem, the OAMP-
EM-MMV algorithm is conceived where the EM algorithm
learns the unknown parameters, i.e., the noise variance and
the sparsity ratio.
A. Formulation of Massive IoT Access in Multi-Panel mMIMO

We firstly focus on the received signal vector y(g)
p in (2). By

applying the vectorization rule vec(ABC)=(CT⊗A)·vec(B),
the signal vector y(g)

p can be rewritten as

y(g)
p = F(g)

p hp + n(g)
p , (3)

where F
(g)
p =(s

(g)
p )T⊗

(
W

(g)
RF

)H∈CNP×J , hp=vec(Hp)∈CJ ,
and J=KNBS. The structured sparsity of the pth subchannel
Hp is preserved in the vector hp. Note that when the kth UE
is active, the elements in hp having indices from the ((k −
1)NBS+1)th to the kNBSth are nonzero, which inspires us
that UEs’ activity can be detected according to the position
of non-zero elements and the structured sparsity of channel.
Furthermore, we consider the same signal vector used at all
pilot subcarriers, i.e., s

(g)
p = s(g) and thus F

(g)
p = F(g) for

1≤p≤P . By aggregating the received signals at the P pilot
subcarriers of the gth OFDM symbol as Y(g) ∈ CNP×P , we
have

Y(g) =
[
y
(g)
1 ,y

(g)
2 , · · · ,y(g)

P

]
= F(g)H+N(g), (4)

where H = [h1,h2,· · ·,hP ] ∈ CJ×P and N(g) denote the
aggregated channel and noise matrices, respectively.

It can be observed from (4) that, according to the identical
UE activity αk, for 1≤ k ≤K, observed at all subchannels,
the aggregated channel matrix H exhibits the intrinsically
structured sparsity. More explicitly, its columns, i.e., {hp}Pp=1,
have a common sparsity pattern (a. k. a. sparse support set) in
the frequency domain, given by

supp{h1} = supp{h2} = · · · = supp{hP }, (5)
where supp{·} denotes an ordered set consisting of the non-
zero elements of the argument. Note that the support of hp

does not vary with the index of different subcarriers p, which
can facilitate better CE performance.

Due to the limited observations in multi-panel mMIMO
system relying on a partially-connected structure, we stack
the received signal matrices in G OFDM symbols, i.e., Y(g)

for 1≤g≤G, to improve the joint AUD and CE performance.
The stacked signal matrix Y∈CQ×P can be expressed as

Y =
[
(Y(1))T, (Y(2))T, · · · , (Y(G))T

]T
= FH+N, (6)

where Q=GNP, while F=
[
(F(1))T, · · · , (F(G))T

]T∈CQ×J

and N represent the sensing matrix and the stacked noise
matrix, respectively. The sensing matrix F is a partial unitary
matrix, which prompts us to design our solution developed
from OAMP algorithm [15]. Since H exhibits the structured
sparsity, the joint AUD and CE based on (6) is an MMV-CS
problem associated with Q≪J , which can be solved by the
proposed OAMP-EM-MMV algorithm introduced in the next
subsection. With the estimated channel Ĥ, the support of Ĥ
can be utilized to detect the activity of UEs, so the proposed
solution is termed as a joint AUD and CE scheme.

B. Proposed OAMP-EM-MMV Algorithm

The OAMP algorithm is developed from the AMP algorithm
for solving the considered sparse signal recovery problem,
while imposing a relaxed requirement on the sensing matrices
[15]. When the sensing matrices are ill-conditioned transform
matrices or partial unitary matrices, the performance of the
AMP algorithm is not guaranteed, while the OAMP algorithm
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has improved robustness and performs still well as demonstrat-
ed in [15]. Specifically, the OAMP algorithm includes both
a linear estimation (LE) module and a non-linear estimation
(NLE) module, which are activated iteratively. The output of
the NLE module is the MMSE estimate. Next, we elaborate
on the proposed OAMP-EM-MMV algorithm.

For the sparse channel matrix H in (4), the entries hj,p can
be reasonably assumed to follow the Bernoulli-Gaussian dis-
tribution [15], and λj,p denotes the sparsity ratio representing
the non-zero probability of hj,p. The proposed OAMP-EM-
MMV algorithm involves T iterations between the LE and
NLE modules, and we focus our attention on the tth iteration.
The linear MMSE (LMMSE) estimator and the mean error
variance estimator of the LE module are listed in the 5th and
6th lines of Algorithm 1, respectively.

The NLE module assumes that hp is corrupted by an AWGN
vector zp, i.e., we have rp=hp+τpzp, where zp∼CN (0J , IJ)
is independent of hp. The mean error variance of the NLE
module at the tth iteration (v2)t can be further calculated as

(υ2p)
t =

(
1
ωt

p
− 1

(τ2
p )

t

)−1
, (7)

where ωt
p=

1
J

∑J
j=1 var

[
hj,p|rtj,p

]
, and rtj,p is the jth entry of

rtp. According to the a priori distribution of hj,p and the NLE
model, the a posteriori distribution of hj,p can be represented
as p(hj,p|rj,p) = (1 − ηtj,p)δ(hj,p) + ηtj,pCN (hj,p; 0, (ψ

2)t),

where (ψ2)t=
ρ2(υ2

p)
t

ρ2+(υ2
p)

t , and

ηtj,p = btj,p/(a
t
j,p + btj,p), (8)

with atj,p=
1−λj,p

π((υ2
p)

t)e
−

|rj,p|2
(υ2

p)
t

and btj,p=
λj,p

π(ρ2+(υ2
p)

t)e
−

|rj,p|2
ρ2+(υ2

p)
t

.
When ηtj,p tends to zero, p(hj,p|rj,p) can be approximately
regarded as a Dirac function, and hj,p tends to zero. When ηtj,p
tends to one, by contrast, hj,p tends to be nonzero. Therefore,
ηtj,p is termed as the belief indicator (BI). The a posteriori
mean and variance can be expressed as

ξtj,p=E
[
hj,p|rtj,p

]
=

btj,p
atj,p + btj,p

κtj,p, (9)

ωt
j,p=var

[
hj,p|rtj,p

]
=

btj,p(ψ
2)t

atj,p + btj,p
+
atj,pb

t
j,p

∣∣κtj,p∣∣2
(atj,p + btj,p)

2
, (10)

where κtj,p = ρ2

ρ2+(υ2
p)

t rj,p.
As mentioned above, we revealed the theoretical basis

process of the OAMP algorithm. The value of the noise
variance σ2 and the sparsity ratio λj,p are required by the
conventional OAMP algorithm. However, the exact values
of these two parameters are difficult to obtain in practice,
which motivates us to design adaptive parameter learning for
enhancing the performance of the OAMP algorithm. Based on
the above considerations, we integrate the EM algorithm into
the OAMP algorithm. The EM algorithm is applied to estimate
the unknown noise variance and sparsity ratio using the E step
and M step, respectively,

Q
(
θ,θt

)
= E

[
lnp(H,Y)|Y;θt

]
, (11)

θt+1 = argmax
θ

Q
(
θ,θt

)
, (12)

where E [(·)|Y;θt] denotes the expectation conditioned on Y
in conjunction with the parameters θt = {(σ2)t, λtj,p, ∀j, p}.

Algorithm 1: OAMP-EM-MMV Algorithm
Require: Received signal matrix Y, sensing matrix F, and

maximum iterations T
Ensure: Estimated channel Ĥ, BIs ηj,p, ∀j, p

1: ∀j, p: Calculate λ0j,p in (15) and (σ2)0 in (16);
2: ∀p: Initialize r0p=0J and (υ2p)

0=1;
3: for t=1,· · ·, T do
4: % LE module
5: LMMSE: ∀p: rtp=ut−1

p + J
QFH

(
yp−Fut−1

p

)
;

6: The mean error variance estimator:
∀p: (τ2p )

t= J−Q
Q (υ2p)

t−1+ J
Q (σ2)t−1;

7: % NLE module
8: ∀j, p: Calculate the a posteriori mean ξtj,p in (9) and

variance ωt
j,p in (10);

9: ∀p: Calculate the mean error variance of the NLE
(υ2p)

t in (7);
10: ∀j, p: Update BI ηtj,p in (8);
11: % EM module
12: ∀j, p: Update the parameters in (14) and (17);
13: end for
14: ∀j, p: ĥj,p=ξTj,p, and ĥj,p is the (j, p)th element of Ĥ.

The exact a posteriori distribution required in (11) is in-
tractable, but we can approximate it from the OAMP algo-
rithm. However, due to the multiple elements contained in θt

of (12), its joint optimization with θ is difficult. Therefore, we
adopt the so-called incremental EM algorithm, which estimates
only a single parameter at each iteration, while keeping the
others fixed. By taking the partial derivative of (11) with
respect to each element of θ and setting the derivatives to
zero, we obtain the update rules of θ as
λtj,p = ηt−1

j,p , ∀j, p, (13)

(σ2)t = 1
P {

∑P

p=1

1
J {

∑J

j=1
|rj,p−

∑P

p=1
fq,jξ

t−1
j,p |2}+ωt−1

p },
(14)

where fq,j is the (q, j)th element of F. For the initialization
of (13) and (14) [16], the following expressions can be shown
to be suitable

λ0j,p=
Q
J max

c>0

1−2J [(1 + c)2Φ(−c)−cϕ(c)]/Q
1 + c2 − 2[(1+c)2Φ(−c)−cϕ(c)]

, ∀j, p, (15)

(σ2)0 = 1
P

∑P

p=1

||yp||22(
SNR0 + 1

)
Q
, (16)

where Φ(·) and ϕ(·) are the cumulative distribution function
and probability distribution function of the standard normal
distribution, respectively. Given that the initial signal-to-noise-
ratio (i.e., SNR0) is usually unknown in practice, we set
SNR0 = 100, which is an appropriate empirical value.

The OAMP algorithm assisted by the aforementioned EM
algorithm is capable of solving the SMV problem. Further-
more, to solve the MMV problem in (6), the sparsity of H
can be exploited and we adopt an innovative update rule to
learn the structured sparsity. Since λj,p represents the non-zero
probability of hj,p and it is independently updated in (17), it is
plausible that the sparsity of (5) cannot be exploited. In view
of this fact, we can refine λj,p as follows
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λtj,1 = · · · = λtj,P = 1
P

∑P

p=1
ηt−1
j,p , (17)

for exploiting the joint sparsity. Based on the aforementioned
derivation and analysis, we summarize our OAMP-EM-MMV
solution at a glance in Algorithm 1.

After obtaining the CE result Ĥ, we propose a pair of
AUD detectors based on Ĥ and ηj,p, respectively. Since the P
subchannels share the same support over all the P subcarriers,
we opt for the channel of arbitrary subcarrier, e.g., p = 1,
to detect the UEs’ activity. Given the CE result Ĥ, we may
readily obtain the channel Ĥ1 ∈ CNBS×K , whose element is
ĥnBS,k. For the AUD, firstly a threshold function r(x; ϵ) is
defined beforehand, where r(x; ϵ) equals 1 if |x| > ϵ and 0
otherwise.

In accordance with the structured sparsity of the estimated
channel matrix Ĥ, we define the channel gain based activity
detector (CG-AD) for AUD as follows

α̂k =

 1, 1
J

∑
nBS

∑
k
r(ĥnBS,k; ϵcg) ≥ pcg,

0, 1
J

∑
nBS

∑
k
r(ĥnBS,k; ϵcg) < pcg,

(18)

where ϵcg = 0.01max {|ĥj,k|, ∀j, k} and pcg = 0.9 [14].
Furthermore, we define a BI based activity detector (BI-AD)

as follows

α̂k =

 1, 1
J

∑
nBS

∑
k
r(ηnBS,k; ϵbi) ≥ pbi,

0, 1
J

∑
nBS

∑
k
r(ηnBS,k; ϵbi) < pbi,

(19)

where {ηnBS,k,∀nBS, k} can be obtained from η1,1 to ηJ,1.
For our channel model, we set ϵbi to 0.5 for convenience1.

IV. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed

joint AUD and CE scheme based on multi-panel mMIMO
aided massive IoT access. In our simulations, the carrier fre-
quency, bandwidth, and the number of subcarriers are 30GHz,
Bs =1GHz, and Nc =256, respectively. For the multi-panel
mMIMO array at the BS, we use Iv=Ih=4, that is NP=16
panels, and Mh = Mv = 2 for each panel, so that the total
number of antennas in this multi-panel mMIMO is NBS=64.
The adjacent panel spacing is ∆=6d, i.e., D=6. Furthermore,
in the channel, L = 4, and the path delay ϖk,l follows the
uniform distribution U [0, 32/Bs]. The maximum number of
iterations in Algorithm 1 is T =100 and SNR=30 dB. The
AUD error probability and the CE MSE defined in [14] are
used as our performance metrics. Based on our simulation
parameters, the transmission delay of an OFDM symbol is
equal to 0.288microsecond (µs).

Fig. 2 compares the AUD performance of different schemes
versus the number of OFDM symbols G. In Fig. 2 and Fig. 3,
we set K = 500 and Ka = 50, and we consider the cases
of P = 8 and P = 16. We observe from Fig. 2 that the
proposed OAMP-EM-MMV algorithm outperforms the other
three greedy algorithms (namely the SAMP, SP, and SWOMP
algorithms utilized in [14] as baseline schemes), despite using
less pilot subcarriers, and has a significant advantage over the
GMMV-AMP algorithm [14]. Furthermore, for the proposed
OAMP-EM-MMV algorithms relying on the CG-AD and BI-
AD, the AUD performance of BI-AD is distinctly better than

1The choice of ϵbi can be further optimized according to the cost of missed
detection and false alarm required by the practical communication systems.
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Fig. 2. AUD performance comparison of different schemes versus G, where
K=500 and Ka=50, and we consider the cases of P =8 and P =16.
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Fig. 3. CE performance comparison of different schemes versus G, where
K=500 and Ka=50, and we consider the cases of P =8 and P =16.

that of CG-AD. When G≥225, the AUD performance of the
CG-AD and BI-AD for P =16 tends to zero quite rapidly. In
the case of P =16, the AUD performance of the proposed BI-
AD tends to zero rapidly when G≥ 250. Hence, all the UEs
can be detected correctly within the access latency of 72µs.

Fig. 3 compares the MSE performance of the CE versus the
number of OFDM symbols G. In Fig. 3, the MSE performance
of the proposed OAMP-EM-MMV algorithm is seen to be
superior to the other baseline algorithms, especially when
P = 16. The CE accuracy of the proposed algorithm relying
on less pilot subcarriers, i.e., P =8, will be better than that of
the baseline algorithms using P =16. When 200≤G≤ 275,
observe from Fig. 3 that the MSE curves of the algorithms
based on the message passing method decays rapidly, while
these MSE curves will almost overlap when G is large enough
(e.g., G > 275). It becomes clear from Fig. 2 and Fig. 3
that the access latency to achieve reliable joint AUD and CE
performance is less than 79.2µs, which can meet the latency
requirements of the IoV.

Fig. 4 compares the AUD performance of different schemes
versus the number of OFDM symbols G with different ratios
of active UEs. In Fig. 4 and Fig. 5, we consider P =16 and
K = 400, and Ka is set to 40, 60 and 80 so the sparsity
ratio is 10%, 15%, and 20%, respectively. In the cases of
Ka = 40 and Ka = 60, the AUD error probability becomes
very small when the number of OFDM symbols G exceeds
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Fig. 4. AUD performance comparison of different schemes versus G, where
P =16 and K=400, and we consider the cases of Ka=40, 60, and 80.
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Fig. 5. CE performance comparison of different schemes versus G, where
P =16 and K=400, and we consider the cases of Ka=40, 60, and 80.

150 and 275, respectively. It can be observed from Fig. 4
that the AUD performance of each algorithm deteriorates as
the number of the active UEs and the sparsity ratio increase.
While given one specific value of Ka, the proposed OAMP-
EM-MMV algorithm is obviously superior to other baseline
algorithms, which demonstrates the robustness of the proposed
OAMP-EM-MMV algorithm. Furthermore, for the proposed
OAMP-EM-MMV algorithm relying on the CG-AD and BI-
AD, the AUD performance of BI-AD is better than that of
CG-AD in the case of different numbers of the active UEs,
which indicates that EM algorithm can update the sparsity
ratio robustly when the sparsity level changes.

Fig. 5 compares the MSE performance of the CE versus
the number of OFDM symbols G with different numbers
of the active UEs. In the cases of Ka = 40 and Ka =
60, the MSE declines rapidly when 150 6 G 6 200 and
225 6 G 6 300, respectively. Given one specific value
of Ka, the MSE performance of the proposed OAMP-EM-
MMV algorithm is superior to other baseline algorithms in
the cases of different numbers of the active UEs. Furthermore,
the simulation results of Fig. 4 and Fig. 5 demonstrate the
superiority of the combination between the OAMP algorithm
and the EM algorithm.

V. CONCLUSIONS

In this paper, we have proposed a CS-based joint AUD and
CE scheme for massive IoT access relying on mmWave/THz
multi-panel mMIMO. Since the multi-panel mMIMO is a kind
of partially-connected hybrid MIMO, the existing AUD and
CE schemes designed for fully-digital MIMO can not perform
well. Specifically, by designing the uplink combining matrix
and exploiting the structured sparsity of the uplink massive
IoT access channels, the joint AUD and CE problem can
be formulated as an MMV-CS problem. We further develop
an OAMP-EM-MMV algorithm to solve this problem by
utilizing the EM algorithm to learn the a priori parameters,
i.e., the noise variance and the sparsity ratio. Our simulation
results have demonstrated that the proposed OAMP-EM-MMV
algorithm based joint AUD and CE scheme achieves better
AUD and CE performance than the state-of-the-art schemes.
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