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Abstract One of the major challenges in Bayesian op-
timal design is to approximate the expected utility func-
tion in an accurate and computationally efficient man-
ner. We focus on Shannon information gain, one of
the most widely used utilities when the experimental
goal is parameter inference. We compare the perfor-
mance of various methods for approximating expected
Shannon information gain in common nonlinear mod-
els from the statistics literature, with a particular em-
phasis on Laplace Importance Sampling (LIS) and ap-
proximate Laplace Importance Sampling (ALIS), a new
method that aims to reduce the computational cost of
LIS. Specifically, in order to centre the importance dis-
tributions LIS requires computation of the posterior
mode for each of a large number of simulated possibili-
ties for the response vector. ALIS substantially reduces
the amount of numerical optimization that is required,
in some cases eliminating all optimization, by center-
ing the importance distributions on the data-generating
parameter values wherever possible. Both methods are
thoroughly compared with existing approximations in-
cluding Double Loop Monte Carlo, nested importance
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sampling, and Laplace approximation. It is found that
LIS and ALIS both give an efficient trade-off between
mean squared error and computational cost for util-
ity estimation, and ALIS can be up to 70% cheaper
than LIS. Usually ALIS gives an approximation that
is cheaper but less accurate than LIS, while still being
efficient, giving a useful addition to the suite of effi-
cient methods. However, we observed one case where
ALIS is both cheaper and more accurate. In addition,
for the first time we show that LIS and ALIS yield supe-
rior designs to existing methods in problems with large
numbers of model parameters when combined with the
approximate co-ordinate exchange algorithm for design
optimization.

Keywords Optimal design · Monte Carlo · Importance
sampling

1 Introduction

When designing experiments for nonlinear models there
is usually uncertainty about the model parameters, ψ ∈
Ψ , and often also in the structural form of the model
itself. A Bayesian approach enables this uncertainty to
be taken into account coherently when choosing the
variable settings to be applied in the experiment.

In contrast, frequentist optimal designs such as lo-
cally optimal designs (Chernoff 1953) and minimax
designs have a less satisfactory approach to a priori
parameter uncertainty. Locally optimal designs are tai-
lored for a specific set of assumed parameter values and
may perform poorly if the assumed values differ from
the truth. Minimax designs optimize worst-case perfor-
mance, potentially at the expense of reduced efficiency
in the most likely parameter scenarios.

Suppose that the design is denoted by ξ=(x1, . . . ,xn),
where xi = (xi1, . . . ,xiq)

T ∈ Rq is a vector that defines
the settings of the q controllable variables to be ap-
plied to the ith experimental unit, with corresponding
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response yi (i = 1, . . . ,n). A design ξ∗ is Bayesian opti-
mal if it maximizes the expected utility,

U(ξ) =
∫
Rn

∫
Ψ

u(ξ,ψ,y) fR(y|ψ,ξ) fB(ψ)dψdy , (1)

with respect to ξ ∈ Ξ , where Ξ denotes the set of possi-
ble designs. Above y = (y1, . . . ,yn)

T, with fB(ψ) denot-
ing the prior probability density of the parameters and
fR(y|ψ,ξ) denoting the conditional probability density
of the response vector under the assumed model.

The utility function u is chosen to reflect the goal
of the experiment, such as point estimation of ψ or
hypothesis testing. We will focus on the case where the
goal is to report all knowledge about the parameters via
the full posterior distribution, with density fA(ψ|y,ξ) ∝

fR(y|ψ,ξ) fB(ψ), ensuring that this is as concentrated
as possible. Here a commonly recommended utility is

u(ξ,ψ,y) = log
fA(ψ|y,ξ)

fB(ψ)

= log fR(y|ψ,ξ)− log fE(y|ξ) , (2)

involving the model evidence, defined via fE(y|ξ) =∫
Ψ

fR(y|ψ,ξ) fB(ψ)dψ. The above is the unique utility
corresponding to a local proper scoring rule. A Bayesian
optimal design for utility (2) maximizes the expected
Kullback-Leibler divergence, or equivalently the ex-
pected Shannon information gain (SIG), between the
prior and posterior distributions (Lindley et al. 1956,
Bernardo 1979, Chaloner & Verdinelli 1995).

Note that the role of the subscripts above is to en-
sure that different functions have different names, e.g.
fA(·|·, ·) is the posterior of ψ and fB(·) is the prior for
ψ. This is more precise than the simpler notation more
commonly used in Bayesian statistics in which both
density functions would be denoted by f and distin-
guished purely by their arguments; it is also shorter
than the more formal probabilistic notation in which
the two functions would be denoted fΘ |Y,Ξ (·|·, ·) and
fΘ (·). The more precise notation will be important later,
when we wish to substitute other quantities, e.g. one
denoted µ̂, into the posterior density of ψ. The simpler
notation is considered an ‘abuse of notation’ by math-
ematicians (e.g. Gelman et al. 2013, p.6), though it is
often expedient.

Despite the apparent simplicity of the above the-
ory, until recently it was all but impossible to com-
pute a Bayesian optimal design in practice for realis-
tically complex experiments. This is due to the pres-
ence of two main challenges. Firstly, the (potentially
high-dimensional) integrals involved in (1) and (2) are
analytically intractable except for linear models with
normally-distributed response. Thus, in general the ex-
pected utility can only be evaluated approximately using
numerical integration. Typically the outer integral in (1)
is estimated via Monte Carlo. The inner integral in the
model evidence in (2) can be estimated stochastically,

giving Double Loop Monte Carlo (Ryan 2003) or nested
Importance Sampling (Feng 2015). Alternatively, deter-
ministic estimates such as Laplace approximations can
be used (Long et al. 2013, Overstall et al. 2018). Earlier
approaches such as Bayesian D-optimality relied more
heavily on asympototic approximations (Chaloner &
Verdinelli 1995).

The second challenge is numerical maximization of
the approximately evaluated utility. This is difficult as a
result of the high dimension of the design space. In ad-
dition, due to the use of Monte Carlo, the approximate
evaluations of the objective function are computation-
ally expensive, noisy, and non-smooth. This precludes
the use of standard optimization algorithms such as
quasi-Newton methods or co-ordinate exchange algo-
rithms. Instead, more sophisticated optimization tech-
niques have been developed, one of the most promis-
ing being approximate co-ordinate exchange (ACE;
Overstall & Woods 2017). Alternative methods include
stochastic approximation (Huan & Marzouk 2013) and
sampling-based methods (Müller et al. 2004).

The idea of the ACE algorithm is to optimize one
co-ordinate of the design at a time using a Gaussian pro-
cess emulator to form a smooth estimate of the expected
utility as a function of the current co-ordinate. To ensure
robustness to the quality of the emulator, each proposed
change to a co-ordinate is subject to an independent
emulator-free acceptance-rejection step. After making
several passes through the design matrix using this pro-
cess, the design points are consolidated using a point
exchange procedure. An implementation is available in
the R package acebayes (Overstall et al. 2019).

This paper makes several contributions. First, we
introduce a new method for the approximation of the
expected SIG utility, called Approximate Laplace Im-
portance Sampling (ALIS). Our method is computa-
tionally cheaper (in some cases up to 70%) than the
Laplace Importance Sampling (LIS) method used by
Beck et al. (2018) to find low-dimensional designs for
partial differential equation models, and by Senarathne
et al. (2020) for sequential design. Second, we con-
duct a thorough comparison of ALIS and LIS with a
number of other algorithms in the context of nonlinear
models familiar from the statistics literature. Third, we
discuss approximations to the expected SIG utility in
the common case where there are nuisance parameters
(cf. Feng & Marzouk 2019). Finally, we demonstrate
that the use of ALIS and LIS in conjunction with the
ACE optimization algorithm gives better designs than
previous approximations in some models with a large
number of parameters.
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2 Existing approximations for expected Shannon
information gain

All of the methods considered in this paper use Monte
Carlo integration to estimate the (outer) integral in (1),
giving an approximation of the form

Ũ(ξ) =
1

M1

M1

∑
h=1

[
log fR(yh |ψh,ξ)− log f̃ h

E

]
, (3)

where (ψh,yh), h = 1, . . . ,M1, are independent random
samples from the joint prior density, i.e. fJ(ψ,y |ξ) =
fB(ψ) fR(y |ψ,ξ), and f̃ h

E is an estimate of the evidence
fE(yh|ξ) in (2).

The main difference between the various methods
is in the choice of the estimate of the evidence in (3),
which affects both accuracy and computational expense.
The primary distinction is whether a second Monte
Carlo estimate is used, giving a ‘Nested Monte Carlo’
method, or a deterministic estimate such as the Laplace
approximation. We detail these different methods be-
low.

2.1 Naı̈ve Monte Carlo

The simplest way to approximate the evidence in (3) is
via f̃ h

E = 1
M2

∑
M2
k=1 fR(yh |ψ̃hk,ξ) , where the ‘inner sam-

ple’ ψ̃hk, k = 1, . . . ,M2, is another independent random
sample from the prior density, fB(ψ). The inner sample
is chosen independently of the ‘outer sample’, (ψh,yh).
This gives an overall approximation

ŨnMC(ξ)

=
1

M1

M1

∑
h=1

[
log fR(yh |ψh,ξ)

− log

(
1

M2

M2

∑
k=1

fR(yh |ψ̃hk,ξ)

)]
.

We refer to the above approximation as naı̈ve Monte
Carlo (nMC); it is known elsewhere in the literature
as Double Loop Monte Carlo (DLMC). The estimator
ŨnMC(ξ) has variance of asymptotic order O(1/M1)

and positive asymptotic bias C(ξ)/M2, where

C(ξ) =
1
2
E
[

Var
(

fR(y |ψ,ξ)
fE(y |ξ)

∣∣∣y)/ fE(y |ξ)2
]

(Ryan 2003). Thus, the variance can be reduced by
increasing the outer sample size, and the bias can be
reduced by increasing the inner sample size.

Despite its good asymptotic properties, for practi-
cal inner sample sizes the naı̈ve Monte Carlo estimator
commonly suffers from problems with numerical un-
derflow. When this happens one obtains a numerically
negligible estimate for the evidence and a numerical
estimate of infinity for the expected utility. The latter is

clearly unreasonable, making it questionable whether
the method can be reliably used to compare designs
when M1 and M2 are small. This zero evidence problem
is particularly acute when the posterior is highly con-
centrated relative to the prior. In this case the likelihood
fR(y|ψ,ξ) is numerically negligible throughout the ma-
jority of the parameter space, except on a very small
neighbourhood around the maximum likelihood esti-
mate. It is thus highly likely that all of the ψ̃hk, which
are sampled from the prior, will lie outside of this neigh-
bourhood, giving a numerically negligible estimate of
the evidence.

2.2 Reuse estimator

To alleviate the numerical stability problems of the
Naı̈ve Monte Carlo estimator, Huan & Marzouk (2013)
proposed the reuse approximation,

Ũreuse(ξ) =
1

M1

M1

∑
h=1

[
log fR(yh |ψh,ξ)

− log

(
1

M1

M1

∑
k=1

fR(yh |ψk,ξ)

)]
,

which uses the same parameter sample in both the in-
ner and outer summation. The asymptotic bias of the
reuse estimator has the same order of magnitude as that
of the naı̈ve Monte Carlo method. However the reuse
estimator is more numerically stable for small Monte
Carlo sample sizes. In particular, it will usually give
a finite estimate of the expected utility gain because
each inner sum contains the term fR(yh |ψh,ξ), which
is non-negligible as ψh is the parameter vector used to
generate yh in the simulation.

2.3 Laplace approximations

The literature contains two methods for using Laplace
approximations to avoid nested Monte Carlo integra-
tion. For the first method, considered by Overstall et al.
(2018) and denoted LA1 here, equation (3) is used with
the standard Laplace approximation to the evidence,
giving

ŨLA1(ξ) =
1

M1

M1

∑
h=1

[
log fR(yh |ψh,ξ)

− log f̃A(ψ̂h|yh,ξ)−
p
2

log2π +
1
2

log |Hh|

]
,

where f̃A(ψ|y,ξ) = fR(y|ψ,ξ) fB(ψ) = fJ(ψ,y|ξ) de-
notes the unnormalized posterior. In addition ψ̂h =

argmaxψ f̃A(ψ|yh,ξ) denotes the posterior mode for
the hth response realization, while

Hh =−∂ 2 log f̃A(ψ|yh,ξ)

∂ψ∂ψT

∣∣
ψ=ψ̂h
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denotes the Hessian of the negative log-posterior at
the mode. This asymptotic approximation should be
accurate provided n is large enough for the posterior
to be approximately normal, and can be used to find
efficient designs for a wide range of sample sizes.

A second method, denoted LA2 here, was consid-
ered by Long et al. (2013). This requires additionally
that the sample size is large enough for the posterior to
be highly concentrated around the posterior mode. In
this case, both the log-posterior and the log-prior can
be approximated within the region of highest posterior
density by a second-order Taylor expansion, giving

EyEψ|y [log fA(ψ|y)− log fB(ψ)]

≈EyEψ|y

[1
2

log |Hy|−
p
2

log2π

− 1
2
(ψ− ψ̂y)

THy(ψ− ψ̂y)− log fB(ψ̂y)

−∇ψ log fB(ψ̂y)(ψ− ψ̂y)

− 1
2
(ψ− ψ̂y)

T
∇

2
ψ log fB(ψ̂y)(ψ− ψ̂y)

]
≈ Ey

[1
2

log |Hy|−
p
2
(log2π +1)

− log fB(ψ̂y)−
1
2

tr(∇2
ψ log fB(ψ̂y)H−1

y )
]
,

where ψ̂y denotes the posterior mode given response
vector y and Hy the corresponding Hessian of the neg-
ative log-posterior. Above, the last line has been ob-
tained using the elementary fact that if ψ ∼ N(µ,V)

then E[(ψ−µ)TQ(ψ−µ)] = trQV. Monte Carlo esti-
mation of the above gives

ŨLA2(ξ) =
1

M1

M1

∑
h=1

[1
2

log |Hh|−
p
2
(log2π +1)

− log fB(ψ̂h)−
1
2

tr(∇2
ψ log fB(ψ̂h)H−1

h )
]
.

3 Approximate Laplace Importance Sampling

3.1 Importance sampling

Another Monte Carlo method for estimating the evi-
dence is importance sampling, i.e.

f̃ h
E =

1
M2

M2

∑
k=1

fR(yh |ψ̃hk,ξ) fB(ψ̃hk)

qh(ψ̃hk)
, (4)

where ψ̃hk, k = 1, . . . ,M2 is an independent sample
from the importance density qh. Note that nMC cor-
responds to the special case where the prior is cho-
sen as the importance density. By standard theory (e.g.
Lemieux 2009, p.114) the optimal importance density
is q∗h(ψ) ∝ fR(yh |ψ,ξ) fB(ψhk), i.e. q∗h is the posterior
density of ψ given yh. This gives a zero variance unbi-
ased (i.e. error-free) estimator; unfortunately the opti-
mal importance density cannot be used in practice as it

requires knowledge of the evidence, the quantity we are
trying to estimate.

The above discussion suggests that a good choice of
importance density would be a computationally cheap
approximation to the posterior, such as N(ψ; µ̂h,Σ̂h)

or tν(ψ; µ̂h,Σ̂h), where µ̂h and Σ̂h are approximations
to the mean vector and variance matrix of fA(ψ|yh,ξ).
Here N(·;µ,Σ) and tν(·;µ,Σ) denote respectively the
probability density function of a multivariate normal
and multivariate t distribution with mean µ, variance
matrixΣ, and degrees of freedom ν for the latter. Below
we discuss different methods for choosing µ̂h and Σ̂h.

3.2 Laplace-type Importance Sampling Methods

Laplace-type importance sampling methods set the vari-
ance of the importance distribution as Σ̂h = Hh(µ̂h)

−1

where Hh(µ̂h) =− ∂ 2 log f̃A(ψ |yh,ξ)
∂ψ∂ψT

∣∣
ψ=µ̂h

.The two vari-
ants, Laplace Importance Sampling (LIS), and Approxi-
mate Laplace Importance Sampling (ALIS), are distin-
guished via the choice of mean µ̂h.

3.2.1 LIS

With LIS, the mean is approximated using µ̂h = ψ̂h =

argmaxψ∈Ψ f̃A(ψ |yh,ξ). This necessitates a total of
M1 potential costly numerical optimizations to find
the mode, ψ̂h (h = 1, . . . ,M1), of the posterior distri-
bution: one for each the M1 simulated response vectors,
y1, . . . ,yM1 , in the outer sample. However, provided the
search for ψ̂h is initialized at the data-generating pa-
rameter values ψh, it typically converges in a small
number of iterations. We performed these optimizations
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method. Algorithm 1 gives a detailed description of
the LIS method and our proposed new variant, ALIS.
See Ryan et al. (2015) and Beck et al. (2018) for low-
dimensional examples of design selection with LIS.

3.2.2 ALIS

The key observation underpinning ALIS is that the pos-
terior mode used to center the importance distribution in
LIS is frequently close to the data-generating values, i.e.
it is often the case that ψ̂h ≈ψh. Given this, an obvious
question is whether it is possible to reduce the computa-
tional cost of the LIS method by removing some of the
optimization steps, setting µ̂h =ψh for some h. For this
choice to work we require at a minimum that Hh(ψh)

is positive definite, since without this Σ̂h would not be
a valid covariance matrix and it would be impossible to
sample from the importance distribution qh. The ALIS
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Algorithm 1: ALIS/LIS Algorithm
Generate a sample ψh, h = 1, . . . ,M1, from fB(ψ);
for h = 1, . . . ,M1 do

Generate a response yh from fR(y|ψh,ξ);
Compute mean and variance of importance distribution qh(ψ):
if method==‘ALIS’ and Hh(ψh) is positive-definite then

Set µ̂h =ψh and Σ̂h = Hh(ψh)
−1

else
Calculate the posterior mode ψ̂h of fJ(ψ,yh|ξ) = fR(yh|ψ,ξ) fB(ψ), e.g. via BFGS
Set µ̂h = ψ̂h and Σ̂h = Hh(µ̂h)

−1

Generate a sample {ψ̃hk}M2
k=1, from the importance density qh(ψ);

for k = 1, . . . ,M2 do
Calculate ũhk =

fR(yh|ψ̃hk ,ξ) fB(ψ̃hk)

qh(ψ̃hk)
;

Estimate the evidence fE(yh|ξ) via f̃ h
E = 1

M2
∑

M2
k=1 ũhk;

Calculate ũh = log fR(yh|ψh,ξ)− log f̃ h
E ;

Estimate the expected Shannon information gain utility via Ũ(ξ) = 1
M1

∑
M1
h=1 ũh;

importance distribution is thus centred at

µ̂h =


ψh if Hh(µ̂h) is numerically

positive-definite ,
ψ̂h otherwise.

We show in Section 4.2 that this choice gives a method
with comparable accuracy but lower computational cost.

3.3 Nested importance sampling

In nested importance sampling (nIS; Feng 2015), the
posterior mean µh and varianceΣh are approximated
via self-normalized importance sampling using the outer
sample. This gives

µ̂h =
M1

∑
k=1

w̄hkψk ,

Σ̂h =
M1

∑
k=1

w̄hk(ψh − µ̂h)(ψh − µ̂h)
T ,

where w̄hk = fR(yh |ψk,ξ)/∑
M1
l=1 fR(yh |ψl ,ξ). This ap-

proach has the potential to suffer from low effective
sample size. To counter this, Feng proposed to revert to
the original naı̈ve Monte Carlo estimate of the evidence
if ESSh = 1/(∑M1

k=1 w̄2
hk) drops below a prespecified min-

imum effective sample size.

4 Performance comparison

4.1 Models for performance assessment

In this section we compare the performance of the meth-
ods from Sections 2 and 3. Results are given for two
tasks: (i) evaluation of the utility function and (ii) design
selection, in Sections 4.2 and 4.3 respectively. Three

different nonlinear models are considered, all of the
form

yi = η(xi,θ)+ εi , (5)

with εi
i.i.d.∼ N(0,σ2

ε ) for i = 1, . . . ,n. The models differ
with respect to their mean functions η , parameters, and
priors, with details given below.

Michaelis-Menten model

The Michaelis-Menten model has mean function

η(x,θ) = θ1x/(θ2 + x) ,

with unknown parameters θ1, θ2, both positive. It is as-
sumed a priori that logθ1 ∼ N(4.38,0.072), logθ2 ∼
N(1.19,0.842), and σ2

ε ∼ Inverse-Gamma(3,2) inde-
pendently.

The prior on θ2 is relatively diffuse, implying a wide
range of possible shapes of the response curve. The prior
on σ2

ε was chosen to imply a low noise-to-signal ratio as
this leads to a relatively concentrated posterior, the most
demanding scenario for methods such as naı̈ve Monte
Carlo and nested importance sampling. Specifically,
the 10% and 90% quantiles of σε/η(400,θ) are 0.009
and 0.02 respectively, where the denominator is the
maximum value of η over the design region [0,400].

In order to preserve the positivity constraint on θ1
and θ2, we reparameterize the model in terms of ϑ1 =

logθ1 and ϑ2 = logθ2. The resulting normal ALIS/LIS
importance distribution on the ϑ scale effectively im-
plies a log-normal importance distribution on the θ

scale. Note that reparameterization does not change the
value of the expected Shannon information gain, but
it does change our numerical estimate thereof due to
the modified importance distributions. Here the noise
variance σ2

ε can be integrated out analytically owing to
its conjugate prior. See the appendix for full technical
details of the calculations for the marginal likelihood
and its derivatives.
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Parameter θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10
Mean 1054.54 206.55 1.46 −0.26 0.02 0.40 0.04 57.40 −0.48 −1.50

Std. dev 24.63 5.29 0.04 0.01 0.002 0.03 0.001 2.37 0.075 0.10

Table 1 Prior means and standard deviations for the lubricant kinematic viscosity model
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Fig. 1 Distribution of the estimator of expected utility from different methods, using the Michaelis-Menten model and a space-filling
design with n = 5 runs. Empirical distributions of the estimator are based on 100 evaluations for each method. The ‘true’ expected
Shannon information gain given by the reference approximation is indicated by the red line. Numbers after the method name indicate
the outer Monte Carlo sample size M1. The pairs (M1,M2) = (300,300) and (2000,10000) were used.

BOD Michaelis-Menten Average
Method/M1 n = 6 n = 10 n = 20 n = 5 n = 10 n = 20 RRMSE

LIS,2000 1.2 0.6 0.4 0.6 0.5 0.5 0.6
ALIS,2000 1.0 0.6 0.5 1.2 0.5 0.6 0.7

LIS,300 2.3 1.5 1.0 1.7 1.1 1.2 1.5
ALIS,300 2.1 1.7 0.9 3.3 1.5 1.5 1.8

nMC,2000 2.1 2.6 5.7 1.7 3.8 6.4 3.7
nIS,2000 1.4 2.4 7.5 1.8 4.7 8.5 4.4

LA1,2000 7.9 4.1 1.6 8.5 3.7 3.5 4.9
LA1,300 8.3 4.5 1.8 8.5 4.0 3.7 5.1

reuse,2000 3.1 4.8 9.4 3.6 7.3 9.2 6.2
LA2,2000 15.2 7.8 2.8 11.2 5.3 4.4 7.8

LA2,300 15.5 8.1 2.9 11.2 5.3 4.5 7.9
reuse,300 13.8 17.7 31.4 13.3 22.7 25.9 20.8

nIS,300 22.7 39.3 99.1 27.7 71.2 109.1 61.5
nMC,300 25.5 39.9 99.1 30.0 72.0 110.5 62.8

Table 2 Percentage RRMSE of the estimator of expected Shannon information gain, for different combinations of model, sample size,
and approximation method. Methods are ordered according to the average RRMSE across all examples.

BOD Michaelis-Menten
Example n = 6 n = 10 n = 20 n = 5 n = 10 n = 20

% optimizations avoided 75.9 91.8 99.3 98.0 99.7 100.0

Table 3 ALIS method: long-run percentage of outer loop iterations for which the data-generating values of ψ are used to centre the
importance distribution, i.e. the percentage of outer loop iterations for which numerical optimization to find the posterior mode is
avoided. Percentages were estimated by simulating 10,000 outer loop iterations. For smaller values of M1 the actual number of outer
loop iterations for which numerical optimization is avoided will follow a Binomial distribution with success probabilities approximately
equal to the above percentages.
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Detailed timings (s)

Mean performance BOD Michaelis-Menten
Method rRMSE (%) Time (s) n = 6 n = 10 n = 20 n = 5 n = 10 n = 20
LA1,300 5.1 0.007 0.002 0.003 0.007 0.005 0.005 0.019
LA2,300 7.9 0.009 0.005 0.005 0.012 0.006 0.005 0.019
LA1,2000 4.9 0.050 0.021 0.022 0.049 0.038 0.038 0.130
LA2,2000 7.8 0.059 0.035 0.036 0.080 0.040 0.038 0.127
reuse,300 20.8 0.062 0.040 0.042 0.136 0.023 0.026 0.103
nMC,300 62.8 0.062 0.040 0.042 0.135 0.028 0.025 0.103
ALIS,300 1.8 0.116 0.089 0.092 0.144 0.103 0.092 0.178
LIS,300 1.5 0.122 0.092 0.094 0.152 0.099 0.102 0.192
nIS,300 61.5 0.137 0.090 0.077 0.201 0.103 0.062 0.290
reuse,2000 6.2 2.687 1.671 1.825 5.949 1.109 1.136 4.434
nMC,2000 3.7 13.790 8.425 9.278 30.423 5.488 5.656 23.470
ALIS,2000 0.7 25.295 19.375 20.490 31.864 20.200 20.855 38.988
LIS,2000 0.6 25.632 19.805 20.878 32.563 20.463 21.143 38.939
nIS,2000 4.4 33.159 24.298 24.801 44.066 24.868 23.232 57.686

Table 4 Computational expense and accuracy of different methods. The left part of the table shows, for each method, the mean rRMSE
and mean time to produce one evaluation of the utility function. The mean is an average across ten repeats of all examples for the
Michaelis-Menten and BOD models. Methods are sorted from least expensive to most expensive. The right part of the table shows a
detailed breakdown of the mean evaluation time of the utility function for each example, averaged across 10 repeats.

Model n M1 M2 Time (LIS, s) Reduction (ALIS, %) rRMSE (LIS) Increase (ALIS)
BOD 6 2000 50 0.110 10.0 2.15 -0.06
BOD 10 2000 50 0.113 11.4 0.91 0.28
BOD 6 300 30 0.011 14.1 2.69 0.07
BOD 10 300 30 0.011 16.8 1.69 0.22
BOD 20 2000 50 0.189 19.0 0.41 0.18
MM 5 2000 50 0.128 19.3 0.65 0.19
MM 10 2000 50 0.128 22.7 0.49 0.07
BOD 20 300 30 0.019 24.3 1.05 0.18
BOD 6 300 10 0.005 26.2 3.27 0.41
MM 5 300 30 0.014 30.5 1.69 0.13
BOD 10 300 10 0.005 32.5 1.79 1.07
MM 10 300 30 0.014 33.5 1.18 0.17
MM 20 2000 50 0.287 33.9 0.46 0.20
BOD 20 300 10 0.010 45.3 1.07 1.00
MM 20 300 30 0.032 45.6 1.19 0.17
MM 5 300 10 0.008 53.8 1.67 0.99
MM 10 300 10 0.008 54.8 1.22 0.90
MM 20 300 10 0.022 69.5 1.17 1.24

Table 5 Comparison between ALIS and LIS for smaller inner loop sample sizes. Cost reduction is shown as a percentage, while rRMSE
increase is shown as the absolute increase (which is a difference in percentage points). The table is ordered according to the magnitude
of the cost reduction from ALIS.

Biochemical oxygen demand (BOD) model

Bates & Watts (1988, Chapter 2) modelled biochemical
oxygen demand y (mg/L) with the mean function

η(x,θ) = θ1{1− exp(−θ2x)} ,

where x is time (in days). We adopt the following inde-
pendent priors:

logθ1 ∼ N(3.38,0.202) ,

logθ2 ∼ N(1.098,1.122) ,

πb(σε) ∝ σ
−1
ε .

The prior means for θ1, θ2 were chosen to match the
means given by DiCiccio et al. (1997), while the vari-
ances were chosen to illustrate the differences between
the methods (smaller and larger variances resulted in

more similar performance). Similar to the Michaelis-
Menten model, we reparameterize in terms of ϑ j =

logθ j when carrying out utility approximations, and σ2
ε

is integrated out analytically. The design region is [0,7].

Lubricant kinematic viscosity model

Bates & Watts (1988, Chapter 3) modelled the kine-
matic viscosity of a lubricant using the following mean
function, depending on temperature, x1 (◦C) and pres-
sure, x2 (atm):

η(x,θ) =
θ1

θ2 + x1
+θ3x2 +θ4x2

2 +θ5x3
2

+(θ6 +θ7x2
2)x2 exp

{
− x1

θ8 +θ9x2
2

}
.

Defining θ10 = logσε , we adopt independent normal
priors on θ j, j = 1, . . . ,10, with means and standard
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deviations equal to the maximum likelihood estimates
and their standard errors based on the data from Bates &
Watts (1988) (see Table 1). Unlike the previous models,
no reparameterization is used for the θ j. Moreover the
noise variance is treated as an interest parameter. The
design region for (x1,x2) is [0,100]× [0,7].

4.2 Utility evaluation results

For utility evaluation, we compare the methods in terms
of accuracy and computational expense. To assess ac-
curacy, we need an approximation with negligible er-
ror to serve as a reference. For the Michaelis-Menten
and BOD models we were able to obtain such a refer-
ence approximation by using naı̈ve Monte Carlo with
M1 = M2 = 106, though this approximation is too com-
putationally expensive for routine use. However for the
lubricant model, whose parameter space is of substan-
tially larger dimension, nMC yields unstable estimates
even with such a large Monte Carlo sample size. Thus
we restrict our attention to the Michaelis-Menten and
BOD models in this section, though our results will
suggest that expected utility can be reliably estimated
for the lubricant model using the LIS and ALIS approx-
imations.

To investigate how performance depends on the
number of experimental runs, results are obtained for a
variety of experiment sizes. For the Michaelis-Menten
model space-filling designs with n = 5, 10, and 20 are
considered, while for the BOD model the design from
Bates & Watts (1988) with n = 6 is considered along-
side space-filling designs with n = 10 and 20. The type
of space-filling design used throughout is a random
Latin Hypercube design. For consistency the same spe-
cific design realisation was used throughout, so that
differences between different sampled designs of the
same size are not a factor in the results.

Figure 1 shows how the distribution of the estimator
of expected Shannon information varies across different
methods and different combinations of inner and outer
Monte Carlo sample sizes. The results shown are for
the Michaelis-Menten model and a space-filling design
with n= 5 runs. The reference value of the expected util-
ity is indicated by the red horizontal line. It is seen that
ALIS and LIS have small bias and variance compared
to all other methods with similar Monte Carlo sample
size, even for small M1 and M2. The nMC, nIS, and
reuse methods give highly biased and variable estima-
tors for small Monte Carlo sample size, but increasing
M1 and M2 reduces both the variance and bias, and with
(M1,M2) = (2000,10000) both the nMC and nIS meth-
ods give comparable utility values to LIS and ALIS.
In contrast, for the Laplace approximations, increasing
the Monte Carlo sample size only reduces the variance,
not the bias, as these methods are intrinsically biased

due to the poor quality of the asymptotic approximation
when n = 5. This figure is quite representative of the
general picture, but further insight can be obtained by
combining results across several examples.

Table 2 shows the accuracy of the methods across
models, Monte Carlo sample sizes, and numbers of
experimental runs. Accuracy is measured by the per-
centage relative root mean squared error (RRMSE),
i.e. 100×

√
MSE[Ũ(ξ)]/U(ξ). It is seen that the most

accurate methods overall are LIS and ALIS; these have
excellent performance even with low Monte Carlo sam-
ple size (M1 = M2 = 300). Moreover, the accuracy of
LIS and ALIS remains stable or even improves as the
number of experimental runs increases. nMC is the next
most accurate method when Monte Carlo sample size
is large but it performs poorly when Monte Carlo sam-
ple size is small, i.e. when (M1,M2) = (2000,10000)
and (300,300) respectively. Moreover, the performance
of nMC degrades as the number of experimental runs
increases. This result is intuitive: as the number of ex-
perimental runs increases, the posterior will become
more concentrated and the prior will become a worse
importance distribution. nIS has similar performance
and caveats to nMC. The accuracy of LA1 is good when
n is large, poor when n is small, and fairly insensitive to
M1. Similar comments apply to LA2, but with slightly
worse accuracy overall. The reuse estimator has rela-
tively poor performance even with large Monte Carlo
sample sizes and is not recommended.

The left part of Table 4 shows the relationship be-
tween the accuracy of the different methods and their
computational cost. The timings show that the most
efficient methods are LA1, ALIS, and LIS: all other
methods have worse accuracy than another method with
lower computational cost. In particular LIS and ALIS
with M1 = M2 = 300 give a good trade-off between
accuracy and computational expense. Increasing the
Monte Carlo sample size to (M1,M2) = (2000,10000)
gives only a small increase in accuracy for a very large
increase in cost. The right part of Table 4 shows how the
utility evaluation time varies across methods, models
and experiment sizes. It is clear that larger n results in
increased evaluation time, though the relative timings
of the different methods are similar for all examples.

The difference between LIS and ALIS can be con-
sidered in more detail. Table 3 shows that a high per-
centage of the numerical optimizations required in the
LIS method can be avoided through ALIS. The per-
centage is higher for large n, which is intuitive since
we would expect in that case that the posterior mode
would be closer to the data-generating values. The per-
centage of avoided optimizations is also higher for the
Michaelis-Menten examples than for those using the
BOD model. This is consistent with the fact that the
priors for the Michaelis-Menten example were chosen
to have a low noise-to-signal ratio, which is anticipated
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to give a posterior that is relatively highly concentrated
around the data-generating values.

Although ALIS greatly reduces the amount of opti-
mization required compared to LIS, the computational
cost saving in Table 4 is modest: approximately 5%
for (M1,M2) = (300,300) and 1.4% for (M1,M2) =

(2000,10000). This is due to the values of M2, which
are large enough that the optimization cost is relatively
small compared to the cost of the inner loop sampling
and averaging. However, for smaller inner loop sample
sizes the cost savings due to ALIS are much larger;
Table 5 shows cost savings of 10–70% from ALIS com-
pared to LIS when M2 ranges from 10 to 50. The com-
putational cost saving for ALIS usually comes at the
expense of a small decrease in accuracy, though in one
case (BOD, n = 6, M1 = 2000, M2 = 50) ALIS is both
cheaper and more accurate than LIS.

The smaller values of M2 in Table 5 are more than an
intellectual curiosity; there is empirical and theoretical
evidence that smaller values may sometimes be a more
efficient choice than setting M1 = M2. E.g. for naı̈ve
Monte Carlo asymptotic results suggest it is optimal
to take M2 = O(

√
M1) (Beck et al. 2018). Empirically,

taking as an example the BOD model with n = 20, we
find that ALIS and LIS with (M1,M2) = (300,30) are
both cheaper and more accurate than the Laplace ap-
proximation with M1 = 2000.

Clearly such timings will depend on the implementa-
tion language and hardware involved, but they nonethe-
less give a useful idea of the relative cost of the different
methods. We used C++ in R via the Rcpp and RcppAr-
madillo libraries (Eddelbuettel et al. 2011, Eddelbuettel
& Sanderson 2014) to obtain high-performance code.
Timings were carried out on a 2018 Mac Mini with
a 3GHz 6-core Intel i5 processor and 8GB RAM; the
calculations took place on a single core.

A common technique to gain better estimates in
importance sampling is to inflate the tails of the im-
portance distribution, e.g. by using a t-distribution. We
obtained results for t importance distributions, but for
brevity the results are omitted here as there was not a
substantial difference in performance from the multi-
variate normal importance distributions. For full details
see the first author’s PhD thesis (Englezou 2018).

4.3 Design optimization results

In this section we compare the performance of the dif-
ferent expected utility approximation methods for the
purpose of design optimization. To enable the compar-
ison we found (near-)optimal designs for each of the
different methods discussed in Sections 2 and 3. This
was done for the Michaelis-Menten, BOD, and lubricant
models discussed in Section 4.1 using the ACE algo-
rithm to perform utility optimization. The experiment

sizes considered were as follows: n = 5, 10, and 20
for the Michaelis-Menten; n = 6, 10, and 20 for BOD;
and n = 20 and n = 53 for the lubricant model. The
cases n = 6 for BOD and n = 53 for the lubricant model
correspond to designs in the literature.

Different runs of the ACE algorithm may result in
multiple different near-optimal designs being found for
the same design problem. This can arise due to different
starting designs being used and also the stochastic na-
ture of the expected utility estimates. To obtain more sta-
ble results we therefore ran the ACE algorithm 10 times
with a different random starting design for each prob-
lem, i.e. each combination of approximation method,
model, and design size. The best design resulting from
these random starts, judged via an independent estimate
of the expected utility, was chosen as our estimate of
the overall (near-)optimal design for that problem.

The designs obtained from each method were com-
pared using an independent estimate of the expected
utility calculated using ALIS with M1 =M2 = 300. This
calculation was repeated 100 times for each design to
form an empirical distribution for the estimator, thereby
giving an indication of the variability of the expected
utility estimate. Comparisons with a ‘naı̈ve’ (i.e. non-
optimal) design were also included for each example.
This naı̈ve design was taken from the literature where
available, that is when n= 6 for BOD and n= 53 for the
lubricant model. For other cases a space-filling design
was used as the naı̈ve design, namely a random Latin
Hypercube design. Figures 2 and 3 show typical figures
resulting from this process for the BOD and lubricant
models with n = 20. Similar figures for other exam-
ples are given in the first author’s PhD thesis (Englezou
2018).

Within ACE, separate Monte Carlo sample sizes
must be specified for the emulator-building and accept-
reject steps. These were chosen as follows. In the accept-
reject step B = M1 = M2 = 10000 was used throughout.
For the emulator-building step, in the Michaelis-Menten
and BOD models we used M1 = 2000 for the ‘single-
loop’ methods LA1 and LA2; M1 = M2 = 2000 was
used for all other ‘double loop’ methods. For the lubri-
cant model, we used M1 = M2 = 300 for LIS and ALIS,
M1 = 300 for LA1 and LA2, and a larger sample size of
M1 = 2000, M2 = 10000 for nMC and nIS. The latter
was needed to avoid failure of the evaluation due to the
zero evidence problem discussed in Section 2.1.

Combining results from across the different exam-
ples several observations can be made. First, as antici-
pated, the optimized designs are better than naı̈ve com-
parator designs in all but one case. The single exception
is that, as seen in Figure 2, the design from the reuse es-
timator is worse than a space-filling design for the BOD
model when n = 20. Second, for the two-parameter
models, in most cases designs from the different approx-
imations have similar expected utility, aside from the
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Fig. 2 Comparison of (near-)optimal designs found from the different utility approximation methods for the BOD model with n = 20.
Each boxplot corresponds to the best design found from 10 random starts of the ACE algorithm using a particular method, and shows the
distribution of 100 independent evaluations of the ALIS estimator of expected Shannon information gain, obtained with M1 = M2 = 300.
ξ20 refers to a 20-run space filling design.

22
23

24
25

26
27

28

E
st

im
at

ed
 E

S
IG

ξ20 ξALIS
* ξLIS

* ξLA1
* ξLA2

*

Fig. 3 Comparison of (near-)optimal designs found from the different utility approximation methods for the lubricant model with
n = 20. Each boxplot corresponds to the best design found from 10 random starts of the ACE algorithm using a particular method, and
shows the distribution of 100 independent evaluations of the ALIS estimator of expected Shannon information gain, obtained with
M1 = M2 = 300. ξ20 refers to a 20-run space filling design.

reuse and LA2 designs which appear somewhat worse
for n = 10 and 20. Aside from these special cases for
two-parameter models the utility differences between
the designs from different methods are usually smaller
than the variability of the utility estimator for a fixed
design.

Bigger differences in the performance of the designs
from different methods are seen for the lubricant model,
which is of substantially higher dimension. In particular,
the ALIS and LIS designs substantially outperform the

designs from all other methods when n = 20 (see Figure
3), and all methods except LA1 when n = 53. This
improved performance for LA1 for large experiment
sizes is expected due to the asymptotic nature of the
Laplace approximation.

We did not record computational times for find-
ing (near-)optimal designs. However, ACE is usually
performed with a fixed number of iterations, and the
dominant computational cost is that of the expected util-
ity evaluations. Thus the relative cost for the different
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utility approximation methods will be similar to Section
4.2.

5 Nuisance parameters

In this section we discuss the case where the model
contains nuisance parameters, meaning parameters that
are not of direct interest but which must nonetheless be
considered when making inference about the parameters
of interest. Laplace approximations for this case have
been developed by Overstall et al. (2018), and a Layered
Multiple Importance Sampling approximation has been
developed by Feng & Marzouk (2019), who refer to the
resulting optimal designs as ‘focused’. Both of these
approaches used the idea of conditioning a multivariate
normal approximation to the posterior. Similar ideas
can be applied in the ALIS/LIS context, as follows.

First we partition the overall parameter vector as
ψ = (θ T,γT)T, where θ ∈ Θ ⊆ Rpθ is the vector of
interest parameters, and γ ∈ Γ ⊆ Rpγ is the vector of
nuisance parameters. The expected Shannon informa-
tion gain for the interest parameters now takes the form

U(ξ) =
∫

Θ

∫
Rn

log
fM(y|θ ,ξ)

fE(y|ξ)
f (y,θ)dydθ , (6)

where fM(y|θ ,ξ) =
∫

Γ
fR(y|θ ,γ,ξ) fB(γ|θ)dγ denotes

the marginal density of the response after integrating
out the nuisance parameters. The expected utility (6)
can be estimated via

Ũ(A)LIS(ξ) =
1

M1

M1

∑
h=1

log
f̃ h
M

f̃ h
E
,

where as before f̃ h
E = 1

M2
∑

M2
k=1 fR(yh|ψ̃hk,ξ)

fB(ψ̃hk)

qh(ψ̃hk)
is a

LIS/ALIS estimate of the evidence. In addition, now we
also require a second importance sampling approxima-
tion, f̃ h

M , to estimate the marginal likelihood, fM(y|θ ,ξ),
of the interest parameters after integrating out the nui-
sance parameters.

In particular we suggest using the following approx-
imation for the marginal likelihood:

f̃ h
M =

1
M3

M3

∑
s=1

fR(yh|θ h, ˜̃γhs,ξ)
fB( ˜̃γhs|θ h)

qγ|θ h
( ˜̃γhs)

, (7)

where { ˜̃γhs}
M3
s=1 is an i.i.d. sample from the importance

density qγ|θ h
. To minimize the variance of the estimator,

the importance distribution qγ|θ h
should approximate

the conditional posterior fA(γ|yh,θh,ξ) for the nui-
sance parameters. To obtain such an approximation we
suggest closed-form conditioning of the ALIS/LIS ap-
proximation to the joint posterior,ψ|yh

approx∼ N(µ̂h,Σ̂h),
giving

qγ|θ h
∼ N

[
µ̂h
γ + Σ̂

h
γθ(Σ̂

h
θθ)

−1(θh − µ̂h
θ ) ,

Σ̂h
γγ − Σ̂h

γθ(Σ̂
h
θθ)

−1Σ̂h
θγ

]
,

where µ̂h
θ, µ̂h

γ , Σ̂h
θθ , Σ̂h

θγ , Σ̂h
γθ, Σ̂h

γγ denote the ap-
propriate subcomponents of µ̂h and Σ̂h.

Note that we already gave some examples of mod-
els with nuisance parameters in Section 4. Approxima-
tion (7) was not needed in these cases, as the nuisance
parameters could be integrated out analytically. Ap-
proximation (7) will be more useful when the nuisance
parameters are analytically intractable.

6 Discussion

Given the results here, our overall recommendation
would be to use ALIS or LIS when finding (near)-
optimal designs if the computational budget allows. If a
smaller cost is required then LA1 may give a compet-
itive design if the experiment size is sufficiently large
relative to the number of parameters in the model. We
would discourage the use of other methods, especially
the reuse estimator, due to their potential for poor per-
formance.

Uptake of the ALIS and LIS methods would likely
be enhanced by their inclusion in software such as the
acebayes package. A major barrier to this is that to ob-
tain acceptable computation times we found it necessary
to hard-code various model-specific functions in C++,
including the mean function η(x,θ), the likelihood and
prior, and their derivatives. A non-specialist user is un-
likely to have the time or inclination to implement such
functions in C++ for their models, even with the bene-
fit of high level linear algebra packages. One potential
solution to this quandry may be to leverage recent prob-
abilistic programming languages such as STAN (Stan
Development Team 2021) or Turing.jl (Ge et al. 2018),
a package for the Julia language (Bezanson et al. 2017).
Both of these frameworks allow user-friendly high-level
specification of Bayesian models but achieve perfor-
mance comparable to compiled code. In addition these
frameworks allow automatic differentiation, avoiding
the need for detailed manual calculation of derivatives.

The results in this paper are limited to the expected
Shannon information gain criterion. This is the most
common choice in the literature, and it is a good one
when the goal is inference and uncertainty quantifica-
tion about the parameters using the full posterior dis-
tribution for reasons discussed in Section 1. In other
situations, such as point estimation, a different utility
function may be preferable. We believe that similar
numerical approximations to LIS/ALIS could be devel-
oped for other utility functions. The idea of approxi-
mating the optimal importance distribution could again
be used, though this would no longer be the posterior
distribution. However, such methods are outside the
scope of the present paper. While of interest, compar-
isons with other recent approaches such as amortized
variational inference (Foster et al. 2019) and layered
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multiple importance sampling (Feng & Marzouk 2019)
are also outside of scope.
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A Appendix: derivative calculations

The ALIS and LIS methods require the (marginal) likelihood and
the gradient and Hessian of the log unnormalized posterior. In
this appendix we report the details of these calculations for the
models in Section 4.

A.1 Nonlinear models with σ2 treated as nuisance

Here we assume that the model is a general nonlinear regression
(5) where the noise variance is a nuisance parameter and has the
conjugate prior σ2

ε ∼ IG(a,b), where a and b denote the shape
and scale hyperparameters. In this case the nuisance parameter
can be integrated out analytically. We work on the scale ϑ j =
logθ j on which the parameters are assumed to follow independent
normal priors, ϑ j ∼ N(ϑ̄ j,v j). The Michaelis-Menten and BOD
examples from Section 4 both fit into this framework.

The marginal likelihood is

fR(y|ϑ,ξ) =
∫

∞

0
fR(y|ϑ,σ2

ε ,ξ) fB(ϑ)dσ
2
ε

= const.×

{
1+

1
2b

n

∑
i=1

(yi −η(xi,ϑ))
2

}−(a+n/2)

.

The unnormalized log-posterior for ϑ is

log fJ(ϑ,y|ξ)

= const.−
(

a+
n
2

)
log

(
1+

1
2b

n

∑
i=1

(yi −η(xi;ϑ))2

)

− 1
2

2

∑
j=1

log(2πv j)−
2

∑
j=1

(ϑ j − ϑ̄ j)
2

2v j
.

Its gradient and Hessian are given by

∂

∂ϑk
log fJ(ϑ,y|ξ)

=
(2a+n)∑

n
i=1(yi −η(xi,ϑ))

∂η

∂ϑk
(xi,ϑ)

2b+∑
n
i=1(yi −η(xi,ϑ))2 − ϑk − ϑ̄k

vk

∂ 2

∂ϑk∂ϑl
log fJ(ϑ,y|ξ)

=−δkl

vk
+(2a+n)

(
∑

n
i=1(yi −η(xi,ϑ))

∂ 2η(xi,ϑ)
∂ϑk∂ϑl

2b+∑
n
i=1(yi −η(xi,ϑ))2

−
∑

n
i=1

∂η

∂ϑk
(xi,ϑ)

∂η

∂ϑl
(xi,ϑ)

2b+∑
n
i=1(yi −η(xi,ϑ))2

+2
∑

n
i=1(yi −η(xi,ϑ))

∂η

∂ϑk
(xi,ϑ)∑

n
i=1(yi −η(xi,ϑ))

∂η

∂ϑl
(xi,ϑ)

(2b+∑
n
i=1(yi −η(xi,ϑ))2)2

)
,

where δkl denotes the Kronecker delta, i.e. δkl = 1 if k = l, and
0 otherwise. These expressions can be evaluated for a particular

nonlinear model by substituting in appropriate expressions for
the mean function and its partial derivatives.

For the Michaelis-Menten the appropriate formulae are

η(x,ϑ) =
xeϑ1

eϑ2 + x
,

∂η

∂ϑ1
(x,ϑ) =

xeϑ1

eϑ2 + x
,

∂η

∂ϑ2
(x,ϑ) =− xeϑ1 eϑ2

(eϑ2 + x)2 ,

∂ 2η

∂θ 2
1
(x,ϑ) =

xeϑ1

eϑ2 + x
,

∂ 2η(x,ϑ)
∂θ1∂θ2

=− xeϑ1 eϑ2

(eϑ2 + x)2 ,

∂ 2η

∂ϑ 2
2
(x,ϑ) =

2xeϑ1 e2ϑ2

(eϑ2 + x)3 − xeθ1 eθ2

(eϑ2 + x)2 ,

while for BOD they are

η(x,ϑ) = eϑ1 (1− exp(−xeϑ2 )) ,

∂η

∂ϑ1
(x,ϑ) = eϑ1 (1− exp(−xeϑ2 )) ,

∂η

∂ϑ2
(x,ϑ) = xeϑ1 exp(−xeϑ2 )eϑ2 ,

∂ 2η(x,ϑ)
∂ϑ 2

1
= eϑ1 (1− exp(−xeϑ2 )) ,

∂ 2η(x,ϑ)
∂ϑ1∂ϑ2

= xeϑ1 exp(−xeϑ2 )eϑ2 ,

∂ 2η(x,ϑ)
∂ϑ 2

2
= xeϑ1 exp(−xeϑ2 )(−xe2ϑ2 + eϑ2 ) .

Note that the approach of Englezou (2018) was to reparam-
eterize only when finding the importance distribution inside the
ALIS/LIS algorithm, which requires the introduction of Jacobian
terms. Here we instead take the more direct approach of reparam-
eterizing the model before finding any derivatives. This leads to
expressions that are more general and easier to check, but the two
approaches ultimately yield equivalent answers after appropriate
simplification.

A.2 Nonlinear models with σ2
ε treated as an interest

parameter

In this section the interest parameter isψ=(θ1, . . . ,θp,ς)
T where

the nonlinear model parameters have prior distributions θ j ∼
N(θ̄ j,v j) and ς = log(σε ) ∼ N(ς̄ ,vς ). The unnormalized log
posterior is

log fJ(ψ,y|ξ) =− n
2

log2π −nς − 1
2e2ς

n

∑
i=1

(yi −η(xi,θ))
2

− 1
2

p

∑
j=1

log(2πv j)−
p

∑
j=1

(θ j − θ̄ j)
2

2v j

− 1
2

log(2πvς )−
(ς − ς̄)2

2vς

,

with gradient given by

∂

∂θk
log fJ(ψ,y|ξ)

= e−2ς
n

∑
i=1

(yi −η(xi,θ))
∂η

∂θk
(xi,θ)−

θk − θ̄k

vk

∂

∂ς
log fJ(ψ,y|ξ)

=−n+ e−2ς
n

∑
i=1

(yi −η(xi,θ))
2 − ς − ς̄

vς

,
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and Hessian given by

∂ 2 log fJ(ψ,y|ξ)
∂θk∂θl

=e−2ς
n

∑
i=1

(yi −η(xi,θ))
∂ 2η(xi,θ)

∂θk∂θl

− e−2ς
n

∑
i=1

∂η

∂θk
(xi,θ)

∂η

∂θl
(xi,θ)−

δkl

vk

∂ 2 log fJ(ψ,y|ξ)
∂θk∂ς

=−2e−2ς
n

∑
i=1

(yi −η(xi,θ))
∂η

∂θk
(xi,θ)

∂ 2 log fJ(ψ,y|ξ)
∂ς2 =−2e−2ς

n

∑
i=1

(yi −η(xi,θ))
2 − 1

vς

.

For a given nonlinear model the above can be evaluated by substi-
tuting in appropriate expressions for the mean function η and its
partial derivatives. For the lubricant model we have

η(x,θ) =
θ1

θ2 + x1
+θ3x2 +θ4x2

2 +θ5x3
2

+(θ6 +θ7x2
2)x2 exp

(
− x1

θ8 +θ9x2
2

)
,

∂η

∂θ1
=

1
θ2 + x1

,
∂η

∂θ2
=− θ1

(θ2 + x1)2 ,

∂η

∂θ3
= x2 ,

∂η

∂θ4
= x2

2 ,
∂η

∂θ5
= x3

2 ,

∂η

∂θ6
= x2 exp

(
− x1

θ8 +θ9x2
2

)
,

∂η

∂θ7
= x3

2 exp
(
− x1

θ8 +θ9x2
2

)
,

∂η

∂θ8
= x1x2(θ6 +θ7x2

2)exp
(
− x1

θ8 +θ9x2
2

)
1

(θ8 +θ9x2
2)

2 ,

∂η

∂θ9
= x1x3

2(θ6 +θ7x2
2)exp

(
− x1

θ8 +θ9x2
2

)
1

(θ8 +θ9x2
2)

2 .

Among the ∂ 2η

∂θk∂θl
, (k ≤ l), the non-zero terms are

∂ 2η

∂θ1∂θ2
=− 1

(θ2 + x1)2 ,
∂ 2η

∂θ2∂θ2
=

2θ1

(θ2 + x1)3 ,

∂ 2η

∂θ6∂θ8
= x1x2 exp

(
− x1

θ8 +θ9x2
2

)
1

(θ8 +θ9x2
2)

2 ,

∂ 2η

∂θ6∂θ9
= x1x3

2 exp
(
− x1

θ8 +θ9x2
2

)
1

(θ8 +θ9x2
2)

2 ,

∂ 2η

∂θ7∂θ8
= x1x3

2 exp
(
− x1

θ8 +θ9x2
2

)
1

(θ8 +θ9x2
2)

2 ,

∂ 2η

∂θ7∂θ9
= x1x5

2 exp
(
− x1

θ8 +θ9x2
2

)
1

(θ8 +θ9x2
2)

2 ,

∂ 2η

∂θ8∂θ8
= x1x2(θ6 +θ7x2

2)

× exp
(
− x1

θ8 +θ9x2
2

){
x1

(θ8 +θ9x2
2)

4 − 2
(θ8 +θ9x2

2)
3

}
,

∂ 2η

∂θ8∂θ9
= x1x3

2(θ6 +θ7x2
2)

× exp
(
− x1

θ8 +θ9x2
2

){
x1

(θ8 +θ9x2
2)

4 − 2
(θ8 +θ9x2

2)
3

}
,

∂ 2η

∂θ9∂θ9
= x1x5

2(θ6 +θ7x2
2)

× exp
(
− x1

θ8 +θ9x2
2

){
x1

(θ8 +θ9x2
2)

4 − 2
(θ8 +θ9x2

2)
3

}
.

All other second-order derivatives are either zero or can be ob-
tained from the above by symmetry.


