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Many vaccines are often administered in multiple doses to boost their effective-
ness. In the case of childhood vaccines, the coverage maps of the doses and the
differences between these often constitute an evidence base to guide investments
in improving access to vaccination services and health system performance in
low and middle-income countries. A major problem often encountered when
mapping the coverage of multi-dose vaccines is the need to ensure that the cover-
age maps decrease monotonically with successive doses. That is, for doses i and
j, i < j ⇒ pi(s) ≥ pj(s), where pi(s) is the coverage of dose i at spatial location s.
Here, we explore conditional probability (CP) and ratio-based (RB) approaches
for mapping pi(s), embedded within a binomial geostatistical modeling frame-
work, to address this problem. The fully Bayesian model is implemented using
the INLA and SPDE approaches. Using a simulation study, we find that both
approaches perform comparably for out-of-sample estimation under varying
point-level sample size distributions. We apply the methodology to map the
coverage of the three doses of diphtheria-tetanus-pertussis vaccine using data
from the 2018 Nigeria Demographic and Health Survey. The coverage maps
produced using both approaches are almost indistinguishable, although the CP
approach yielded more precise estimates on average in this application. We also
provide estimates of zero-dose children and the dropout rates between the doses.
The methodology is straightforward to implement and can be applied to other
vaccines and geographical contexts.
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1 INTRODUCTION

Many international development goals such as the Sustainable Development Goals (SDGs)1 and the Immunization
Agenda 20302 recognize the importance of fine-scale (eg, district level) estimates of health and development indi-
cators (HDIs) for program design, monitoring and evaluation in low- and middle-income countries (LMICs). These
estimates help reveal programmatically and epidemiologically important geographic inequities in HDIs, which can often
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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2 UTAZI et al.

be masked by aggregate national or provincial estimates traditionally produced by most surveys. Thus, the development
of model-based approaches for mapping HDIs has been an active area of research over the last two decades. Maps of HDIs
are now routinely produced by the Institute for Health Metrics and Evaluation (IHME),3-5 the Demographic and Health
Surveys (DHS) Program,6-8 WorldPop9-13 and other research groups.

Typically, the data used for map production come from geolocated household surveys, such as the DHS surveys.
Bayesian geostatistical modeling techniques14-16 which leverage geospatial covariate information, usually obtained from
a variety of sources, and the spatial dependence between survey clusters are often employed to predict HDIs at unsam-
pled locations, typically over a 1 × 1 km or 5 × 5 km grid covering the area of interest. These high-resolution maps are
also a means to produce estimates of HDIs at more operationally relevant spatial scales, for example, districts, at which
estimates can be less uncertain and more interpretable than at the grid square scale.

Geospatial analysis of indicators of childhood vaccination coverage has gained traction in the past few years,5,11,12,17-22

giving rise to the need for alternative approaches for producing maps of multi-dose vaccines as often, the maps produced
are for single vaccine doses (eg, the first dose of measles-containing vaccine, MCV1) or the methodology employed when
mapping the coverage of multi-dose vaccines simultaneously (eg, the first and third doses of diphtheria-tetanus-pertussis,
DTP1 and DTP3) does not consider the relationships between the doses and any challenges these may present.7,23 Unlike
single vaccination coverage indicators, any modeling framework employed in mapping the coverage of multi-dose vac-
cines should guarantee that the coverage maps decrease monotonically with subsequent doses; that is, for vaccine doses
i and j, i < j ⇒ pi(s) ≥ pj(s), where pi(s) is the coverage of dose i at spatial location s. This constraint arises from the fact
that it is impossible for the coverage of a subsequent dose of a vaccine to be greater than that of a previous dose. Utazi
et al11 used a multivariate modeling framework to map the coverage of three doses of DTP vaccine in five study countries.
This framework provides a mechanism for leveraging the interdependence between the vaccine doses, but it does not
necessarily guarantee that the modeled estimates satisfy the monotonicity constraint. Mosser et al19 employed a continu-
ation ratio ordinal regression approach24 to enforce this constraint and then applied the approach to model the coverage
of DTP1-3 across Africa. Their approach involved modeling DTP3 coverage (as a reference indicator), defined as proba-
bility of receipt of at least three doses (p(d ≥ 3), where d is the number of doses), and two conditional coverage indicators:
probability of receipt of two doses given receipt of at most two doses (p(d = 2|d ≤ 2)) and probability of receipt of one
dose given receipt of at most one dose (p(d = 1|d ≤ 1)). These modeled quantities were then used to estimate some inter-
mediate indicators (the probabilities of vaccination with 0, 1, 2 or ≥ 3 doses), from which estimates of DTP1 and DTP3
coverage and other quantities of interest were obtained. Mosser et al19 noted that the continuation ratio ordinal regression
approach was chosen for their work as it allowed the direct modeling of DTP3 which was considered a key indicator in
their analysis. However, this approach seems restrictive as it does not enable direct modeling of DTP1 (even in the reverse
case of the continuation ratios25) which could be a more suitable reference indicator in some contexts. Another limitation
of the approach is that fewer data, both in terms of overall sample size and number of sampled locations (compared to one
of the approaches explored here), are available to model the conditional coverage quantities owing to their definitions.

Here, we explore a more flexible alternative methodology for mapping multi-dose vaccines featuring two approaches
termed the conditional probability (CP) approach and the ratio-based (RB) approach. While the RB approach utilizes
more robust point-level data for all modeled indicators unlike the CP approach, both approaches are flexible in terms of
choosing either the first or the last dose in the vaccination series as the reference indicator, which is modeled indepen-
dently. The methodology is embedded within a Bayesian binomial geostatistical modeling framework implemented using
the INLA and SPDE approaches. We investigate the effect of varying distributions of point-level sample sizes on the pre-
dictive performance of both approaches using a simulation study. We apply the methodology to mapping the coverage of
DTP1-3 in Nigeria using data from the 2018 Nigeria Demographic and Health Survey.26

2 METHODOLOGY

2.1 The 2018 Nigeria Demographic and Health Survey (NDHS) vaccination coverage
data

Georeferenced cluster-level data on the coverage of each of the three doses of diphtheria-tetanus-pertussis vaccine
(DTP1-3) were obtained from the 2018 NDHS.26 The survey was designed to be representative at the national and state
levels, and for urban and rural areas. A stratified, two-stage cluster sampling technique was used which involved the
selection of clusters (usually enumeration areas) from a national sampling frame in the first stage and households from
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UTAZI et al. 3

F I G U R E 1 Proportions of children aged 12-23 months who received (A) DTP1, (B) DTP2, and (C) DTP3 vaccinations at the cluster level

within the selected clusters in the second stage. Stratification was achieved by separating the administrative level one
areas (ie, the 36 states and the Federal Capital Territory) in the country into urban and rural strata, and samples were
drawn independently within each stratum.

For each cluster location, the information extracted were the number of sampled children aged 12-23 months, the
numbers who had received each of the vaccine doses as evidenced by their vaccination cards or through caregiver recall,
and the displaced geographical (ie, longitude and latitude) coordinates of the cluster. Child records with missing vaccina-
tion status (ie, the “don’t know cases”) were classified as unvaccinated in line with DHS guidelines.27 In all, the processed
data included 6065 children sampled from 1332 clusters, with 3966 (65.4%), 3513 (57.9%), and 3026 (49.9%) reported to
have received DTP1-3 vaccinations, respectively. Furthermore, the median number of children sampled per cluster was
4 (IQR: 3-6), and the median numbers of those vaccinated were 3 (IQR: 1-4), 2(IQR: 1-4), and 2 (IQR: 1-3) for each of the
respective doses. The empirical cluster-level coverage is displayed in Figure 1, which shows lower coverage levels in the
north compared to the southern areas of the country. We also observe that the spatial distribution of the clusters gener-
ally aligns with the population distribution in Nigeria, but there are also areas that were under-sampled due to insecurity,
for example, the northeastern state of Borno.26 As in previous work,12 our analysis did not include clusters where only
one child was sampled. We note that cluster-level coverage maps of other modeled indicators discussed in the modeling
section are provided in supplementary materials.

2.2 Geospatial and NDHS-derived covariate data, processing and covariate selection

As in previous work,11,12,18 we assembled some geospatial covariate data known to be either directly linked to coverage
or serve as proxies for other unmeasured factors for this study. These include travel time to urban areas, travel time
to the nearest health facility (potentially providing routine immunization services), nightlight intensity, and distance
to conflict locations as reported in supplementary Table 1. To boost the predictive ability of our models, we obtained
additional covariate information from the 2018 NDHS. The geospatial covariates were obtained from various sources and
were originally available at different spatial and temporal resolutions. We assembled the most recent data available at the
time of analysis, and where applicable, the data were aggregated across multiple years to capture long-term patterns. All
geospatial covariate data were processed using ESRI ArcGIS v10.6 to create standardized 1× 1 km gridded covariate layers
for our study. Further processing using the geospatial covariates was carried out to extract the corresponding data for each
cluster location. Following approaches recommended by Perez-Haydrich et al,28 we accounted for the displacement of the
cluster locations during covariate data extraction by creating 5 km and 2 km buffers around clusters located in rural and
urban areas, respectively. We then extracted the mean values of the continuous covariates using all the grid cells falling
within the buffer.

The NDHS-derived covariates were first calculated at the cluster level using the definitions provided in supplemen-
tary Table 2. We then created 1 × 1 km interpolated surfaces of the covariates using kriging interpolation, except the
urban-rural covariate. This was implemented using the “krig” function in the fields package29 in R, with the optimal range
parameter for each covariate determined using a hold-out cross-validation exercise. Possible range parameters consid-
ered were the quartiles of the distances between the clusters in each state. The selected range parameters were mostly the
first or the third quartile of the distances. We elected to use kriging interpolation to create the surfaces of these covariates
to avoid introducing the problem of circularity (ie, using the same covariates twice) in the analysis. The gridded surface
for the urban-rural covariate was created using an approach described in Dong and Wakefield,20 which utilized gridded
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4 UTAZI et al.

F I G U R E 2 Maps of some geospatial covariates selected for the study

population data from WorldPop30 and urban population proportion with each administrative level one area within each
state obtained from the 2018 NDHS report.26

In all, we assembled a total of 23 covariates for the analysis. We selected the best set of covariates for each modeled cov-
erage indicator (see modeling section) in a non-spatial framework, as is standard practice, using the procedure described
in Utazi et al.18 We then created a uniform set of covariates for all modeled indicators for each method investigated here.
This resulted in a total of 11 covariates included in the analysis as displayed in Figure 2 and supplementary Figure 3 (see
supplementary Tables 1 and 2 for details).

2.3 Population data

To aggregate the grid-level predictions of vaccination coverage to different administrative levels (eg, districts, see modeling
section) population data were obtained from WorldPop30 and processed at 1× 1 km resolution. These were 2018 estimates
of numbers of children aged under 5 years, which we used as a proxy for the 12-23 month age group. The data were also
used to produce the zero dose estimates, that is, estimates of unvaccinated children, through integration with relevant
maps of DTP1 coverage.

2.4 The proposed method

2.4.1 Bayesian binomial geostatistical model

We begin by specifying a geostatistical model for vaccination coverage. For i = 1, … ,m, let y(si) denote the number
of children vaccinated at cluster location si out of a total of n(si) children sampled at the location. We assume that
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UTAZI et al. 5

Y (si)|p(si) ∼ Binomial(n(si), p(si)), where p(si) is the true vaccination coverage (ie, the proportion of children vaccinated)
at location si. Further, p(si) is assumed to follow a logistic regression model given by

logit(p(si)) = x(si)′𝜷 + 𝜔(si) + 𝜖(si), (1)

where x(si) is a vector of covariates associated with si, 𝜷 are the corresponding regression coefficients, 𝜖(si) is an inde-
pendent and identically distributed (iid) Gaussian random effect with variance, 𝜎2

𝜖
, used to model non-spatial residual

variation, and 𝜔(si) is a Gaussian spatial random effect used to capture residual spatial correlation in the model. That is,
𝝎 = (𝜔(s1), … , 𝜔(sn))′ ∼ N(0,Σ𝜔). Σ𝜔 is assumed to follow the Matérn covariance function31 given by

Σ𝜔(si, sj) =
𝜎

2

2𝜈−1Γ(𝜈)
(𝜅||si − sj||)𝜈K𝜈(𝜅||si − sk||),

where || ⋅ ||, denotes the Euclidean distance between cluster locations si and sj, 𝜎2
> 0 is the marginal variance of the

spatial process, 𝜅 is a scaling parameter related to the range r
(

r =
√

8𝜈
𝜅

)

-the distance at which spatial correlation is close
to 0.1, and K𝜈 is the modified Bessel function of the second kind and order 𝜈 > 0. Further, for identifiability reasons, we
set 𝜈 = 1, see Lindgren et al.32

As noted previously, applying model (1) to map the coverage of multi-dose vaccines does not guarantee that the mono-
tonic constraint is satisfied for both in- and out-of-sample predictions. We next explore two alternative approaches to
tackle this problem.

2.4.2 The conditional probability (CP) approach

This approach relies on conditional probability rules16,33 to express the interdependencies between the coverage indicators
and then exploits these to enforce the monotonic constraint. Throughout, we assume a three-dose vaccination series for
simplicity, noting that our approaches can be adapted easily to any number of doses. Let p1(s) ≥ p2(s) ≥ p3(s) denote the
respective coverage of the three-dose vaccination series at spatial location s. We also refer to these probabilities as the target
indicators. All surveyed children at location s can be grouped into four mutually exclusive and completely exhaustive
categories, namely zero-dose children, children who received the first dose but not the second dose, children who received
the second dose but not the third dose and children who received all three doses. The corresponding probabilities are
denoted using p1′ (s), p1,2′ (s), p2,3′ (s), and p3(s), respectively. Thus, p1′ (s) + p1,2′ (s) + p2,3′ (s) + p3(s) = 1. Using conditional
probability laws, these probabilities can be further expressed as:

p1,2′ (s) = p2′|1(s) × p1(s),
p2,3′ (s) = p3′|2(s) × p2|1(s) × p1(s) = p3′|2(s) × p2(s),

p3(s) = p3|2(s) × p2|1(s) × p1(s) = p3|2(s) × p2(s), (2)

where p2′|1(s) is the probability of not receiving the second dose given receipt of the first dose, p2|1(s) is the probability of
receiving the second dose given receipt of the first dose, and so on.

Following the progression from p1(s) to p3(s) in Equation (2), it is apparent that the monotonic condition
p1(s) ≥ p2(s) ≥ p3(s) is inherently preserved since p1(s), p2|1(s), p3|2(s) ∈ [0, 1]. Hence, it suffices to model these
indicators—p1(s), p2|1(s), p3|2(s)—and then enforce the monotonic constraint through using these modeled indica-
tors to derive the remaining target indicators—p2(s) and p3(s). We note that p3(s) could be used in place of p1(s)
as the reference indicator if preferable. Also, the indicators: p2|1(s) and p3|2(s) are different from the conditional
probabilities modeled in the continuation ratio ordinal regression approach,19,24 as these do not include cumulative
probabilities.

The corresponding point-level data for the modeled indicators are: n(s), y1(s);n1(s), y2(s) and n2(s), y3(s), for
p1(s), p2|1(s) and p3|2(s), respectively, where n(s) is the sample size at location s, y1(s) = n1(s) is the number of surveyed
children who were reported to have received at least the first dose, y2(s) = n2(s) is the number of children who received at
least two doses and y3(s) is the number of children who received the third dose. Observe that n(s) ≥ n1(s) ≥ n2(s), implying
potentially different point-level sample sizes for these indicators. Given that larger sample sizes tend to reduce prediction
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6 UTAZI et al.

error,12 smaller values of n1(s) and n2(s) could mean that the conditional probabilities—p2|1(s) and p3|2(s)—may not be
as well-estimated as p1(s). This is a potential shortcoming of this approach.

2.4.3 The ratio-based (RB) approach

The RB approach aims to address the sample size limitation of the CP approach through modeling the ratios of the tar-
get indicators as a strategy to enforce the monotonicity constraint. As with the CP approach, there is the flexibility to
determine the modeled indicators from either the beginning (p1(s)) or the end of the vaccination series (p3(s)) and then
construct the modeled indicators as ratios of consecutive doses. In our context, the modeled indicators are:

1. The coverage of the first dose p1(s),
2. The ratio of the coverage of the first and second doses p21(s) = p2(s) × p−1

1 (s), and
3. The ratio of the coverage of the second and third doses p32(s) = p3(s) × p−1

2 (s),

using p1(s) as the reference indicator. From these, p2(s) and p3(s) can be straightforwardly obtained as

p2(s) = p1(s) × p21(s) and
p3(s) = p2(s) × p32(s), (3)

respectively. Here again, p1(s), p21(s) ∈ [0, 1] and p2(s), p32(s) ∈ [0, 1] implies that p1(s) ≥ p2(s) ≥ p3(s) is satisfied. To
obtain the point-level data for the modeled indicators, let n(s) denote the number of children sampled at location s and
y1(s) the corresponding number of children who were reported to have received the first dose. Considering that p21(s) and
p32(s) are pseudo indicators, the corresponding pseudo binomial counts can be derived as:

y21(s) = n(s) × p21(s) and
y32(s) = n(s) × p32(s), (4)

respectively. Observe that the point-level sample size n(s) is the same for all the modeled indicators. The RB approach is
thus unaffected by the potential sample size problem associated with CP approach.

2.4.4 Relationship between the CP and RB approaches

We note that although the CP and RB approaches are different in construction, in our context, the modeled probabili-
ties/indicators are the same under both approaches. Assuming p1(s) to be the reference indicator, it is easy to show that
p2|1(s) = p21(s) and p3|2(s) = p32(s), since the probability of receipt of the first and second doses is the same as the proba-
bility of receipt of the second dose, and so on. Thus, as highlighted previously, the differences between both approaches
lie in the cluster-level sample sizes associated with the intermediate modeled indicators. Whilst under the RB approach,
the cluster-level sample size is n(s) for both p21(s) and p32(s), the sample sizes for p2|1(s) and p3|2(s) are n1(s) = y1(s) and
n2(s) = y2(s), respectively, under the CP approach. In the simulation study in Section 3, we investigate the effect of sample
sizes on the predictive performance of both approaches.

2.5 Bayesian inference using INLA and SPDE approaches

A fully Bayesian approach was adopted for fitting model (1) for each modeled indicator. Let 𝜽 = (𝜷, 𝜎2
, r, 𝜎2

𝜖
) denote the

parameters of the model and z all observe data. The joint posterior distribution of the model can be written as:

𝜋(𝜽|z) ∝
m∏

i=1
{Binomial (y(si);n(si), p(si),𝜽, z)} × N(𝝎; 0,Σ𝜔) × N(𝜖; 0, 𝜎2

𝜖 I) × 𝜋(𝜽),

∝
m∏

i=1

{
p(si)y(si)(1 − p(si))n(si)−y(si)

}
× |Σ𝜔|−

1
2 | exp

(

−1
2
𝝎′Σ−1

𝜔 𝝎
)

× 𝜎−m
𝜖 exp

(

−
𝜎
−2
𝜖

2
𝝐′𝝐

)

× 𝜋(𝜽), (5)
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UTAZI et al. 7

where 𝜋(𝜽) is the joint prior distribution on 𝜽. We assigned a N(0, 103I) prior to the regression parameter, 𝜷. We placed a
penalized complexity (PC) prior34 on 𝜎𝜖 such that p(𝜎𝜖 > 3) = 0.01. Similarly, following Fuglstad et al,35 a joint PC prior
was placed on the covariance parameters of the spatial random effect,𝜔. These were: p(r < r0) = 0.01 and p(𝜎 > 3) = 0.01,
with r0 chosen to be 5% of the extent of Nigeria in the north-south direction.

The model was implemented using the integrated nested Laplace approximation—stochastic partial differential
equation (INLA-SPDE) approach.32,36 The INLA approach is a faster alternative to the traditional MCMC technique
for performing approximate Bayesian inference. The INLA approach produces a numerical approximation of the
marginal posterior distributions of each of the unknown quantities in the model. The SPDE approach is particularly
required for the estimation of the Gaussian spatial random effect, 𝝎. The approach reduces the computational bur-
den inherent in the estimation of Σ𝜔 by representing 𝝎 as a Gaussian Markov random field (GMRF)—see Lindgren
et al.32 Further details of the implementation of the INLA-SPDE approach in our work are provided in supplementary
materials.

Given the Bayesian context adopted here, the calculation of the modeled estimates of the remaining target indicators
from the modeled indicators was implemented using the posterior samples of the modeled indicators and the formulae
provided previously.

All analyses were carried out using R37 and R-INLA package.38-40

2.6 Model validation

For each approach, the performance of the fitted models for out-of-sample prediction using the modeled indicators was
assessed at the cluster level using a k-fold cross-validation scheme, with the folds created as random splits of the n cluster
locations. We set k = 10 and using the observed (p(s)) and predicted (p̂(s)) coverage levels for mc validation locations, we
computed the following model evaluation metrics:

Average bias, AvBias = 1
mc

mc∑

i=1
(p̂(si) − p(si)),

Root mean square error, RMSE =

√
√
√
√

mc∑

i
(p̂(si) − p(si))2∕mc,

and the correlation between observed and predicted values were used to evaluate predictive performance. All three met-
rics assess the accuracy of the point predictions. The smaller the AvBias (in absolute value) and RMSE, the better the
predictions. Conversely, the higher the correlation, the better the predictions. These metrics were calculated and averaged
over the cross-validation folds.

Additionally, for the target indicators, the modeled estimates were compared with the direct survey estimates (often
considered to be the gold standard41) at the state level as in previous work.12

2.7 Prediction

For both the CP and RB approaches, predictions using model (1) were first produced at 1 × 1 km resolution for
the target indicators (ie, p1(s), p2(s), and p3(s)). Administrative-level predictions using the model were obtained as
population-weighted averages taken over all the grid cells falling within each administrative unit. That is, for area
Ai(i = 1, … ,mA areas, eg, districts), vaccine dose k, and posterior sample r,

pr
k(Ai) =

∫Ai

pr
k(s) × q(s)ds ≈

mi∑

j=1
pr

k(sj) × q(sj),

where mi is the number of grid locations with centroids in are Ai and q(s) is the proportion of the population of the area
at grid location s.
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8 UTAZI et al.

To compare the prediction uncertainties associated with the approaches being investigated, we computed the average
prediction variance (APV) which is given by

APV =
∫A

Var{pk(s)|z}ds ≈ 1
mp

mp∑

i=1
Var{p̂i

k(s)|z},

where mp is the number of prediction grid cells. Predicted maps with lower APVs are often desirable.

3 SIMULATION STUDY

Here, we describe a simulation study undertaken to investigate the effect of varying point-level sample sizes on the pre-
dictive performance of the CP and RB approaches. Using Nigeria as an example geography and the survey clusters from
the processed data described in Section 2.1 as the observation locations, data were simulated from model (1) using the
following true parameter values: 𝜎2 = 1, r = 2.62, 𝜎2

𝜖
= 1 and 𝜷 = (0.5, 0.8, 0.8, 0.2)′ corresponding to a covariate vector

with an intercept term and three variables simulated from N(0, 1), Gamma(1, 1) and t(2).
We note that the value of r corresponds to the first quartile of the distances between the observation locations. Also,

we take the 5 × 5 km grid covering the entire country to be the prediction locations for faster computation. Once we have
simulated the values of p1(s) for both the observation and prediction locations, we proceeded to simulate those of p2(s) and
p3(s) by adding an incremental parameter to the right-hand side of Equation (1) each time to reflect changes in either the
regression part of the model or the residual terms. This also ensures that the simulated values of all three indicators satisfy
the monotonicity constraint p1(s) ≥ p2(s) ≥ p3(s). Mimicking the patterns in the vaccination coverage data described in
Section 2, we set the incremental parameter equal to−1.3 for p2(s) and−2.5 for p3(s). Next, we assumed the following dis-
crete uniform distributions for the sample sizes at the observation locations: U{2, 10},U{2, 20},U{2, 30}, … ,U{2, 80}
to reflect varying ranges of sample sizes, although we note that in most DHS surveys, cluster level sample sizes >30 are
uncommon. These larger sample sizes are therefore included in the study mainly for illustrative purposes. After obtain-
ing the corresponding counts of successes y1(s), y2(s), and y3(s) through multiplying the sample sizes by the simulated
probabilities to preserve the monotonicity constraint, we then proceeded to calculate the additional indicators required
for both the CP and RB approaches. This simulation set up resulted in three true 5 × 5 km coverage maps for the target
indicators: p1(s), p2(s), and p3(s), and a total of 24 data sets, each comprising the same true coverage levels at the obser-
vation locations for the target indicators but different sample size distributions. The simulated point and grid level data
for the target indicators are displayed in supplementary Figures 4 and 5.

Additionally, we considered a second scenario in which we assumed that the data were not spatially correlated. The
data used to investigate the predictive performance of the CP and RB approaches in this case were simulated using the
same study design as before, but excluding the spatial random effect, 𝝎, from the model.

For each simulation scenario and modeling approach, we analyzed the simulated data using the Bayesian approaches
described in Section 2.5, placing similar prior distributions on all the parameters of the model. We evaluated the predictive
performance of both approaches using the metrics described in Section 2.6, all of which were calculated using the true and
predicted 5 × 5 km maps of p1(s), p2(s), and p3(s) (out-of-sample validation) and the corresponding point-level data for
both the modeled indicators and target indicators (in-sample validation) in each case. Additionally, to gain more insights
into the predictive performance of the approaches, we calculated the mean absolute error (MAE=

∑mp

i=1|p̂(s) − p(si)|∕mp)
and the actual coverage of the 95% prediction intervals (95% coverage = 100 ×

∑mp

i=1I(p̂l(si) ≤ p(si) ≤ p̂u(si))∕mp), where
mp is the number of prediction locations, p(si) is the true/simulated coverage at location si and p̂(si) is the corresponding
predicted coverage, p̂l(si) and p̂u(si) are the lower and upper limits of the prediction intervals respectively, and I(⋅) is an
indicator function. The MAE is also used to evaluate the accuracy of the point predictions while the achieved 95% coverage
evaluates the accuracy of the uncertainties associated with the predictions. The lower the MAE, the better the prediction.
Also, the closer the achieved coverage is to the true value of 95%, the better the predictions.

The results we obtained are displayed in Figure 3 and supplementary Figures 6-9. Figure 3A clearly shows that for
in-sample prediction, predictive performance improved as sample sizes increased, and based on nearly all the metrics
(except AvBias), the RB approach clearly performed better than the CP approach. This is an indication that the modeled
indicators were generally better estimated under the RB approach (see supplementary Figure 6), likely due to the avail-
ability of larger sample sizes at the point level for these indicators when using this approach. Also, we observe that for
both approaches, the point estimation of p1(s) (this indicator is the same for both approaches in the simulation design,
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UTAZI et al. 9

F I G U R E 3 Predictive performance of the conditional probability (CP) and ratio-based (RB) approaches based on different sample size
distributions for spatially-correlated point-level data: (A) In-sample prediction of the target indicators; (B) out-of-sample prediction of the
target indicators over a 5 × 5 km grid

hence the overlaps in the figures) appears to be consistently better than those of other target indicators. This validates
our earlier speculation that the reference indicator—p1(s), which is modeled directly and independently, is likely to be
more robustly estimated than other target indicators. Similar patterns were also observed in the in-sample prediction of
the modeled indicators under each approach as shown in supplementary Figure 6.

However, for out-of-sample prediction based on the 5 × 5 km grid points, Figure 3B shows that the effect of sam-
ple size is negligible when examining the correlation, RMSE and MAE statistics, with both approaches having very
similar performances in these instances. Nevertheless, when examining the AvBias and 95% coverage, both approaches
exhibit better predictive performance with increasing sample size, particularly for sample sizes≤50. Also, in terms of 95%
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10 UTAZI et al.

coverage, the RB approach is consistently the better approach for all sample sizes; whereas based on AvBias, the CP
approach is better than the RB approach for sample sizes≤20. The former case is likely an artefact of the larger point level
sample sizes for the modeled indicators in the RB approach.

Additionally, owing to the dependence of the sample sizes for p2|1(s) and p3|2(s) on the values of p1(s) in the CP
approach, we investigated the predictive performance of both approaches when p1(s) ≤ 0.3, as this is likely to yield very
small sample sizes for both conditional probabilities in the CP approach. Interestingly, the results we obtained (see sup-
plementary Figure 7) are very similar to the results reported in Figure 3 for the full range of values of p1(s), except that
the AvBias estimates for both approaches are very close in both in-sample and out-of-sample predictions for all sam-
ple sizes. Also, we obtained very similar results to those shown in Figure 3 in an additional sensitivity analysis using
smaller sample size distributions, that is, discrete uniform U{2, 8},U{2, 10},U{2, 12},U{2, 15},U{2, 20}, … ,U{2, 35}
(see supplementary Figure 8).

In general, these results reveal that the effect of sample size on both approaches is more pronounced in in-sample
prediction, in which case the RB approach outperformed the CP approach. For out-of-sample prediction, no approach is
uniformly the better approach, and the effect of sample size appears to matter for bias and uncertainty estimation only.

With spatially uncorrelated data, the patterns in the results (see, eg, supplementary Figure 9) are similar to those
shown in Figure 3, hence we do not discuss these further.

4 RESULTS OF ANALYSIS OF THE 2018 NIGERIA DEMOGRAPHIC AND
HEALTH SURVEY (NDHS) VACCINATION COVERAGE DATA

Here, we present the results of application of the proposed approaches to mapping DTP1-3 vaccination coverage using
the 2018 NDHS data, including the dropout rates between the doses and estimates of zero-dose children.

With the CP approach, the covariates chosen for model-fitting and prediction were: maternal education, skilled birth
attendance, livestock (pigs) density, proximity to national borders, urbanicity (ie, urban/rural), religion, night-time lights,
and household wealth. For the RB approach, the first five covariates were also selected in addition to travel time to urban
areas, distance to the edge of cultivated areas and distance to conflict areas.

For both approaches, estimates of parameters of the fitted models are reported in supplementary Tables 3 and 4 for
the modeled indicators. For the CP approach, maternal education, religion, and skilled birth attendance were signifi-
cant predictors of DTP1 coverage (ie, p1(s)). Maternal education was also a significant predictor of p2|1(s), while skilled
birth attendance was a significant predictor of p3|2(s). For the RB approach, similar patterns were also observed in the
relationships between the modeled indicators and the covariates. Maternal education, and skilled birth attendance were
significant predictors of p1(s). Maternal education was also the only significant predictor of p21(s), while skilled birth
attendance and livestock density (pigs) were significant predictors of p32(s). Further, education and skilled birth atten-
dance had positive relationships with coverage while religion had a negative relationship with coverage in all cases as
expected. Interestingly, livestock (pigs) density also had a positive relationship with coverage. We note that the regression
coefficients associated with these significant covariates can be exponentiated to quantify the effect of a unit increase in
these covariates on the odds of vaccination. However, this is not of interest here for various reasons including our focus
on prediction and potential aggregation bias that could occur with some of the covariates that can be measured at the
individual child level. For the CP approach, the estimated spatial ranges were between 115 and 239 km, whereas for the
RB approach, these were between 111 and 224 km for the modeled indicators in each case (see supplementary Tables 3
and 4).

Cluster-level out-of-sample model validation results are presented in Table 1. These results show the predictive perfor-
mance of the fitted models for equivalent modeled indicators under both approaches. Very similar results were obtained
for p1(s)with both approaches, even though different sets of covariates were used in the analysis. For the last two indica-
tors, the RB approach had consistently lower AvBias while the CP approach had consistently lower RMSE values. Mixed
results were obtained when considering the correlation statistics. Thus, no approach produced consistently better results
for these equivalent modeled indicators.

When considering the uncertainties in the modeled 1 × 1 km estimates of the target indicators, the APV values show
that that the CP approach outperformed the RB approach. Also, the directly modeled indicator, p1(s), had the lowest APV
of all the three target indicators in each case, which is a further indication that this indicator was more robustly estimated,
the evidence of which is stronger under the RB approach. Subsequent results presented in this work are therefore based
on the CP approach, with comparisons with the RB approach included where necessary.
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UTAZI et al. 11

T A B L E 1 Model validation statistics based on a k-fold cross-validation exercise and average prediction variance estimates

Modeled indicators AvBias RMSE Correlation Target indicators APV

Conditional probability approach

p1(s) −0.001 0.220 0.740 p1(s) 0.020

p2|1(s) 0.005 0.196 0.395 p2(s) 0.021

p3|2(s) 0.005 0.219 0.322 p3(s) 0.023

Ratio-based approach

p1(s) −0.001 0.220 0.739 p1(s) 0.022

p21(s) 0.002 0.218 0.357 p2(s) 0.034

p32(s) 0.001 0.258 0.356 p3(s) 0.051

Lastly, in supplementary Figure 10, we further validate the estimates of the target indicators using the direct survey
estimates at the state level. These plots indicate that there is a strong correspondence (correlation ≥ 0.94 in each case)
between the direct and modeled estimates both when considering the CP and RB approaches. The plots also show that the
uncertainties associated with the RB approach were generally wider than those of the CP approach, further corroborating
the results presented in Table 1.

4.1 DTP1-3 coverage maps

We first compare 1 × 1 km predicted maps of DTP2 and DTP3 coverage produced using the CP and RB approaches in
Figure 4. Panels (A) and (B) show slight differences between the predicted maps when covariates were included in the
fitted models. These differences became narrower when covariates were excluded from the analysis as shown in panels
(C) and (D). Hence, these maps demonstrate that both approaches produced very similar grid level predictions despite
being different in construction and implementation.

In Figure 5 we present the coverage maps of all three doses produced using the CP approach. There are substantial
heterogeneities in the coverage of each dose, with coverage levels markedly higher in the south compared to the north,
particularly the northeastern and northwestern areas. Coverage can also be seen to generally decrease when progressing
from DTP1 to DTP3, as expected. The “smooth” predicted maps are most likely an artefact of the kriged DHS covariates
(see, eg, Figure 2) which were mostly significant predictors of coverage in the fitted models. The uncertainties associated
with these estimates, presented as standard deviations, show that for DTP1, the southern areas where higher coverage
levels were estimated had lower uncertainty compared to the north. Some lower coverage areas in the northwest were
also predicted with lower uncertainty. Similar patterns are apparent in the coverage maps of DTP2 and DTP3, although
there are more areas of higher uncertainty. Generally, areas with lower density of cluster locations (see Figure 1) tend to
have higher uncertainty. Also, the patterns in these uncertainty estimates are likely due to the binomial likelihood used
in the model—estimates close to the endpoints of the unit interval tend to have higher precision than estimates lying
close to the middle of the interval.18 At the district or local government area (LGA) level (see supplementary Figure 11),
significant inequalities in coverage still exist and patterns in coverage are generally similar to those shown in Figure 5.

4.2 Dropout rates and zero-dose estimates

Maps of relative dropout rates between the doses (calculated as 100 × (p̂i(s) − p̂j(s))∕p̂i(s); i < j) are shown in Figure 6.
Clearly, the dropout rates are generally higher between DTP2 and DTP3 (DTP2-3) than between DTP1 and 2 (DTP1-2).
Also, lower dropout rates were estimated in areas with higher coverage, while higher dropout rates were estimates in
areas with lower coverage. These patterns are more evident when examining the dropout rates between DTP1 and DTP3.
This suggests that factors responsible for high dropouts may also influence the likelihood of receipt of DTP1. There are
also visible spots of areas of lower dropout rates in urban areas.

Estimates of numbers of children aged under 5 years who had not received any DTP doses, that is, zero-dose children,
are displayed at both the district and state levels in Figure 7 (see supplementary Table 5 for details of the district-level

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9586 by U
niversity O

f Southam
pton, W

iley O
nline L

ibrary on [14/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 UTAZI et al.

F I G U R E 4 Differences between 1 × 1 km predicted maps of DTP2 (A, C) and DTP3 (B, D) obtained through using the conditional
probability and ratio-based approaches when covariates were included (A, B) and excluded (C, D) from the fitted models

F I G U R E 5 Predicted 1 × 1 km maps of DTP1-3 coverage and associated uncertainties shown as standard deviations
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UTAZI et al. 13

F I G U R E 6 Dropout rates between the doses at 1 × 1 km resolution

estimates). These zero-dose estimates were produced using relevant administrative level coverage estimates and asso-
ciated uncertainties, and population estimates which were assumed to be fixed. An alternative approach for producing
the zero-dose estimates is to use relevant grid level coverage and population estimates and then aggregate the result-
ing zero-dose estimates to administrative levels of interest. While both approaches can produce very similar zero-dose
(point) estimates, the second approach could sometimes yield unreasonably wide uncertainty intervals. Districts with the
most unvaccinated children are located in Zamfara (Bungudu, Zurmi, Gusau, Kaura Namoda, Maradun, Maru), Gombe
(Yamaltu/Deba), Bauchi (Darazo, Bauchi, Ningi), Kebbi (Wasagu/Danko), Yobe (Fune), Sokoto (Dange-Shuni), Borno
(Jere), and Jigawa (Birnin Kudu) states, all of which had at least 50 000 zero-dose children. The uncertainties associated
with these estimates (Figure 7B) are generally low (95% CI width< 20 000), apart from some districts in the northeastern
and northwestern areas where higher uncertainties were estimated. The patterns in the uncertainty estimates generally
reflect the patterns in the uncertainties in the underlying district-level estimates presented in supplementary Figure 11,
as expected.

At the state level, Kano, Katsina, Sokoto, Zamfara, Bauchi, Borno, Kebbi, Jigawa, and Niger states had at least 400 000
zero-dose children. These are mostly states where districts with higher estimates of numbers of zero-dose children were
located (panel A), and where the poorest coverage levels were estimated. The uncertainties associated with the zero-dose
estimates appear to increase as the estimates increase, and these generally show that the numbers of zero-dose children
were reasonably well estimated. Furthermore, states where there is an intersection of lower to moderate coverage and
higher zero-dose estimate, as shown in panel (D) should be considered as priority areas for improvements in routine
immunization coverage.

5 DISCUSSION

In this article, we have explored alternative approaches for mapping the coverage of multi-dose vaccines at fine spa-
tial scales in low- and middle-income settings. Both approaches examined are flexible in terms of using either the first
or the last dose in the vaccination series as the reference indicator, which can often be an important consideration.
Furthermore, one of the approaches—the RB approach—is not subject to potential sample size restrictions that can be
encountered when modeling conditional probabilities which are used to induce the monotonicity constraint in some
approaches (eg, the CP approach explored here and the continuation ratio ordinal regression approach used in Mosser
et al19). We illustrated this using a simulation study in which we found out that the RB approach consistently performed
better than the CP approach for in-sample prediction under varying point-level sample size distributions. We also noted
that increasing point-level sample sizes had marked positive impact on in-sample prediction using both approaches.
However, for out-of-sample prediction, no approach was consistently the better approach. Also, in this case, increases in
point-level sample sizes mainly led to improvements in bias and uncertainty estimation. We, however, note that although
increasing the point-level sample sizes is desirable in a geostatistical context, in practice, this may need to be balanced
against design-based large-area survey analysis considerations, where larger cluster-level sample sizes can be statistically
inefficient.12

We applied the methodology to map the coverage of DTP1-3 in Nigeria using data from the 2018 NDHS. We mod-
eled DTP1 as the reference indicator due to our interest in producing estimates of zero-dose children. We demonstrated
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14 UTAZI et al.

F I G U R E 7 Estimates of numbers of zero-dose children aged under 5 years and associated uncertainties at the district (A, B) and state
levels (C). The relationship between proportions of unvaccinated children and corresponding zero-dose estimates at the state level is shown
in panel (D). The red dotted lines are used to show different prioritization scenarios

that both approaches yielded very similar results for this application. Our maps of DTP1 and DTP3 coverage—both
of which are often used to evaluate access to routine immunization (RI) services and the general performance of RI
programs—produced some interesting patterns.11 These maps revealed substantial heterogeneities in coverage as well as
a characteristic north-south divide.12,20 The northeast, the northwest and parts of the north central zones of the country
are the problematic areas where efforts should be targeted to fill coverage and immunity gaps. In addition, the patterns in
the dropout rates suggest that areas with lower coverage were more likely to have higher dropout rates, as also noted in
a previous study.11 This is an indication that factors responsible for non-vaccination in these areas are likely responsible
for the failure to complete the vaccination series. Aheto et al42 found these factors to include non-ownership of a health
card/document, non-receipt of vitamin A (both are indicators of access to health/vaccination services), poor maternal
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UTAZI et al. 15

education, religion and maternal age (being born to a younger mother), some of which were included as covariates in this
study. Thus, any strategies geared towards improving RI coverage in the country should aim to address the inequities ema-
nating from these factors. The process of prioritizing subnational areas for RI improvements often involves an assessment
of estimates of DTP vaccine coverage and corresponding numbers of DTP zero-dose children, local measles epidemiol-
ogy and other concomitant factors such as insecurity and prevalence of other childhood diseases. The coverage maps and
zero-dose estimates presented here can serve as a useful input into this process to guide the allocation of resources at the
national and subnational levels, as well as being credible alternatives to administrative coverage estimates whose utility
is often limited by numerator and denominator issues.43

Our work is subject to some limitations. With both approaches, some of the modeled indicators were not as robustly
estimated as the reference indicator in our application. This may have been an effect of the little variation in these indi-
cators (supplementary Figures 1 and 2), which also meant that they were more difficult to predict. The data we analyzed
included information on vaccination coverage obtained from vaccination cards and through caregiver recall. Although,
this increases the data available for modeling, it has the potential to introduce recall bias in the analysis. Grid-level and
aggregated predictions of vaccination coverage (including comparisons with direct survey estimates) and corresponding
zero-dose estimates can be influenced by the covariates included in the analyses—see, for example, Giorgi et al.44 Our
analyses included both geospatial and NDHS-derived covariates, but our results showed that the latter appeared to have
suppressed the geospatial covariates. We were unable to investigate the effect of this outcome and the contributions of
both sets of covariates (both separately and combined) to the predictions, but we plan to undertake this elsewhere. Fur-
thermore, we were unable to account for the uncertainties associated with the population estimates used in producing
the zero-dose estimates. Accounting for the uncertainties in both the population and coverage estimates simultaneously
when producing zero-dose estimates will be better implemented in a joint modeling framework, which will constitute
part of future work. In our application, we chose the CP approach because it yielded smaller APV values for the target
indicators. While this choice is plausible in a geospatial analysis context in which estimates with less uncertainties are
desirable, we note that the APV metric does not evaluate the accuracies of the uncertainties estimated by both approaches.
Also, estimates produced in under-sampled areas, for example, conflict areas in Borno state, could be biased if the rela-
tionships between the covariates and vaccination coverage in those areas were different from those of other areas where
data were collected. Lastly, our methodology and application focused on a snapshot in time. Additional insights can be
gained from analyzing trends in coverage over time. In future work, we will consider an extension of the methodology to
the spatiotemporal setting.

In conclusion, we consider this work a useful addition to the growing body of methodology for producing maps of
vaccination coverage. It is straightforward to apply the methodology to map the coverage of other multi-dose vaccines,
for example, the pneumococcal conjugate vaccine and rotavirus vaccine, even as efforts within the global health commu-
nity are continually targeted towards improving vaccination services, improving access to new vaccines and accelerating
progress towards disease elimination.
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