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Abstract  
Damage detection of bridge structures plays a crucial role in in-time maintenance of such 
structures, which subsequently prevents further propagation of the damage, and likely collapse of 
the structure. Currently, the application of machine learning algorithms are growing in smart 
damage detection of structures. This work introduces a new smart damage detection method to 
identify the location and severity of damage in truss bridges. Frequency Response Functions 
(FRFs) are used as damage features, and are compressed using Principal Component Analysis 
(PCA). Couple Sparse Coding (CSC) is adopted as a classification method to learn the relationship 
between the bridge damage features and its damage states. Two truss bridges are used to test the 
proposed method and determine its accuracy in damage detection of truss bridges. It is found that 
the proposed method provides a reliable detection of damage location and severity in truss bridges. 
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1. Introduction 
To avoid partial replacement, catastrophic structural failures, and even collapse of civil 
infrastructures, and make informed decisions on maintenance strategy, structural health 
monitoring (SHM) and damage assessment are of great importance. The concept of damage is 
often defined as the comparison between two states of the structure: undamaged and damaged 
states. Damage identification, localization, and severity estimations are among the main aspects of 
SHM (Shadan et al., 2016a; Shadan et al., 2016b). In most practical cases, damages exhibit their 
presence as variations in vibrational characteristics of the structure such as natural frequencies, 
damping ratios, and dissipated energy (Doebling et al., 1998). 
   
Damage feature selection is one of the main important steps of any SHM system, which is 
generally identifying the most relevant damage indicator. Recently, a new wavelet transform-based 
method  was developed to identify natural frequencies and damping ratios of large civil structures 
using ambient vibrations (A. Perez-Ramirez et al., 2016). However, indirect measurement of 
modal characteristics causes errors, and also the completeness of modal data is not achieved in 
practice (Lee and Shin, 2002). Among all types of vibration responses, Frequency Response 
Functions (FRFs) are one of the easiest to measure in real-time, as only a small number of sensors 
is required (Fang et al., 2005). Unlike the modal-domain data, which are extracted from a limited 
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range around natural frequencies, the FRF data can provide much damage information over a 
desired frequency range (Lee and Shin, 2002). Nevertheless, if improper frequency range is 
selected, the measurement errors of the FRF data may seriously affect damage detection results 
(Ni et al., 2006; J.A. Pereira et al., 1995). To prevent measurement errors, a new approach 
composed of uncertain FRFs and the bootstrap method was developed (Furukawa et al., 2006). In 
a different study, two FRFs of different frequency ranges were iteratively used to reduce analysis 
time of damaged structures for damage detection purposes (Hwang and Kim, 2004). The 
frequency-domain response of structures contains a large amount of information on damage 
existence, location and severity.  
 
In general, there are two main approaches to SHM: (1) model-based, and (2) data-based. The 
model-based approach is updating a Finite Element model of the structure, based on the measured 
data, which identifies any deviation from undamaged state of the structure. The data-based 
approach uses the data from both undamaged and damaged states of the structure to establish a 
relationship between damage features and damaged states of the structure through machine 
learning methods. The Multi-Layer Perceptron (MLP) is one of the most commonly methods, that 
has been used in machine learning approaches to SHM (Obodeh and Ajuwa, 2009; Hakim and 
Razak, 2011; Mata, 2011; Karimi et al., 2010; Wu et al., 2002). The MLP networks are able to 
approximate any continuous multivariate function to any degree of accuracy (Rumelhart et al., 
1986; Li and Fang., 2012). Further, a back-propagation based neural network method was used to 
estimate damage intensities of joints in truss bridges (Mehrjoo et al., 2008). However, the method 
could not detect relatively small damages due to modeling deviations and measurement 
uncertainties, such as noise. Xu et al. (2004) used a new neural network strategy to directly identify 
damage features from the forced time-domain vibration responses of the structure (Xu et al., 2004).  
 
Due to the large size of data as well as presence of measurement noise, FRFs cannot be used in 
Artificial Neural Networks (ANNs). So, reduction techniques such as Principal Component 
Analysis (PCA) were used to reduce the dimension of the data (Dackermann et al., 2013; Zang 
and Imregun, 2001; ). PCA-compressed FRF data from undamaged and the damaged structures 
were inputted to ANNs to identify damage location and severity ( Nozarian and Esfandiari, 2009; 
Li et al., 2012; Bandara et al., 2014; ). Sparse Representation (SR) methods have also received 
much attention in SHM community. The main advantages of SR methods are interpretation of data 
points in a more elegant way, quick retrieval of the data, and more flexibility in data representation. 
Hence, SR methods have been extensively used in many pattern recognition tasks, including face 
recognition and object classification (Wright et al., 2009a; Huang. et al., 2008). A couple sparse 
coding (CSC) was developed based on simple sparse coding algorithm (Zolfaghari et al., 2014). 
In comparison with simple sparse coding algorithm, the CSC algorithm gives a smaller estimation 
error. Based on combining deep neural network and sparse coding, a damage identification method 
was developed and experimentally verified (Fallahian et al., 2018). The results demonstrated the 
robustness of the proposed method in damage detection of structures. 
 
In aged truss bridges, ever-changing stiffness of truss members is a common and serious issue. 
Hence, in this study, the application of the CSC algorithm in damage detection of truss bridges is 
addressed. PCA-compressed FRF data are used to produce damage features as the inputs for the 
CSC algorithm. To investigate the efficiency and practicability of the proposed method in damage 
detection of truss bridges, several types of damage scenarios, including single and multiple 
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damages, are considered in two large-scale truss bridges. For multiple damage scenarios, the 
maximum number of damaged members are considered 4, while in previous studies, the structures 
have not been damaged at more than two members (Bandara et al., 2014). Additionally, the 
measured FRF data is considered to contain high levels of noise pollution, up to 20%, compared 
to previous researches, as taken a maximum noise level of 10% (Bandara et al., 2014; Dackermann 
et al., 2013; Mehrjoo et al., 2008).  
 
2. Proposed Damage Detection Algorithm 
Figure 1 shows the damage detection algorithm proposed in this study. The data set includes FRF 
data and damage data (stage 1). FRF data are usually the most compact form of data obtained from 
vibration testing, and have appeared as one of the very promising damage feature for damage 
detection in recent years. The FRF can be measured from an actual truss bridge or can be extracted 
from reliable and accurate numerical models of a truss bridge. The damage data contain location 
of each truss member (member number) and its damage severity (reduction in axial stiffness of 
each member). Then, the FRF data are compressed (stage 2). Large size of the FRF data is very 
problematic in damage detection of truss bridges with high degrees of freedom (i.e. large number 
of members), as it requires very large space, high data generation, and training time. Thus, PCA is 
applied to the FRF data sets to determine the principal components of the data. Data compression 
also increases the performance of the CSC algorithm by removal of multi-collinearity. Afterwards, 
some part of the compressed data set is used in the CSC algorithm to create a damage model of 
the bridge, named as training data set (stage 3). It basically creates a relationship between the FRF 
data and the damage data. Once the damage model of the bridge is generated (stage 4), the 
remaining part of the FRF data, named as testing FRF data (stage 5), is used to predict the damage 
severity and location (stage 6). The actual damage data is used to determine the accuracy of the 
damage model. In following section, the formulation of FRFs, data compression, and CSC 
algorithm are mathematically presented in detail. 
 

 
Figure 1. Proposed algorithm for damage detection of truss bridges 
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2.1 Frequency Response Functions 
The equation of motion for a truss bridge with n degrees of freedom (DOFs) is given by: 
 

       t tt t  Mx Cx Kx F                                                                                    (1) 

 
where M, C, and K are nn mass, damping, and stiffness matrices, respectively. If we consider a 
harmonic excitation, the external force, f, and displacement, x, vectors are given by: 
 
   eiωtωt f F                                                                                                         (2a) 

 
and, 
 
   eiωtωt x X                                                                                                        (2b) 

 
 
Substituting equations (2a) and (2b) into equation (1) gives: 
 

     2 e eiωt iωtω iω ω ω   M C K X F                                                                       (3) 

 
and subsequently, the FRF matrix, H(ω) is given by: 
 

    12ω ω iω


   H M C K                                                                        (4) 

 
The number of the FRFs to be used for damage detection purposes depends on the number of 
excitations, and vibration response measurements for a truss bridge.   
 
2.2 Data Compression 
Principal Component Analysis (PCA) is used in this study to reduce the size of the FRF data 
(Jolliffe, 1986; Bishop, 1995 ). It transforms the original FRF data set of correlated variables in an 
N-dimensional space into a new set of uncorrelated variables called Principal Components (PCs), 
in a P-dimensional space (P < N) through an orthogonal projection (Zang and Imregun., 2001). 
Using all available FRF data of the damaged bridge, FRF matrix, ( )M N H , is formed where M is 

the number of FRFs, and N is the number of frequency points. The mean of the jth column of the 
FRF data is expressed as: 
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                                                                                                                                                          (5) 

 
and, the corresponding standard deviation, jS , is defined as: 
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where ( )ijH   is an element of the FRF matrix, and is replaced by: 
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                                                                                                                                                          (7) 

 
and, the correlation matrix is given by: 
 

T
N M M NN N   D H H                                                                                                                                                 (8) 

 

where ( )H  is the variation matrix, and its ijth element is ( )ijH  . Thus, the ith PC, i , is given 

by: 
 

i i iD                                                                                                                                                    (9) 

 
The projection of the variation matrix, ( )H , on the N principal components is given by: 
 

( )A H                                                                                                                                         (10) 
 
where  1 ... N    . Afterwards, the variation matrix is reconstructed for the first P PCs, and 

the remaining PCs, N-P, are eliminated: 
 

( )
P N

T
R M P

H A                                                                                                                                         (11) 

 
Finally, the elements of the compressed FRF data, ( )ijH  , is reconstructed using the elements of 

the reconstructed variation matrix, ( )R H , in equation (7).   

 
2.2 Formulation of CSC Algorithm 
Recently, Sparse Representation (SR) of data has received much attention in pattern recognition 
and machine learning community as a robust tool for representing noisy signals (Wright et al., 
2009a). Sparsity means that a signal can be sufficiently described using a few active features 
without loss of information. Within the context of the current study, the jth compressed FRF data, 

jH , of length P, is represented as a sparse linear combination: 

 

 T1 2 ... ....

j H

i K   





H D 


                                                                                                                               (12) 

 
where α has K elements and is the sparse code of the jth FRF data, jH ; HD is a transformation 

matrix of size P K , and is the dictionary of the the jth FRF data. In a similar approach, the jth 
damage data is represented by: 
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Yj Y D                                                                             (13) 

 
in which, YD is a transformation matrix of size Q K , and is the dictionary of the jth damage 

data. Generally, CSC uses jH  and jY  as inputs, establish a relationship between the damage 

feature and the damage information for the truss bridge through an optimization problem: 
 

2 2

X 1 2 Y12 2
min :K j jR

 


   H D Y D                                                                        (14) 

 
where κ1 and κ2 are called the regularization parameters; 

1
 and 

2
 are the first and second norm 

operators, respectively. The test FRF data, '

j
H , is then used in the trained model (equation (14)), 

to estimate the damage, Yj
 :  

 
2 2'

X 1 2 Y1Y 22
min : YM P jj

j jR
 

      H D D                                                                (15) 

 
The feature-sign search algorithm is used to solve the optimization problems in equations (14) and 
(15),  (Lee et al., 2007). 
 
3. Application of the Proposed Method  
To demonstrate the efficiency and performance of the proposed method in damage detection of 
truss bridges, two truss bridges are studied. For each truss bridge, the FRF data of the damaged 
structures are created through reliable Finite Element (FE) models. In this study, updated FE model 
of each bridge is constructed using MATLAB. To create FRFs for each bridge, single harmonic 
excitation is applied at the vertical DOFs of a number of nodes, and vibration response of 
horizontal and vertical DOFs of some nodes are determined. The nodes are selected based on 
practical health monitoring in truss bridges. It is assumed that the vibration exciter can excite the 
bridge in the frequency range of 0-300 Hz, and the vibration response data are completely 
generated. The vibration-to-excitation ratio of the bridge over the frequency range gives the FRF 
data. In some studies, the frequency range of the FRFs is selected based on the resonance and anti-
resonance regions (Nozarian and Esfandiari, 2009; Ni et al., 2006; Lee and Shin, 2002; Shadan et 
al., 2015). This causes a significant data loss which could result in inaccuracies and poor resolution 
of the damage detection technique. Thus, in this study, the entire frequency range of the FRF data 
(0-300 Hz) is used. A random white Gaussian noise with zero mean and unit standard deviation is 
added to the FRFs with 5%, 10%, 15%, and 20% levels. This is done to measure the ability of the 
proposed detection method in differentiating between the actual damage and the noise. The 
modulus of elasticity, Poisson’s ratio, and density of each steel member of truss bridges are taken 
200 GPa, 0.3, and 7850 kg/m3, respectively. 
 
The damage is induced in each model through reduction of axial stiffness of the truss members. 
Thus, the damage data contains member number and their corresponding stiffness reduction.  
Then, the training FRF data and corresponding damage data are inputted into the CSC algorithm 
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to create a damage model of each truss bridge. Finally, the testing FRF data are used in the CSC-
based damage model to predict the damage (stiffness reduction) of each member of the truss 
bridges, and the actual testing damage data is used to evaluate the performance of the predicted 
damage. As stated in the proposed detection algorithm, the PCA method is used to reduce the size 
of the FRFs and increase computational efficiency.  
 
Figure 2 shows a 25-member truss bridge. It is composed of 6 bays, 12 nodes, and 21 DOFs. Single 
harmonic excitation is applied at three vertical DOFs of nodes 2, 3 and 10. Horizontal DOFs of 
nodes 9 and 6 and vertical DOF of node 3 are selected to determine vibration response of the 
bridge. Since three vibration response DOFs and three excitation DOFs have been selected, the 
FRF data includes 9 sets of FRFs. Figure 3 shows the second truss bridge with 9 bays, 40 member, 
18 nodes, and 33 DOFs. Excitation are applied at vertical DOFs of nodes no. 2, 5 and 7 and 
vibration response of the bridge is determined at horizontal DOFs of nodes 4, 17 and 10. Table 1 
summarizes various single and multiple damages scenarios considered for both bridges.   
 

 
Figure 2. Truss bridge with 25 members: (a) geometry of the bridge, and (b) DOFs of all nodes. 

 

 
Figure 3. Truss bridge with 40 members: (a) geometry of the bridge, and (b) DOFs of all nodes. 
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Table 1. Damage scenarios for 25- and 40-member bridges. 

Bridges Damage Scenarios Element No. Actual Damage (%) 

25-member 
Bridge 

Case1 5 50 

Case2 
6 11 

18 5 

Case3 
7 40 

12 50 
23 45 

Case4 

4 20 
10 25 
18 20 
23 20 

40-member 
Bridge 

Case1 14 35 

Case2 
14 50 
18 60 

Case3 
7 10 

35 15 
38 10 

Case4 

10 30 
18 35 
23 25 
28 30 

 
Figures 4 and 5 compare the predicted and actual damages for different damage scenarios of the 
both bridges in presence of 20% noise. As seen in both figures, the proposed method reliably 
predicts the damage severity, and also the location of the damage (member no.) is accurately 
determined. Figure 6 illustrates the damage detection results of the 40-member bridge for various 
noise levels. As seen, the performance of the proposed method is reliable even in the presence of 
high levels of noise (20%). 
 
To better quantify the effects of various noise levels, the mean correct classification rate was used 
to determine the accuracy of the proposed method for 100 multiple damage scenarios. Table 2 and 
3 summarize the accuracy of the proposed method to identify damage location and severity of both 
bridges for various noise levels. 1. As seen in Tables 2 and 3, with the increase of the noise level, 
the accuracy appears to reduce (up to around 5% reduction for 20% noise level with respect to the 
noise free data, 0%). However, even in the case of the 20% noise level, the accuracy of the 
proposed method is over 90% in both damage location and severity for both bridges. Thus, the 
increase of the noise level does not significantly affect the method’s accuracy.  
 
For the 25-member bridge, a full-size FRF contains 10800 data points over a frequency range of 
0-300 Hz (frequency increment of 0.25). This corresponds to 6750 input nodes for the CSC 
algorithm. Such a large number of input nodes may diminish training convergence as well as 
computational efficiency. Hence, PCA reduces this dimension (6750) to 20, 50, 100 and 200 PCs.  
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Figure 4. Damage detection results of the 25-member truss bridge for damage scenario: (a) 1, (b) 2, (c) 3, and (d) 4. 
 

 
Figure 5. Damage detection results of the 40-member truss bridge for damage scenario: (a) 1, (b) 2, (c) 3, and (d) 4. 
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Figure 6. Damage detection results of the 40-member truss bridge for various levels of noise. 

 
Table 2. Accuracy of the damage detection results for the 25-member bridge in the presence of various noise levels 

Noise Level 0% 5% 10% 15% 20% 
Damage Location Estimation (%) 99.23 98.15 96.86 96.02 95.53 
Damage Severity Estimation (%) 99.04 97.21 95.98 95.20 94.37 

 
Table 3. Accuracy of the damage detection results for the 40-member bridge in the presence of various noise levels 

Noise Level 0% 5% 10% 15% 20% 
Damage Location Estimation (%) 98.12 96.50 95.95 95.64 94.75 
Damage Severity Estimation (%) 97.53 97.05 95.50 94.14 92.63 

 
4. Conclusion 
This work addresses the application of Couple Sparse Coding (CSC) algorithm as a powerful 
pattern recognition model in smart damage detection of truss bridges in the presence of high levels 
of measurement noise. For this purpose, the FRF data are created for reliable FE models and the 
Principal Component Analysis (PCA) is carried out to compress FRF data. The CSC algorithm is 
used to estimate damage severity and location of two exemplary truss bridges.  
 
It is found that the CSC algorithm accurately predicts damage location and severity of truss bridges 
even in the presence of high levels of noise. Further, it is seen that the accuracy of the proposed 
method in damage localization does not depend on the number of PCs. Generally, the method 
successfully improves the accuracy of structural damage localization in the presence of high levels 
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of measurement noise and incomplete FRF data. Additionally, the method has a great potential to 
be implemented in vibration-based damage detection of real-life truss bridges. With the use of the 
CSC algorithm, some critical obstacles of traditional damage identification techniques, such as 
over-fitting in large-DOF structures and high-level noise can be overcome, and damage detection 
accuracy and reliability can be significantly improved. 
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