
AI 4 Science Discovery Network+

Group: 2
Challenge: Task 3 - Detect Defects in Electron Microscopy Images

AI4SD ML Summer School Report
20-24th June 2022

Project Team: Ross J. Urquhart (University of Strathclyde), Chris Woodley (University
of Liverpool), Katerina Karoni (University of Edinburgh), Jan Elsner (UCL), Daniel

York (Swansea University)

Report Date: 15/07/2022

AI4SD-SummerSchool-Series:Report-2



Group: 2
Challenge: Task 3 - Detect Defects in Electron Microscopy Images
AI4SD-SummerSchool-Series:Report-2
Report Date: 15/07/2022
DOI: 10.5258/SOTON/AI3SD0245
Published by University of Southampton

Network: Artificial Intelligence and Augmented Intelligence for Automated
Investigations for Scientific Discovery
This Network+ is EPSRC Funded under Grant No: EP/S000356/1

Principal Investigator: Professor Jeremy Frey
Co-Investigator: Professor Mahesan Niranjan
Network+ Coordinator: Dr Samantha Kanza



Contents

1 Project Details 1

2 Project Team 1
2.1 Project Student . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Challenge Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Lay Summary 2
3.1 Learning types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Methodology 4
4.0.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.0.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1 Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 CNN Binary Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Results 9
5.1 CNN Binary Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Conclusions & Future Work 10
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

References 10

List of Figures 11



1 Project Details

Group Number 2

Challenge Name Task 3 - Detect Defects in Electron Microscopy Images

Project Dates 20-24th June 2022

2 Project Team

2.1 Project Student

Name and Title Ross J. Urquhart

Employer name / Univer-
sity Department Name

University of Strathclyde

Work Email ross.urquhart@strath.ac.uk

Details First Year PhD student at University of Strathclyde. Study-
ing the use of Machine Learning to accelerate catalyst design
for Hydrogen Isotope Exchange reactions.

Name and Title Chris Woodley

Employer name / Univer-
sity Department Name

University of Liverpool

Work Email sgcwoodl@liverpool.ac.uk

Details Postdoctoral researcher at the university of Liverpool. Using
computational chemistry to support drug discovery projects,
and developing interpretable machine learning models to pre-
dict the properties of low molecular weight gels.

Name and Title Katerina Karoni

Employer name / Univer-
sity Department Name

University of Edinburgh

Work Email s2090086@ed.ac.uk

Details Second year of the MAC-MIGS CDT Programme at the Uni-
versity of Edinburgh. Studying Sampling methods and Ma-
chine Learning for Molecular Dynamics applications.
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Name and Title Jan Elsner

Employer name / Univer-
sity Department Name

UCL

Work Email jan.elsner.19@ucl.ac.uk

Details Third year PhD at University College London. Using meth-
ods from computational physics and chemistry to study elec-
tron transport in organic semiconductors.

Name and Title Daniel York

Employer name / Univer-
sity Department Name

Swansea University

Work Email 983045@swansea.ac.uk

Details First Year PhD student at Swansea University. Studying
the use of different computational chemistry methods for the
valorisation of biomass into functional bio-based materials.

2.2 Challenge Description

Challenge 3 surrounds the detection of defects in electron microscopy image. Given 48x48 pixel
images, the group was tasked with identifying defects in the image based on imperfect C6 rings.
The group was given a set of ’perfect’ patches and a set of ’defect’ patches, Figure 1, and told
to measure success with the appropriate metric(s).

Figure 1: Example of perfect patch (left) and patch with defect (right)

3 Lay Summary

This project is based around the use of AI (artificial intelligence) and ML (machine learning)
to identify whether a graphene patch contains defects or not. The classical problem is that of
training a ML algorithm to identify whether an image is a cat or a dog, known as an image
classification problem. However, the scope of these ML methods are applicable far beyond this,
relatively, simple problem and current uses of image classifiers include; classification of arteries
and veins in retinal blood vessels [1], classification of land use/land cover from high-res satellite
images [2] and for the classification of blood smear images to help diagnose a range of diseases
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(e.g. leukaemia and AIDS) [3]. These are but a few examples but they highlight the importance
and usefulness of these methods as they allow for machines to perceive images in a similar way
to humans by identifying key features (e.g. animal face shapes, blood vessel location and size,
etc.). The ML algorithms learn from the initial data they are presented with and this allows
for the classification of future data into specific classes (e.g. cat or dog). This is critical for
advancement in a range of scientific fields as ML methods and algorithms can provide a quicker
and more accurate classification than otherwise possible. For example, in this project, it is
much quicker to send thousands of graphene images through a ML algorithm than identifying
if a patch is defective or not by manually observing the images.

3.1 Learning types

Before ML algorithms can be utilised to identify defective/perfect graphene patches, they must
first be trained. There are a few key types of learning; supervised, unsupervised and reinforce-
ment.

Supervised learning requires labelled input data (see fig. 2) and works by extracting features
from each image and subsequently determining different combinations of these features to allow
for classification of different images after the initial learning phase. In summary, this type
of learning identifies features in a perfect/defective graphene patches and knows that these
features belong to the perfect/defective graphene patches since the initial images are labelled
(as perfect/defective).

Figure 2: Labelled images for supervised learning.

Unsupervised learning uses unlabelled data and instead groups images in a couple of different
ways. One way of grouping the unlabelled data is via ’clustering’, this method identifies features
in images and then groups the images based on patterns that are consistent among images and
attempts to classify images this way (e.g. images of cats and dogs will have different features
and these can be separated into different groups even if the algorithm hasn’t been initially told
whether an image is a cat or dog). Another grouping method is called ’association’, this method
attempts to identify rules within the data. In the context of a dog this could mean something
such as ’if this type of ear is present, typically this type of nose is also present’ and a similar
rule would also be generated for cats but the features (e.g. ear, nose, etc.) are different for
each animal. When applying this graphene, it could be though as: a perfect patch has only a
repeating pattern but a defective patch has this pattern but also deviates from it when a defect
is present.

Both supervised and unsupervised learning have been used to tackle the problem (section.??);
however, it is also worth briefly mentioning reinforcement learning. This is where an algorithm
is able to correct itself based on inputs, essentially this takes the action of the algorithm and can
provide a reward to positive actions which allows for continuous improvement and strengthening
of the classification algorithm - this is known as positive reinforcement. Negative reinforcement
is also utilised and this stops any action that results in negative effect or doesn’t give the correct
values/classification, meaning these steps are known to be inherently bad and are subsequently
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avoided. Reinforcement learning has been applied in a chemical context to optimize chemical
reaction conditions to better improve the performance of physical experiments [4].

3.2 Artificial neural networks

A range of different artificial neural networks were explored to tackle the problem (section.??)
with the development of an autoencoder, variational autoencoder and convolutional neural net-
work (CNN) all attempted (the theory behind these is explained in more detail in sections.4.0.1,
4.1.1 and 4.2.1, respectively). To briefly introduce these methods; a CNN is fundamentally a
series of filters that aims to extract high level features from images (using supervised learning as
described in section.3.1) allowing the CNN to identify and classify future images. Autoencoders
utilise unsupervised learning and contain and input and output CNN as well as a bottleneck
layer in between these layers (fig.3). The basis of this method is to reduce the dimensionality
(size compression) of the image information from the input layer into the bottleneck and train
the network so that the output layer can reconstruct the image from this compressed image
representation as best as possible.

4 Methodology

subsectionAutoencoder

4.0.1 Theory

Autoencoders are a specific type of feedforward neural network used for unsupervised learning.
The aim of an autoencoder is to learn a low-dimensional representation of its input data. An
autoencoder consists of three components, the encoder, the code and the decoder. The encoder
and decoder can have one or more layers. The layer between the encoder and decoder is called
the code (hidden layer) and contains the desired lower dimensional representation of our input
data. The neural network is designed so that there are less nodes in the hidden layer than in
the input and output layers which are of the same size. Thus there is a “bottleneck” in the
network, which is crucial for the feature extraction we wish to perform. Specifically, the input
is compressed into a lower-dimensional “code” and then the output is reconstructed from this
representation. The process of learning a low-dimensional representation of our data is called
feature extraction. The network is trained so that the output layer best approximates the input
layer.

Figure 3: Autoencoder architecture

For data X = {x1, ..., xn}, we let X ⊆ RD be our data space and let H ⊆ Rd be our
bottleneck (hidden layer) space. The autoencoder consists of two parts, the encoder and the
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decoder which can be defined as transition functions Fenc : X → H and Fdec : H → X . The
optimal transition functions F ∗

enc, F
∗
dec are defined as follows:

F ∗
enc, F

∗
dec = arg min

Fenc,Fdec

∑
x∈X

||x− (Fdec ◦ Fenc)x||22, (1)

where F ∗
enc and F ∗

dec are optimised over the weights and biases and X is our training data set.
Our loss function L is defined as

L(x, Fenc, Fdec) =
∑
x∈X

||x− (Fdec ◦ Fenc)x||22.

We can then use F ∗
enc : X → H as a feature map / low-dimensional representation of our

data. Figure.1 shows a simple autoencoder with only one layer in the encoder and decoder.
However, in the general setting the encoder and decoder can consist of more than one layers.
Autoencoders can be trained using standard gradient descent based optimisation algorithms.

4.0.2 Application

We next train an autoencoder on our defective and perfect patches data. As mentioned earlier,
this will result in the hidden layer encoding a lower dimensional representation of the data
passed into the autoencoder. By ‘removing’ the decoder part of the network after training and
looking at the features of the code layer we can obtain the following histogram of features for
defective and perfect patch data. Note: The feature plotted here is the output of the first node
of the code layer (figure.4). We can see that the network can - to an extent - differentiate
between defective and perfect patches. However, looking at the reconstructed patches we see
that even though the network has learned to output an image similar to the input one, the
reconstruction for defective and perfect patches is the same (figure.5). Therefore, the trained
network cannot differentiate well between the two classes of data. This is partly because we
are dealing with image data and pixel connectivity information is lost when using a normal
autoencoder. Using a convolutional autoencoder enables us to perform a much more faithful
reconstruction of perfect and defective patches (figure.6).

Figure 4: Reconstruction of perfect patches.
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Figure 5: Reconstruction of defective and perfect patches.

Figure 6: Reconstruction of defective patch using convolutional autoencoder.

4.1 Variational Autoencoder

4.1.1 Theory

In this model, the latent code, z, has a prior distribution pθ(z). We aim to maximize:

pθ(x) =

∫
pθ(x|z)pθ(z)dz. (10)

This integral is generally intractable. One approach to proceed could be to approximate
the integral using Monte Carlo methods. This would involve sampling {zi}Ni=1 from the prior
pθ(z), modelling pθ(x|z) with a neural network and approximating:

pθ(x) ≈
1

N

N∑
i=1

pθ(x|zi). (11)

However, the high dimensionality of x means that many samples are needed to get a reason-
able approximation: it is also intractable to compute pθ(x|z) for every z. Instead, a recognition
model is used, qϕ(z|x), which is trained to give high probability zi values, such that fewer
samples are needed. We are modelling the true (unknown) posterior, pθ(z|x), with qϕ(z|x),
which in turn may be modelled as a Gaussian with mean, µ, and variance, σ2, which are
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determined by the outputs of a neural network. Overall, we wish to maximize pθ(x) while
simultaneously ensuring that qϕ(z|x) accurately approximates pθ(z|x). This is achieved by
maximizing the evidence lower bound, defined by:

ELBO(θ,ϕ) = log(pθ(x))−DKL(qϕ(z|x)||pθ(z|x)), (12)

where DKL is the Kullback—Leibler divergence, defined for continuous random variables P and
Q with probability densities p(x) and q(x) respectively as being:

DKL(Q||P ) =

∫ ∞

−∞
q(x) log(

q(x)

p(x)
)dx. (13)

Intuitively, the Kullback—Leibler divergence measures how similar two distributions are.
To see where ELBO comes from and how it may be maximized, we may use Bayes’ theorem to
write

log(pθ(x
(i))) = Ez∼qϕ(z|x(i))[log(pθ(x

(i)|z))]−DKL(qϕ(z|x(i))||pθ(z))+DKL(qϕ(z|x(i))||pθ(z|x(i))).

(14)
The first term on the right hand side may be computed by sampling (decoder network),

the second term has a closed form solution and the third term is intractable since pθ(z|x)
is intractable. However, using the property that the Kullback—Leibler divergence is always
greater than 0, we obtain a tractable lower bound on log(pθ(x

(i))), which is what we wish to
maximize overall. Rearranging Eqn. 14, we obtain

ELBO(θ,ϕ) = log(pθ(x
(i)))−DKL(qϕ(z|x(i))||pθ(z|x(i)))

= Ez∼qϕ(z|x(i))[log(pθ(x
(i)|z))]−DKL(qϕ(z|x(i))||pθ(z)). (15)

The second line of Eqn. 15 is tractable and is therefore something we can maximize. We
wish to find θ∗ and ϕ∗ such that

θ∗,ϕ∗ = argmaxθ,ϕ

N∑
i=1

ELBO(x(i),θ,ϕ), (16)

Note that using a Gaussian prior pθ(z) ∼ N (z;0, I) and recognition model qϕ(z|x) ∼
N (z;µ,diag(σ2I)), the Kullback—Leibler divergence may be expressed analytically as

−DKL(N (µ,diag(σ2I))||N (0, I)) =
1

2

l∑
i=1

(1 + log(σ2
i )− µ2

i − σ2
i ), (17)

where l is the number of latent dimensions.
One problem that arises is that sampling from qϕ(z|x) is not a differential operation, there-

fore we cannot use standard gradient descent. To fix this, we introduce the reparameterization
trick, which allows us to preserve the probability distribution of z whilst allowing us to back-
propagate through a deterministic node. This involves reparameterizing the latent code as

z = µ+ ϵ⊙ σ, (18)

where ϵ ∼ N (0, I) and ⊙ is the Hadamard (element-wise) product. Sampling is now from the
standard Gaussian, ϵ, and gradients are able to propagate through µ and σ, since these are
now deterministic.
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4.1.2 Application

Our idea was to learn the latent distribution of perfect samples, zperfect, using a variational
autoencoder. By then running all of the data through our encoder network, we should be able
to classify perfect vs non-perfect samples but checking whether the resulting latent distribution
conforms to zperfect.

We implemented a convolutional variational autoencoder in PyTorch. The encoder and
decoder consisted of 5 convolutional layers and a fully connected network map to the latent
space. We successfully trained our network on perfect samples. By epoch 20-30, our network
was able to successfully reproduce training images (figure.7).

Figure 7: VAE reproduction of a perfect patch at different training epochs.

Unfortunately, we did not have time to check the latent distributions of our data.
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4.2 CNN Binary Classifier

4.2.1 Theory

Convolutional Neural Networks (CNNs) are a subset of neural networks that are designed to
work with grid-like data such as images. Pictures on a screen can be thought of as broken up
into a grid where each pixel has a value related to the brightness and colour.

A convolutional network is comprised of convolutional layers. each of these layers passes
a convolutional filter over a matrix. The filter performs a dot product of a subset of values
from the previous layer. This means convolutional layers are smaller than the input image but
richer in the detail they contain. For example, a 3x3 convolutional filter can take a 3x3 subset
of the image and perform a dot product, producing one value. This means if the image is a
5x5 grid, a 3x3 filter will compress the image into a 3x3 matrix. The filter, or kernel, is passed
across the input image building an image representation as described above. Pooling serves to
reduce the size of the convolutional layer and thus decrease computational cost. It is also good
at identifying important features. Max pooling, used below, returns the maximum value of the
kernel space. E.g. if the kernel had values [32, 16, 8, 4] max pooling would return 32.

CNNs also make use of fully connected linear layers and activation functions as these help
to map the representation between input and output.

Uses of CNNs lie in object detection, image captioning and semantic segmentation applica-
tions.

4.2.2 Application

Alongside unsupervised approaches we investigated the use of a supervised binary classifier to
distinguish between perfect and defect samples. We opted to train a CNN binary classifier
owing to their widespread use in image classification problems. The work on this approach
focused on the design of CNN architecture for the given dataset.

The combined labelled dataset was split into training and testing sets in a ratio of 0.8:0.2. We
implemented two CNN architectures to extract features from the labelled perfect and defect
patches: A) three convolutional layers (conv2d and MaxPool2d), and three fully connected
layers from a pre-existing architecture; B) a CNN with 2 convolutional layers separated by a
maxpooling layer and followed by three fully connected linear layers.

The CNN based on architecture A was exposed to the training data for 50 epochs and
evaluated on the test data. Neither CNN architecture was exposed to an augmented dataset
due to time constraints.

5 Results

5.1 CNN Binary Classifier

We evaluated the CNN built on architecture A on the test-set data. We opted to use the AUC-
ROC scoring metric as opposed to accuracy; due to the massive imbalance in the data accuracy
would provide an overestimation of the quality of our model. After training for 50 epochs the
training-set AUC-ROC score was 0.5 suggesting that the produced model was no better than
chance at detecting defect patches (figure.8).

This may be due to the CNN being unable to pick out features to classify, or more likely is
that the dataset requires augmentation to sufficiently learn features of defect patches.
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Figure 8: ROC curve of the classification performance of CNN A on the test-set of patches.

Architecture B was unable to produce any results due to constraints time constraints.

6 Conclusions & Future Work

6.1 Conclusions

In conclusion, we attempted to use supervised and unsupervised machine learning methods for
defect detection in electron microscopy images of graphene sheets. Our supervised approach
involved the development of CNN binary classifiers, while our unsupervised approaches involved
the development of an autoencoder, a convolutional autoencoder and a variational autoencoder.
Evaluation of the CNN binary classifier determined that this was no better than chance at
detecting defects. Though not applied to classification, the autoencoders were able to produce
faithful reproductions of graphene patches. Analysis of extracted features from one autoencoder
does show a difference in features extracted from perfect patches and defect patches.

6.2 Future Work

Future work on this project would include full augmentation of the dataset in order to present
a more rounded view of the data. Once augmented, it is hoped that the full dataset could be
used to train the CNN architecture to full effect.
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