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Many organisations are finding that the volume of information they need to analyse to make 

effective decisions is increasing. An important element in effective decision making is the ability 

to prioritise information quickly and accurately from a variety of sources. Technology tools are 

widely used to aid decision making through analysis and visualisation of numeric data, leveraging 

structured knowledge as in expert systems, or identifying items based on known existing 

relationships and content information as in recommender systems. However, producing similar 

insights from unstructured text documents of varying formats, intents, and domains, with little 

prior knowledge or labelling, remains an open problem. 

This thesis takes the approach of using machine understanding of natural language text and 

the semantic content of documents as the basis for downstream tasks of recommendation,  

visualisation, summarisation, clustering, and topic naming to highlight key areas of interest in 

large heterogeneous datasets. The approach builds on both traditional techniques and recent 

advances in machine learning and natural language processing and combines and supplements 

them to address issues including sparse labelling, the cold-start problem, and the explainability of 

results. A novel recommendation algorithm, Transitive Semantic Relationships (TSR) is proposed 

to address challenging cases of the cold-start problem and is demonstrated as an effective tool for 

identifying supply chain relationships using company descriptions and a small number of known 

relationships. For the more general problem of finding meaning in large collections of 

unstructured text, this thesis proposes and demonstrates a methodology for combining several 

existing text analytics techniques to produce an overview of the distribution and typical content 

of key topics present in the data. This method is demonstrated for varied examples including a 

survey of experts concerns regarding the COVID-19 pandemic in the United Kingdom, the 

descriptions of businesses on the Isle of Wight, and the descriptions of 2500 TED talks. A web-

based tool, the Text Insights Pipeline (TIP) is presented enabling non-experts to make use of this 

approach for analysis of other collections of unstructured text.  

This thesis concludes that semantic understanding of text through deep learning coupled with 

explainable downstream algorithms is an effective basis for producing explainable insights and 

representative overviews of large unstructured text datasets. The contributions of this thesis have 

already seen adoption in industry, government, and research, and have the potential for making 

previously indigestible datasets open to analysis by aiding in the presentation and organisation of 

unstructured text data. 
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Definitions and Abbreviations 

Natural Language Processing (NLP) An area of computer science and artificial intelligence 

concerned with the interactions between computers 

and human (natural) languages, such as written and 

spoken English. 

Syntax/Syntactic Relating to written form. 

Semantic Relating to meaning. 

Word/Sentence/Document -

Vectors/Embeddings  

Fixed length numeric vector representations of words, 

sentences, or documents. The terms ‘vectors’ and 

‘embeddings’ are used interchangeably in the 

literature. 

Semantic space/distributional 

semantics 

A many-dimensional space for plotting word, 

sentence, or document embeddings. 

Neural language model A natural language model based on machine learning 

using neural networks. 

Deep learning model A neural network with a hierarchy of multiple hidden 

layers for direct learning of features. 

Recurrent Neural Network (RNN), 

Sequence-to-sequence model 

A deep learning model with an encoder-decoder 

architecture for learning important features in the 

sequence. 

Long Short-Term Memory (LSTM), 

Gated Recurrent Unit (GRU) 

Techniques used in RNNs to enable the network to 

remember parameters learned earlier in the sequence. 

Transformer model A deep learning model that uses attention to weight 

significance of parts of the input, similar to a RNN but 

without requiring processing of sequences in order. 

Parliamentary Office of Science and 

Technology (POST) 

A bicameral body within the UK Parliament. POST 

produces impartial, non-partisan, and peer-reviewed 

briefings, designed to make scientific research 

accessible to the UK Parliament. 

COVID-19 Pandemic The COVID-19 pandemic in the United Kingdom was 

part of the worldwide pandemic of coronavirus disease 

2019 (COVID-19) caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). The virus 

reached the UK in late January 2020. 

Standard Deviation (SD) The square root of the variance. Low values indicate 

values tend to be close to the mean (expected value). 
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1 

Chapter 1 Introduction 

Informed decision-making benefits from the consideration of a large pool of information from 

varied sources. In many areas the amount of data available to inform decisions is increasing, 

however, the ability of human decision-makers and analysts to consume, interpret, and organise 

this data has not scaled with the amount available and required for effective decision making.   

Computation and information systems have long been used to record, store, and collate data. 

From early examples of census data processing to the modern prevalence of big data analytics, 

data mining, and applied artificial intelligence, a consistent theme is that the value of data is in 

producing information and insights to inform human decisions. Computer systems can retain and 

accurately reproduce vast quantities of data, far exceeding what can be held in memory and 

considered by human analysts. For this reason, it is necessary to present not just data, but 

information and insights automatically distilled from data so that it can be effectively and 

expediently interpreted by humans. 

Computer systems excel at processing quantitative and structured data, but qualitative, informal, 

and unstructured data such as natural language text poses additional challenges. For natural 

texts, such as articles, blogs, descriptions, and free-text survey responses, there is no simple 

objective method to identify key properties of the data, such as equivalent, typical, outlier, or 

significant values. As such, it is necessary to generate quantitative representations of text which 

capture its semantic meaning in order to produce information and insights through computational 

reasoning, distillation, and visualisation.  

Quantitative representations of the semantics of text have been made possible through advances 

in natural language processing (NLP), machine learning, and text analytics. These representations 

can be used for a variety of downstream tasks, however, how to best make use of these 

techniques and present the results in a way that is not just interpretable and useful to humans, 

but also transparent and trustworthy, and robust to a range of challenging scenarios, such as 

limited prior knowledge (as in the cold start problem) and uncertainty (as in implicit feedback), 

remains a challenging research problem. 
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1.1 Problem Statement 

Information contained in large collections of unstructured text is highly valuable for informed 

decision making, however, the size and lack of organisation and structure in these datasets are 

prohibitive to humans thoroughly examining and reasoning about the entire content. As such, 

automated approaches are desirable for identifying key information, structuring the data, and 

generating insights. To produce these results, an automated system must understand the 

meaning and significance of the text, such as through natural language understanding and text 

analytics. These results must be presented and evidenced in a way that is interpretable by 

humans so that the findings can be easily understood and communicated and so that decision-

makers can have confidence in the validity of the results. 
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1.2 Research Question 

The problem stated in section 1.1 leads to the following research question: 

Research Question ............. How can machine understanding of text be used to produce insights 

from large collections of unstructured text to inform decision-

makers, analysts, and organisations? 

This can be broken down into the following Sub-Research-Questions (SRQ)s: 

SRQ1 ..................................... How can machine understanding of text be used to identify 

relationships between documents in large collections of unstructured 

text? 

SRQ2 ..................................... How can machine understanding of text be used to produce an 

interpretable overview of large collections of unstructured text? 

SRQ3 ..................................... How can the results of text analysis be effectively presented and used 

to inform decision-makers, analysts, and organisations? 

SRQ1 concerns the discovery of potential relationships between documents in a collection. This 

can be treated as a search or recommendation problem, where inferences can be made 

combining existing knowledge with machine understanding of text to infer new relationships or 

identify documents of interest. This question is examined in detail in Chapter 3. 

SRQ2 concerns methods of distilling large datasets into summaries, visualisations, and categories 

so that the data can be presented in a structured way that provides a concise but representative 

overview of the data. This question is examined in detail in Chapter 4. 

SRQ3 concerns the application of the results from the other two sub-questions, including how the 

results of automated analysis can be effectively communicated, explained, used as a starting point 

or aid to human analysis, and be compared with the results of traditional analysis methods. This 

question is relevant to the entire thesis but is discussed in particular regarding provenance and 

explainability in Chapter 3, presentation and comparison in Chapter 4, and application in Chapter 

4 and Chapter 5. 
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1.3 Thesis Structure 

Chapter 1 has introduced the motivation and aims of this research.  

Chapter 2 reviews the literature on computational modelling of natural language, as well as 

search and recommender systems, and examines the types of data and challenges in these areas, 

and some prominent models and techniques.  

Chapter 3 directly examines SRQ1, introducing the problem in detail, identifying the limitations of 

existing search and recommender systems regarding unstructured and unlabelled data and issues 

with explainability (SRQ3). The theory, implementation, and experimental results for a novel 

solution, the Transitive Semantic Relationships (TSR) model, are presented and followed by a 

further investigation into refinements to the model.  

Chapter 4 focuses on SRQ2 and SRQ3, examining techniques for distilling, structuring, and 

presenting text data. A methodology is demonstrated that combines several models and 

techniques to produce interpretable analysis results including visualisations, summaries, and 

generated categories. This method is demonstrated on several datasets and is compared with an 

independent human analysis. This chapter also presents the Text Insights Pipeline (TIP), an 

automated analysis tool enabling non-experts to apply this methodology to other datasets. 

Chapter 5 concludes the thesis and examines the contributions, impact, and future work resulting 

from this research.
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Chapter 2 Background 

2.1 Chapter Overview 

This chapter sets out the essential background information and literature necessary to 

understand and contextualise the work presented in this thesis, in particular focusing on the 

topics of natural language data (2.2), how it can be understood and used by computer systems 

(2.3), existing approaches to identifying key items and relationships in large datasets (2.4), and 

the challenges with generating and presenting explainable results (2.5).  

The techniques, algorithms, models, and challenges specifically related to approaches used in 

Chapter 3 and Chapter 4 which are less broadly relevant to the rest of this thesis are discussed in 

those respective chapters.   

While the broader topics of machine learning and deep learning feature throughout this thesis, a 

detailed understanding of the fundamentals and model architectures should not be necessary to 

appreciate the work presented, although the interested reader may refer to textbooks on these 

topics for additional background (Goodfellow et al., 2016). 

2.1.1 Scope and Limitations 

As this project covers a wide range of areas, each with extensive background literature, a focus is 

given here on examining the particular challenges, approaches, and developments relevant to the 

theory and experimental work in subsequent chapters. In particular, some topics are mentioned 

but not discussed in detail such as natural language processing for languages other than English, 

semantic representations of media other than text, and approaches to relationship modelling that 

do not align with recommender systems. Each of these are large research areas tangentially 

related to some aspects of this project but are not explored in detail in this thesis in favour of 

more thoroughly examining a set of specific research areas including the challenges of modelling 

English language text from various sources, the cold start problem, and provenance and 

explainability of automated insights. 
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2.2 Natural Language Data 

Natural language text presents a variety of challenges for computational analysis. These include 

syntactic issues with interpreting the written form of the text, such as spelling, handling of 

diacritics, and tokenisation; semantic issues with understanding the meaning of the text such as 

ambiguity, context, and intent; and social issues with judging the value and implication of text, 

such as factual correctness, bias, and search engine optimisation. 

This section looks at various sources of data used in training and evaluating natural language 

models, some of the challenges they present, and how these are addressed. NLP is a large and 

highly active subject area, so this overview is not meant as an exhaustive list but instead focuses 

on representative examples of the types of data, challenges, and solutions, in particular where 

they are relevant to the methods used in this thesis. 

2.2.1 Types and Sources of Data 

Natural texts vary in length, from standalone sentences to books containing many hundreds of 

successive related sentences. For the purposes of NLP tasks, these can be divided into 'short-texts' 

and 'long-texts'. Short-texts include individual words and sentences, sentence fragments, nouns, 

descriptors (titles, etc.), and search terms (Wang et al., 2016; Yan et al., 2013). Whereas long-texts 

such as documents, articles, books, etc. are comprised of multiple ordered, related sentences, 

typically arranged into paragraphs and often sections, chapters, and volumes, depending on the 

size of the collection (Kiros et al., 2015).  

Features can be learned from observing different properties of text, which vary in prominence 

between corpora. Natural language text from books, articles, and product descriptions, for 

example, consists of many ordered sentences typically structured as paragraphs but is typically 

unlabelled other than publication meta-data. Corpora of such texts are often the focus of research 

on text summarisation, question answering, content-based recommender systems, and 

information retrieval. They are also used to train or pre-train language models, discussed further 

in section 2.3. 

Alternatively, a corpus of reviews typically consists of many items with differing lengths, often 

accompanied by a review score (either numeric or binary positive/negative). These corpora may 

feature less extensive text structures (due to shorter length in comparison to books or articles) 

but have quantitative labels in the form of user ratings/review scores. Corpora of user reviews are 

generally the focus of recommender systems, especially collaborative and hybrid recommender 

systems which require user ratings, discussed further in section 2.4.  
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Tasks such as sentiment analysis are commonly based on labelled data, such as reviews, where a 

positive score would indicate that the text is likely to have a positive sentiment. Such labelled data 

is sometimes community-sourced, such as reviews (Hu & Liu, 2004; Pang & Lee, 2005) and 

folksonomies (social tagging datasets) (Harper & Konstan, 2015; Hotho et al., 2006; Sen et al., 

2006), but must otherwise be commissioned. In either case, as the data requires human 

annotation, collections are often smaller and/or more expensive to produce (per word or 

sentence) than unlabelled data from books and articles. 

For short texts, particularly in problem spaces such as sentiment analysis, increasingly large 

amounts of labelled data are being generated due to social media and the proliferation of 

community-sourced reviews on the web (Google reviews, Amazon product reviews, etc.). 

Long texts typically contain large numbers of both implicit and explicit relations to other concepts. 

These are sometimes linked explicitly at time of writing, for example, using hyperlinks, or 

following semantic web standards such as the Resource Description Framework (RDF 1.1 Concepts 

and Abstract Syntax, 2014) or Web Ontology Language (OWL 2 Web Ontology Language 

Document Overview (Second Edition), 2012). Some datasets provide additional meta-data; 

Scientometric datasets for example associate items with citation counts and authorship which can 

be used as scoring mechanisms (Beel et al., 2016). Some types of data, such as books and articles, 

may include a title along with the long-text content. 

2.2.2 Types and Cost of Labelling 

As described in the previous section, many collections of natural language data are labelled as a 

usual part of their creation, such as reviews being accompanied by a numeric or binary 

(positive/negative) score and social media posts featuring tags. In these cases, the volume of user-

generated labels is abundant. However, outside of these areas, it can be necessary to commission 

the labelling of data items. 

The cost of labelling is highly dependent on the complexity of the task, specifically the time 

needed per human annotation and the expertise required. Snow et al., (2008) find that for tasks 

such as textual entailment and word sense disambiguation approximately four non-expert labels 

have similar quality to one expert label. Grady and Lease (2010) investigate crowdsourcing binary 

relevance labelling tasks and find that tasks where annotators must use item descriptions achieve 

poorer accuracy and require greater time per judgement than tasks using titles. 

In some cases, datasets may be too large for comprehensive manual labelling and may only be 

viable to label by observing the behaviours of users of a service, such as a search engine or 
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recommender system. These observations may consist of click-through data, viewed items, or 

other types of implicit indicators that a result is relevant (Huang et al., 2013; Yin et al., 2016). 

Implicit labels are inherently uncertain as the interactions a user makes are situationally 

dependent, meaning users may investigate items that are not optimal results, and a user’s search 

objective may change at any time, so it cannot be assumed that all user actions are related (Kong 

et al., 2015). However, aggregation of many implicit labels can be used to identify statistically 

significant trends. When evaluating using implicit labels, specialised methods such as those 

examined in Chapter 3 are often employed to account for the uncertainty in the evaluation cases. 

2.2.3 Examples of NLP Datasets 

NLP models are typically evaluated using several common benchmark datasets. Most of these 

datasets were created for, or are well-tailored to, specific problems in NLP. Labelled data allows 

for training and evaluation by calculating errors or misclassifications. When used for evaluation of 

language models (see section 2.3) these are commonly referred to as ‘downstream tasks’, in 

contrast to the learning task used to train the model (Cer et al., 2018; Conneau & Kiela, 2018). 

Supervised models and models which use fine-tuning are typically trained on one of these 

datasets. Unsupervised and semi-supervised models are typically trained (or pre-trained) on a 

larger unlabelled corpus such as the 985 million words Toronto Book Corpus (Zhu et al., 2015), or 

the multi-billion word Wikipedia corpus and Common Crawl datasets (many versions exist for 

each), or various web news datasets. 

Labelled datasets are sometimes provided with split training, validation (sometimes called 

development), and test sets (Bowman et al., 2015; Marelli et al., 2014). For datasets where this is 

not provided, items may be split randomly by selecting, for example, 80% of items for training and 

10% each for validation and testing (Le & Mikolov, 2014).  

Common quantitative evaluation metrics for labelled datasets include average error and number 

of incorrect classifications, this is commonly reported using the percentage of correct 

classifications on the test set. This may employ methods such as 10-fold cross-validation with 

randomised initial network weights (Cer et al., 2018; Kiros et al., 2015). Tools for automated 

evaluation of some types of models on multiple downstream tasks have been released, such as 

SentEval (Conneau & Kiela, 2018). 

It is also common to give selected examples of output, for example, demonstrating the types of 

items that are considered most similar or interesting predictions the model has made (Kiros et al., 
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2015; Mikolov, Chen, et al., 2013). This is usually given as the basis for discussion or analysis of the 

kinds of features the model is sensitive to. 

Some of the common evaluation datasets are listed in Table 2.1. This list is not exhaustive but 

shows the variety and scale of datasets used in these tasks and their applications. For some of 

these datasets, variations may exist with a different number of items, either due to separate 

releases of the data, or reformulations of the data for use in some studies.  
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Table 2.1 - Common NLP evaluation datasets. Alternate versions with different numbers of items 

may exist for some datasets, the versions given here are examples used in the 

literature reviewed in this chapter. 

Name / Source Description Usage 

Stanford Sentiment Treebank 

(SST) 

(Socher et al., 2013) 

70k phrases labelled with binary 

sentiment 

Sentiment analysis 

Stanford Natural Language 

Inference (SNLI) 

(Bowman et al., 2015) 

570k pairs of phrases labelled 

either entailment, contradiction, 

or neutral 

Natural Language 

Inference (NLI), 

Transfer learning 

Sentences Involving 

Compositional Knowledge (SICK) 

(Marelli et al., 2014) 

10k pairs of sentences labelled 

with scores out of 5 for 

relatedness 

Semantic relatedness, 

Entailment 

Movie Reviews (MR) 

(Pang & Lee, 2005) 

11k snippets from movie 

reviews labelled with ratings out 

of 5 

Sentiment analysis, 

Recommender systems 

Movie Lens (ML) 

(Harper & Konstan, 2015) 

20M movie ratings and 465k tag 

applications applied to 27k 

movies by 138k users 

Tag prediction, 

Recommender systems 

Customer Reviews (CR) 

(Hu & Liu, 2004) 

4k sentences from Amazon 

reviews labelled with sentiment 

Sentiment analysis, 

Recommender systems 

Text Retrieval Conference data 

(TREC) 

(X. Li & Roth, 2002) 

6k questions labelled by type Question-type 

classification 

SUBJ 

(Pang & Lee, 2004) 

10k sentences from movie 

reviews and summaries labelled 

with subjectivity scores 

Subjectivity/objectivity 

classification 

Microsoft Research Paraphrase 

Corpus  

(Dolan & Brockett, 2005) 

5.8k pairs of sentences from 

news sources with binary labels 

for paraphrasing 

Paraphrase detection 

MPQA 

(Wiebe et al., 2005) 

11k phrases labelled with 

opinion polarity (positive or 

negative) 

Sentiment analysis 
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2.2.4 Information Correctness and Bad Actors 

The quality of any machine-learning based solution is dependent on the quality of the data it is 

trained on. Many systems simply assume the correctness of the training corpus. In natural 

language, incorrect usage of terms in text is a form of noise that a robust solution must account 

for. An additional issue when mining a public corpus is that documents may be accidentally or 

deliberately misleading; this includes issues such as false or exaggerated claims, search engine 

exploitation (“gaming the system”), poor factual correctness, and subjectivity.  

In many scenarios, particularly commercial markets and services, document authors have an 

interest in promoting their content over others, even if the recommendation may be suboptimal 

for the user. In the context of search and recommender systems, this is often exhibited as Search 

Engine Optimisation (SEO) but can in some cases be deliberately used to deceive the algorithm 

into ranking a document highly for unrelated searches, for example, by adding false keywords.  

Much research has focused on methods of mitigating this issue, such as using scores for validity 

and authoritativeness, typically based on concrete relationships with other documents such as 

hyperlinks (Brin & Page, 1998) or Scientometric data (Ibrahim et al., 2017). 

Approaches based on natural language understanding of full-text content are less subject to SEO 

(as meta-data is typically less important) but are in turn vulnerable to deceptive use of language, 

such as false claims and advertising. These approaches are also likely to deceive humans but can 

be overcome by verifying information through reasoning and by corroborating information from 

additional sources. Detection and mitigation of false claims are beyond the scope of this thesis 

but are an important consideration when selecting datasets and evaluating results. 
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2.3 Language Modelling 

One of the principal difficulties in NLP is the effective modelling of natural syntax and semantics. 

To accurately derive meaning from natural text, it is necessary to have a sophisticated method of 

processing the language’s syntax and the meanings of words, and potentially also phrases. 

The vocabularies of natural languages typically contain words with subtle, complex, or contextual 

meanings such as synonyms (words with similar meanings), homographs (words spelt the same 

with different meanings), words with multiple connotations, words with variable spelling 

(including common misspellings of words), and various inflectional forms for different tenses or 

subjects.  

This section looks at some of the techniques used in normalising syntactic differences in text 

through pre-processing and generating semantic representations of text through language 

modelling and text embedding, as well as some of the challenges and limitations of these 

approaches. 

2.3.1 Pre-Processing 

Natural language text commonly features symbols and terms that may not be of interest for a 

model, such as punctuation, styling and markup tags, and words deemed to have little semantic 

meaning. The number of unique symbols and the vocabulary size of a language model can 

significantly affect performance (Gowda & May, 2020), so it is common to pre-process input text 

to remove extraneous features and normalise text to address variations in syntax, as outlined in 

the following sections.  

The following sub-sections are not an exhaustive guide to pre-processing text data but 

demonstrate some examples of the types of features that may be removed from text before use 

in training or prediction, which may be important to interpreting a model’s understanding of 

language and the features available for it to learn. This section focuses on English language text 

and some but not all techniques may apply to other languages; the discussion of tokenisation and 

canonisation techniques for instance is not applicable to languages that use logograms such as 

Mandarin hanzi or Japanese kanji, where individual characters represent words or morphemes 

instead of sub-word units as in alphabetic languages. 

2.3.1.1 Tokenisation 

The first pre-processing step commonly applied is tokenization, where the input text is converted 

into a sequence of tokens. This conversion is typically based on whitespace and punctuation, 
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where each word and punctuation symbol becomes a token (Russell & Norvig, 2020). This can 

result in words containing punctuation, such as apostrophes, being split into multiple tokens, so 

these may sometimes be replaced before or during tokenisation. Some sophisticated tokenizers 

may identify locutions such as multi-word phrases (also referred to as n-grams) as a single token 

based on frequent co-occurrence or grammatical rules (Russell & Norvig, 2020). In the example 

below, item 1 shows the input text, 2 shows the text after tokenisation (where | is the divider 

between tokens), 3 shows the text after tokenisation with apostrophes removed, and 4 shows the 

text after tokenisation preserving locutions. 

1. 𝑁𝑒𝑤 𝑌𝑜𝑟𝑘 𝑖𝑠𝑛’𝑡 𝑖𝑛 𝐸𝑢𝑟𝑜𝑝𝑒 

2. 𝑁𝑒𝑤 | 𝑌𝑜𝑟𝑘 | 𝑖𝑠𝑛 | ’ | 𝑡 | 𝑖𝑛 | 𝐸𝑢𝑟𝑜𝑝𝑒 

3. 𝑁𝑒𝑤 | 𝑌𝑜𝑟𝑘 | 𝑖𝑠𝑛𝑡 | 𝑖𝑛 | 𝐸𝑢𝑟𝑜𝑝𝑒 

4. 𝑁𝑒𝑤 𝑌𝑜𝑟𝑘 | 𝑖𝑠𝑛𝑡 | 𝑖𝑛 | 𝐸𝑢𝑟𝑜𝑝𝑒 

Other approaches to tokenisation include character-level tokenization and sub-word tokenization.  

Character-level tokenisation forgoes building a vocabulary of words and instead uses single 

characters as tokens (Kim et al., 2016; Ling et al., 2015), removing the problem of vocabulary size 

and allowing handling of out-of-vocabulary words, but resulting in text being mapped to a large 

number of tokens, which may not individually carry meaning (i.e. individual letters typically do not 

have semantic meaning). 

Sub-word tokenisation allows words to be broken into multiple tokens such that prefixes, suffixes, 

and other meaningful character sequences (e.g., morphemes) can be used as features. Like 

character-level tokens, these can be composed to increase the coverage of the vocabulary, but 

unlike character tokens, these have meaningful semantics. How words should be split is 

sometimes learned, such as with WordPiece (Sennrich et al., 2016; Wu et al., 2016) which uses a 

variation of Byte Pair Encoding to select tokens based on frequent pairs of consecutive sequences.  

2.3.1.2 Canonization 

Some aspects of a vocabulary can be normalised based on grammatical rules and by looking at the 

roots of words using processes such as stemming and lemmatisation, for which several solutions 

exist, such as Porter’s algorithm (Porter, 1980). These algorithms substitute words with their 

canonical (dictionary) forms by removing inflections (tense, case, voice, aspect, person, number, 

gender, and mood), thus reducing the size of the vocabulary (e.g., “playing”, “plays”, “played” all 

become “play”). However, some contextual information (e.g., verb tense) may be lost as words 

sharing the same lemma are considered to have identical meanings.  

Some approaches also choose to remove letter casing and diacritics to further reduce the number 

of unique tokens. This assumes that alternative spellings add little semantic information at the 
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cost of greater vocabulary size. It has been demonstrated that preserving case can benefit some 

tasks such as Named Entity Recognition and Part-of-Speech tagging, but for other tasks removing 

case and diacritics can improve model performance (Devlin et al., 2019). 

In the following example, 1 shows an input sentence, and 2 shows its canonical form after 

stemming and character substitution. 

1. 𝐼 𝑤𝑜𝑟𝑘𝑒𝑑 𝑎𝑡 𝑎 𝑐𝑎𝑓é 𝑏𝑒𝑓𝑜𝑟𝑒 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑒𝑟𝑒 

2. 𝐼 | 𝑤𝑜𝑟𝑘 | 𝑎𝑡 | 𝑎 | 𝑐𝑎𝑓𝑒 | 𝑏𝑒𝑓𝑜𝑟𝑒 | 𝑤𝑜𝑟𝑘 | ℎ𝑒𝑟𝑒 

 

2.3.1.3 Stop Words 

A commonly used approach is to filter the text against a stop list, a list of stop words, which are 

terms assumed to not be of interest, such as connective words like “the”, “to”, “a”, and “an”. NLP 

software libraries, such as NLTK (Bird et al., 2009), often provide generic stop lists, but there is no 

agreed universal stop list. Different types of models may benefit from different stop lists due to 

differences in how they process the input. For example, in the following sentences (1 & 2) the 

words “from” and “to”, which are commonly used as stop words, change the meaning of the 

sentences significantly. Sentence 3 shows how both sentences, which originally had different 

meanings, are reduced to the same tokens when the stop list [“to”, “from”] is applied. 

1. 𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝒇𝒓𝒐𝒎 𝐸𝑛𝑔𝑙𝑎𝑛𝑑 𝒕𝒐 𝑆𝑝𝑎𝑖𝑛 

2. 𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝒕𝒐 𝐸𝑛𝑔𝑙𝑎𝑛𝑑 𝒇𝒓𝒐𝒎 𝑆𝑝𝑎𝑖𝑛 

3. 𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 | 𝐸𝑛𝑔𝑙𝑎𝑛𝑑 | 𝑆𝑝𝑎𝑖𝑛 

If a model considers word order, then the positioning of the words “to” and “from” can be used to 

identify which location is the origin and which is the destination in sentences 1 and 2, but this is 

no longer possible after applying the stop list. If using a Bag of Words (BoW) model, the word 

order is not preserved, so discarding of the stop words does not change the apparent meaning; to 

a BoW model sentences 1 and 2 are identical and removing stop words (sentence 3) does not 

change the meaning any further. 

2.3.2 Distributional Language Models 

Distributional language models attempt to produce representations for words, phrases, or parts 

of speech in a continuous feature space. Based on the principle “You shall know a word by the 

company it keeps” (Firth, 1957), these models allow positioning of terms such that more related 

terms have greater proximity than unrelated terms.  

Many natural language and text analysis systems are based on a Bag of Words (BoW) approach, 

which creates a statistical model of text by counting the occurrences of words within documents. 

Some examples include Term Frequency-Inverse Document Frequency (TF-IDF) (Sparck Jones, 
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1972), Latent Semantic Analysis (LSA) (Deerwester et al., 1990), and Latent Dirichlet Allocation 

(LDA) (Blei et al., 2003).  

One property of distributional models is that they can produce numeric representations of their 

input in a continuous feature space. In LSA and LDA, the representations of a document’s content 

are used to compare the semantics of documents. Representation can also be produced for 

individual words, commonly referred to as word vectors or word embeddings. These embeddings 

represent the semantics of the words based on their co-occurrence in the corpus.  

These approaches produce reasonable results for tasks such as topic classification and keyword 

matching but cannot capture context in the form of the meaningful order and structure of text, 

which is required for more sophisticated tasks such as reasoning, entity extraction, and 

relationship extraction; for these tasks, it is necessary to model both the semantic and syntactic 

properties of the text.  

To partially address this, statistical language models can make use of n-grams, grouped 

representations of frequently neighbouring terms. These models estimate conditional 

probabilities for the next word for a large number of contexts (the preceding words) (Bengio et 

al., 2001). However, this approach has limited scalability, requiring very small context sizes 

(typically up to 3 words), due to sparsity introduced by the large dimensionality, commonly 

referred to as the curse of dimensionality. 

2.3.3 Neural Language Models 

Neural language models apply neural networks to the task of learning distributed representations 

of text. While the earliest examples of these models (Bengio et al., 2001) were limited by 

computational efficiency, particularly regarding corpus size and vocabulary size, these models 

were able to overcome the curse of dimensionality by allowing each training sample to inform the 

model about semantically similar samples, allowing for much greater context sizes without 

dilution due to sparsity.  

In 2013 Mikolov, Chen, Corrado, & Dean (2013) presented a neural network model for learning 

word vectors, word2vec, able to efficiently process a much larger corpus than previous models 

and produce superior word embeddings, significantly surpassing state-of-the-art models in both 

semantic and syntactic word relationship benchmarks. Further optimisations in their second 

paper (Mikolov, Sutskever, et al., 2013) gave even stronger results and performance gains. 

Word2vec employs two architectures for learning word vectors on a large corpus:  
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The Continuous Bag of Words (CBOW) model, based on the conventional BoW model, uses word 

co-occurrence to learn word vectors. CBOW is distinct from other BoW approaches in that a filter 

is applied to the input text as a ‘sliding window’, such that the embedding for the target word is 

trained using only words which occur close to it in the text. This adds context to the BoW model, 

but still lacks respect for word order, and ignores the local distance between words so long as it is 

within the window size. 

The Continuous Skip-gram model instead trains word embeddings by using the target word to 

predict words that occur nearby. The number of training samples featuring each nearby word is 

dependent not only on the number of contexts in which the words co-occur but also the distance 

between the words, such that more distant words comprise fewer training examples. This 

approach maximises the benefit of a large context window while keeping computational 

complexity manageable.  

These architectures are the basis for several successive approaches such as Paragraph Vectors (Le 

& Mikolov, 2014) and Skip-Thought Vectors (Kiros et al., 2015) which are discussed later in this 

chapter. Some models such as GloVe (Pennington et al., 2014) further improve performance by 

combining these predictive tasks with global statistics like discussed in the previous section. 

2.3.4 Distributional Representations of Documents 

Paragraph Vectors (Le & Mikolov, 2014) extend the word2vec model for word vectors to larger 

lexical structures such as sentences, paragraphs, and documents. By including a unique paragraph 

identifier in each training sample, a vector is learnt for the paragraph as an indirect result of the 

word prediction task. The resulting paragraph vectors capture the semantics of the paragraph and 

can be used as a distributional semantic representation of the paragraph. 

This was shown to be a more meaningful representation than previous document-level fixed-

length techniques such as taking the sum or product of the document’s word vectors. The 

explanation given for this is that the paragraph vectors are better able to capture context in the 

form of the structure of the documents, which is lost when only considering a documents 

constituent word vectors.  

Future research into document representations supports this hypothesis. Various successive 

models feature enhancements attempting to retain more context. Some notable examples 

include Skip-Thought Vectors (Kiros et al., 2015) and Dependency Based Word Embeddings (Levy 

& Goldberg, 2014).  
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2.3.5 Sequence to Sequence Models 

The Skip-Thought Vectors model is a sequence-to-sequence Recurrent Neural Network (RNN) with 

a similar learning objective to the word2vec skip-gram model but on the sentence level. Sentence-

level vectors are learned by predicting sentences occurring before and after the target sentence. 

This captures a high degree of contextual information, as it is sensitive to both word order and 

sentence order. The resulting skip-thought vectors have been shown to be highly effective for 

tasks such as identifying semantically similar sentences and sentiment classification. A skip-

thoughts model trained on the BookCorpus dataset (Zhu et al., 2015) achieved state-of-the-art 

performance on several benchmarks and is used as a baseline by many future models. 

As a deep neural network, the skip-thought model requires a very large number of learnable 

parameters compared to shallow models like word2vec, resulting in much longer training times 

and a requirement for a very large training corpus for high-quality vectors to be produced. As 

skip-thoughts are dependent on the order of sentences within documents, they are also less 

suited to tasks involving short-texts, for which they perform comparably to other models, many of 

which are less complex.  

It has been shown to be the case generally for sequence-to-sequence models that their improved 

performance is more prominent in tasks where understanding of global/long-range semantics is 

required, and less in tasks involving keyphrase recognition (Seo et al., 2020). 

The FastSent model (Hill et al., 2016) builds on the principles of Skip-thoughts by learning to 

predict sentence order but uses a simpler log-linear algorithm where sentence vectors are 

produced by summing their constituent word vectors. This significantly reduces training time 

while keeping the sentence level semantics of skip-thoughts, but the loss of word order reduces 

performance in some tasks, such as detecting sentiment, paraphrasing, and subjectivity. 

2.3.6 Fine-Tuning and Transfer Learning 

Subsequent works including Conneau, Kiela, Schwenk, Barrault, & Bordes (2017) and Cer et al., 

(2018) have extensively explored the effects of fine-tuning and transfer learning on sentence-level 

vectors. In this context, transfer learning involves using vectors pre-trained on a large 

unsupervised corpus, then fine-tuning using a comparatively small amount of high-quality labelled 

data. 

Conneau et al. (2017) examine several model architectures and evaluation techniques and shows 

significant performance improvements when sentence vectors are pre-trained on natural 

language inference tasks, which they hypothesise is due to the generality of the high-level 



Chapter 2 

18 

semantic understanding required to solve the task. An interesting observation made by the 

authors is that models which perform better at the pre-training task do not necessarily produce 

the best results in other tasks, which they attribute to over-specialisation and focus on features 

important to the training task rather than more general semantic information. They also find that 

larger sentence vectors can generalise better to other tasks, even when this does not result in 

improved performance on the training task, which they also attribute to less specialisation of 

learnt features. 

The paper also introduces a new model, InferSent, a bi-directional LSTM (Long Short-Term 

Memory) sequence-to-sequence model using transfer learning. This improved on the state-of-the-

art for several tasks of various types including semantic relatedness, inference, and sentiment. 

While this model requires some supervised data in addition to the usual unlabelled corpus, the 

data required for both datasets is much less than exclusively unsupervised, or supervised models. 

When trained on 570 thousand ordered sentences, and fine-tuned using labelled data 

(specifically, from the Stanford Natural Language Inference (SNLI) dataset (Bowman et al., 2015)), 

their model consistently outperforms the best Skip-Thought model trained on 64 million 

sentences. 

Finally, the paper introduces an automated tool for evaluating the quality of sentence vectors on 

several common benchmarks, which was later published and released open-source as SentEval 

(Conneau & Kiela, 2018). This incorporates a diverse set of 17 NLP challenges including opinion 

polarity, review sentiment, objectivity, paraphrase detection, inference, question-answering, and 

image-captioning. This encompasses many of the evaluation datasets commonly used in the 

contemporary literature. 

Cer et al., (2018) take a different approach to transfer learning, by re-using vectors learnt by other 

models, then applying fine-tuning. They also investigate the effect of combining both word and 

sentence level vectors. They improve on state-of-the-art performance using their model, 

Universal Sentence Encoder (USE), which combines pre-trained word vectors from a word2vec 

skip-gram model with sentence vectors trained on a Wikipedia dataset, then fine-tuned using 

labelled data from the SNLI dataset.  

Their best performing model, USE_T uses a transformer architecture. While this model scores 

highest in most benchmarks, significantly surpassing state of the art, it has O(n2) compute and 

memory requirements based on sentence length. Another model introduced in the paper, USE_D, 

is trained on the same data but uses a Deep Averaging Network (DAN) architecture, which has 

linear compute and memory requirements. Their evaluation showed the performance of this 
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model to be only slightly less than USE_T in most tasks, and with a better score on the subjectivity 

evaluation benchmark. 

As with the InferSent model (Conneau et al., 2017), USE’s use of transfer learning allows for near 

state-of-the-art performance even with minimal training data. USE_T was shown to be 

competitive with models trained on the full 67.3 thousand examples from the SST dataset (the 

variant from Conneau et al. (2017)) when fine-tuned on only one thousand examples (Cer et al., 

2018). 

These papers clearly demonstrate the advantages of transfer learning and fine-tuning. This 

technique not only sets the new state-of-the-art performance benchmarks but does so with far 

less training data than previous exclusively supervised or unsupervised models. This both results 

in faster training times and significantly increases the number of potential applications for these 

techniques in areas where labelled data is limited. Both factors reduce the cost of implementation 

and experimentation. This is further supported by both models being openly available online for 

use in other applications, along with detailed instruction for replication being given in both 

papers. 

2.3.7 Addendum:  Deep Bidirectional Encoders 

Generating superior semantic representations of documents and parts-of-speech continues to be 

a highly active research area. Recent models trained on very large datasets, particularly those 

using bidirectional encoding transformer architectures have achieved significant improvements 

on a range of downstream tasks. Some notable examples include BERT (Devlin et al., 2019), 

RoBERTa (Liu et al., 2019), XLNet (Yang et al., 2019), and GPT-3 (Brown et al., 2020). 

Commonalties of these models include considering sentence context when producing text 

embeddings and using sub-word tokenisation for better handling of out-of-vocabulary words.  

An advantage of using models which produce fixed-length semantic vectors is that they can be 

used interchangeably in most cases not requiring major methodological changes in their use, so 

future developments in embedding models can easily benefit downstream applications. While 

some of the models discussed here were not available when the experiments detailed in this 

thesis were conducted, it is likely the approaches presented could benefit from the use of these, 

and future, superior embedding models. 
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2.4 Search and Recommender Systems 

Retrieving information from heterogeneous sources is not a new problem and is commonly a 

consideration in search, recommendation, and expert systems. This section looks at some of the 

methods used in these areas, their data requirements, and limitations. 

2.4.1 Item Similarity Techniques 

Effective methods for calculating item similarity are important for information retrieval tasks such 

as finding items similar to a query, they also have applications in recommender systems that 

make use of content information.  

Statistical similarity techniques, such as Term Frequency – Inverse Document Frequency (TFIDF) 

(Sparck Jones, 1972) are widely used in search and recommendation systems (Beel et al., 2016). 

While these approaches provide the benefits of determinism, comparative simplicity, and 

understandability (contrasted to learning models with complex parameters), they are syntactically 

variant meaning that different phraseology, for example, use of different terminology will prevent 

matching, limiting their usefulness for matching documents from different domains or writing 

styles (formal versus informal, specialist versus general-audience, etc.). 

Language models (detailed in section 2.3) can be used to produce semantic representations of 

documents (or parts of documents) which can be compared, for example, using cosine similarity 

or angular distance (Cer et al., 2018; Reimers & Gurevych, 2020). These models overcome 

syntactic variance and match documents with different phraseology by modelling semantics 

(meaning) and considering context.  

Multi-modal embedding models such as Sun, Li, & Zhang, 2018; Sung, Lenz, & Saxena, (2017) can 

be used to determine the similarity between various types of media such as images or audio, 

enabling these to also be considered for a search query or item comparison. 

While ranking by similarity is suitable for retrieving documents matching a query, or comparing 

pairs of items, it alone is not sufficient for matching documents on relationships other than 

content similarity, such as when documents that might share a relationship are meaningfully 

dissimilar, for example, in supply chain companies buy from/sell to companies that are different, 

not companies that are similar (i.e., their competitors). 

Distributional semantic techniques such as document embeddings have also been shown to be 

effective for other tasks such as analogous reasoning, paraphrase identification, inference, 

question-answering, and machine translation (Cer et al., 2018; Conneau et al., 2017; Conneau & 
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Kiela, 2018; Hill et al., 2016; Kiros et al., 2015), which may have other applications in information 

retrieval and recommender systems. 

2.4.2 User Behaviour Techniques 

Observing patterns in user interactions is the basis of many recommender systems, particularly in 

e-commerce where this data is abundant, and users commonly have extensive interaction 

histories. For relationship inference, it is significant that these approaches are not based on the 

direct similarity between the user and the target documents, but on the implicit relationship of a 

user’s need for what the documents describe. 

Collaborative recommender systems aggregate user interactions to find similar users and 

recommend the items they liked. Common techniques include collaborative filtering, where 

matrix factorisation is used to reduce the dimensionality of the sparse matrix of user-item 

interactions. The resulting dense matrix can be used to recommend items based given a user’s 

past interactions (Koren et al., 2009). 

However, due to dependence on user interactions, collaborative approaches present issues when 

items are time-sensitive or competitive as items may not remain valid long enough to accumulate 

a significant user record (Shalaby et al., 2018; Yuan et al., 2016). Further, this approach can result 

in positive feedback loops where a document being frequently recommended results in more 

interactions, resulting in more recommendations and therefore more interactions; this virality 

effect can result in a few generic or broadly applicable documents being disproportionately 

recommended, while newer and more niche documents are not promoted due to less existent 

user behaviour data (Deldjoo et al., 2019; Yuan et al., 2016). 

In contrast, content-based recommender systems recommend items based on similarity to a 

query or the user’s past interactions. In some works, such as Suglia et al. (2017) and Ferro et al. 

(2016), item description embeddings are used for this comparison. A common approach used in 

both papers is to generate a representation of the user by averaging the description embeddings 

of items the user has interacted with previously. Some works consider additional auxiliary 

information about users and items such as user search contexts (Liebling et al., 2012), or 

additional content or meta-data information retrieved from web sources (Musto, Semeraro, de 

Gemmis, & Lops, 2016), knowledge-bases (F. Zhang et al., 2016), ontologies (Suglia et al., 2017), 

or folksonomies (Chen et al., 2010). 
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These content-based systems are less dependent on items having detailed interaction histories as 

they can recommend new items based purely on content similarity, but they still require the user 

to have known past interactions to generate a representation of the user. 

Ontological approaches can be used to create user profiles for bootstrapping recommender 

systems and to generalise observed interactions by using ontological relationships such as parent-

topic, sub-topic (Middleton et al., 2004). Ontologies are often hand-crafted and domain specific, 

however, the ability to make use of existing ontologies can alleviate this issue in domains that are 

well covered, although it is still necessary that a judgement is made about what ontologies are 

suitable, and some domains may not have existing comprehensive high-quality ontologies. 

Ontology learning offers a solution to these issues, producing an ontology through association 

rules, classification, clustering, or other content based techniques (Maedche & Staab, 2001), or 

extending ontologies to less covered domains through transfer learning (Xie et al., 2021).  

Association Rule Mining can be used to identify rules of association between items, scored by 

confidence (the proportion of relationships for an item where it co-occurs with the other) and 

support (the proportion of transactions involving the items) (Agrawal et al., 1993). This has been 

applied to produce recommendations by creating personalised rules for each user (Adomavicius & 

Tuzhilin, 2001), or to address the cold start problem by using rules generated from historic data to 

bootstrap a recommender system (Bendakir & Aïmeur, 2006). This technique has the advantages 

of being intuitively understandable and easily fitting business cases such as relationships between 

retail products or departments (Nakhaeizadeh et al., 2000). The use of intuitively understandable 

rules also allows these approaches to be more explainable. However, these approaches still rely 

on a quantity of historic data and do not address double cold starts, where both the user and item 

are new, as these users/items do not appear in any rulesets. 

Hybrid recommender systems combine aspects of the techniques discussed previously, such as 

making use of both content and collaborative data to learn joint user-item embeddings as in 

neural collaborative filtering (He et al., 2017). Many hybrid models make use of deep learning to 

learn the relationship between user and item features, however, this results in these techniques 

requiring a large amount of training data and present issues with interpretability (S. Zhang et al., 

2019). 

A limitation of behaviour driven approaches is that they depend on users seeking documents 

similar to previous searches, which may not be true between sessions; that is, if a user changes 

their search objective the data may no longer be relevant because the nature of the relationship 

(the user’s need) has changed (Kong et al., 2015). Additionally, these approaches are constrained 

by the availability and quality of relevant behaviour data. 
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2.4.3 Sparsity, Partial Labelling, and Cold-Starts 

Datasets that use user interactions, user ratings, or known item relationships (such as those given 

by experts or based on modelling real-world relationships such as supply-chain) as labels are often 

highly sparse. That is, most possible user-item or item-item pairs do not have a known 

rating/relevance score/relationship class. For example, in the case of review data, it is unlikely 

that any user has reviewed all items in the dataset; or in supply-chain data, not all potential 

relationships between businesses will be known or necessarily existent in the real world.  

In sparse datasets, labels may not be evenly distributed across all items. Some items in a dataset 

may have many labels (for example older or more popular products, users who have been using a 

service longer), while others may have very few or no labels (such as newly added items, newly 

registered users). In the context of recommender systems, an item (or user) for which no labels 

are known is referred to as a cold-start. 

The cold-start problem can be divided into the two sub-problems of item-wise (new item) and 

user-wise (new user) cold starts (Lops et al., 2013). The item-wise case is commonly addressed by 

content-based and hybrid recommender systems (S. Zhang et al., 2019); however, the user-wise 

case has received less attention, even in scenarios where content information for the user is 

available. 

Content-based and hybrid recommender systems reduce the requirement for item labels by 

making use of item content, such as descriptions. Many such systems rely on either knowledge 

bases and ontologies (Middleton et al., 2004; F. Zhang et al., 2016), which do not avert the 

requirement of experts for new or commercially guarded domains, or tags and categorisation 

(Shalaby et al., 2018; Xu et al., 2016), which requires either many labels or distinct groupings in 

the data. 

Yuan et al., (2016) examine the real-world data problem of matching users to job postings, where 

items are time-sensitive and new items are very frequent. They make the case that high-

performance techniques that require item labels can be generalised to cold-start items by pairing 

labelled and unlabelled items based on the similarity of their content. 
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2.5 Provenance and Explainability 

Machine learning solutions and some statistical methods may output only a series of ranked items 

or confidence scores in response to a query, and the rationale behind these decisions is unknown. 

In the case of scores from neural networks or other learning models, the reasoning behind the 

algorithm’s decision is unknowable as it is derived from the free parameters of the model which 

only have meaning inside the model and cannot be used to meaningfully explain results, these are 

often referred to as “Black Box” systems. Much research has been done into approaches for 

understanding the internals of deep learning models via visualisation, particularly in the areas of 

text summarisation (See et al., 2017) and computer vision (Yosinski et al., 2015; Zintgraf et al., 

2017), and some works have looked at understanding the upstream neural language models 

discussed in section 2.3  (J. Li et al., 2016). However, while these visualisation techniques offer 

some insights into the factors the model considers important, they cannot produce a reasoned 

explanation for the response to a particular query in any way similar to how a human decision-

maker might. 

In contrast to this are “White Box” systems which produce meaningful provenance that can be 

used to explain results and study the operation of the model, these typically include rule-based 

models and expert systems. Herlocker, Konstan, & Riedl (2000) discuss how in user-facing 

scenarios some techniques such as collaborative filtering can be presented as either a white box 

or black box model, by giving feedback to the users based on either the operational steps of the 

model (white box) or the inputs and outputs of the system such as user evaluations of the quality 

of results (black box). 

Detailed provenance data, such as lists of decision-making steps, inferences, rules, knowledge, 

and items considered when evaluating a query can be used to produce visualisations such as 

graphical plots or flow diagrams to help users understand the reasoning behind a result, 

increasing their confidence in the decision, or highlighting potential flaws in the model. This 

makes provenance highly desirable both during development, to debug and improve the model, 

and for user-facing systems as users have greater trust in answers that are explainable and can 

make more informed decisions based on the results (Herlocker et al., 2000). 
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2.6 Conclusions 

The extensive literature on natural language processing demonstrates several effective 

techniques for learning semantic representations of text which can be used to learn or reason 

about the text’s properties for a large variety of applications. Further, recent models show 

excellent ability to generalise and perform high-level reasoning tasks such as question answering 

and natural language inference. The introduction of transfer learning and fine-tuning has opened 

many possibilities for investigation, such as what linguistic tasks and types of training examples 

promote the best general models of language and why. 

Major advances in this problem area have been made by taking conceptually simple techniques 

from early models and applying them to new problems or in new ways. Now that several 

techniques have been identified that are highly effective and generalisable, new problems can be 

approached such as those set out in the research questions of this project (section 1.2). 

The next two chapters look in more detail at the challenges, resources, and techniques relevant to 

this project. The approaches used take inspiration from the techniques applied to similar 

problems in the literature and extend the current work by using neural language models to 

address the challenges described in section 2.2, allowing effective downstream models and 

combinations of techniques to be produced to address the specific challenges and research 

questions of this project.
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Chapter 3 Inferring Relationships from Few Labels 

3.1 Chapter Overview 

This chapter details the approach employed in answering SRQ1: “How can machine understanding 

of text be used to identify relationships between documents in large collections of unstructured 

text?”. Section 3.2 introduces in more detail the specific problem examined. Section 3.3 looks at 

data resources and challenges relevant to this task, section 3.4 presents the Isle of Wight Supply 

Chain  (IWSC) dataset which exemplifies two challenging scenarios. Section 3.5 discusses 

appropriate methods of evaluation, and section 3.6 introduces the Transitive Semantic 

Relationships (TSR) model, a novel solution addressing the shortcomings in this area, particularly 

in concern to SRQ1 and SRQ3. The implementation and experimental setup are detailed in section 

3.7, the main results are given and discussed in section 3.8, and subsequent variations on the 

algorithm explored to improve performance are examined in section 3.9. 
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3.2 Introduction 

Much research has been done into matching short text queries to documents, including keyword 

queries and natural language questions. These approaches require either an approximate 

knowledge of the target documents (for example, probable keywords) or a targeted query. While 

good accuracy has been achieved for these tasks in controlled tests (matching and ranking in test 

datasets), in real-world applications it is often necessary for users to repeatedly rephrase, modify, 

and refine their query to find the results they are looking for (versus what is technically a good 

match for the query). An effective query must describe the target documents, which is 

problematic when the user has no knowledge of the target documents. 

An issue with these approaches is that the query depends on the relationship between the 

domain of the user’s knowledge and the codomain of information contained within retrievable 

documents. This is problematic if the user does not have knowledge of the information in the 

codomain and therefore cannot form a query that precisely describes the desired documents. This 

results in users needing to start with broad queries and progressively narrowing their search as 

they learn more about the contents of the codomain (i.e., what information is available). This 

requires more time from users, results in many low-value queries, and may result in the exclusion 

of good results as users attempt to tailor their queries based on the non-optimal results of earlier 

queries. 

One solution to this problem would be to make direct use of the user’s knowledge rather than 

relying on knowledge gained from unsuccessful queries. In many scenarios, the user is attempting 

to find a suitable match or matches for an entity that they could describe, which shares a 

relationship with the target documents. Some examples are listed in Table 3.1. 

Table 3.1 - Examples of capability relationships 

Domain  

(user knowledge) 

Relationship Co-domain  

(retrievable documents) 

Project description Fulfils criteria Grant description 

Resume or CV Role suitability Job advert 

Company description Collaboration / Supply Chain Company description 

Researcher description Expertise / Consultancy Company description 
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Notably, in the cases above the relationships between the documents are not based on similarity. 

For example, in the case of supply-chain, a company would be seeking a supplier or consumer 

with a different but related specialisation to themselves. In the case of matching job or grant 

funding, the format and terminology used in the domain and codomain are likely to differ. As 

such, searching using a description of a domain entity is unlikely to produce good results using a 

similarity-based search. It is therefore necessary for an algorithm to consider the nature of the 

relationship between the domain and codomain documents. The relationships listed above are all 

examples of types of capability relationships, which will be the focus of this chapter. 

Most existing search and recommendation techniques outlined in Chapter 2 do not directly model 

the relationships between documents, but instead rely on measures of similarity or behaviour 

trends. While ontological and rule-based approaches can leverage some other relationship types 

(such as hierarchical is-a relationships), they depend respectively on good domain coverage or 

many historic examples from which to derive rules, and do not predict relationships like those in 

Table 3.1 for unseen items. Previously, some of the flaws of existing techniques have been 

identified, as well as their strengths.  SRQ1 seeks to determine if these solutions can be improved 

by modelling the semantics of such relationships, or if new solutions based on this approach could 

surpass them in the scenarios in which they perform poorly.  

  



Chapter 3 

30 

3.3 Data Requirements 

New Big Data recommendation systems face a high barrier to entry due to the large labelled data 

requirement of most existing recommendation techniques such as collaborative filtering and 

bespoke deep learning models such as Suglia et al., (2017). Obtaining this labelled data, such as 

user interactions or human judgements, is particularly problematic in highly specialised or 

commercially competitive domains where this labelling may not yet exist or not be freely 

available, often requiring expensive expert or crowd-sourced labelling. As such, techniques that 

function well with few labels are highly desirable. 

Constructing a high-quality model for relationship discovery is likely to require a large volume of 

suitable training data, including examples of existing relationships for learning and evaluation. 

Machine learning and deep learning techniques can require datasets on the order of hundreds of 

millions of words to create effective models, particularly when the number of parameters is large. 

Recent literature on neural language models has particularly shown that more diverse training 

corpora produce better and more generalisable results (Conneau et al., 2017).  

Content-based and hybrid recommender systems reduce the requirement for user-item 

interaction labels by making use of item content, such as descriptions. Many such systems rely on 

either knowledge bases and ontologies (Zhang, Yuan, Lian, Xie, and Ma, 2016), which do not avert 

the requirement of experts for new or commercially guarded domains, or tags and categorisation 

(Xu, Chen, Lukasiewicz, Miao, and Meng, 2016), which requires either many labels or distinct 

groupings in the data. 

Some machine learning architectures could use transfer learning to benefit from word or 

sentence vectors pre-trained on a large unrelated corpus. Studies (Cer et al., 2018; Conneau et al., 

2017) have shown that transfer learning making use of as few as 1000 labelled examples can 

produce competitive results on several benchmarks.  

Alternatively, statistical and reasoning-based techniques can have less requirement for labelled 

data as they draw inferences directly from the corpus rather than using it to train many free 

parameters to produce a generalisable model as in neural networks. 

Due to the multitude of applications for relationship discovery, various datasets are available 

pertaining to different applications. The requirements for a dataset are that historic or current 

relationships can be extracted (the ground truth), and that entities have sufficiently detailed 

descriptions. The dataset should ideally contain minimal false or misleading information (such as 

exaggerated advertising) for the reasons detailed in section 2.2.4. 
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As well as complete datasets, many resources exist which could be used to provide or enhance 

descriptions of entities to enable better matching. Some candidate datasets and data resources 

identified are detailed in Table 3.2. 

 

  

Table 3.2 - Potential Data Sources 

Data Source/Type Potential Usage Notes 

Innovate UK funding award 

history 

(GOV.UK, 2018) 

Existing capability and  

collaboration relationships 

Includes collaboration data in 

the form of multiple 

participant projects 

Gateway to Research 

funding award history 

(GtR, 2018) 

Existing capability and  

collaboration relationships 

Large dataset of more than 

82,000 projects, 68,000 

people, and 36,000 

organisations 

Commercial data Existing capability and  

collaboration relationships 

Often very sparse or partial 

coverage/incomplete data 

Websites of public 

institutions and businesses 

Textual descriptions of 

entities 

Likely to be very noisy and 

highly heterogeneous 

Pre-trained language models 

(word embeddings, etc.) 

Data analysis / pre-training  
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3.4 Isle of Wight Supply Chain Dataset 

In collaboration with the project’s industrial sponsor, a dataset on the Isle of Wight Supply Chain 

(IWSC) has been produced. The data consists of varying length text descriptions of 630 companies 

on the Isle of Wight taken via web-scraping of websites promoting local businesses (IWChamber, 

2018; IWTechnology, 2018; Marine Southeast, 2018). 

HTML tags and formatting have been removed, but the descriptions are otherwise unaltered and 

are provided untokenized, without substitutions, and complete with punctuation. Some 

descriptions contain product codes, proper nouns, and other non-dictionary words.  

Most of the descriptions are a few sentences describing the market role of the company or a 

general description of the company’s activities or products. Several but not all the descriptions 

also contain a list of keywords, but this is included as part of the descriptive text and not as an 

isolated feature.  The mean description length is 61 words, or 412 characters (including 

whitespace). The distribution of description lengths is shown in Figure 3.1. 

The IWSC dataset is provided with two discrete sets of labels intended to evaluate algorithmic 

performance in different scenarios. In both cases, the labels are binary, directed, expert 

judgements of market relatedness based on the company descriptions. The number and 

distribution of labels are shown in Table 3.3. These labels are speculative potential relationships, 

not necessarily real existing relationships. Binary labelling was used as real-world supply chain 

relationships are typically multi-class binary relationships. i.e., any two companies either are or 

are not in each possible type of supply chain relationship. 

The first label set, ‘IWSC-SL’, is comprised of the labels ‘SL_consumers’, ‘SL_not_consumers’, 

‘SL_suppliers’, ‘SL_not_suppliers’, ‘SL_competitors, and ‘SL_not_competitors. These labels are 

concentrated on a small number of labelled items, relating them to a random distribution of other 

items (both labelled and unlabelled). These labels are intended for evaluation in the case that only 

records for a small subset of items are known and it is necessary to extrapolate from this to 

perform inferences on many unseen items. This scenario is termed “Subset Labelling” (SL). 

The second label set, ‘IWSC-ES’, is comprised of the labels ‘ES_suppliers’, ‘ES_consumers’, 

‘ES_competitors’, and ‘ES_unrelated’. The labels are randomly distributed across all labelled items 

with no intentional patterns (random pairs were selected for labelling). These labels are intended 

for evaluation in the case that known items have very few labels and many are entirely 

unlabelled, in contrast to common recommender system datasets such as Movie Reviews (MR) 

(Pang and Lee, 2004), Customer Reviews (CR) (Hu and Liu, 2004), and MovieLens (Harper and 

Konstan, 2015), where most items have many recorded interactions. While in those examples the 
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labels are sparse as most possible item pairs are unlabelled, in this scenario, there is the 

additional condition that most items in the dataset do not occur in any of these pairs, as such this 

is termed “Extremely Sparse” (ES) labelling. 

In addressing SRQ1, relating to relationship discovery, the four following tasks are of interest: 

1. Prediction of “SL_consumers” labels using IWSC-SL labels and item descriptions 

2. Prediction of “SL_suppliers” labels using IWSC-SL labels and item descriptions 

3. Prediction of “ES_consumers” labels using IWSC-ES labels and item descriptions 

4. Prediction of “ES_suppliers” labels using IWSC-ES labels and item descriptions 
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Figure 3.1 - Histogram of item description lengths in the IWSC dataset 

 

Table 3.3 - Labels in the IWSC dataset. Labels are directed, such that “Labelled Items” is the 

number of items that known relationships are “from”, and “Unique Targets” is the 

number of items relationships are “to”. 

Label Name Total Labels Labelled Items Unique Targets 

SL_suppliers 142 15 75 

SL_not_suppliers 563 16 120 

SL_consumers 376 17 117 

SL_not_consumers 712 16 157 

SL_competitors 82 15 49 

SL_not_competitors 396 17 99 

ES_suppliers 92 48 76 

ES_consumers 207 51 171 

ES_competitors 95 53 82 

ES_unrelated 431 75 299 
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3.5 Evaluation Methods 

Various evaluation metrics are used in recommender systems and information retrieval literature. 

As the IWSC dataset uses binary labels, and the total number of labels is small, various evaluation 

techniques have been investigated to determine the most suitable. 

Normalised Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002) is a common 

evaluation metric in information retrieval literature. This is a graded relevance metric which 

rewards good results occurring sooner in the results list, however, it does not penalise highly 

ranked negative items. As binary labels have no ideal order for positive items, this metric is 

unsuitable.  

Quantitative error metrics such as Root Mean Squared (RMS) error or Median Absolute Error are 

also common. Error metrics naturally favour scoring systems optimised to minimise loss such as 

learning-to-rank algorithms and require scores to fit the same range as the label values. For the 

IWSC dataset, as the labels are binary, the range is 0 to 1.  

For a binary labelled dataset, it is intuitive to set some threshold on the rankings and produce a 

confusion matrix and take precision (P), recall (R), and f1 scores. As scores are not evenly 

distributed, there is no obvious score value to use as a threshold for predicted positives and 

negatives, so instead some number of the top-ranked items must be considered predicted 

positives.  

Due to the sparsity of labels in the dataset, the number and ratio of known positives and known 

negatives varies significantly between items and in many cases, the number of known positives is 

smaller than typical values of K used for Precision at K. As an alternative, R-Precision can be used, 

setting the threshold at R, the number of known positives, and taking the R most highly-rated 

items to be predicted positive and all remaining to be predicted negative; at this threshold P, R, 

and f1 are equal. In the results section, scores taken at this threshold are denoted as @R. A 

drawback of this approach is that only labelled pairs (known positives and known negatives) can 

be used for evaluation, which is a minority of possible pairs in a sparse dataset. The difficulty of 

this evaluation task also varies with the ratio of known positives and negatives which is 

undesirable when evaluating datasets such as IWSC where the ratio varies greatly between items. 

Finally, techniques from the literature on implicit feedback are considered. Techniques for implicit 

feedback have the desirable property of allowing expansion of the number of unique evaluation 

cases by including the use of unlabelled pairs of items (which for a sparse dataset is most possible 

item pairs) as implicit negative feedback. The chosen evaluation technique is the common 

evaluation framework used by He et al. (2017) and Koren (2008), where leave-one-out cross-
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validation is performed by, for each item, taking one known positive and 100 randomly selected 

other items (excluding known positives) and judging the ranking algorithm by the ability to rank 

the known positive highly. The typical threshold used is that the known positive must be in the 

top 10 results, this Hit Ratio (HR) metric is denoted as HR@10. HR@5 refers to the known positive 

being in the top 5, and HR@1 as it being the highest rated item. Other metrics used include the 

mean and median values for the ranks of the known positives across all test cases.  

It is notable that due to the random selection of negative items results may vary between runs. To 

ensure the results are representative each known positive is tested against multiple random pools 

of implicit negatives. This significantly increases the compute time required for evaluation but 

minimises variation in scores between runs. 

Having a fixed number of items in each evaluation and repeating with different random sets of 

items makes this metric well suited to datasets with uneven label distribution such as IWSC. 

Additionally, the values can be understood intuitively as the random-algorithm performance for 

any HR@n is approximately n%, with ideal performance always being 100%. Mean and median 

positive label rank is in the range of 0 to 100, and for a random-algorithm would tend towards 50.  
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3.6 Transitive Semantic Relationships 

To investigate SRQ1: “How can machine understanding of text be used to identify relationships 

between documents in large collections of unstructured text”, a new model has been developed 

to solve the four IWSC prediction tasks pertaining to extremely sparse labelling and subset 

labelling (section 3.4) and additionally looks at cold starts. As these scenarios present difficulties 

arising from having very small numbers of labels, the use of document features is essential for 

good performance, and in the case of cold starts, is required for better than random performance. 

The new model is named “Transitive Semantic Relationships” (TSR) and uses item content 

information for unsupervised comparison of items to expand the coverage of the few available 

labels. This is conceptually similar to other embedding based hybrid recommenders such as 

Vuurens et al. (2016) and He et al. (2017) but uses a novel approach that combines item content 

embeddings with inferential logic instead of learned or averaged user embeddings, making it 

suitable for datasets with fewer labels and producing provenance that is both intuitively 

understandable and easy to visualise. 

3.6.1 Theory 

Transitive Semantic Relationships are based on an apparent transitivity property of many types of 

data items, where it is the case that items which are described similarly are likely to have similar 

relationships to other items. Take, for example, supply-chain: if company 𝐴, a steel mill and 

company 𝐵, a construction firm are known to have the relationship 𝐴 supplies (sells to) 𝐵, it may 

be inferred that some other companies 𝐶, another steel mill, and 𝐷, another construction firm, 

might have a similar relationship. Given content information about each company, such as a text 

description of their product or market role, and the example relationship 𝐴 → 𝐵, we can infer the 

potential relationships 𝐶 → 𝐷 ;  𝐴 → 𝐷 ;  𝐶 → 𝐵. This is illustrated in Figure 3.2. 

It follows that the greater the similarity between an item of interest and an item in a known 

relationship, the greater the confidence that the relationship is applicable. Given some fixed-

length vector representation of the content information about each item, cosine similarity can be 

used to measure similarity between the items. The vector representation should ideally capture 

semantic features of the content information that indicate whether the items they describe are 

similar in function in terms of the known relationship. If the vector representations fulfil this 

criterion, then the cosine similarity between two items is their semantic similarity. It then follows 

that the confidence that some query item and some target item share a relationship can be 

determined by measuring the cosine similarity of the content vectors for the query and the target 

with another pair of items that are known to share a relationship of the type of interest.  
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Figure 3.2 - Illustration of Transitive Semantic Relationships. The dotted lines labelled 𝐷𝐶(𝐴, 𝐶) 

and 𝐷𝐶(𝐵, 𝐷) represent the cosine distance between the content embeddings of 

items 𝐴 and 𝐶, and 𝐵 and 𝐷 respectively 

Herein cosine distance (equation 3.1), (where 𝑢 and 𝑣 are the content embeddings) is used rather 

than the similarity as it is easier to interpret when results are visualised and when distance values 

are weighted; other distance metrics could be substituted if suitable for the content embeddings.  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢, 𝑣) =  1 −
 𝑢 ·  𝑣

||𝑢||2 ||𝑣||2
    3.1 

To keep scores in the same range as the distance function when combining the two distances of 

the query and the target from the labelled pair, take the sum of the distances over 2, this value is 

the combined-semantic distance, shown in equation 3.2, where 𝐷𝐶(𝑄, 𝑆) is the cosine distance of 

the query item 𝑄 and an item 𝑆, which shares a relationship with another item 𝑅, which is 

distance 𝐷𝐶(𝑅, 𝑇) from the target 𝑇.  

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝐷𝐶(𝑄, 𝑆) + 𝐷𝐶(𝑅, 𝑇)

2
    3.2 

To obtain a confidence value where 1 is full confidence of applicability and 0 is no confidence, 

subtract the combined-semantic-distance from 1, this value is the TSR Confidence score for the 

route, given in equation 3.3. For embeddings supporting negative values, cosine similarity and the 

resulting TSR confidence is in the range -1 to 1, where negative values suggests confidence against 

(as opposed to 0 meaning they are orthogonal). 

𝑇𝑆𝑅 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 1 −
𝐷𝐶(𝑄, 𝑆) + 𝐷𝐶(𝑅, 𝑇)

2
    3.3 

Continuing from the prior example illustrated in Figure 3.2, if the cosine distance of 𝐴 and 𝐶 is 

𝐷𝐶(𝐴, 𝐶), and the distance of 𝐵 and 𝐷 is 𝐷𝐶(𝐵, 𝐷), the confidence for each inferred relationship 

can be calculated as shown in equations 3.4, 3.5, and 3.6. In equations 3.4 and 3.5 a +0 is 



Chapter 3 

39 

included to represent 𝐷𝐶(𝐴, 𝐴) and 𝐷𝐶(𝐵, 𝐵) respectively, because the cosine distance between 

an item and itself is always 0. In this example, 𝐴 → 𝐷 is an item-wise cold-start (𝐷 has no known 

labels), 𝐶 → 𝐵 is a user-wise cold-start (𝐶 has no known labels), and 𝐶 → 𝐷 is a double cold-start 

(both 𝐶 and 𝐷 have no known labels). 

𝐴 → 𝐷 = 1 −
0 + 𝐷𝐶(𝐵, 𝐷)

2
    3.4 

 

𝐶 → 𝐵 = 1 −
𝐷𝐶(𝐴, 𝐶) + 0

2
    3.5 

 

𝐶 → 𝐷 = 1 −
𝐷𝐶(𝐴, 𝐶) + 𝐷𝐶(𝐵, 𝐷)

2
 3.6 

To further illustrate this, if 𝐶 is very similar to 𝐴, for example, 𝑙𝑒𝑡 𝐷𝐶(𝐴, 𝐶) = 0.2, but 𝐷 was only 

slightly similar to 𝐵,  𝑙𝑒𝑡 𝐷𝐶(𝐵, 𝐷) = 0.8 then calculation shows that: 𝐴 → 𝐷 = 0.6 ;  𝐶 → 𝐵 =

 0.9 ;  𝐶 → 𝐷 =  0.5  indicating that there is high confidence that C could share a similar 

relationship with B as A does, but other new relations have low confidence. In another example, if 

𝐶 remains similar to 𝐴, 𝑙𝑒𝑡 𝐷𝐶(𝐴, 𝐶) = 0.2, but 𝐷 is made more similar to 𝐵, 𝑙𝑒𝑡 𝐷𝐶(𝐵, 𝐷) = 0.3, 

then the calculation gives: 𝐴 → 𝐷 =  0.85 ;  𝐶 → 𝐵 =  0.9 ;  𝐶 → 𝐷 =  0.75, showing that while 

all relationships have high confidence, higher confidence scores are awarded when there is 

greater similarity to the labelled pair. 

3.6.2 TSR as a Recommender System 

The previous scenarios suppose that the items of interest for comparison are already pre-

determined. However, the principle of TSR can be extended to the selection of items for 

comparison, given an input item to use as a query. This query is not a written question or search 

term as in traditional search engines but is instead content information for an item for which we 

want to find relations (e.g., an item description). This approach can be used as a recommender 

system to produce a ranked list of recommended items for the query (which in recommender 

system terminology would be the “user”). The approach described in this section for applying TSR 

as a recommender system is illustrated in Figure 3.3 and pseudocode is given in Figure 3.4.  

There is a distinction between cases where relationships map from one space to some other non-

overlapping space, for example, separate document collections, and the alternative case where 

items on either side of the relationship co-exist in the same space. A practical example of the 
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former might be a collection of resumes and a collection of job adverts, while an example of the 

latter might be descriptions of companies looking for supply chain opportunities, as in the IWSC 

dataset. The TSR scoring does not differentiate between these two dataset types, but in the 

former case, with separate item collections, it is only necessary to make distance calculations 

between items in the same collection and irrespective of the total number of collections, it is only 

necessary to examine the collections featuring items on either end of at least one example of the 

relationship type of interest; this may be a useful filtering criterion in datasets featuring many 

types of relationships across many non-overlapping collections. 

Having identified the collections that are of interest, additional filtering of items can be applied 

before distance calculation, such as by using item meta-data or additional auxiliary information, 

for example, only considering recent information, or limiting by language or region. This filtering 

could be done to the list of known relationships, if, for example, historical trends are not of 

interest, or could be applied to potential targets, for example, ignoring content in a different 

language to the query item. 

The next stage is to calculate the distances between the query item and other items in the same 

collection which are members of relationships of the type to be inferred, items not in such 

relationships are not of interest. The distance between the query and each of these “similar 

nodes” is then calculated, the distance of each is referred to as 𝐷1. If the number of similar nodes 

is large, a limit 𝐿1 can be applied to truncate the list of similar nodes, preferring the least distant. 

Next, all items pointed to by a known relationship of a similar node are examined, referred to 

collectively as the “related nodes”. The distance between each related node and every other 

eligible “target node” in that space is then calculated, the distance of each is referred to as 𝐷2. An 

item can be both a related node and a target node (𝐷2 = 0), but an item cannot be both the 

query and a target node. If the number of target nodes is large, the number of comparisons in the 

next stage can be controlled by imposing a limit 𝐿2 on the maximum number of target nodes for 

each related node, preferring the least distant. 

Alternative scoring approaches are discussed in section 3.9, but a simple scoring metric equivalent 

to the examples in the previous section is to determine the score for each target node by finding 

the route for each with the greatest TSR Confidence (equation 3.3) 1 − (𝐷1 + 𝐷2) / 2  that 

creates a path to it from the query item, where 𝐷1 is the distance between the query and an item 

in the query’s space (the similar node), which shares a relationship with an item in the target’s 

space (the related node) which is of distance 𝐷2 to the target node. This scoring system ranks 

items by the least combined semantic distance from a known relationship of the desired type, 

that is, by the best route as measured by TSR Confidence.
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Figure 3.3 - An illustrated example showing steps in the TSR recommendation algorithm
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Figure 3.4 - Pseudocode for using TSR as a recommender system. Outputs a list of (item, score) 

tuples in descending order of score where higher scores are more strongly 

recommended. These scores are the TSR Confidence of the route with the least 

combined-semantic-distance for the item. 

let L1 be the number of similar nodes to check 

let L2 be the number of related nodes to check for each similar node 

let Q be the input document 

let SIMILAR_LIST be an array of the L1 labelled documents least distant to Q 

let OUTPUT be an empty list of tuples 

for each node SIMILAR_NODE in SIMILAR_LIST 

    let D1 be the distance between Q and SIMILAR_NODE 

    let RELATED_LIST be all the nodes sharing a relationship with SIMILAR_NODE 

    for each node RELATED_NODE in RELATED_LIST 

        let RELATED_SCORE = 1 - D1  / 2 

        add to OUTPUT the tuple ( RELATED_NODE , RELATED_SCORE ) 

        let TARGET_LIST be an array of the L2 documents least distant to RELATED_NODE 

        for each node TARGET_NODE in TARGET_LIST 

            let D2 be the distance between RELATED_NODE and TARGET_NODE 

            let TARGET_SCORE = 1 - (D1 + D2) / 2 

            add to OUTPUT the tuple ( TARGET_NODE , TARGET_SCORE ) 

        end for 

    end for 

end for 

for all duplicate first values in OUTPUT, keep only the tuple with the greatest second value 

sort OUTPUT by the second value of each tuple in descending order 

return OUTPUT 
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3.7 Development and Experiments 

Development of TSR began during a one-month industrial placement in October 2018. During the 

placement, it was agreed with the industrial partner that the task of supply chain relationship 

discovery for businesses on the Isle of Wight would be the initial testing scenario for the proposed 

method as this is data for which they could provide expert labels and good results would have the 

potential for real-world applications within the business. 

The data was received from the industrial partner in two stages; first, annotated with the labels 

which would form the extra-sparse (ES) tasks, and second, annotated with the labels for the 

subset-labelled (SL) task. A more detailed description of the dataset is given in section 3.4. 

3.7.1 Validation of Assumptions 

Early development focused primarily on finding support for the conjecture that semantic 

embeddings of the descriptions of companies can indicate whether they are potential 

competitors. For this purpose, a Python script was prepared that would, using a pre-trained 

distribution of Universal Sentence Encoder (TensorFlow Hub, 2018), generate embeddings for the 

descriptions of all companies in the dataset, and then calculate the average pairwise cosine 

distance for items sharing each relationship. 

The results, shown in Table 3.4, show a significantly lower average distance for known 

competitors compared to all other known relationships, demonstrating that the conjecture is 

correct, that cosine similarity of description embeddings can be used as an indicator of companies 

being competitors.  

The results also show that the average distance for items known to share any supply chain 

relationship (consumers or suppliers) is slightly less than the average for items known not to, 

however, the difference is much smaller than that of competitors and non-competitors. This 

shows that textual similarity is a weak indicator of supply chain relationships other than 

competitors but is a strong indicator for whether companies are potential competitors. 

This script was then extended to visualise the label distributions, shown in Figure 3.5. USE 

embeddings are 512-dimensional vectors, so require dimensionality reduction to be plotted for 

visualisation. Initially, Principal Component Analysis (PCA) (Hotelling, 1933) was used, but further 

experimentation found that t-SNE  (Maaten & Hinton, 2008) produced more pronounced clusters. 

This result is not unexpected, as t-SNE is well suited to reducing very high dimensional data.  



Chapter 3 

44 

Figure 3.5 is a distribution plot that shows visible, although not clearly separable, clusters in the 

embeddings, with competitor labels more often staying within the same neighbourhood but 

consumer and supplier labels often connecting to more distant regions, which explains the 

distance values in Table 3.4. This supports the hypothesis that a relationship transitivity method 

could be used to ‘bridge’ between these areas, by using semantic similarity as an indicator of 

supply chain similarity (i.e., likelihood of being competitors).  

Subfigures A and B also illustrate the difference between the labelling sets in the IWSC dataset, 

where labels in the Subset-Labelled (SL) set offer less coverage of the dataset but better describe 

particular items, and labels in the Extremely-Sparse (ES) set provide greater coverage but offer 

little information for each labelled item. 

A similar approach is used for visualisation later in the project in Chapter 4, where it is discussed 

in more detail. The distribution of items in the IWSC dataset, and particularly the clusters within 

the data are revisited in Chapter 4, section 4.9. 

 

Table 3.4 - Cosine distance of labels. Lower values indicate items in the relationship have more 

similar descriptions.  

Label Name Mean Cosine Distance Median Cosine Distance 

SL_competitors 0.40 0.39 

SL_not_competitors 0.44 0.43 

SL_suppliers 0.47 0.47 

SL_not_suppliers 0.46 0.47 

SL_consumers 0.47 0.45 

SL_not_consumers 0.49 0.48 

ES_competitors 0.33 0.30 

ES_suppliers 0.56 0.58 

ES_consumers 0.54 0.56 

ES_unrelated 0.58 0.60 
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Figure 3.5 - A 2D t-SNE plot of ISWC item description embeddings showing known relationship labels for competitors (red), consumers (green), and suppliers (blue). 

Subfigure A shows the SL labelling set. Subfigure B shows the ES labelling set. 
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3.7.2 Implementing TSR 

Next, an initial implementation of the relationship transitivity method would be produced, named 

the Transitive Semantic Relationships (TSR) model. Pseudo-code for this had been drafted while 

waiting for data from the industrial partner (as shown before in Figure 3.4). At this stage, two 

different implementations were being considered: a clustering model; and a distance model, 

which would rank results as follows:  

The clustering model would: “Rank targets by the number of relationships with one member 

sharing a cluster with the query item and one member sharing a cluster with the target”. 

The distance model would: “Rank targets by the semantic distance from the input to the target 

passing through exactly one relationship which is given as a distance of 0”. 

A limitation of the clustering model is that without an additional scoring metric, for a given query 

item, target items within the same cluster would have the same number of routes, and therefore 

the ranking algorithm cannot meaningfully order them as they would all have the same score. 

Additionally, the method used for clustering would significantly affect the quality and 

interpretability of results.  

The distance model avoids these issues but requires evaluating a large number of routes per 

possible target (potentially as many routes as there are known relationships), and additionally 

would not be able to assign different scores to targets that share a relationship with the same 

competitor of the query item, as their distances would all equal the distance between the query 

and the competitor +0.  

The solution implemented is a combination of these two methods, with targets ranked by 

distance, but selected using limits similar to the clustering model (although using nearest 

neighbours rather than clustering). This reduces the number of routes that must be evaluated per 

target and ensures decidability of rank in most cases. The alternative scoring algorithms outlined 

in section 3.9 are different combinations of these two methods, where a trade-off is made 

between prioritising distance or number of routes.  

The initial implementation of TSR was a command-line tool that would allow the selection of an 

item from the dataset as a query, or input of custom text. In both cases, this was treated as an 

unseen item with no existing relationships. The output would be a ranked list of targets with 

routes and scores. A later variant of this tool would also output 2D and 3D t-SNE plots visualising 

the routes for the top-ranking items, as shown in Figure 3.6 and Figure 3.7. The 3D plots can be 
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manipulated in a web browser and support interactive inspection of routes and nodes, allowing 

easy exploration of the provenance and results.  

3.7.3 Visualisation and Provenance 

Chapter 2, section 2.5 discussed the benefits of transparency and provenance for improving 

accountability and user confidence in automated systems, particularly “black box” learning-based 

systems which can be subject to bias and omission (Caliskan et al., 2017; Nadeem et al., 2021). 

This closely relates to SRQ3: “How can the results of text analysis be effectively presented and 

used to inform decision-makers, analysts, and organisations?”.  

TSR makes use of a ‘black box’ upstream embedding model to produce ‘white box’ 

recommendations. While it is not possible to plainly describe why any two items are considered 

similar, the working of the algorithm in all later stages, such as items and known relationships 

considered, and the weighting of each, are fully transparent. This way, the reasoning behind a 

recommendation can be simply explained and visualised by showing the key items and 

relationships that informed it. 

Figure 3.6 and Figure 3.7 show visualised examples of TSR routes for the top-ranking items for a 

query. The evaluation software can also produce interactive plots (viewable with a web browser) 

which allow inspection of individual routes and the relevant items and labels, allowing some 

insight into the behaviour of the scoring algorithm. The output of TSR also includes the full list of 

routes considered in evaluating the query, ordered by their TSR Confidence scores. 

3.7.4 Optimisations 

To prepare for a more extensive investigation of the TSR approach, the previously described tools 

were refactored into separate program modules, specifically: data preparation, the TSR ranking 

algorithm, and output/visualisation of results. 

As the subject of the investigation was the TSR ranking algorithm, a pre-processing module was 

added which generates embeddings for all item descriptions and pre-calculates the cosine 

distance between all possible pairs and stores them as a lookup table for each item. This allows 

the TSR ranking algorithm to be rapidly tested on many different subsets of the data, such as for 

cross-validation, without needing to re-calculate item similarity between runs. This significantly 

reduces compute and memory requirements for running TSR evaluations without affecting 

performance. 
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3.7.5 Evaluation Toolkit 

The results presented in the next section were produced using the TSR evaluation toolkit. This is a 

series of modules created for rapid evaluation of the TSR ranking algorithm using a variety of 

techniques from the literature. Section 3.5 provides a detailed discussion of the evaluation 

techniques employed. 

The toolkit is a command-line tool that takes several configuration options, including both 

evaluation conditions, such as repeat count for random pools, and TSR parameters, including 

values for L1 and L2 (see section 3.6), and selection of scoring algorithm (section 3.9). The output 

is a CSV file containing the experimental parameters, dataset statistics, and evaluation scores. 

3.7.6 Hyperparameters 

TSR supports two hyperparameters: L1 is the number of nearest neighbours of the query node for 

which to score routes, and L2 is the same but for each related node (for details see section 3.6.2). 

These values are limits imposed to prevent excessive computation beyond what is needed to 

score the best routes. For recommender systems usually only the top scoring items are of 

interest, as is reflected in the evaluation metrics typically used (see section 3.5), in this case it is 

therefore usually unnecessary to exhaustively score all items in a dataset if the algorithm is 

capable of early stopping after identifying the highest scoring items, as is the case with TSR.  

When using the least-combined-distance scoring method described previously, it is only necessary 

to consider a small number of routes if items are inspected in ascending order of semantic 

distance (for query node to similar node, and for related node to target node) as it is necessarily 

the case that less distant items score higher than more distant ones. Some alternate scoring 

algorithms discussed in section 3.9 consider multiple routes for each item, so less optimal routes 

may have some impact on results, but generally the impact of less favourable routes is small and a 

small number of very good routes dictate the top scoring items. 

Experimentation shows that with values of 𝐿1 ≥ 5 and 𝐿2 ≥ 10 there is no change in the ranking 

of the 10 highest scoring items in the IWSC dataset for several randomly chosen queries; these 

are the values used throughout this chapter. With these values, the only effect of greater values is 

that a greater number of items are given scores (although the additional items always score lower 

than items included by smaller values of L1 and L2), this does not impact the top-ranking items 

but does affect mean-positive-rank during implicit feedback because sometimes the known-

positive may not receive any rank if it would otherwise (with higher values of L1 and L2) receive a 

poor rank. During implicit feedback, unranked items are considered to have the worst possible 
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rank, so cases where the known positive is not ranked inflate the mean-positive-rank. For this 

reason, median-positive-rank is a more reliable (but less granular) metric. 

The number of routes TSR will calculate is at most the sum of the number of known relationships 

for the L1 nearest neighbours of the query (ignoring unlabelled items) multiplied by L2.  

E.g., If 𝐿1 = 2 and 𝐿2 = 10 and the two labelled items most similar to the query have 2 and 3 

known relationships, then the total number of routes calculated is (2 +  3)  ×  10 =  50. 
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Figure 3.6 - A 3D visualisation of a TSR query showing labelled and inferred relationships considered for the top-ranked items. Each route is comprised of three lines: 

query node → similar node (red), similar node → related node (blue), related node → target node (yellow). 
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Figure 3.7 - A 2D visualisation of a TSR query showing labelled and inferred relationships considered for the top-ranked items. Each route is comprised of three lines: 

query node → similar node (red), similar node → related node (blue), related node → target node (yellow). 
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3.8 Results of TSR on IWSC 

This section evaluates the performance of TSR on the IWSC tasks, using the most suitable 

evaluation metrics discussed in section 3.5, including both explicit and implicit feedback 

techniques.  

When considering error metrics (RMS error and Median absolute error), it is notable that scores 

awarded by TSR have no guarantee of symmetric distribution over the possible output range and 

are typically concentrated towards high-middle values due to averaging similarity scores making 

extreme values uncommon. Figure 3.8 shows the typical score distribution for the standard TSR 

algorithm TSR-a using the least-combined-semantic-distance metric. 

Section 3.9 details some alternative scoring algorithms with unbounded upper values. A scaling 

function can be applied after scores are calculated to fit them to a specific range, but this still 

does not guarantee the desired distribution and could be sensitive to outliers, such as unusually 

high scoring items, distorting error values.  

In this evaluation, item similarity is computed using cosine similarity of Universal Sentence 

Encoder (USE) embeddings of item descriptions. USE was chosen as it shows good performance 

on a range of existing downstream tasks (Cer et al., 2018). It is also of particular interest that this 

model was fine-tuned on the SNLI dataset (Bowman et al., 2015), a set of sentence pairs labelled 

as contradiction, entailment, or unrelated. It seems likely that this may require the model to learn 

similar linguistic features as are needed for the supply chain inference task as the ability to 

discern whether pairs of descriptions are entailed or contradictory is essential to human 

judgements for this task, in particular, in determining if companies serve similar supply chain 

roles. A detailed investigation of the effects of upstream embedding models is left to future work 

(see Chapter 5, section 5.4.2). 

Figure 3.8 - Histogram of item scores produced by TSR-a 
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3.8.1 Results for Subset Labelling Tasks 

Table 3.5 and Table 3.6 show the results of TSR on the two IWSC-SL tasks introduced in section 

3.4. In these experiments, the scoring metric used is least-combined-cosine-distance, as described 

in section 3.6 and the evaluation metrics used are as discussed in section 3.5. All experiments are 

cold-start scenarios where the input (query) item is treated as unseen, only the USE embedding of 

its description is known.  

The TSR parameters are set as follows: 𝐿1 = 5 and 𝐿2 = 10. For this scoring metric the value of 

these parameters has little impact on performance as only the best routes contribute to scoring, 

but it is observable that this inflates the mean positive rank as items lacking good routes are 

excluded from the results. Items missing from the results are given the worst possible rank. 

For the implicit feedback evaluations (HR and Positive Rank), one known positive and a random 

pool of 100 not-known-positive items are used. This process is repeated 10 times for each label, 

using different random pools, and scores are calculated across all tests. Therefore, the number of 

test runs is always 10 times the number of positive labels. The number of labelled items and 

positive labels used in the implicit feedback tests is greater than for explicit feedback, as implicit 

feedback allows testing of items that lack any known negatives. 

The results show good performance on the IWSC-SL tasks, considering how few labels are 

available, achieving a hit-rate@10 of over 75%. Notably, performance is less than 9% worse on 

the SL_suppliers test despite having less than half the number of labels, showing that the 

algorithm can achieve good performance on labelled-subset tasks even when extremely few 

labels are available (142 labels in a dataset of 630 items). For both IWSC-SL tasks the frequency of 

the top-ranked item being the known positive (when competing with 100 randomly selected 

others) HR@1 appears similar and is 14-15 times better than random. 

3.8.2 Results for Extra Sparse Labelling Tasks 

Table 3.7 and Table 3.8 show the results on the two IWSC-ES tasks introduced in section 3.4. The 

algorithm and parameters are the same as used for the IWSC-SL tasks. The IWSC-ES tasks each 

have around half the number of positive labels as IWSC-SL, so poorer scores are expected.  

The IWSC-ES results show significantly worse hit-rate, but smaller median absolute error and RMS 

error. This may be the result of lack of dense regions in the labels, due to the extreme sparsity 

and random distribution, making identifying a particular known positive more difficult, but the 

better error values and F1 score indicate that the predicted scores are still effective for discerning 

good and bad results despite being less effective at a ranking a given good result highly. 
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Table 3.5 - Explicit feedback evaluation of TSR-a on the IWSC-SL tasks 

Positive Label 

Name 

Labelled 

Items 

Positive 

Labels 

Negative 

Labels 

F1 

@R 

RMS 

Error 

Median 

Absolute Error 

SL_consumers 16 375 712 0.520 0.204 0.688 

SL_suppliers 15 142 525 0.477 0.234 0.682 

 

Table 3.6 - Implicit feedback evaluation of TSR-a on the IWSC-SL tasks 

Positive Label 

Name 

Labelled 

Items 

Positive 

Labels 

HR 

@10 

HR 

@5 

HR 

@1 

Median 

Positive 

Rank 

Mean 

Positive 

Rank 

SL_consumers 17 376 0.752 0.510 0.146 4 7.8 

SL_suppliers 15 142 0.663 0.543 0.150 4 14.0 

 

Table 3.7 - Explicit feedback evaluation of TSR-a on the IWSC-ES tasks 

Positive Label 

Name 

Labelled 

Items 

Positive 

Labels 

Negative 

Labels 

F1 

@R 

RMS 

Error 

Median 

Absolute Error 

ES_consumers 39 115 198 0.549 0.167 0.560 

ES_suppliers 46 90 259 0.350 0.177 0.572 

 

Table 3.8 - Implicit feedback evaluation of TSR-a on the IWSC-ES tasks 

Positive Label 

Name 

Labelled 

Items 

Positive 

Labels 

HR 

@10 

HR 

@5 

HR 

@1 

Median 

Positive 

Rank 

Mean 

Positive 

Rank 

ES_consumers 51 207 0.221 0.119 0.018 36 43.0 

ES_suppliers 48 92 0.197 0.129 0.055 32 47.7 
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3.9 Alternative Scoring Algorithms 

The least-combined-semantic-distance scoring algorithm introduced in section 3.6 and used in the 

previous results sections is relatively simple to calculate and is both intuitive and easy to visualise 

(see Figure 3.5 and Figure 3.6). However, as only the shortest route to a target is considered, it 

does not factor in supporting evidence. For example, in the case of two targets with highly similar 

shortest distances from the query, if one had multiple short routes and the other had only one 

short route, it is intuitive that more confidence can be had in recommending the target with 

greater supporting evidence.  

An illustrated example is given in Figure 3.9, in that example, target nodes 𝐴 and 𝐶 are the same 

semantic distance 𝐷1 from 𝑄, A is supported by two known relationships whereas 𝐶 is supported 

by only one; it is intuitive that in case of otherwise equal scores, the node with greater evidence 

should be preferred. However, when ranking targets 𝐵 and 𝐷, the combined semantic distances 

are not the same as the values for 𝐷2 ( 𝐷𝐶(𝐴, 𝐵) and 𝐷𝐶(𝐶, 𝐷) respectivly) differ. When 

considering only the best route, target 𝐷 would be preferred as the semantic distance is less, 

however, this ignores the fact that B is supported by more routes. If the distance 𝐷𝐶(𝐴, 𝐵) was 

only marginally larger than 𝐷𝐶(𝐶, 𝐷) then the target with more routes, 𝐵, might be a better 

recommendation than 𝐶 due to evidence of additional routes, even though the least-combined-

semantic-distance is larger. Neither of these scenarios is covered by the least-combined-semantic-

distance scoring algorithm described previously, as additional routes are not considered. 

 

 

Figure 3.9 – Illustration of a scenario where multiple TSR routes exist for a target. Related nodes 

𝑅1 and 𝑅2 are an equal distance 𝐷1 from the query node 𝑄. Nodes 𝐴, 𝐵, 𝐶, 𝐷 are 

possible target nodes. There are known relationships 𝑅1 → 𝐴 ;  𝑅2 → 𝐴 ;  𝑅2 → 𝐶. 
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Several variations of the scoring algorithm have been tested which boost the score when multiple 

good routes to the target are found. These approaches include boosting the score based on the 

number of routes (TSR b and c), taking the weighted sum of the scores for each route (TSR d, e, f, 

g, h, k, l, m, o, p, and q), and taking the sum of scores for each route but increasing the 

significance of distance (e.g., distance squared or cubed) (TSR i, j, and n). The results for some of 

these tests for the SL_consumers task is shown in Table 3.9 and a comprehensive comparison 

across all tasks is shown in Figure 3.10.  

As these algorithms produce scores with different ranges, a simple scaling algorithm is applied as 

shown in equation 3.7. 

𝑓(𝑠𝑖) =
𝑠𝑖 − min (𝑠)

max(𝑠) − min(𝑠)
 3.7 

The scaling algorithm does not modify the order of results but ensures scores are within the same 

0-1 range as the labels to make them suitable for error measurement. TSR-a produces scores in 

the range 0-1 without scaling for positive vectors, but a scaled version TSR-a* is also included for 

comparison as TSR-a rarely gives scores close to its bounds (see Figure 3.8). 

The results show a notable stratification with some algorithms performing similarly to TSR-a, and 

some significantly worse. The scoring metrics that perform better show a slight improvement in 

HR@10, but a proportionally larger improvement in HR@5 and HR@1. Examination of the results 

using the provenance generated by TSR shows that TSR-a is sometimes indecisive in ordering the 

top-ranking items, with multiple items receiving the same score. This explains TSR-a’s 

proportionally worse performance when looking only at the top-ranked item, as in some cases 

TSR-a might rank several top-scoring items arbitrarily. Consideration of additional information for 

each target removes this indecision, allowing the alternative scoring algorithms to order the top-

scoring items meaningfully. 

The best performing algorithm for the IWSC-SL tests is TSR-e, where the target score is calculated 

as the sum of the score for the best route and half the score of the second-best route. This 

produced absolute improvements of 1.7%, 2.3%, and 1.8% for HR@10, HR@5, and HR@1 for the 

SL_consumers task, which is a relative improvement of 2.3%, 4.5%, and 12%. However, this 

scoring algorithm has the disadvantage of having a score distribution concentrated towards 

middle values as extreme values would require either all routes to be very poor or both routes to 

be very good, which is less common than only the best route being very good or bad. This may 

account for its comparatively high error values as error measurements will be high even for a 

correct ordering if values are concentrated towards the mid-range, due to comparison with binary 

labels. 
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Another well-performing algorithm is TSR-m, as given in equation 3.8, where r is the number of 

routes to the target, 𝑖 is the rank of each route (where 𝑖 = 1 is the route with the least combined-

semantic-distance), and 𝑑𝑖  is the combined-semantic-distance (equation 3.2) of route 𝑖. The 

scaling function is omitted for clarity as it is already given in equation 3.7. Scaling is applied once 

all score values have been calculated. This algorithm considers all routes to a target but with 

significance diminishing by the cube of the route’s rank (e.g., the best route adds 1/𝑑 to the 

score, the second adds 1/8𝑑, then 1/27𝑑, etc.). 

𝑆 = ∑ (
1

𝑑𝑖𝑖3
)

𝑟

𝑖=1

 3.8 

The algorithms TSR-o and TSR-p are the same as TSR-m except that the exponent of the route’s 

rank, which the score is divided by, is 1 and 2 respectively; these variations perform significantly 

worse. It is interesting that when penalising the contribution of additional routes performance is 

sub-standard when the penalty is small, but above-standard when it is large. This suggests that 

some ideal penalty function exists where additional routes do not overpower the normal scoring 

but still provide support in closely scored cases. It is possible that the best scoring penalty is a 

property of the distribution of the data and labels, and that the ideal penalty function may be 

dependent on the dataset. Testing of this property on other datasets and alternative penalties for 

this dataset is left to future research. 
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Figure 3.10 - Comparison of Hit rate of alternative TSR algorithms on all four IWSC tasks 
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Table 3.9 - Evaluation of alternative TSR algorithms on the IWSC SL_consumers task 

Scoring  

Algorithm 

HR 

@10 

HR 

@5 

HR 

@1 

Median 

Positive 

Rank 

Mean 

Positive 

Rank 

F1 

@R 

RMS 

Error 

Median 

Absolute 

Error 

TSR-a 0.754 0.509 0.145 4 7.7 0.520 0.204 0.688 

TSR-a* 0.754 0.509 0.145 4 7.7 0.520 0.195 0.481 

TSR-b 0.548 0.364 0.115 8 11.5 0.541 0.120 0.319 

TSR-c 0.573 0.385 0.133 7 10.9 0.544 0.120 0.309 

TSR-d 0.565 0.373 0.124 7 11.1 0.544 0.122 0.322 

TSR-e 0.771 0.532 0.163 4 7.6 0.530 0.204 0.584 

TSR-f 0.582 0.408 0.158 7 10.5 0.549 0.146 0.456 

TSR-g 0.742 0.536 0.185 4 7.8 0.533 0.192 0.523 

TSR-h 0.767 0.538 0.152 4 7.5 0.531 0.196 0.508 

TSR-i 0.543 0.362 0.112 8 11.5 0.541 0.121 0.320 

TSR-j 0.550 0.359 0.117 8 11.6 0.541 0.120 0.318 

TSR-k 0.750 0.538 0.179 4 7.9 0.525 0.207 0.605 

TSR-l 0.723 0.529 0.189 4 8.1 0.536 0.189 0.525 

TSR-m 0.771 0.530 0.151 4 7.5 0.523 0.170 0.433 

TSR-n 0.577 0.385 0.135 7 10.7 0.541 0.121 0.320 

TSR-o 0.659 0.466 0.181 5 9.2 0.539 0.143 0.452 

TSR-p 0.758 0.533 0.158 4 7.5 0.531 0.165 0.456 

TSR-q 0.558 0.372 0.119 8 11.2 0.541 0.120 0.325 
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3.10 Example Query 

To help illustrate the behaviour of TSR, Table 3.10 shows the TSR-e results for the query company 

“Resmar Marine Safety” using the SL_consumers label set. The parameters used in this example 

are the same as in the empirical evaluation, and the query was treated as a user-wise cold start 

(only the description was used). 

In this case, four out of the top five results are potential consumers, and the other is unknown 

(not labelled). For TSR-e, the two best routes are considered when scoring targets. Inspecting the 

provenance output from TSR shows that, except for “Datum Electronics Limited”, the 

recommendations were primarily based on Resmar Maine Safety’s similarity to “Superyacht Doc” 

and “ProSafe Consultants Ltd”, which the top four results are all labelled as potential consumers 

of. Repeating this query using TSR-a produces a different set of top results. TSR-a considers only 

the best route for each target when scoring. In this case, the similarity between Resmar Maine 

Safety and Superyacht Doc is the deciding factor for all of the top results. 

It can be seen from these examples, that TSR can make good quality recommendations from little 

labelled data, and these results are easily explainable. Unlike other hybrid recommender systems 

where it may not be possible to identify the items and relationships impactful on the ranking of 

results, for TSR it is trivial to interpret as a list of items and relationships considered, and their 

weightings, is included in the provenance of the results.  
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Table 3.10 - Example results for an SL_consumers query using TSR-e for the company “Resmar 

Marine Safety” (highlighted). The description text for each company is taken 

verbatim from the IWSC dataset and was originally sourced from the websites of 

(IWChamber, 2018; IWTechnology, 2018; Marine Southeast, 2018). 

Name Description Text Known  

Relation 

TSR-e 
Rank 

Resmar 
Marine 
Safety 

“Resmar specialise in boat safety equipment, fire safety 
apparatus, and industrial safety equipment. The boating 
safety equipment we supply includes Life Rafts, Life 
Jackets and Flotation aids.” 

Query - 

Caversham 
Boat 
Services 

“Holiday Boat Hire - Narrowboats and Cruisers, Jetty 
services, Slipway, Engineering and Mooring” 

Consumer 1 

Burgess 
Marine Ltd 

“Super yacht refit, 900 ton ship lift, steel and aluminium 
welding and fabrication, All aspects of commercial ship 
repair Support of WFSV, commercial ferry industry, Royal 
Navy Surface Fleet and commercial tonnage.” 

Consumer 2 

Green 
Marine 
Solutions 

“After completing three successful years on the Greater 
Gabbard wind farm, the Marine Management team 
contracted by Fluor to plan, initiate and manage the 
Marine Coordination Centre have formed Green Marine 
Solutions. Green Marine Solutions offer three packages to 
the Offshore Renewable industry:, 1) Marine Operations 
and Coordination. By packaging Marine Coordination, 
management and equipment procurement under one 
umbrella, GMS will work with clients to plan, run and 
continually develop their Marine Co-ordination centre and 
procedures.” 

(TRUNCATED DUE TO LENGTH) 

Consumer 3 

Motions 
Charters 

“Motion Charters is a family run business based in Hamble 
near Southampton. We offer a variety of luxury cruising 
boats, powerboats and race yachts which are all well 
maintained and fully equipped for your trip, whether 
you're enjoying a spot of gentle cruising or competing in a 
sailing event. We pride ourselves on friendly customer 
service and offer 24/7 support to ensure you have an 
enjoyable time on the water. Call us for more details and 
we'll find the best package to suit you and your guests.” 

Consumer 4 

Datum 
Electronics 
Limited 

“Datum Electronics is a world-leading supplier of marine 
shaft power meters. Our unique fully modular systems are 
capable of measuring the on-shaft torque and power of a 
ship on shafts from 150mm to 1,100mm (and above) 
diameters. Shaft Power and Torsionmeters, systems 
suitable for ship trials or permanent installation into 
ships.” 

(TRUNCATED DUE TO LENGTH) 

Unknown 5 
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3.11 Comparison with other approaches 

There are conceptual similarities between TSR and other approaches that broaden known or 

learned relationships based on item content, such as by pairing an unlabelled item with the most 

semantically similar labelled one (Yuan et al., 2016), or using automated ontological classification 

to generalise a user’s specific interests (Middleton et al., 2004). These approaches offer similar 

advantages to TSR in providing explainable results and supporting some cold start scenarios. 

However, these works do not address double cold starts (where no labels are known for both the 

user and item).  

Additionally, the approach taken by Yuan et al., (2016) considers only the relationships of the 

most similar item, whereas the alternative scoring algorithms for TSR (section 3.9) consider 

multiple similar items in a weighted fashion. This approach was demonstrated to significantly 

improve results on the IWSC dataset and may also on other datasets, especially where labels are 

highly sparse. TSR does introduce additional complexity by considering multiple routes, but 

compute and memory requirements were not found to be problematic for the IWSC dataset, and 

methods for effective filtering and optimisation are described in sections 3.6.2 and 3.7.4. 

The ontological approach of Middleton et al., (2004) groups items based on content (into topics in 

the ontology) and these items are then considered to share applicability to the user, as opposed 

to the TSR approach of weighting the applicability for each item pair. Ontological grouping (or 

alternatively a clustering based approach) seems sensible for domains with discrete topics, such 

as for a research paper recommender system like in Middleton et al., (2004). However, for less 

separable domains, the distance weighted approach of TSR may better capture relationships for 

items that exist on the edge of multiple categories, do not neatly fit any, or could fit multiple. 

Such cases might also benefit from an approach where items can be placed in multiple 

overlapping categories, for example using LDA (Blei et al., 2003). A comparison of these 

approaches with TSR may give interesting insight into the benefits of categorical versus distance 

weighted application of relationships, but this is left to future research. 

The distance weighted application of relationships used in TSR could potentially be applied 

outside of recommender systems, for example to learned association rules. To determine what 

rules to apply to a new item, existing rules could have their rule confidence multiplied by TSR 

confidence (which is always ≤ 1), such that rules for more distant items are given less confidence. 
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3.12 Conclusions 

TSR has been demonstrated as an effective solution to the challenging problem of cold-start 

recommendations in datasets with few labels, by making use of unstructured text descriptions of 

items. This addresses SRQ1: “How can machine understanding of text be used to identify 

relationships between documents in large collections of unstructured text?” as well as a general 

problem in the area of recommender systems.  

This novel technique has the advantage of producing detailed provenance for the results, 

including the items and relationships considered and how they are weighted. Unlike some 

content-based recommender systems TSR is not dependent on similarity between query and 

target item content, unlike collaborative approaches, it does not require a history of interactions 

for either the query or target, and unlike ontology and rule-based approaches it does not require 

existing structured knowledge or many historic examples per item from which to derive rules and 

is not domain specific. 

TSR can be used as a stand-alone recommender system or could be used to support other systems 

when dealing with cold-starts, without the need for bootstrapping. TSR is particularly suited for 

applications in high-velocity big data or similar environments where items and relationships may 

be time-sensitive or for other reasons few relationships are known for each item and/or none are 

known for many items, but some historic examples of relationships are known. This could include 

domains such as supply chain, tenders, job postings, or consultancy.  

TSR has already seen real-world adoption and use by industrial partner Launch International LTD. 

Additional details of this application are given in the impacts section of Chapter 5. The full IWSC 

dataset (section 3.4), TSR implementation, and evaluation toolkit (section 3.7) have been made 

publicly available for download as open-data/open-source software (Ralph et al., 2019). Parts of 

this chapter were published as a full paper at the IoTBDS 2019 conference and as a journal article 

in Springer Computing. 
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Chapter 4 Finding Meaning in Survey Data 

4.1 Chapter Overview 

This chapter looks at techniques for distilling and presenting large collections of unstructured, 

unlabelled, text to be more easily interpreted by humans. This particularly addresses SRQ2: “How 

can machine understanding of text be used to produce an interpretable overview of large 

collections of unstructured text” and SRQ3: “How can the results of text analysis be effectively 

presented and used to inform decision-makers, analysts, and organisations”.  

A particular focus is given to free-text survey responses and follows a collaborative project with 

the Parliamentary Office of Science and Technology (POST) analysing a survey of experts concerns 

regarding the COVID-19 pandemic. Sections 4.2 and 4.3 provide more background on the 

problem; sections 4.4 to 4.6 follow the iterative steps taken in producing the analysis, and its 

findings; section 4.7 presents a generalisation of this approach, the Text Insights Pipeline (TIP), 

and makes comparison to other tools and methods of analysis; sections 4.8 and 4.9 look at 

applying the generalised approach to other datasets; and section 4.10 discusses other potential 

applications. 
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4.2 Introduction 

Analysis of free-text responses to surveys by human analysts is a laborious manual process 

requiring reading potentially vast collections of text and appraising, categorising, or synthesising 

an overview of its content. In the case of thematic analysis, where key topics are identified in the 

responses to produce a categorisation scheme or coding (Joffe & Yardley, 2003), it is necessary for 

the analyst to comprehend both the prominence and the diversity of topics. Large datasets are 

expensive and time-consuming to analyse, requiring great intellectual labour in the reading and 

memorisation of responses in order to perform these processes (Braun & Clarke, 2006; Joffe & 

Yardley, 2003). Large datasets not only make the task more difficult but also risk introducing 

accidental omissions where less frequently mentioned or harder to define topics may be 

overlooked. To cope with a large volume of responses, it is therefore highly desirable to have an 

automated system to either perform or aid in the analysis or presentation of the data to analysts 

and decision-makers. 

The COVID-19 pandemic had wide-reaching implications across many areas of society and experts 

from many fields have offered their concerns and advice in response to the crisis. The following 

sections present an analysis of the responses to the COVID-19 Expert Concerns survey conducted 

by the United Kingdom Parliamentary Office of Science and Technology (POST). Statistical, text-

analytics, and visualisation techniques are applied to this new dataset to identify key areas of 

concern, overlapping areas of concern, and typical responses for each area of concern. The 

outputs were produced with the aim of assisting POST’s analysts in interpreting the data for their 

own analysis and presenting the findings in a suitable format for distribution to policy makers. 
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4.3 COVID-19 Expert Concerns Survey Dataset 

Between April 3rd and April 30th, 2020, the UK Parliamentary Office of Science and Technology 

(POST) conducted a survey of experts in “COVID-19 or its likely impacts” to elicit their concerns 

over a range of timeframes, with the aim of identifying the major areas of concern among experts 

and identifying any consensus, and to produce a synthesis to inform UK Parliament. Participants 

were selected by snowball sampling from UK universities and other research institutes by the 

POST Knowledge Exchange Unit. A complete list of experts and more detail on the survey 

methodology are available on the POST website (Parliamentary Office of Science and Technology, 

2020a, 2020b, 2020c). The data analysed in this survey are the responses received prior to April 

19th, 2020; additional survey responses may have been received outside this timeframe but are 

not included in this dataset.  

The survey has a total of 4,096 responses from 1024 participants. Each response is unstructured 

English language text describing the participant’s greatest concern(s) for one of four time-frames, 

which are (relative to when the survey was conducted): Immediate; Short Term (within 3 

months); Medium Term (3-9 months); or Long Term (from 9 months onwards) and is associated 

with one of 22 categories selected by the respondent from a list previously decided by the survey 

authors (POST). Table 4.1 shows the full list of categories and for how many responses each 

category was chosen for each timeframe. For ease of comparison, this is also presented as a bar 

chart in Figure 4.1 and as a line graph in Figure 4.2. 

It can be seen that there is a significant imbalance in the total number of responses for each 

category (range=633, mean=178, SD=164). With “Physical and Mental Health” being the largest by 

far (639 total) followed by “Virology, Immunology and Epidemiology of COVID-19” (430 total) and 

“Communities and Populations” (416 total). The prominence of each class also varies significantly 

between timeframes. In the immediate timeframe “Virology, Immunology and Epidemiology of 

COVID-19” has the most responses, but this falls off in later timeframes while other areas of 

concern such as “Economic and Financial Affairs” become more prominent in later timeframes. 

Section 4.4 examines the changing patterns in the distribution of responses between timeframes 

to gain insight into how the types of concerns in each area change over time in addition to the 

changes in number shown here. 
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Table 4.1 - Number of responses in each category for each timeframe, selected by the respondent 

Category Name Immediate 
Short 

Term 

Medium 

Term 

Long 

Term 
Total 

Brexit 4 4 3 8 19 

Business and Trade 23 30 52 38 143 

Communities and Populations 105 119 96 96 416 

Crime, Justice, and Policing 16 31 23 24 94 

Culture, Arts, and Leisure 7 8 10 9 34 

Devolution and Devolved Matters 0 1 1 4 6 

Economic and Financial Affairs 50 72 114 98 334 

Education and Training 50 63 73 69 255 

Environment, Agriculture, and Food 25 30 32 33 120 

Housing 8 9 11 11 39 

I did not answer this question 51 38 63 86 238 

Inequalities and vulnerabilities 94 89 68 73 324 

Infrastructure and Energy 7 6 11 8 32 

International Affairs and Foreign Policy 8 11 13 28 60 

Manufacturing and Industry 19 15 14 17 65 

Media and Communications 24 28 19 13 84 

Parliament, Government and Constitution 21 15 12 36 84 

Physical and Mental Health 167 183 153 136 639 

Scientific Research/Methods and Emerging 

Technologies 

78 67 64 88 297 

Social Care 21 22 16 12 71 

Transport 11 6 9 7 33 

Virology, Immunology and Epidemiology of 

COVID-19 

177 105 73 75 430 

Work and Employment 58 72 94 55 279 
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Figure 4.1 - Bar chart of responses in each category for each timeframe, selected by the 

respondent. 

 

Figure 4.2 - Line graph of responses in each category for each timeframe, selected by the 

respondent. 
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4.4 Response Distribution 

The high variance of the number of responses for each category across timeframes implies a 

changing focus of the distribution of the concerns. While statistics alone show the change in 

focus, the reason is unclear, a few likely causes are:  

1) The importance of each category changing between timeframes  

2) The types of concerns changing between timeframes  

3) The category each concern falls into changing between timeframes  

The influence of these and other factors can be examined by looking at the content of the 

responses. Another area of interest would be determining whether categories with more 

responses represent areas of greatest concern or are instead very broad and simply encompass a 

greater range of unrelated concerns.  

This section presents a series of visualisations that show the distribution of the response content 

in semantic space, where responses with similar semantic meanings are plotted more closely. This 

enables examination of how the focus of concerns in each category changes, which categories 

have overlapping or similar concerns, how diverse the responses in each category are, and also 

provides a visual indication of how prominent each category is. Section 4.6 goes on to examine 

clusters in the data and proposes an alternative categorisation scheme based on automated 

clustering. 

The content of the survey responses is in the form of natural language (English) text of varying 

lengths. The text is unstructured other than being split by respondent and timeframe. For the 

following experiments, Universal Sentence Encoder (USE) (Cer et al., 2018) is used to generate 

semantic text-embeddings for each response. These embeddings are fixed-length vector 

representations of the semantic features of the text in a shared semantic space (512 dimensions 

in the case of USE). Embeddings in this space can be compared using cosine similarity, where 

items with greater cosine similarity have more similar semantic meaning, and the inverse, cosine 

distance, given previously in Chapter 3 Equation 3.1.  

To visualise the high-dimensional text embeddings, the dimensionality must be reduced, for this, 

these experiments use t-SNE (Maaten & Hinton, 2008) with pairwise cosine distance as the 

metric. t-SNE has been shown to be effective for producing visualisations of high dimensional 

data, including text embeddings (Kiros et al., 2015; J. Li & Jurafsky, 2015) (also see section 3.7.3). 

In contrast to some other dimensionality reduction methods such as Principle Component 

Analysis (PCA) (Hotelling, 1933), t-SNE relies less on preserving distances between widely 

separated points and so better captures local neighbourhoods of points (Maaten & Hinton, 2008), 
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this suits the purpose of visualising survey responses as semantically similar responses are 

grouped more effectively, which is of greater interest than the global position of responses in 

semantic space (i.e., knowing which responses are similar is more useful than knowing which are 

dissimilar). t-SNE provides a tuneable parameter, “perplexity”, which allows the focus to be put 

on local or global features; for this dataset, a perplexity of 30 was found to produces a result 

where, upon qualitative inspection, tightly clustered items appear similar in non-trivial ways and a 

minimum of duplicate clusters exist. All visualisations in Figure 4.3 and Figure 4.4 use the same 

semantic space and t-SNE model (such that Figure 4.3 (A) is a composite of all subfigures in Figure 

4.4 superimposed). For all t-SNE visualisations presented in this chapter, multiple random seeds 

were used to generate visualisations and the result most clearly showing the features of interest 

was chosen. The nature of the features does not generally change, only their arrangement. 

Examination of Figure 4.3 (A) shows several interesting features. Firstly, some natural clusters are 

present in the survey responses, particularly around the areas of “Education and Training”, and 

“Work and Employment”, these clusters are mostly separate from the rest of the dataset, 

suggesting that these are well-defined categories that have a focused set of related concerns (in 

that they have lower semantic variance compared to other groupings of data). There are also 

dense regions of responses mostly belonging to the same category for the “Physical and Mental 

Health”, “Media and Communications”, “Crime, Justice and Policing”, and “Economic and 

Financial Affairs” categories, which suggests there are a set of common concerns at the centre of 

each, which are common to responses for these categories but also some items of other 

categories, or that there are concerns in other categories that partially overlap with those of the 

primary category present in the cluster.  

There is also a distinct region dominated by the overlap of the categories “Brexit” and 

“International Affairs and Foreign Policy”, and many smaller regions where other categories 

strongly overlap, this suggests that these categories may share similar concerns. As the number of 

items for both the “Brexit” and “International Affairs and Foreign Policy” categories is small and 

they are shown to have strongly overlapping concerns, one interpretation is that the categories 

might be combined (“spliced”) to create what could be considered a more powerful coding (Joffe 

& Yardley, 2003). Conversely, some highly distributed categories with many items, such as 

“Physical and Mental Health” and “Virology, Immunology and  Epidemiology of COVID-19” may be 

better represented as multiple smaller categories split into sub-areas (e.g., separating Physical 

Health and Mental Health). 

Also notable are several apparent clusters which do not have a clearly dominant category and/or 

feature items from many different categories. These suggest latent topics which are not captured 
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well by the categorisation scheme and cannot be seen by the prior statistical analysis in section 

4.3. Figure 4.3 (B) shows a copy of Figure 4.3 (A) with several such clusters annotated with labels 

for the topic identified by a human (not affiliated with POST) by examining the text content of the 

responses within the cluster. Section 4.6 looks at alternative categorisation schemes produced 

through automated clustering, which provides a systematic approach to making similar types of 

observations and allows inspection of the data under a new lens. 

Examination of Figure 4.4 gives an overview of how the prominence of different areas of concern 

changes between timeframes. As discussed in section 4.3, the number of concerns in each 

category changes significantly, but it can also be seen that their distribution changes. At the 

beginning of this section, three scenarios were proposed which may be responsible for these 

changes, which Figure 4.4 may provide support for. For each respective scenario, some expected 

observations would be as follows:  

1) Changes in the number of items within the typical area covered by each category, 

representing its change in prominence.  

2) Drift in the concentrations of points between timeframes, reflecting the change in focus 

of the content of the responses. 

3) Change in the colour coding of each area between timeframes, showing how similar 

concerns are interpreted as belonging to different categories at different times.  

Observing the figures shows some evidence of all three of these scenarios, suggesting that a 

combination of these factors explains the changes seen in the statistics in section 4.3. Some 

specific observations are given in Table 4.2. 
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Table 4.2 - Observations of changes in distribution and categorisation of responses between 

timeframes 

Observation Implication 

Concerns for the category “Work and Employment” remain 

focused in the same region but vary in number across 

timeframes. 

Change in quantity supports 

scenario 1. 

Concerns for the category “Economic and Financial Affairs” 

remain focused in the same region but vary in number across 

timeframes. 

Change in quantity supports 

scenario 1. 

Concerns for the category  “Virology, Immunology and 

Epidemiology of COVID-19” are most numerous and diverse in 

the immediate timeframe and become more focused in later 

timeframes. 

Change in quantity supports 

scenario 1.  

Change in distribution 

supports scenario 2. 

Concerns for the category “Media and Communications” are 

highly focused in early timeframes but become more diverse 

in later timeframes, while remaining similar in number. 

Change distribution supports 

scenario 2. 

The area identified as “Future Preparations” is far more 

densely populated in the long-term timeframe than any other. 

Change in distribution 

supports scenario 2. 

The area identified as “Exit plans for lockdown” is far more 

densely populated in the immediate timeframe than any 

other. 

Change in distribution 

supports scenario 2. 

Responses in the area identified as “NHS and healthcare 

funding and resilience” primarily belong to the “Virology, 

Immunology and Epidemiology of COVID-19” in earlier 

timeframes but change to “Physical and Mental Health” in 

later timeframes. 

Change in category supports 

scenario 3. 
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Figure 4.3 - 2D t-SNE plots of USE text embeddings for responses in the Expert Concerns dataset colour coded by the category selected by the respondent. 

The figure shows responses for all timeframes. The figure shows the prominence and distribution of each category and overlap between categories. 

Subfigure B is a copy of subfigure A but annotated with human observations of latent topics which form multi-category clusters 
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Figure 4.4 - 2D t-SNE plots of USE text embeddings for responses in the Expert Concerns dataset colour coded by the category selected by the respondent. 

Subfigures A, B, C, and D show the responses for each timeframe, Immediate, Short-Term, Medium-Term, and Long-Term concerns, respectively. The figure 

shows how the distribution of responses and the prominence of each category changes between timeframes 
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4.5 Response Summarisation 

As each category contains many responses and a variety of different concerns, it is desirable to 

generate an overview of the key concerns for each category. For this, text summarisation can be 

used with the aim of capturing a diverse set of common talking points. For the result to be 

representative, it is important that the summary has both good coverage of the range of concerns 

(sensitivity) and prioritises the most frequently mentioned concerns (specificity), as well as being 

unbiased both in terms of the subject matter and the wording of the concerns. These summaries 

are analogous to the selected extracts for each theme in thematic analysis, although differ in that 

they are selected only to best represent the theme rather than to also address research questions 

specific to a study (Braun & Clarke, 2006). 

There are two types of summarisation to consider; abstractive summarisation aims to generate 

new text which captures the key points of the source text, whereas extractive summarisation aims 

to select the most representative or important sentences from the source text. Much research 

has been done in both areas, with some significant recent advances being made using deep-

learning and text embeddings. However, concerns have been raised over the biases in pre-trained 

models and abstractive models generally, as they can be prone to misattribution, factual 

inaccuracy, and repetition, and struggle with out-of-vocabulary terms (Caliskan et al., 2017; 

Nadeem et al., 2021; See et al., 2017). Further, deep-learning-based summarisation algorithms 

generally operate as “black-box” models which are difficult to interrogate for a meaningful 

explanation of why a particular result is given and the evidence it is derived from. 

As the output of abstractive summarisation is novel text rather than strictly sampling from the 

input text, it is also more difficult to identify the provenance of each output statement, which 

may be desirable when the input text is comprised of many discrete items from different authors. 

Conversely, extractive summarisation algorithms which are not pre-trained and quote directly 

from the source text may preserve existing biases within the source text but should not introduce 

new biases and mitigate the possibility of misattribution (when sampling complete sentences), 

although still risk presenting sentences out of context. For extractive summarisation, the parts of 

the input text sampled from can be easily identified as each segment is unmodified.  

For the task of producing a representative but focused overview of the key concerns for each 

category, based on a large and diverse set of responses from many different authors, extractive 

summarisation is more desirable. This can be used to identify a small set of representative 

responses (or parts of responses) that are indicative of the large collection of source sentences. 
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For this aim, sampling a series of statements is more important than relating the ideas together in 

a flowing narrative, and provenance of the origin of each statement (the item it is sampled from) 

is also desirable.  

Summaries were generated for each (category, timeframe) pair (e.g., Long-term concerns for 

Work and Employment). As sentence length and the number of source sentences varies 

significantly for each grouping, using a desired word count is most effective for producing 

summaries of consistent length. For the purpose of providing a concise overview of each 

grouping, a word count of 100 was chosen (this is a soft limit due to sampling complete 

sentences). The complete results cannot be included due to concerns of confidentiality and 

personal information; however, a few representative output samples are given in Table 4.3. 

A variation of the TextRank algorithm from (Barrios et al., 2015; Rehurek & Sojka, 2010) is used 

for summarisation of the concatenated text responses for each category. TextRank is an extractive 

summarisation algorithm that uses a graph-based model for selecting the most important 

sentences from a text corpus, similar to how early search engine and information retrieval 

algorithms such as PageRank (Brin & Page, 1998) select results.   

This graph-based approach has the advantage of being invariant to the language and terminology 

used as it is entirely unsupervised and does not rely on a defined vocabulary (Mihalcea, 2004; 

Mihalcea & Tarau, 2004); this allows the summarisation to recognise the significance of domain-

specific terminology mentioned frequently in the source text whereas a model with a finite pre-

learned vocabulary (such as text embedding models) may undervalue their significance due to 

being out-of-vocabulary. As the TextRank model is not trained on any corpus other than the text 

to be summarised, the model has no previous bias to the significance of topics discussed in the 

text and determines this exclusively using the text analysed (Mihalcea & Tarau, 2004). 

Graph-based extractive summarisation also aligns with the aim of selecting the most 

representative sentences from the source text, as the graph is generated based on sentences with 

overlapping themes “recommending” each other so as to maximise coverage of the most 

prominent themes in the text graph (Mihalcea & Tarau, 2004). While this can produce summaries 

lacking narrative flow (as no attempt is made to select sentences that lead on to each other), it is 

not required for this task, which instead desires the most representative sentences regardless of 

how they relate to each other aside from avoiding redundancy (e.g., a bullet-point list of key 

concerns). A caveat of this approach is that the model does not account for synonyms and 

semantically similar terms, although lemmatization is employed (i.e., inflected forms of words are 

substituted with their dictionary form). The inability to recognise semantically similar words may 

result in some redundancy in the generated summary where different terminology is used as the 
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model is unable to recognise the equivalence. It is also possible that some topics will be under or 

over valued depending on how diverse and consistently used terminology is for that topic. 

Table 4.3 shows some example output from the extractive TextRank summarisation. When 

considering the quality of the summaries, the key criteria are that the summaries:  

• Consist of meaningful sentences not lacking essential context  

• Are sufficiently sensitive to the range of concerns in that category 

• Are sufficiently specific in capturing the key concerns of that category  

Examining the results shows that the generated summaries generally perform well in satisfying 

these criteria. In particular, all the generated summaries are sensible and relevant, selecting a 

variety of issues most of which strongly relate to the category but also with little redundancy. 

Qualitative inspection of items in each category shows that the summaries are generally 

representative of typical responses. There is no obvious bias in the summaries and the selected 

sentences include a variety of factual statements, questions, and opinions. This indicates the 

approach is not overly discriminating based on the formatting and writing style of the responses.  

In the examples shown in Table 4.3, summaries are included for the same categories over multiple 

timeframes. It is apparent from the content of the summaries how the focus of responses 

changes between timeframes for the same category, which further supports scenario 2 discussed 

in section 4.4. 
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Table 4.3 - Examples of extractive summaries for (category, timeframe) pairs generated using a 

variation of TextRank on the concatenated text of all responses for that category and 

timeframe. Examples have been chosen in accordance with confidentiality and 

anonymity requirements of the data while being representative of the typical output. 

Category  

- Timeframe 

Generated Summary 

"Physical and 
Mental 
Health" 

 – Short Term 

"Both the direct and indirect impact on children's and young people's mental 
wellbeing through real health risks, negative media, self-isolation, lack of 
safety, and loss of protective factors such as schools and social activities." 

"I am worried about the impact of Covid-19 on the mental wellbeing of 
healthcare workers in the NHS, and of working people more generally,  how 
are they coping with their health worries, their finances job security and 
working remotely from home" 

"I am concerned about the impact that social distancing, self-isolation and 
lockdown measures will have on people's wellbeing." 

"Physical and 
Mental 
Health"  

– Long Term 

"The potential effects on physical and mental health (e.g. sedentary behaviour 
and chronic disease, obesity, anxiety, depression) due to social distancing 
measures (i.e. restricting movements and access to facilities, key services and 
education) and wider anxieties about the pandemic, particularly for the most 
vulnerable/shielded groups (e.g., diabetes, arthritis, immunosuppressed)." 

"Longer-term wellbeing of patients/families - burdens on individual as they 
potentially lose job/independence, find it impossible to access appropriate 
neuropsychological help as likely to fall between physical/mental health 
services.", 

"People with diabetes are at increased risk of long-term adverse physical and 
mental health outcomes as a result of the COVID epidemic." 

"Education 
and Training"  

- Short Term 

"My main concern over the next three months is whether universities have the 
systems in place, and are able to mobilise rapidly enough, to remotely support 
the mental health of current university staff and students so that the academic 
year can be successfully brought to a close." 

"How will Government ensure that schools are advised and supported to use 
technology  effectively,  providing technology resources so that learners at 
pivotal points in their education pathway, specifically those in Y10, Y11, Y12 
and Y13 will be adequately equipped for the continuation of their studies later 
in the year?" 

"Education 
and Training"  

- Long Term 

"How to minimise the impact of the outbreak on the education and training of 
students and trainee teachers whose learning and professional development 
has been disrupted during the academic year 2019-2020." 

"Future workforce provision within healthcare - without careful, considered & 
proactive management, whilst we may meet the immediate challenge, the 
requirement for clinical experience to ensure protection of the public could 
lead to significant challenge providing this experience for all health & social 
care students." 

"How will Government ensure that the schools system is digitally resilient, able 
to utilise technology effectively to reduce disadvantage and quickly switch into 
remote learning to deal with future crisis of a similar scale." 
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4.6 Alternate Categorisation 

As discussed in section 4.3, the categorisation scheme chosen for the survey results in high 

variance of the number of items in each category, and the analysis in section 4.4 shows that some 

larger categories have a very diverse range of concerns, whereas other more focused groupings of 

concerns are not well covered by any category. This section demonstrates an alternative 

categorisation system based on clustering of response texts, with the aim of better capturing the 

key areas of concern described in the data. 

This section presents the results for categorisation of long-term concerns as these were of most 

interest in the collaboration with POST, who then contributed human naming for the generated 

categories (see Table 4.6) and used them as the basis for their Areas of Research Interest (ARIs) 

for COVID-19 (see section 5.3.2).  

4.6.1 Categorisation by Clustering 

As the data contains clear groupings when the text responses are visualised, as in section 4.4, it 

follows that automated clustering may be an effective method of categorising the data. To 

achieve this, K-Means clustering (Lloyd, 1982; Pedregosa et al., 2011; Sculley, 2010) is applied to 

the semantic text embeddings (Cer et al., 2018) of the responses.  

Qualitive criteria for judging a categorisation scheme might be that categories should have 

internal homogeneity and  external heterogeneity (Patton, 2015), such that items within a 

category are similar but categories are dissimilar to each other. Using distinct clusters of items in 

sematic space as categories seems likely to satisfy these criteria if the clustering is meaningful.  

For this dataset, a number of categories between 10 and 20 were found to produce the most 

intuitively meaningful results, where qualitative inspection of the items within each cluster shows 

each cluster to have a well-defined focus that is neither overly specific nor broad. For each 

number of categories, experiments were repeated with different random seeds to confirm that 

the results were consistent. The ideal number of clusters may depend on the desired usage, for 

example, to identify more specific issues within common topics. Figure 4.6 presents a comparison 

of the results for long-term concerns under the original human categorisation scheme and as 

categorised by automated clustering with 20 categories. 

Several metrics exist for the quantitative evaluation of clustering algorithms; however, many 

require ground truth labels. While a complete set of labels does exist for the dataset in the form 

of the human selected categories, they do not align with the generated categories (as the 

approach taken produces a new categorisation scheme as opposed to fitting items to the existing 
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categories). For this reason, it is necessary to use unsupervised evaluation metrics. Table 4.4 

compares the performance of the clustering approaches investigated and the scores for the 

original human categorisation. In addition to K-Means, the same methodology was tested but 

using K-Medoids (Park & Jun, 2009), which is similar to K-Means but seeks to minimise the 

distance between items and a real item at the cluster’s centre (the medoid), instead of a virtual 

point which is the average of the cluster (the centroid) as in K-Means. Basing distances on the 

medoid instead of the centroid means K-Medoids is generally more robust to outliers with 

extreme values (Park & Jun, 2009), however, as extreme values do not exist in the normalised 

space of the text embeddings used this provides little improvement. When comparing algorithmic 

performance to human labelling it should be noted that these metrics measure a distance-based 

criterion similar to what these models aim to optimise, which is not the case for human labelling, 

so these scores are indicative of the nature of the results (particularly, how well defined the 

clusters are) but do not alone prove their validity. 

Figure 4.6 shows a comparison of the number of items assigned to each category for human 

labelling and automated categorisation. It can be seen that in the human categorisation scheme, 

some categories have far more responses than others (range=138, mean=46.2, SD=40.0), whereas 

the categories generated through automated clustering of the responses have much more even 

applicability (range=62, mean=50.8, SD=15.1), except for two categories which have significantly 

fewer responses. 

A more even category distribution is desirable as oversaturated categories are likely too broad in 

scope or are vaguely defined, and rare categories may be too specific or otherwise not represent 

a common area of concern. In both cases, the descriptive power of the categories is diminished. 

Table 4.4 - Comparison of effectiveness of clustering methods and human categorisation 

Method 
Number of 

Clusters 

Mean Silhouette 

Coefficient 

(Higher is better) 

Variance Ratio 

Criterion 

(Higher is better) 

Davies Bouldin 

Score 

(Lower is better) 

Human 

Categorisation 
23 -0.08067 7.242 5.000 

USE K-Means 23 0.06522 18.310 3.306 

USE K-Medoids 23 0.02050 11.874 3.924 

USE K-Means 20 0.07708 20.177 3.226 

USE K-Medoids 20 0.00849 12.317 4.179 
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Therefore, for a given number of categories, it would be advantageous to eliminate very small 

categories and subdivide the very large ones, so as to maximise the descriptive power of the 

categories and the coherence of the resulting analysis (Joffe & Yardley, 2003).  

The generated categories should be expected to have a more even distribution as they are fit to 

the data, whereas the list of categories for human labelling was decided before conducting the 

survey.  As K-Means clustering aims to find cluster centroids that keep clusters as small as possible 

(minimising the within-cluster sum-of-squares) (Arthur & Vassilvitskii, 2007), it would be expected 

to see similarly sized clusters for data with a continuous distribution and uniform density. 

Variation in the number of responses per cluster can then be explained by variations in the 

density of their positions in the embedding space, that is, clusters with more responses indicate 

that the responses are more similar, whereas clusters with fewer responses are more diverse, or 

otherwise occupy less dense regions of the embedding space (i.e., they have few similar 

responses).  

In the results, the emergence of two clusters that have significantly fewer items (see Figure 4.6 

(B)) may be the result of them containing outliers and highly unusual responses. Examination of 

the responses assigned to these clusters supports this, as these responses are mostly statements 

lacking context, such as “what is the new normal?” and “R&D with regard to COVID-19”. The 

semantics of these statements requires context that would be absent in a general language model 

as it pertains to a specific current event (the COVID-19 pandemic). It can be seen in Figure 4.5 (B) 

that the responses in these categories are not tightly grouped and are on the edges of other 

clusters, supporting the hypothesis that the model considers them outliers. 

4.6.2 Cluster Summarisation 

To investigate the results of the algorithmic categorisation scheme produced, text summarisation 

can be applied following the same methodology as used for the original human categorisation 

scheme in section 4.5, Table 4.5 shows some sample results. 

As with the summaries of the human selected categories, the summaries for the generated 

clusters are generally coherent and focused. Inspection of the items in each cluster confirms that 

the selected sentences are generally representative of common concerns of the responses in that 

cluster. It is notable that the cluster summaries contain some responses describing more specific 

concerns than are present in the summaries of human categories. This demonstrates how the 

clusters capture a more focused (i.e., better fit) set of responses than the often either very broad 

or niche categories in the human categorisation (as is also indicated by the variance in the 

number of responses in each). This reflects how the clustering captures specific areas of concern 
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prominent in the data (e.g., “Social, economic and health inequalities”) rather than the mix of 

broad (e.g., "Physical and Mental Health") and specific (e.g., “Brexit”) themes which make up the 

human categories, which result in less focused summaries as the responses within each are often 

less focused or very few in number. 

The example summaries include the cluster with the smallest number of responses “Resilience of 

society to future shocks”. In the previous section, it was hypothesised that the clusters with 

significantly fewer items may contain responses the model considers outliers. By looking at the 

generated summary it can be seen that while there is still an apparent general theme, the 

responses are highly diverse and generally more lacking in context than are seen in the other 

clusters. As the summarisation aims to select the key themes, this indicates that the key themes 

of these categories are less clear to the model, although a reasonable result is still achieved.  
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Table 4.5 - Examples of extractive summaries for clusters. Summaries are generated using a 

variation of TextRank on the concatenated text of all responses for that cluster. 

Examples have been chosen in accordance with confidentiality and anonymity 

requirements of the dataset while being representative of the typical output. Spelling 

and grammar are presented verbatim to show any possible effects on the algorithm. 

Cluster Generated Summary 

“Social, 
economic 
and health 
inequalities” 

"Increased time spent confined to homes will reinforce a cycle of poverty 
caused by inhabiting poor quality housing tipping the most vulnerable into long 
term ill health, greater poverty and having a knock on effect on adult 
employability and children's educational attainment." 

"In the longer-term, with shrinking economy, job-market and possibly support-
services, the outbreak's negative impact will disproportionately fall on the 
more disadvantaged social-groups, including minority-ethnic people, older 
people, and those in precarious and low-paid employment." 

"Impact of Covid-19 on mental health and well-being of the population, 
including long term socioeconomic inequalities likely to arise from the 
economic impact of Covid-19 which will affect poorest communities hardest" 

“Lessons 
learned from 
the COVID-19 
outbreak” 

"We must ensure that pandemic preparedness plans are in place to prevent 
such an economic impact of future pandemics." 

"What lessons can we learn from the current outbreak regarding the control of 
future epidemics/ pandemic?", 

"How are you going to ensure that pandemic outbreak planning and 
preparedness is enforced and effective, and not ignored and scaled back, as 
happened in the last years, leading to the current disaster?" 

"Preventing a second outbreak and preparing measures for a potentially 
different pandemic in the future" 

"What have we learned from Covid-19 modelling and strategy decision making 
for future preparedness planning?" 

“Strategy for 
vaccine 
development, 
production 
and 
distribution” 

"Development and deployment of a vaccine to general population; research to 
know if the length of immunity; how to prepare ahead of the new COVID-20 
such that vaccines will be develop faster; Monitoring communities for cases of 
infection, using long-term-use fever screening at key locations." 

"Given high mutation rate of Covid19, long-term vaccine may not be possible; 
ongoing vaccine development will be needed." 

"Long term cardio-respiratory consequences and morbidities of former COVID-
19 patients, based on 'lessons learnt' implementation of a streamlined 
research framework for any future pandemics and candidate vaccine 
manufacturing for future virus cycles / occurrences in the UK and across the 
globe." 
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Cluster Generated Summary 

“Changes to 
the role of 
education 
and the 
future of 
learning” 

"Many years we support blended learning approaches in the UK Universities, 
but the level of technology integration is mainly related to members of staff 
workload and skills" 

"The role of education in general and universities in particular to play a role in 
the economic recovery of the country - ensuring better skills and vital social 
inclusion measures." 

"How to minimise the impact of the outbreak on the education and training of 
students and trainee teachers whose learning and professional development 
has been disrupted during the academic year 2019-2020." 

“Resilience of 
society to 
future 
shocks” 

“R&D with regard to COVID-19” 

“what is the new normal?” 

“Maintaining the system 'upgrade' and avoiding slipping back into 'business-as-
usual'” 

“Unable to react efficiently and quickly to similar scenarios in future” 

“To help business recover from COVID-19 and prepare for the next negative 
shock.” 

“Again, resilience, recovery and coalescing around the possibilty of new norms 
of working patterns” 

“A full proof pro-active, rather than reactive plan, in place for similar event in 
the future.” 

“The readication of COVID-19 will leave scars on the history of man” 

“Can things get back to the old normal?” 
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Figure 4.5 - 2D t-SNE plots of USE text embeddings for responses for long-term concerns in the 

Expert Concerns dataset, colour coded by the category. Subfigure A shows the 

category selected by the respondent. Subfigure B shows categories generated by 

clustering. 
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Figure 4.6 - Bar charts of the number of responses in each category for the long-term timeframe. 

Subfigure A shows categories selected by the respondents. Subfigure B shows the 

results of automated categorisation  
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4.6.3 Topic Name Synthesis 

This section has so far demonstrated an effective automated clustering approach for categorising 

the responses with the aim of producing a categorisation scheme that better reflects the areas of 

concern discussed in the response text content. The previous sections show the distribution of the 

new categories and look at summaries generated for those categories. While this information 

combined with an inspection of the results may be sufficient for a human analyst to assign 

category names, it is also possible to suggest category names based on machine analysis of the 

text content of each category’s responses. This section shows the results for two alternative 

approaches for generating category names through keyword analysis, these are then compared to 

human-produced category names. All results discussed in this section, which concern naming the 

categories generated in section 4.6.1 for long-term concerns, are presented in Table 4.6. 

The first approach investigated is applying TextRank (Barrios et al., 2015) for keyword extraction. 

This approach follows a similar methodology as for the generation of summaries, where the text 

analysed for each category is the concatenation of all of that category’s responses. For generating 

keywords, TextRank uses co-occurrence of terms as its metric for “recommending” the terms 

most important in connecting together the content. The merits of this approach are similar to 

those for extractive summarisation, in that the graph-based model should select a collection of 

terms that provide good coverage of the web of terms as they occur in the source text, without 

bias to any prior training (Mihalcea & Tarau, 2004). It is notable, however, that as TextRank is not 

trainable and produces results exclusively based on the sample this approach does not consider 

the global distribution of terms over the entire dataset when used to generate keywords for each 

category. This means it is likely to produce similar keywords for each category if their content is 

similar as opposed to highlighting the differences between each one. For example, for the dataset 

in question, which is concerned with the impacts of COVID-19, many categories will likely be given 

the keyword “COVID”, whereas a human would likely not include that term for each category as it 

is implied by the context of the dataset. 

The next approach applies TF-IDF (Sparck Jones, 1972). A model is trained on the concatenated 

text of all responses in the dataset, then keywords are generated for each category using the 

concatenated text from only that category. By training on the full dataset, the TF-IDF model can 

consider the relative frequency of terms across the whole dataset (Term Frequency) as compared 

to within each category (Document Frequency). As a result, the keywords generated better reflect 

what makes each unique, as the model gives less weight to terms that are similarly frequent 

across all categories. As TF-IDF is a bag-of-words type model in which word order is unimportant, 

it is simple to inject additional terms into each document representing bigrams and multi-word 
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phrases which occur frequently in the dataset (e.g., if the word “public” is often followed by the 

word “health”, the n-gram “public_health” can be added to the list of terms for each document 

containing that pattern. It seems intuitive that including these common n-grams should produce 

more meaningful category names as these are commonly used in human-made category names. 

The results of the keyword analysis using both techniques are shown in Table 4.6, as are the final 

human labelled names for each of the categories (which are the clusters from section 4.6.1). The 

human naming was contributed by an expert human analyst from POST (the survey authors) and 

their naming was based on a combination of their own analysis of the survey results (see the 

following section on their Topical Analysis), and the generated summarises (see section 4.5), 

TextRank keywords, and TF-IDF keywords generated for each category. It can be seen from the 

results that in most cases, the human analyst uses many terms matching or synonymous with the 

generated keywords, especially the TF-IDF keywords and multi-word n-grams. 

While the adoption of many of the generated keywords by the human analyst in producing the 

final names for each category does evidence their usefulness, it remains that the generated 

keywords alone do not provide an easily readable category name without rewording by a human. 

This is a fundamental limitation of the keyword extraction approach as no concern is given to 

ordering the keywords for readability. However, abstractive summarisation has been shown to be 

effective in producing readable, human-like, titles for documents such as news articles (Chopra et 

al., 2016; Takase et al., 2016). While the text to be summarised for each category is much longer 

than is typical in news article summarisation, and the structure is very different (being a 

concatenation of individual texts rather than a single article with ordered paragraphs), this 

approach seems promising as a potential method for producing more readable category names as 

part of future research. 

4.6.4 Topical Analysis 

The human categorisation scheme that the results have so far been compared to was, as 

described in section 4.3, schematically defined before the survey was conducted and so is blind to 

the results of the survey. Independent of the computational analysis conducted in this work, POST 

also conducted their own topical analysis, the results of which are published on their website 

(Parliamentary Office of Science and Technology, 2020b).  Like the analysis presented here, their 

study also looks at the results of the COVID-19 Expert Concerns Survey, however, the set of 

responses which they analyse does not exactly match those examined here as they select 

responses from a different range of dates, although there is significant overlap with the data used 
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here such that the prominent themes should be similar, but with minor quantitative differences. 

They also choose to produce a different number of categories.  

Figure 4.7 shows a visualisation of the categorisation scheme they produced overlayed on items 

present in both versions of the dataset (the intersection). Comparison of Figure 4.7 and Figure 4.5 

(B) shows that many of the same clusters are identified as distinct topics, and the naming 

assigned in each case is similar. Notably the human identified topics “Research and Innovation”, 

“International Affairs”, “Economy and Finance”, “Environment”, “Education”, “Society and 

Community”, and “Health and Social Care” all directly correspond to clusters produced by the 

computational analysis, being very similar in both distribution and assigned name. As this human 

categorisation was performed independently of the automated analysis, this strong consensus 

evidences the efficacy of the automated approach in terms of producing meaningful categories in 

a way similar to an expert human analyst. 

The only contribution made by the author of this thesis to POST’s topical analysis was the “typical 

responses” presented for each category, which were produced through extractive summarisation 

following the same methodology as for the original categorisation (section 4.5) and the 

automated clustering (section 4.6.2). Like with the visualisation in Figure 4.7, this was done after 

the authors of the topical analysis produced their categorisation scheme so does not bias the 

comparison of their categorisation scheme with the one presented here. The results from sections 

4.4 and 4.5, which do not concern alternative categorisation, were made available to them to aid 

in their preliminary analysis. 
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Figure 4.7 - A 2D t-SNE plot of USE text embeddings for responses in the Expert Concerns dataset 

colour coded by the category assigned in the topical analysis. Only responses present 

in both the subset of the data used by the topical analysis and the subset presented 

in this work are shown. 
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Table 4.6 - Clusters identified by K-Means clustering of USE text embeddings for responses for 

long-term concerns in the Expert Concerns dataset. Keywords were generated using 

Text-Rank and TF-IDF as provisional topic names which were then presented along 

with a synthesis of responses to a human analyst who contributed the human naming 

scheme 

ID 
Human Naming  

(Contributed by POST) 

Keywords  

(Text-Rank) 

Keywords  

(TF-IDF) 

1 

Changes to availability of work, 

working conditions and types of 

employment 

working, 

employment, 

economic, needs, 

worker 

work, employment, 

working_home, key_worker, job 

2 
Changes to crime, policing and 

the criminal justice system 

news, covid, 

communicate, police, 

justice 

criminal_justice, police, 

community, policing, crime 

3 

Changes to the role of 

education and the future of 

learning 

teacher, educators, 

student, university, 

impact 

education, university, school, 

student, teacher 

4 
Changes to the viability and 

functioning of businesses 

economic, terms, 

needed, businesses, 

jobs 

economy, business, job, recovery, 

lost 

5 
Communications strategy for 

public health messages 

researches, 

governments, public, 

future, people 

research, public_health, future, 

strategy, risk 

6 Economic recovery and growth 

economical, 

economies, social, 

recovery, maintaining 

economy, recovery, monetary, 

financial, impact 

7 
Future sustainability of the NHS 

and social care system 

health, governments, 

ensured, nhs, careful 

nhs, health, social_care, staff, 

healthcare 

8 
International economy and 

global trade 

economic, globally, 

governing, terms, 

economies 

economy, brexit, international, 

global, trade 

9 
Lessons learned from the 

COVID-19 outbreak 

pandemics, future, 

plan, better, 

preparedness 

future_pandemic, pandemic, 

outbreak, 

pandemic_preparedness, 

lesson_learned 

10 
Long-term mental health effects 

of COVID-19 

terms, health, 

socially, people, 

communication 

mental_health, support, family, 

longer_term, anxiety 

11 
Long-term physical health 

effects COVID-19 

disease, terms, covid, 

virus, long 

virus, disease, infectious_disease, 

outbreak, long_term 
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ID 
Human Naming  

(Contributed by POST) 

Keywords  

(Text-Rank) 

Keywords  

(TF-IDF) 

12 

National and international 

preparedness for future 

pandemics 

health, covid, future, 

pandemics, include 

pandemic, outbreak, future, 

health, future_outbreak 

13 
Population mental health and 

wellbeing 

people, life, 

educations, 

uncertainties 

education, lesson, routine, 

mental_health, learn_lesson 

14 
Resilience of society to future 

shocks 

normality, failures, 

business, protective, 

seasonal 

avoiding, failure, normal, 

resilience, business 

15 
Resilience of the economy to 

future shocks 

economics, social, 

managing, risk, terms 

economy, risk, management, 

business, sustainability 

16 
Social, economic and health 

inequalities 

socially, economically, 

health, inequality, 

impacting 

inequality, social, economy, 

mental_health, health 

17 

Strategy for vaccine 

development, production and 

distribution 

vaccines, research, 

covid, developing, like 

vaccine, development, 

vaccination, immunity, research 

18 
Supply chains and shortages of 

goods and labour 

locally, terms, 

supplying, new, 

sectors 

food, supply_chain, longer_term, 

local, city 

19 
Surveillance, data collection and 

data privacy 

digital, data, health, 

future, surveillance 

data, digital, pandemic, 

surveillance, public_health 

20 

Sustainable economic recovery 

and policies to address climate 

change 

future, climate, 

globally, covid, 

economic 

climate_change, future, climate, 

economy, crisis 
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4.7 Text Insights Pipeline 

This chapter has looked at applying several algorithms and models to the task of exploring the 

Expert Concerns survey dataset and in particular in how the outputs of each of these can be 

combined to provide greater insight into the nature and key themes of the data.  

However, the approach taken is not limited to this particular survey, or necessarily even to survey 

data. As part of producing the analysis, a suite of software tools was created to automate the 

generation, combination, and presentation of these results. This tool, which is one of the 

contributions and potential key impacts of this project, is the Text Insights Pipeline (TIP): a web-

based tool for automated analysis of collections of text.  

The Text Insights Pipeline is a research tool for visualising and interpreting collections of 

unstructured text, such as survey responses, item descriptions, or short articles. The tool 

combines the techniques described in this chapter to group similar items, identify naturally 

occurring topics, generate names and key sentences for each topic, and visually present the items 

and their topic groups for inspection by an analyst. The tool provides a means for analysts, such as 

social scientists and policy advisers, to explore and navigate their data much more efficiently than 

the traditional approaches of inspecting items in random or arbitrary order or by use of 

constructed queries, which risk introducing bias or accidental omission (Joffe & Yardley, 2003).  

The tool is provided as a website where analysts can upload their data. The analyst may use the 

topic groupings identified by the tool as a basis for their analysis; combining, splitting, or tweaking 

groups as necessary, or to identify potentially overlooked topics in other analyses. The tool 

requires little or no configuration to produce good results in most cases, but advanced options are 

provided for trained operators to refine their results. The tool can also visualise and summarise 

according to existing categories, if present in the input data, which can be used to identify overlap 

or separability of the existing categories, or simply to generate key sentences for each category.  

The outputs are presented as a report style webpage, as well as downloadable figures and CSV 

files containing the complete results. The results are intended to be easy to interpret and non-

technical explanations of each output are included in the report, however, some training in 

understanding the visualisation and clustering methods may add value for analysts. 

The architecture of the pipeline is shown in Figure 4.8.  

The tool takes as input a collection of text items in CSV format (e.g., for survey data, this would be 

one response per line), and optionally any known categories. The pipeline then performs several 

analysis steps; embeddings are generated for each text item, the dimensionality is reduced to two 

dimensions, and the items are visualised as a scatterplot (section 4.4), if existing categories were 
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provided the items are labelled as such, otherwise automated clustering is used (section 4.6.1) 

and topic names are generated for each cluster (section 4.6.3). For each category/cluster, a 

summary is generated (section 4.6.2). The results are presented as a human-readable report, and 

machine-readable CSV and JSON files with cluster information, including summaries, item 

mappings, and provenance.   

The configurable settings include the desired length of generated summaries, the desired number 

of keywords, the number of clusters to generate, the t-SNE perplexity parameter (see section 4.4), 

and the random seeds for clustering and visualisation. There are also options to split items into 

sentences (where each sentence becomes its own item), and to automatically filter out items with 

fewer than two words. At the time of writing the tool makes use of the same USE model (Cer et 

al., 2018) as the experiments in this chapter, but the tool is designed to work with other 

embedding models, which may be added as options in future. 

At the time of writing the tool is undergoing evaluation by the Wessex Institute and James Lind 

Alliance for use in assisting their analysts with their work on Priority Setting Partnerships, which 

involves identifying themes in large collections of patient and practitioner survey responses. More 

detail of expected future collaboration and development of the tool based on feedback is given in 

Chapter 5. 

4.7.1 Comparison to Thematic Analysis 

Results from TIP (and the analysis of COVID-19 concerns presented previously) are analogous to 

human produced thematic analysis but differ in some significant ways.  

Firstly, human created themes usually have a description, both for the benefit of the reader and 

to aid the analyst in assessing their choice of themes (Braun & Clarke, 2006). TIP does not produce 

descriptions for its categories, only representative summaries and keywords, so it is necessary for 

a human analyst to interpret these.  

Additionally, the data-driven inductive approach used by TIP does not select themes or examples 

tailored to a study’s research question(s) or preconceptions, it instead produces an overview of 

the data and interpretation is left to the analyst. This may combat bias towards preferred findings, 

which benefits impartiality but may hurt relevance. The language model may have its own biases 

and limitations, and these should be considered when selecting a model, diligence should also be 

exercised when interpreting, communicating, or applying the results of automated analysis. 

Thematic analysis is a flexible methodology with variations beyond the scope of TIP, including: 

theoretical (as opposed to inductive), where data are coded according to an analyst’s interest or 
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research questions; and latent (as opposed to semantic), where data are interpreted to examine 

underlying ideas, assumptions, and ideologies, rather than their surface meaning (Braun & Clarke, 

2006).  

Other approaches to thematic analysis may also place items within multiple themes. While TIP is 

able to automatically split items into sentences and categorise each individually, this differs from 

how a human may code an item such that it is assigned to multiple themes. Hierarchies of themes 

are also not directly addressed by TIP, but could be produced by an analyst by running TIP with 

different subsets of the data or with differing numbers of desired categories as demonstrated in 

section 4.8 and discussed in more detail in section 4.10.  

4.7.2 Existing tools for Thematic Analysis 

Other software solutions exist to aid in qualitive analysis, including content and thematic analysis. 

These tools may aid analysts with tasks such as: creating codes (possibly with some automation 

such as named entity recognition); applying codes to data through highlighting or tagging; 

managing and collaboration on collections of data and analyses; and data ingestion from 

heterogeneous sources such as websites and multi-media (Dupplaw et al., 2012; Jackson Kristi & 

Bazeley Pat, 2019).   

TIP differs from these tools in that it provides an alternative instead of an aid to the coding and 

assignment of codes to themes approach used in thematic analysis or approaches like word 

counts used in content analysis. As previously discussed, an analyst may still perform an 

important active role in using and applying TIP, and the results resemble that of some forms of 

thematic analysis, but the underlying method differs.  

Unlike existing tools, TIP is able fully automatically to produce an initial overview of the data, 

making it suitable for exploring or giving a broad overview of a large dataset without requiring 

significant investment of time and effort. While advanced configuration options are available, it 

requires no special training to produce good results, as demonstrated in the following sections 

looking at alternative datasets, which each use the tool’s default parameters. The work invested 

by an analyst using TIP would be in fine-tunning and tailoring the results to their research 

questions, rather than producing, reviewing, and organising codings. 
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Figure 4.8 – High-level architecture of the Text Insights Pipeline (TIP) 
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4.8 Alternative Dataset: TED Conferences 

The generality of the approach in this chapter can be easily demonstrated on other datasets by 

using the Text Insights Pipeline. Due to confidentiality requirements, only limited information can 

be published regarding the real-world projects described in the impacts section, so instead this 

section gives an example from an open dataset of TED Conferences (Banik, 2017).  

TED Conferences (Technology, Entertainment, Design) are a series of short talks (18 minutes or 

less) by many different speakers across a variety of topics (TED Conferences LLC, n.d.). For this 

example, a dataset of the titles, descriptions, and tags of 2500 English language talks are used. 

The descriptions are one or more complete sentences (word count: range=121, mean=52, SD=18) 

including the topic of the talk and sometimes information about the event or speaker. The tone of 

the talk is sometimes described (e.g., “in this funny talk”), and the profession of the speaker is 

usually stated. The descriptions are typically written in a casual, attention-grabbing style, or 

phrased as a question. The tags are a comma-separated list of words and multi-word phrases 

reflecting the topic of the talk, sometimes including the names of places and organisations 

(number of tags: range=31, mean=7.5, SD=4.3). 

Figure 4.9 shows the results from the Text Insights Pipeline for this dataset, using only the talk 

descriptions (subfigure A) and tags (subfigure B). Figure 4.10 shows a comparison of results for 10, 

20, and 30 generated categories. All other TIP parameters are their default values (the same as 

used for the Expert Concerns dataset). Interactive versions of these figures where individual items 

can be inspected, as well as the generated summaries, and provenance and output data files, are 

available online (Ralph, 2021). The interactive webpage which presents these results is the same 

as the output format of TIP (a generated HTML report) and is similar to the style of the report 

provided to the Lords Committee for the COVID-19 project, except for that report also includes a 

comparison with POST’s categorisation and multiple timeframes.  

Whether using the talk descriptions or tags, some distinct clusters are clearly visible, and the 

generated topic names are a good indicator of their content. The clusters are much more 

separable when using tags, as would be expected from the discrete nature of the terms used (a 

list of tags should not generally contain words with little or unclear semantic value). Comparison 

of the category names shows some strong similarities, showing that this approach is good at 

selecting appropriate keywords and that the variable formatting of the text (sentences versus a 

list of tags) does not confuse the model.  

When varying the number of categories, we see that the smaller set of categories have broader 

topics whereas the larger set of categories are narrower and more focused. Some specific 
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examples are given in Table 4.7 and Table 4.8 of how increasing the number of categories allows 

for broad categories to be subdivided into meaningfully distinct but related sub-categories. 

It is notable that the time taken to generate these results using the Text Insights Pipeline is 

approximately one minute on a workstation with no exceptional hardware, whereas an unassisted 

human analyst would require much longer to complete an analysis of so many items. A typical 

English language silent reading speed is often given as 300 words per minute, and possibly lower 

for non-fiction reading (Brysbaert, 2019). Assuming a human analyst was perfectly efficient in 

categorising items as they read them at a rate of 300 words per minute, for the TED dataset it 

would take a minimum of 63 minutes just to read the tags, or 440 minutes (7 hours and 20 

minutes) just to read the descriptions. While the compute time for TIP does increase with the 

number of items, it remains orders of magnitude faster than a human analyst for the quantities of 

data tested.  
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Figure 4.9 – Visualisation and categorisation produced by the Text Insights Pipeline of talks in the 

TED dataset using their descriptions (subfigure A) and tags (subfigure B). 
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Figure 4.10 - Visualisation and categorisation produced by the Text Insights Pipeline of talks in the 

TED dataset using their descriptions for 10 categories (subfigure A), 20 categories 

(subfigure B), and 30 categories (subfigure C). 
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Table 4.7 – Categorisation of TED science talks for 10 (highlighted) and 30 clusters. 

ID Human Naming  Generated Name Items 

10 Categories  

Cluster 6 
Science universe brain science human life 228 

30 Categories  

Cluster 16 

Physics  

& Space Science 
universe planet physic[s] black_hole earth 83 

30 Categories  

Cluster 22 
Scientific Methods design new world science way 69 

30 Categories  

Cluster 24 
Neuroscience brain neuroscientist study new_research sleep 93 

 

 

Table 4.8 – Categorisation of TED technology talks for 10 (highlighted) and 30 clusters. 

ID Human Naming  Generated Name Items 

10 Categories  

Cluster 9 
Technology demo robot technology computer world 328 

30 Categories  

Cluster 1 
Robotics Robot demo computer human machine 75 

30 Categories  

Cluster 2 
Automotive Car traffic driver road save_life 24 

30 Categories  

Cluster 12 
Energy Energy space future nuclear project 56 

30 Categories  

Cluster 18 
3d Printing material 3d_printing invention build 3d_printer 72 

30 Categories  

Cluster 28 
Web & Internet  Data web technology internet machine 91 
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4.9 Alternative Dataset: Isle of Wight Supply Chain 

Figure 4.11 shows the visualisation and categories produced by the Text Insights Pipeline for the 

IWSC dataset detailed in Chapter 3, section 3.4. The generated categories appear coherent and 

align with what would be expected as the major areas of economic activity on the Isle of Wight. In 

particular, the model identifies categories relating to marine engineering (clusters 0 and 1), 

marketing (2), tourism (3), marine survey (4), business services (6), boat/yacht charter (8), and the 

local service sector (9).  

Cluster 5 contains mostly very short texts which may account for why they are more scattered 

due to each lacking information that might relate them to other items. Most of these relate to 

culture or art, as the generated category name suggests.  

The theme of cluster 7 is not obvious by the generated name but inspection of the items shows 

that it is engineering-related, particularly concerning instrumentation and sensor systems. Many 

of these items have long descriptions and include a lot of product names and website links. The 

useful words “system” and “data” do appear in the generated category name, so it is possible the 

other less useful keywords are the result of a lack of common terminology between items 

resulting in the model instead preferring the common terminology found in hyperlinks.  

These results show that the model is quite robust to highly varied and noisy data, but also shows 

some of the limitations, particularly in positioning items and generating category names when 

some items have very long or short text. Removing markup tags may improve category naming. 

 

Figure 4.11 – Visualisation and categorisation produced by the Text Insights Pipeline of company 

descriptions in the IWSC dataset.  
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4.10 Discussion & Conclusions 

The approach presented in this chapter has been shown to be an effective method for the 

automatic production of thematic analysis of a variety of text datasets from varied domains. 

Additionally, these are presented in a visual and interactive medium which enables human 

analysts to interpret and explore the data intuitively. This provides a solution to SRQ2: “How can 

machine understanding of text be used to produce an interpretable overview of large collections 

of unstructured text?” and a basis for answering SRQ3: “How can the results of text analysis be 

effectively presented and used to inform decision-makers, analysts, and organisations?”. 

In regard to SRQ3, the analysis produced could be used as a basis for further human analysis. 

Having an interactive visualisation of the distribution of items, showing similar items close 

together and the clusters formed by common topics in the data, allows an analyst to inspect the 

data more efficiently than by inspecting items in random or arbitrary order.  

This presents the opportunity for the approach to be used as part of a collaborative human and 

machine process where the automated analysis and its interactive outputs can expedite the work 

of human analysts by presenting a general categorisation that they can then refine. Using the Text 

Insights Pipeline, it is possible to provide input with pre-assigned categories to produce the same 

visualisations and summaries without performing clustering, which allows for analysts to modify 

the outputs from a first-pass (including clustering) by performing their own, splitting, splicing, and 

renaming of categories, and reassigning anomalous items, and then reinputting the data to the 

pipeline with the modified categorisations to produce the final visualisations and summaries to be 

included in the finished analysis. This mimics the process used in some thematic analyses where 

items are initially grouped into general categories before being re-analysed to identify sub-

categories (Joffe & Yardley, 2003; Parliamentary Office of Science and Technology, 2020b). 

By running multiple rounds of automated analysis set to produce varying numbers of clusters, 

more general and more specific concerns can be identified, as demonstrated in section 4.8. While 

using a large number of clusters may produce some duplication, where a human may judge the 

differences between clusters to be unimportant, it can pick out smaller but distinct sub-topics. 

These smaller topics may provide greater insight into the data and depending on the objectives of 

the analysis they may decide some of these smaller topics might be included in the final analysis 

or used to inform their discussion of the results, as in thematic analysis (Braun & Clarke, 2006). 

By automating a highly labour-intensive part of the analysis process, the approach has the 

potential to massively reduce the time required for analysing large text datasets and make 

practical the analysis of larger datasets than is otherwise possible without introducing the 
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complexities of subdividing the data among multiple analysts and additionally may help highlight 

areas within the data which might otherwise be overlooked.  

The potential applications for this approach are broad and include analysis of survey data (as with 

the COVID-19 Expert Concerns Survey), presenting overviews of large libraries or collections (as 

with the TED Conferences dataset), or for business intelligence (as with the Isle of Wight Supply 

Chain dataset). The results of the COVID-19 Expert Concerns Survey analysis were presented to 

the UK Parliament Select Committee for COVID-19 and were used to create POST’s COVID-19 

broad areas of research interest (Parliamentary Office of Science and Technology, 2020b). 

Chapter 5, section 5.3.3 details ongoing collaboration with the Wessex Institute and James Lind 

Alliance looking at applying this tool to survey data in the healthcare domain.





Chapter 5 

107 

Chapter 5 Conclusions and Future Work 

5.1 Conclusions 

This thesis has explored several methods for generating insights and human-interpretable 

overviews from large heterogeneous datasets, employing a variety of techniques including 

recommender systems, visualisation, clustering, text summarisation, and keyword extraction. 

These techniques have been demonstrated in a variety of real-world scenarios including supply-

chain recommendations and topical analysis of survey data. 

The novel Transitive Semantic Relationships (TSR) model introduced in Chapter 3 addresses 

especially challenging cases of the cold start problem, where recommendations must be made for 

unlabelled items using the few labels known for a large dataset. The solution is robust to noisy 

text data collected from web-scraping by making use of text pre-processing and highly 

generalisable upstream deep learning models for producing semantic representations of text. The 

solution also generates detailed provenance in the form of a list or graph of items and 

relationships considered (both ground truth and predictions), which is easy to visualise. This work 

provides one answer to SRQ1: “How can machine understanding of text be used to identify 

relationships between documents in large collections of unstructured text?”. TSR has already seen 

real-world adoption by an industrial partner, details of this application are given in section 5.3.1. 

The approach taken in Chapter 4 of combining several traditional text analysis and mining 

techniques into a Text Insights Pipeline (TIP) addresses the challenge of structuring and presenting 

data for efficient and effective human analysis and provides a method of automating highly 

labour-intensive stages of thematic analysis or producing a preliminary analysis for review by 

experts. Like in Chapter 3, the use of text pre-processing and generalised deep-learning models 

allows for handling highly heterogeneous text, including free-text survey responses, summaries of 

conference presentations, and web-scraped descriptions of companies. These features are then 

used for clustering, visualisation, and summarisation to produce one comprehensive overview of 

the data, which can be presented as a report. This work offers a solution to SRQ2: “How can 

machine understanding of text be used to produce an interpretable overview of large collections 

of unstructured text?”, and SRQ3: “How can the results of text analysis be effectively presented 

and used to inform decision-makers, analysts, and organisations?”. This approach was used in 

collaboration with the Parliamentary Office of Science and Technology (POST) to produce an 

overview of expert’s concerns regarding COVID-19 in the United Kingdom which led to POST’s 

COVID-19 broad areas of research interest, details of the collaboration and its impacts are 
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detailed in section 5.3.2. The tool (TIP) is also employed in an ongoing collaboration with the 

Wessex Institute (see section 5.3.3), and further development and investigation into additional 

applications are ongoing. 

Throughout the thesis, it has been demonstrated that combining the generalisability and deep 

understanding of language from modern deep learning approaches, such as neural language 

models, with traditional, well understood, and explainable down-stream algorithms is an effective 

technique for producing high-quality results on a variety of heterogeneous text data while 

preserving some degree of explainability and can produce results which are informative, and well 

evidenced. In combination with the examination of the sub-research-questions given previously, 

this provides an effective solution to the overall research question of “How can machine 

understanding of text be used to produce insights from large collections of unstructured text to 

inform decision-makers, analysts, and organisations”. 

  



Chapter 5 

109 

5.2 Contributions 

This research makes several major contributions: 

The Transitive Semantic Relationships (TSR) approach for cold-start recommendations in sparsely 

labelled data. This novel algorithm addresses a challenging and often overlooked edge case in 

recommender systems (SRQ1) and also addresses some common criticisms of other 

recommender systems such as poor explainability (SRQ3). The algorithm has the potential for 

significant impact in industry, particularly in high-velocity big data such as supply chain 

recommendations.  

The COVID-19 Expert Concerns survey analysis demonstrates an effective methodology for 

applying and combining a variety of data analysis techniques to produce easily interpretable 

visualisations, categorisations, and summaries of large text datasets such as survey data (SRQ2 

and SRQ3). The results of this analysis helped inform UK parliament in setting research priorities. 

The Text Insights Pipeline is a web-based research tool that enables data analysts to make use of 

the methodology used for the COVID-19 Expert Concerns survey analysis without requiring 

specialist or technical knowledge of the techniques or algorithms involved (SRQ3). This tool has 

attracted attention from external organisations with interest in using it for various real-world 

applications and further research is ongoing with their support. 
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5.3 Impact 

5.3.1 Impact in Industry 

The Transitive Semantic Relationships (TSR) recommender algorithm was developed partly during 

an ICASE placement with KnowNow Information. A partner company, Launch International LTD 

provided the data and labelling for the Isle of Wight Supply Chain Dataset on which the algorithm 

was demonstrated. Launch International LTD have incorporated this approach into their 

technology platform “Find Engine”. A testimonial from the company’s Chief Technical Officer is 

included below. 

“The algorithm has been used as the core service in Launch to provide 

recommendations for businesses to connect to other businesses based on their profiles. 

The algorithm is trained based on sampling data from a list of Isle of Wight businesses. 

In the database, we have experts to label the supply chain relationships between any 

two businesses from the list. Then the TSR algorithm analyses the profile of each 

business and learns the supplier-provider relationships from the labelled data.  Then we 

have applied the algorithm in a large dataset based on a couple of LEP’s business 

catalogues and automatically recommend which businesses can potentially collaborate 

on supply chain. The software has been used by Solent LEP, Oxford Innovation and some 

business relationship management departments in universities.” 

- Dr Yunjia Li, CTO Launch International LTD 

5.3.2 Impact in Parliament 

The results from Chapter 4 for the COVID-19 Expert Concerns dataset, including the alternate 

categorisation scheme produced through automated clustering and the figures and visualisations 

from that chapter were presented to UK Parliament and the Lords COVID-19 Committee as a 

report similar to those generated by the Text Insights Pipeline. This evidence was used by POST, 

UK Parliament, and select committee staff to produce the Areas of Research Interest (ARIs) for 

COVID-19 (Parliamentary Office of Science and Technology, 2020a). 

5.3.3 Collaboration with James Lind Alliance and Wessex Institute 

The Text Insights Pipeline (TIP) produced as part of the work described in Chapter 4 has already 

received interest from external organisations including the Wessex Institute and the James Lind 

Alliance (JLA). The JLA have in particular expressed interest in using the tool for their Priority 
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Setting Partnerships, similar to how the results for the Expert Concerns dataset were used by 

POST. Demonstrations of the tool have been made to the Wessex Institute and JLA on their own 

datasets; the tool was given praise for its performance, particularly in its ability to produce many 

similar observations as human analysts, but in much less time.  

At the time of writing, a joint project is currently underway with the Wessex Institute and JLA to 

formally evaluate the performance of the tool and its suitability for applications within these 

organisations. Funding is also currently being sought to develop this tool further with the aim of 

making it available as a research tool. It is expected this will be with the support of either the 

Wessex Institute, JLA, or both, and with the aim of working with other research organisations as 

the project progresses. 
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5.4 Future Work 

5.4.1 Evaluating TSR on Other Datasets 

The TSR model has been demonstrated to produce good results on the challenging IWSC dataset 

tasks, where other recommender algorithms would be unsuitable for the reasons discussed in 

Chapter 3. 

In future research, TSR might be evaluated on more general datasets to allow direct comparison 

with other recommender systems. As TSR is designed specifically for difficult scenarios where 

there are very few training labels, it is likely that it will only outperform existing solutions in these 

cases, and that the existing solutions designed with the assumption of abundant training labels 

will perform better on such datasets. 

However, while direct comparisons of algorithms would be biased in favour of those optimised for 

datasets of that nature, the relationship between the performance of each algorithm and the 

number of labels in the dataset is of interest. Therefore, standard benchmark datasets might be 

used for evaluation but with varying numbers of labels included in the training set, similar to the 

approach used by Cer et al., (2018) to determine the impact of transfer learning with different 

quantities of labelled data. By varying the number of labels available for training, the suitability of 

each algorithm can be assessed for different degrees of sparsity.  

Testing on other datasets should prove the generality of the TSR model, and comparison to other 

models when varying the amount of training data should demonstrate their suitability for 

different scenarios. The expected result would be that when there are very few labels in the 

training set TSR will be the best performing algorithm, but when there are many labels TSR will 

underperform. 

An exhaustive list of models and datasets that might be tested cannot be provided here as it 

would be subject to the compute resources available and future advances in the field. However, 

some models of interest include traditional Collaborative filtering, Neural collaborative filtering 

(He et al., 2017), and the averaging of embeddings technique typically used to generate 

recommendations from neural language models such as used for a baseline by Suglia et al. (2017). 

Some of these methods do not support cold-starts, and so may not be suitable for all testing 

scenarios. 
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5.4.2 Investigating Effects of Embedding Models 

Both the TSR algorithm and some analysis steps in the Text Insights Pipeline are highly dependent 

on effective measures of semantic similarity between items. In this project, the Universal 

Sentence Encoder (Cer et al., 2018) model has been used to generate the content embeddings 

used to calculate similarity. The reasons for choosing this model for the initial investigation are 

given in section 3.8, but no formal investigation of alternative models has been conducted so far. 

Both TSR and TIP make use of fixed-length content embeddings as input but do not dependent on 

any particular model, so long as all embeddings for a given set of data come from the same 

model. As a result, it is trivial to switch the upstream model for any other that outputs fixed-

length semantic content embeddings. The TSR evaluation toolkit was built with the capability to 

specify the embedding model to be used so that this could be easily investigated in future, and 

the TIP web tool is expected to be given this functionality later in its ongoing development, giving 

analysts easy opportunity to explore the efficacy of different models.  

For comparison of performance, models of interest include some of those discussed in section 

2.3, and particularly the recent state-of-the-art models discussed in section 2.3.7. 

5.4.2.1 Beyond English Language Text 

An additional possibility beyond the scope of this thesis is the application of these approaches 

(TSR and TIP) to other languages. Embedding models have been produced for many different 

natural languages, including multi-language models (Conneau et al., 2020) and the algorithms 

employed by TSR and TIP are agnostic to the language used; this is purely dependent on the 

embedding model. For TIP, items within a dataset should all be in the same language due to the 

approach used for summarisation and category naming. TSR is completely language agnostic and 

multi-lingual datasets could be used with a multi-lingual embedding model. TSR could also be 

applied to non-text content embedding such as those produced by multi-modal embedding 

models (Sun et al., 2018; Sung et al., 2017), these could also be used with TIP but some text data 

would still be required for summarisation and category naming. 

5.4.2.2 Fine Tuning 

The benefits of fine-tuning upstream models on downstream task performance are well known 

(Cer et al., 2018; Conneau et al., 2017). These sources attribute better vocabulary coverage of 

domain-specific terminology to be a significant factor in the performance improvements.  

In the case of investigating supply-chain, this is likely to be a significant factor as domain-specific 

terminology is common. As such, fine-tuning the upstream embedding model on company 
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descriptions or similar documents could potentially provide significant performance 

improvements on IWSC tasks. 

For exploring survey data, a model fine-tuned on domain-specific text may enable better 

performance, particularly in domains that use highly specialised vocabulary (such as medicine and 

the sciences).  

5.4.3 Choice of Algorithms for TIP 

The approach presented in Chapter 4 for producing automated analysis and summarisation of text 

datasets makes use of various existing techniques for automated text summarisation and 

clustering. As previously discussed in concern to the chosen embedding model, these may be 

interchanged with other models and algorithms for these tasks.  

In Chapter 4, extractive summarisation is used for extracting key sentences to produce the 

summaries for each category and for identifying keywords to form provisional category names. 

That chapter gives the rationale for choosing extractive techniques over abstractive ones, 

however, there is room for an investigation into their suitability. A detailed study of the generality 

and biases of pre-trained learning models when applied in this way could be of interest both for 

building on the approach presented here and also for consideration by the creators of the 

upstream models. Category naming may also benefit from abstractive summarisation as an 

alternative to the keyword/keyphrase extraction used. 

Additionally, clustering methods besides K-means and K-medoids could be employed which may 

offer more tuneable parameters or perform better on datasets with particular distributions, such 

as where clusters are more clearly separable or non-convex. Some alternative approaches for 

topic modelling, such as LDA, could extend functionality to cover cases like the assignment of 

items to multiple categories. 

More generally, other algorithms and models could be used in place of the ones used in the Text 

Insights Pipeline while still following the same methodology to further improve its performance 

and extend functionality to specific technical domains, other languages, other types of media, and 

a wide range of other use cases and applications.  
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