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Human Processes in Artificial Vision

by Ethan William Albert Harris

From the earliest experiments with artificial neurons to the development of
convolutional neural networks and beyond, nature has proven to be an inexhaustible
source of inspiration. Not only can the mechanisms of vision in nature provide a
template for the construction of new artificial models, but the analyses and tools
developed over centuries of biological and psychological study can help to illuminate
the nature of learned functions. In this work, we start by studying the extent to which
convolutional networks make use of shape and colour cues when classifying images by
analysing collections of synthetic images that maximise the models prediction for a
target class (super-stimuli). Next, we explore the impact of convolutional neural
network architecture on learned colour processing via the concept of opponency from
the vision science literature. We show that the distribution of opponent cells and an
analysis of cell tuning can provide valuable insight regarding the nature of colour
processing. Following on from these findings, we consider the impact of opponency on
adversarial robustness, finding that an increase in the percentage of opponent cells is
not sufficient to consistently improve robustness to a suite of attacks. In the
penultimate chapter, we introduce a convolutional model of foveation. We show that
the addition of this foveated convolution improves the localisation performance of a
visual attention model. We study the distribution of opponent cells and stimulus
preference in these foveated layers as a function of eccentricity and find strong
connections with findings from the biology literature regarding the nature of peripheral
colour vision. In our final chapter, we construct a model of visual attention with the
capacity to sketch its input, inspired by psychological concepts surrounding the
production of visual memories. We demonstrate several interesting properties of this
model, particularly regarding the drawing policies it learns and their connection to a
notion of object.
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Chapter 1

Introduction

The history of artificial neural networks and what we now refer to as deep learning is
steeped in biological inspiration. The early neural network models of Rosenblatt
(1962) drew direct inspiration from Hebb’s postulate (Hebb, 1949) and other
contemporaneous theories of neuronal adaptation. Later, the work of Oja (1982)
showed that a normalised variant of Hebb’s rule can be used to find principle
components. Further developments in the field of self-organisation, such as Kohonen
networks (Kohonen, 1982), trace their roots back to the neuronal models of Rosenblatt
(1962) and the work of Turing (1952) on morphogenesis (the biological process of
tissue growth and pattern formation).

Not only are the roots of this scientific tree planted firmly in the discovery and
elucidation of the biological neuron, but many of its branches and leaves draw on
specific insights from the fields of psychology and neuroscience. An example of this can
be found in the development of Convolutional Neural Networks (CNNs) (Le Cun et al.,
1990). In primate vision, cells fire according to the presence or absence of specific
visual features in their receptive field. The relative positions of features in the visual
field are preserved in what is known as a retinotopic map and the types of features
that are extracted get more abstract with depth. A single convolutional neuron is a
feature extractor that is tiled over the input to produce a feature map. In a
convolutional layer, many convolutional neurons are executed in parallel to produce a
set of feature maps. In a CNN, many convolutional layers are executed in series to
produce layers of ‘retinotopic’ feature extraction that become more abstract with
depth, mirroring their biological counterpart.

Since the foundation of our contemporary view has so abundantly benefited from the
rich world of neuroscience, it seems reasonable to suggest that future developments
may benefit also. In a world so busied by the ceaseless march toward the state of the
art we may find inspiration in nature’s most complex creation. The goal of this thesis
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is to explore this belief, not just as a source of ideas but of those much rarer, tricker
things: good ideas.

Of the many important challenges currently facing deep learning community, two stand
out in their relevance to this work: interpretation, and generalisation. The key axis
which separates traditional machine learning from modern ‘deep’ methods is one of
complexity. Not complexity of the ideas necessarily, but complexity of the resultant
learned function. It is from this simple reality that the challenges of interpretation and
generalisation arise.

1.1 Interpretation

The interpretation challenge derives from the fact that the learned functions of models
with millions (and even billions) of parameters cannot be easily understood. This of
course depends on the level of understanding required. One view by which we might
gauge our level of understanding is that of Feynman, “What I cannot create, I do not
understand.”. The seminal work of Olah et al. (2017) gave an enticing glimpse at would
could be achieved with gradient ascent techniques for feature visualisation. Briefly,
these approaches try to synthesise stimuli which elicit an extreme response from a
particular functional unit (such as a cell or a layer) of interest. These early approaches
suffer a few limitations. First, they do not allow for any automatic analysis. Second,
they describe only individual cells or layers, rather than interactions between them.
Finally, they characterise only the functional extremes (the most or least excitatory
stimulus) rather than providing a more nuanced understanding. The later works of
Olah et al. (2018, 2020a) and Cammarata et al. (2020) sought to address the latter two
limitations, ultimately leading to the recent work of Cammarata et al. (2021) which
directly targets Feynman’s view by trying to reverse engineer part of a trained CNN.
They test the effectiveness of their approach by ablating the reverse engineered part
and replacing it with an equivalent subnetwork that is constructed manually to have
the same functional characteristics. The results of this experiment show that
performance of the ablated network is improved by the addition of the hard-coded
subnetwork. These recent developments draw on long-standing ideas from neuroscience
relating to the characterisation and classification of function.

Of the three limitations, one remains: these analyses are still performed manually and
cannot be automated over a population of trained models. This is arguably the most
important limitation since it prevents us from realising many of the grander visions
around model interpretation. For example, one area of interest is to articulate precisely
how trained models differ from each other in order to understand (and ideally
capitalise on) why one model outperforms another in a particular setting. The first key



1.2. Generalisation 3

objective of this thesis is to find automated methods for model interpretability inspired
by approaches from the neuroscience literature.

1.2 Generalisation

The generalisation challenge is one of performance. This includes finding more
performant models, but also broadening the scope of such models (that is, the range of
possible applications for which these approaches can be expected to perform). Several
recent works have looked to nature for inspiration with the goal of improving
generalisation. In Geirhos et al. (2019), the authors find that ImageNet trained CNNs
are biased towards texture which, the authors argue, is in contrast to the strong shape
bias of human vision. The authors subsequently construct a ‘Stylized-ImageNet’ data
set and show that models trained on this variant have improved shape bias. These
shape-biased models exhibit improved robustness to a wide range of adversarial
distortions. In Dapello et al. (2020), the authors use a hand-crafted set of features
designed to simulate the primary visual cortex (V1) as the first layer of a CNN. They
find that the addition of this ‘VOneBlock’ dramatically improves adversarial
robustness. These approaches work either by manipulating the environment or by
removing the learned component altogether. It remains to be seen whether approaches
to promoting similarity between CNNs and human vision that retain the data
distribution and don’t hard-code features can still provide these benefits. The work of
Deza and Konkle (2020a) explores the impact of foveation on learned representations
and finds evidence for improved robustness in foveated models.

In general, the majority of recent efforts in this space have focused on the contribution
made by the visual cortex, and V1 in particular, on the generalisation and performance
of human vision. In many cases, the impact of earlier visual processes such as foveation
and retinal feature extraction has been assumed to be negligible. The second objective
of this thesis is to consider whether these components of the visual pathway may have
been too readily dismissed and may yet lend a hand to the generalisation objective.

1.3 Outline and List of Contributions

This section gives an outline and lists the contributions of each chapter.

1.3.1 Chapter 2: From Photons to Visual Phenomenology

This chapter gives a brief overview of the key concepts from vision science that are
relevant to the work presented here.
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1.3.2 Chapter 3: Colour and Classification

This chapter considers the extent to which colour is used by CNNs when classifying
images. The contributions are:

• A review and reimplementation of key techniques for the production of
super-stimuli.

• The introduction of the concept of a trait group; a set of classes that all are
characterised by a particular trait.

• Specification of two trait groups for the ImageNet data set. The first, ‘fruits’, are
well characterised by a particular colour. The second, ‘animals’ are characterised
jointly by particular colours and patterns.

• Demonstration that super-stimuli for these trait groups effectively capture the
characteristic colours, suggesting that CNNs do rely on colour for their
classifications.

• Further demonstration that the super-stimuli depict characteristic shape cues for
their target classes, presenting new evidence in support of a representation of
shape in deep convolutional networks.

1.3.3 Chapter 4: Architecture and Opponency

The contributions made in this chapter have been published as Harris et al. (2019a) in
the NeurIPS 2019 workshop on Shared Visual Representations in Human and Machine
Intelligence and as Harris et al. (2020b) in Neural Computation. The main
contributions are:

• A review of the physiology and psychophysics of early colour vision.

• A review of opponency in artificial vision systems.

• A method for the analysis of spatial, colour, and double opponency in deep
CNNs.

• A method for determining the distribution of stimuli that elicit the most
excitatory and inhibitory responses in convolutional neurons.

• A method for inferring the hue sensitivity curve of a cell or layer in a network
using automatic differentiation.

• A colour variant of the RetinaNet model from Lindsey et al. (2019), trained over
a comprehensive range of hyper-parameters and assessed for it’s accordance with
the original model.
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• An in depth analysis of a single convolutional cell and discussion of how these
analyses relate to our proposed automated methods.

• Presentation and discussion of the results of our proposed methods on the
trained networks.

• A comprehensive set of control experiments across a range of different conditions.

• A discussion of how these results provide insight to the effect of convolutional
network architecture on the nature of learned opponency and colour tuning.

1.3.4 Chapter 5: Opponency and Robustness

This chapter details contributions made in our work presented as Harris et al. (2020a)
in the NeurIPS 2020 workshop on Shared Visual Representations in Human and
Machine Intelligence. The contributions are:

• An anatomically constrained ResNet variant.

• Reproduction of the experiments from Harris et al. (2020b) on the constrained
ResNet trained on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) (Russakovsky et al., 2015) data set.

• Extension of the methodology from Harris et al. (2020b) to further classify cells
as luminance opponent.

• Analysis and visualisation of receptive fields of cells in both constrained and
unconstrained networks.

• An application of our previously proposed technique for determining whether
networks capture colour information through the construction of super-stimuli
for a trait group, showing that even with a bottleneck size of one our model still
uses colour information.

• A comprehensive analysis of the impact of a bottleneck on the adversarial
robustness of our ResNet variant.

1.3.5 Chapter 6: Foveation and Function

Parts of this chapter were presented as Harris et al. (2019b) at the NeurIPS 2019
workshop on Shared Visual Representations in Human and Machine Intelligence. The
contributions are:

• Development of a convolutional model of foveation (the foveated convolution).
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• Demonstration that the addition of foveation to Spatial Transformer Networks
(STNs) (Jaderberg et al., 2015) improves localisation and classification
performance.

• Demonstration that the learned attention policies of a simple network with a
foveated convolution can be used as an effective preprocessing step enabling
much larger networks to generalise to highly translation variant settings.

• Analysis of receptive fields in foveated and non-foveated networks showing
evidence for a multi-modal representation that supports both classification and
localisation objectives.

• Demonstration that the natural phenomenon of a reduction in opponency in
peripheral vision also emerges in classification networks equipped with a foveated
layer.

• A method for determining whether cells prefer Red-Green or Blue-Yellow
opponent stimuli.

• Results showing that Red-Green preference is highest in the centre of the visual
field and reduces in the periphery for foveated networks, again matching
observations from biology.

1.3.6 Chapter 7: Attention and Memory

This chapter presents unpublished efforts to construct a deep model based on a
simplified psychological model of vision, incorporating concepts from the psychology
literature such as a working memory and a visual sketchpad. The contributions are:

• A deep model of pose-adjusted visual attention where the attention network is
based on a Spatial Transformer Network (STN).

• A method for constructing an inverted glimpse that enables the network to
sketch on a canvas in the glimpse region, producing an auto-encoding model.

• A demonstration that the glimpse resolution controls the sketching mode and can
induce a parts-based representation.

• A series of experiments showing that this parts-based representation is an
effective self-supervised feature.

1.3.7 Chapter 8: Conclusions and Future Work

This chapter summarises and provides suggestions for the further development of the
ideas and contributions presented in this thesis.
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Chapter 2

From Photons to Visual
Phenomenology

In this chapter, we review at a high level the findings from vision science that are of
relevance to this work. Our review charts a course through the visual system, tracking
light entering the eye as it gives rise to perception. At a high level, we divide the visual
system into three functional units: the eye, the optic chiasm and the thalamus, and the
primary visual cortex and the two streams.

Throughout this chapter we take a purely functional view of the visual system. That
is, we are concerned with enumerating precisely those visual components that could be
modelled with machine learning methods. Where relevant, we will review such
modelling attempts from the literature. We also ignore the role of dynamics; taking
the view that integrated spike trains (the number of activations in a given time frame)
are sufficient to explain cognition, or visual cognition at least.

2.1 The Eye

We begin our journey with the retina. First, light
hits the back of the eye causing photoreceptors (Rod or
Cone cells) to activate. These activations then propagate
through several layers of cells, finally reaching retinal
ganglion cells whose axons project down the optic nerve.
The distribution of photoreceptors and ganglion cells is
foveated with high density, and thus accuity, at the fovea
and low density in the periphery. We now discuss each of
these functional aspects of the eye in more detail.
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Figure 2.1: Channel response curves against wavelength for the three colour spaces
used in our experiments: RGB, LMSCAT02, and LMSHPE. CIE XYZ tristimulus values
are computed by transformation from wavelength (between 380 and 700) with the CIE
1931 2° standard observer colour matching function using the colour science Python
library (Mansencal et al.). Tristimulus values for each colour space are subsequently

computed by application of the relevant transformation matrix.

2.1.1 Photoreceptors

The two types of photoreceptor (cells which activate in response to light stimulus)
present in the eye are Rods and Cones. The key difference between Rods and Cones is
that Rod cells respond only to the amount of light present whereas Cone cells are
specialised for different wavelengths and thus encode colour. It is a common
misconception to think of Rod activations as providing brightness information,
influencing normal daylight vision. In fact, Rods are saturated in even moderately lit
environments and are responsible for our ability to see (without colour) in low-light
conditions. This is a useful addition to our visual tool-belt, but not of any great
relevance when modelling typical daylight vision.

Cone cells, on the other hand, can be thought of as the first transformation of visual
information in the visual system. In the trichromatic vision of Humans, there are three
Cone types, L, M, and S which are tuned to light of long, medium, and short
wavelengths respectively. These tunings are typically approximated as Red, Green, and
Blue, although this is a point of occasional controversy. Figure 2.1 shows the tuning
curves with respect to wavelength of RGB and two biologically inspired cone colour
systems: LMSCAT02, and LMSHPE. These cone colour spaces are obtained by
transformation from CIEXYZ space with the CAT02 (Moroney et al., 2002) and
Hunt-Pointer-Estévez (Hunt and Pointer, 1985; Estévez, 1981) transformation matrices
respectively. From the figure, we can see that the LMS colour spaces exhibit a more
pronounced S response and that the L and M channels tend to be directly proportional.
This contrasts with the inverse relationship between the R and G channels in RGB.
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Figure 2.2: (a) Wavelength change needed to elicit a just-noticeable difference in
hue for a human observer from Bedford and Wyszecki (1958). (b) Predicted similarity

derived from images of natural scenes from Long et al. (2006).

The ability to distinguish between light of different wavelengths in Humans is a
function of wavelength. Figure 2.2a shows this function, obtained by Bedford and
Wyszecki (1958) via the just-noticeable difference method. This is the change in
wavelength between two light sources required to elicit a just-noticeable difference in
perceived Hue. In Long et al. (2006) the authors further suggest that the reason for
this non-uniform spectral sensitivity derives from the statistics of natural scenes,
showing that the curve predicted from a data set of natural images (reproduced in
Figure 2.2b) bares a strong resemblance to that obtained for a human observer.
Although no component of early vision is necessarily wholly responsible for the
characteristic curve of wavelength discrimination, it is important to note that one way
to explain the discrimination curve is in terms of the cone responses (Zhaoping et al.,
2011). Indeed, Figure 2.1 serves to demonstrate that the choice of colour space acts as
the first feature in a visual pipeline, accentuating or masking changes in colour (and
impacting wavelength discrimination). This is a more direct explanation of the
phenomenon since scene statistics can be seen as indirectly controlling wavelength
discrimination through evolutionary modifications of cone properties. In Chapter 4 we
take inspiration from these experiments to propose a novel analysis of the colour
sensitivity of deep networks.

2.1.2 Properties of Ganglion Cell Receptive Fields

Following Adrian and Matthews (1928), Hartline (1938, 1940) discovered evidence for
different types of cellular behaviour to stimuli, and in particular found that inhibitory
interactions were sometimes revealed when multiple receptors were excited (Hartline
et al., 1952). Kuffler (1953) and Barlow (1953) investigated this finding further, and
discovered cells with spatial receptive fields that are opponent to each other. These
early results, obtained by presenting spots of light to different parts of the receptive
field, showed an antagonism (opponency) between an inner centre and outer surround.



10 Chapter 2. From Photons to Visual Phenomenology

0 2 4 6 8 10 12 14 16 18 20
0.0

0.5

1.0

1.5

2.0

2.5 ≈ 10µm

≈ 100µm

Eccentricity (mm)

G
an

gl
io
n
-C

on
e
C
el
l
R
at
io

Figure 2.3: Ratio of ganglion to cone cell density as a function of eccentricity from
the fovea. Approximate ganglion and cone cell densities taken from Curcio and Allen
(1990) and Curcio et al. (1990) respectively. Dendritic field size is based on that of
midget ganglion cells described by Dacey and Petersen (1992). The hatched region

represents the foveal center which we do not address in this work.

Nowadays, it is widely accepted that such ‘centre-surround’ cells can be found in the
retina and LGN (Hubel and Wiesel, 2004).

There is a connection between anatomy and the relative presence of linear and
non-linear cells in the retina. For example, midget cells, which are well approximated
by a linear model (Smith et al., 1992), are the most prevalent ganglion cell type in the
human retina (Dacey, 1993). In contrast, the most prevalent ganglion cell type in the
mouse retina is a non-linear feature detector that is thought to act as an overhead
predator detection mechanism (Zhang et al., 2012), not dissimilar to the ‘fly detectors’
and ‘bug perceivers’ observed by Barlow (1953) and Lettvin et al. (1959) respectively.
In their experiments with CNNs, Lindsey et al. (2019) suggest that the contrast
between the anatomy of the primate and mouse visual systems can be considered in
terms of network depth. The authors subsequently present evidence that the natural
differences in function derive from these associated differences in visual system
anatomy. In particular, deeper networks learn linear features in early layers, whereas
shallower networks learn more complex, non-linear, functions similar to those found in
mice retina.

2.1.3 Foveation

We can describe visual acuity in the retina in terms of the relative densities of cone
and ganglion cells at varying degrees of eccentricity from the fovea. We will also need
to consider the dendritic spread of ganglion cells in order to establish some
understanding of their field of view. An approximation of these statistics with a visual
demonstration of the dendritic spread is given in Figure 2.3. From the figure we can
see that oversampling occurs near the fovea with a ratio of two or more ganglion cells
for each cone cell. This falls off rapidly until, at the periphery, there are nearly ten
cone cells for each ganglion cell. At the same time, dendritic spread increases by a
factor of around ten.
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Figure 2.4: Foveated images based on ganglion cell distributions for different species,
reproduced from (Malkin et al., 2020).

Foveal mechanisms have attracted a following within deep learning for a range of tasks
such as gaze prediction (Zhang et al., 2017), object detection (Akbas and Eckstein,
2017), video processing (Wu et al., 2018) and the automated discovery of
discriminative visual elements (Matzen and Snavely, 2015). A common approach to
modelling foveation is image foveation. This is the process of resampling images with a
foveated sampling grid and has an established use in traditional image processing for
the purpose of source coding (Wang and Bovik, 2001). Some approaches to image
foveation, such as the approach from (Malkin et al., 2020) shown in Figure 2.4, allow
for the sampling grid to be adjusted based on ganglion cell distributions for different
species. In Deza and Konkle (2020b) the authors find evidence for increased robustness
to occlusions in networks trained on foveated images.

Another approach for modelling foveation is to introduce architectural modifications.
In Cheung et al. (2017), the authors show that an attention mechanism equipped with
a learnable sampling grid exhibits emergent foveation. Specifically, the grid nodes learn
to concentrate and reduce in size towards the centre of the field of view. The type of
sampling this mechanism learns to perform is analogous to foveation. The fact that
this emerges in a learnable attention mechanism is a strong validation that this type of
representation is desirable. Early deep visual attention mechanisms used a simple
model of foveation which involves extracting the chosen region of the image at several
scales before concatenating them together and passing them forward to subsequent
layers (Ba et al., 2014; Mnih et al., 2014). This improves localisation ability and also
enables convolutional layers to infer information regarding the size of an object by
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observing its presentation over the scale space. In Chapter 6 we introduce and study a
convolutional model of foveation that can be inserted into a deep network.

2.2 The Optic Chiasm and the Thalamus

The
next functional unit of the visual system that we address
contains the optic chiasm and the thalamus. The thalamus
is comprised of densely packed cell bodies referred
to as the thalamic nuclei. Two nuclei whose functions
are of interest here are the Lateral Geniculate Nucleus
(LGN) and the Thalamic Reticular Nucleus (TRN).

At the optic chiasm, nerve fibers are re-organised and
grouped according to the side of the visual field that they are stimulated by. Following
this, the fibres in the left hemisphere represent only the right visual field and vice versa.
This organisation serves to support stereoscopic vision. Throughout this thesis we
consider the eyes to act as one perceptive unit since stereopsis has only a limited affect
(Purves and Lotto, 2003). The truth of this statement can be easily verified should the
reader close one eye and note that depth perception continues largely unhindered.

Following the optic chiasm, the optic nerve innervates the LGN. The LGN has many
roles, but for our purposes we focus on just two: feature extraction, and visual
attention. Regarding feature extraction, the LGN performs a feature transform
resembling that of retinal ganglion cells. Regarding visual attention, it has been shown
that attention modulates neuronal activity in Macaque TRN and LGN (McAlonan
et al., 2008). This finding constitutes empirical evidence for the speculation of Crick
(1984) regarding the role of the TRN in selective visual attention.

2.2.1 Feature Extraction in the LGN

With respect to colour vision, the first major function of the LGN relates to the
discovery of two broad classes of cell that respond to colour: those that exhibit
opponent spectral sensitivity, and those (non-opponent) cells that do not. Experiments
by De Valois et al. (1966) discovered ‘spectrally opponent’ cells in the LGN of a
trichromatic primate which are excited by particular single-wavelength stimuli and
inhibited by others. Additionally, De Valois et al. (1966) discovered that broadly
speaking the cells could be grouped into those that were excited by red and inhibited
by green (and vice-versa), and cells that were excited by blue and inhibited by yellow
(and vice-versa). Indeed, these cells would appear to align with Hering’s unique hues
(red, green, blue, and yellow) (Hering, 1920), which are unique in the sense that none



2.2. The Optic Chiasm and the Thalamus 13

of them can be viewed as a combination of the others. However, the experiments from
Derrington et al. (1984) reveal that the cardinal axes of the chromatic response in the
macaque LGN are not aligned to Hering’s unique hues but to cone responses. The
consequence of this finding is that spectrally opponent cells in early primate vision are
best described as ‘cone opponent’. It has similarly been argued that so called red /
green opponency is better described as magenta / cyan and that these should be
viewed as complementary colours, rather than opponent (Pridmore, 2005, 2011). For a
more in-depth exposition of the contention between the physiological and
psychophysical understanding of spectral opponency see Shevell and Martin (2017).
Cells that are ‘spectrally non-opponent’ have also been observed in primate LGN;
these are cells which are not sensitive to specific wavelengths but respond to broad
range of wavelengths in the same way (either inhibitory or excitatory) (De Valois
et al., 1958a; Jacobs, 1964).

Following De Valois et al.’s initial findings, there has been a realisation that cells
responsive to colour could be further grouped into ‘single opponent’ and ‘double
opponent’ cells. The defining characteristic of double opponent cells is that they
respond strongly to colour patterns but are non-responsive or weakly responsive to
full-field colour stimuli (e.g. solid colour across the receptive field, slow gradients or
low frequency changes in colour) (Shapley and Hawken, 2011). In the retina, double
opponency presents as spectrally opponent cells with centre-surround organisation
(Troy and Shou, 2002). In the primary visual cortex, there are both the spectrally
opponent cells with oriented receptive fields mentioned above and non-oriented double
opponent cells in the cytochrome oxidase rich blobs (Livingstone and Hubel, 1984).
Note that one interpretation is that double opponent cells are both spatially and
spectrally opponent.

Lehky and Sejnowski (1999) use a four layer neural network to map cone responses to
a population of Gaussian tuning curves in CIE colour space and demonstrate colour
opponent neurons in the hidden layers. Wang et al. (2015) use Recursive ICA to
automatically learn visual features that accord with those found in the early visual
cortex. Wang et al. (2015) demonstrate that the features in the first ICA layer, trained
on natural images, are oriented-edges with the colour opponent characteristics typical
of V1 neurons (dark-light, yellow-blue, red-green).

In Chapter 4, we consider opponency in deep CNNs, for which some early approaches
used variants of ICA to learn the filters (Le et al., 2011). Modern CNNs are trained
using the back-propagation algorithm, similar to the work of Lehky and Sejnowski
(1988, 1999), such that the features learned are dependent on the objective function of
the model. In addition, CNNs are typically constructed with many more layers of
non-linear feature extraction than the one or two layers used in ICA. As a result,
CNNs permit a notion of functional organisation: ‘what happens where’ rather than
just ‘what happens’. Due to the connections between CNNs and ICA, one might
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reasonably expect CNNs to exhibit emergent opponency. This is indeed the case, with
multiple works pointing out that learned filters in early layers appear to be spatially
and colour selective (Krizhevsky et al., 2012; Zeiler and Fergus, 2014; Lindsey et al.,
2019; Rafegas and Vanrell, 2018; Olah et al., 2020a).

Rafegas and Vanrell (2018) propose an automated measurement of the spectral
selectivity of convolutional neurons. For their approach, the authors find image
patches which maximally excite each neuron and construct an index with high values
when these patches are consistent in colour. The authors further suggest that a neuron
is double opponent if it is selective to two distinct colours that are roughly opposite in
hue. Note that these definitions of opponency are not direct correlates of the
previously discussed definition. The key difference is that the electrophysiological
definition requires an understanding of the stimuli which inhibit cells in addition to the
stimuli which excite them. This is important since although cells which are excited by
two colours may be projecting the input on an opponent axis, they may also just be
activating for both colours indiscernibly. In Chapter 4 we introduce an automated
assessment of colour opponency that alleviates this issue. The double colour selective
neurons found by Rafegas and Vanrell (2018) are typically red-cyan, blue-yellow and
magenta-green. These do not closely reflect the opponent axes of the primate LGN.
This is to be expected since cone opponency observed in nature translates to channel
opponency in a convolutional model, and so we can reasonably expect the opponent
axes to be aligned with extreme RGB values rather than cone responses or Hering’s
unique hues (although note that these are a subset of the RGB extrema).

2.2.2 Visual Attention

Put simply, visual attention is the act of choosing what to look at. It is widely held
that our visual attention is the result of two processes: bottom-up attention, and
top-down attention. Bottom-up describes real-time attention driven by stimulus
whereas top-down describes attention that is goal oriented and driven by context. Of
these two processes, deep models of visual attention generally seek to model the
former. However, deep models of visual attention may still be divided into two groups:
recurrent, and non-recurrent. Although it is tempting to describe these as dynamic
and static attention models, both types are typically only applied to static images and
thus do not truly meet any definition of dynamic attention.

The archetypal deep recurrent visual attention model is the Deep Recurrent Attention
Model (DRAM) from Ba et al. (2014) shown in Figure 2.5. It consists of two Long
Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997): the
emission network and the glimpse network. The emission network defines a glimpse
policy (a series of consecutive glimpses) over the input image. The glimpse network
integrates visual features from this glimpse sequence in a hidden state that can then



2.2. The Optic Chiasm and the Thalamus 15

l̂1

r
(1)
1

r
(2)
1r

(2)
0

l̂2 l̂3 l̂4

context

glimpse

classification

y1

Icoarse

emission

r
(2)
2 r

(2)
3 r(2)

n

r(1)
nr

(1)
3r

(1)
2

l̂n+1

ys

(x1, l1) (x2, l2) (x3, l3) (xn, ln)

Figure 2.5: Deep Recurrent Attention Model (DRAM), reproduced from (Ba et al.,
2014)
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Figure 2.6: Spatial Transformer Network (STN), reproduced from (Jaderberg et al.,
2015)

both inform future policy (by providing input to the emission network) and be used for
downstream tasks such as classification. The initial input to the emission network is a
context feature derived from a downsampled version of the image which could be seen
as facilitating a form of top-down attention.

A non-recurrent model of visual attention that we will build on in Chapters 6 and 7 is
the Spatial Transformer Network (STN) from Jaderberg et al. (2015) shown in
Figure 2.6. This is a differentiable layer that regresses the co-ordinates of an affine
transform which is then applied to it’s input. The STN can be broken down into three
stages: regression of the attention co-ordinates (localisation net), sampling of the
interpolation grid (grid generator), and application of the interpolation grid to the
layer input (sampler). The regression network is typically a fully connected network,
although any architecture may be used, with an output for each of the six affine
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co-ordinates. From these six co-ordinates an interpolation grid is then generated. This
grid with two values for each output pixel which describe the co-ordinates in the input
(as floating point values) that should be sampled to give the output. In the final step,
these co-ordinates are then sampled from the input with bilinear interpolation. In this
way, each output pixel has a gradient with respect to multiple input pixels. This layer
can be inserted at any point in a network to enable it to apply a pose-normalising
transform. It is assumed that this enables the network to become invariant to affine
transforms of the input. However, we will later show that there are several failure
modes of this approach that do not give the desired behaviour.

Yet another bisection one might make is between soft and hard attention. In hard
attention a non-differentiable step is performed to extract the desired pixels from the
image to be used in later operations. Conversely, in soft attention, differentiable
interpolation is used. The training mechanism differs between the two approaches.
Early hard attention models such as the Recurrent Attention Model (RAM) and the
Deep Recurrent Attention Model (DRAM) used the REINFORCE algorithm to learn
an attention policy over non-differentiable glimpses (Mnih et al., 2014; Ba et al., 2014).
More recent architectures such as Spatial Transformer Networks (STNs) (Jaderberg
et al., 2015), Recurrent STNs (Sønderby et al., 2015) and the Enriched DRAM
(EDRAM) (Ablavatski et al., 2017) use soft attention and are trained end to end with
backpropagation. The DRAM model and its derivatives use a two layer LSTM to learn
the attention policy. The first layer is intended to aggregate information from the
glimpses and the second layer to observe this information in the context of the whole
image and decide where to look next. The attention models described thus far
predominantly focus on single and multi-object classification on the MNIST and Street
View House Numbers (Goodfellow et al., 2013) datasets respectively. Conversely, the
DRAW network from Gregor et al. (2015) is a fully differentiable spatial attention
model that can make a sequence of updates to a canvas in order to draw the input
image. Here, the canvas acts as a type of working memory which is constrained to also
be the output of the network.

Visual attention is intimately related to foveation. One might argue that we attend to
visual scenes because our vision is foveated for efficiency, to which another might
counter that our vision is foveated because it improves performance when attending to
visual scenes. We explore this relationship between performance and efficiency in deep
networks in Chapter 6.
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Figure 2.7: Spatial tuning curves for cells in the Mouse Lateral Geniculate Nucleus
(LGN) from Zhao et al. (2013).

2.3 The Primary Visual Cortex and the Two Streams

The final functional unit of the
visual system that we address contains the primary visual
cortex and the ventral and dorsal visual streams (the two
streams). Combined, these structures are responsible for
higher order visual processing such as: the formation of a
notion of object, spatial awareness and scene composition,
and the construction and maintenance of visual memory.

2.3.1 Feature Extraction in the Visual Cortex

In contrast to the retina and LGN, the majority of cells in primate V1 are orientation
tuned (Livingstone and Hubel, 1984). One approach to analysing this spatial
selectivity involves the presentation of drifting high contrast sinusoidal gratings
(Levick and Thibos, 1982; De Valois et al., 1982; Lennie et al., 1990; Johnson et al.,
2001, 2008; Zhao et al., 2013). For example, one can characterise orientation selectivity
through presentation of gratings with fixed frequency and contrast at a range of
orientations (Levick and Thibos, 1982; Lennie et al., 1990; Johnson et al., 2008; Zhao
et al., 2013). Similarly, a spatial frequency tuning curve can be obtained through the
use of a fixed orientation and contrast (De Valois et al., 1982; Johnson et al., 2001).
Figure 2.7 shows examples of spatial tuning curves obtained for Mouse LGN cells with
two groups of stimuli, reproduced from Zhao et al. (2013). These analyses again grant
a notion of spatial antagonism (spatial opponency herein) in the cortex, where there
exists a grating configuration that excites the cell and an opponent grating
configuration which inhibits the cell (Shapley and Hawken, 2011). Note that, although
non-typical, presentation of grating stimuli have also been used to detect
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centre-surround organisation in the retina (Bilotta and Abramov, 1989, e.g.) since
these are cells which are highly tuned to frequency but not orientation selective.

The notion of a spatially opponent receptive field has a long history in computer
vision. Notably, the Marr-Hildreth algorithm for edge detection (Marr and Hildreth,
1980) performs a Laplacian of Gaussian (often approximated by a Difference of
Gaussian (DoG)) which resembles the function performed by centre-surround ganglion
cells in the retina. Oriented-edge receptive fields were also modelled in early
approaches to visual recognition. In particular, edge orientation histograms
(McConnell, 1986; Freeman and Roth, 1995) and later histograms of oriented gradients
(Dalal and Triggs, 2005) are similar in principle to a layer of neurons with
oriented-edge receptive fields with different rotation, frequency, and phase. DoG and
edge orientation assignment are also integral components of the well-known Scale
Invariant Feature Transform (SIFT) descriptor (Lowe, 1999).

In addition to approaches which directly model opponent receptive fields, several
studies have shown emergent spatial opponency in learning machines. For example,
Lehky and Sejnowski (1988) found evidence for orientation selectivity in a neural
network trained with back-propagation to determine the curvature of simple surfaces
in procedurally generated images. Olshausen and Field (1996) demonstrated the
emergence of basis functions which resemble oriented receptive fields when learning an
efficient sparse linear code for a set of images. Similar results are presented by Bell and
Sejnowski (1997) who show that a nonlinear ‘infomax’ network which performs
Independent Component Analysis (ICA), trained on images of natural scenes, produces
sets of visual filters that show orientation and spatial selectivity. The second layer
filters in the model of Wang et al. (2015) are sensitive to edges of different frequency
and orientation, reminiscent of cells in V1.

In V1, it has been suggested that cells described as selective to orientation but not
colour by Livingstone and Hubel (1984) are in fact colour opponent but with
unbalanced cone inputs such that they respond to general changes in luminance
(Lennie et al., 1990; Johnson et al., 2001). More recently, techniques such as functional
Magnetic Resonance Imaging (fMRI) have been used to explore population coding of
vision and colour related processes (e.g. Engel et al., 1997; Seymour et al., 2015;
Boynton, 2002; Wade et al., 2008). In particular, studies have shown strong responses
in V1 to stimuli that are preferred by spectrally opponent cells (Kleinschmidt et al.,
1996; Engel et al., 1997; Schluppeck and Engel, 2002). The work of Wade et al. (2008)
validates that the early visual system of the macaque (where many of the single-cell
measurements of colour vision have been taken) correlates strongly with humans in
terms of overall population responses to chromatic contrast; this is important to our
work in Chapter 4 since we seek functional archetypes that are of general efficacy in
visual intelligence.
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Ventral Stream

Dorsal Stream

Figure 2.8: The two streams hypothesised by Goodale and Milner (1992). The ventral
stream, the ‘what’ pathway, starts in the primary visual cortex and flows into the
temporal lobe (located on the ventral surface of the brain). The dorsal stream, the
‘where’ pathway, again starts in the primary visual cortex but flows into the parietal

lobe (located on the dorsal surface of the brain).

2.3.2 What and Where

The two streams hypothesis suggests that in human vision there exists a ‘what’
pathway and a ‘where’ pathway (Goodale and Milner, 1992). The ‘what’ pathway is
concerned with recognition and classification tasks and the ‘where’ pathway is
concerned with spatial attention and awareness. Figure 2.8 depicts the location of two
streams in the brain.

In computer vision, the vast majority of recent efforts have focused solely on object
recognition and as such the ventral visual stream is typically cited as the basis of any
biological inspiration. In contrast, in the DRAM model discussed in Section 2.2.2, a
multiplicative interaction between the pose and feature information, first proposed by
Larochelle and Hinton (2010), is suggested to emulate the role of the two streams.
Humans are endowed with two methods of spatial understanding. The first is the
ability to infer pose from visual cues and the second is the knowledge we have of our
own pose (Gibson, 1950). The pose features in the DRAM model derive from the
location of the glimpse and thus act as an analogue of the latter. It is expected that
the glimpse CNN (which derives visual features from each glimpse) can account for the
former. In Chapter 6 we will study the ability of CNNs to infer pose and show that it
can be improved dramatically by foveation.

2.3.3 Memory

Memory is generally split into three temporal categories, immediate memory, short
term (working) memory and long term memory (Purves et al., 1997). Weights learned
through error correction procedures in a neural network are analogous to a long term
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memory in that they change gradually over the course of the models existence. We can
go further to suggest that the activation captured in the hidden state of a recurrent
network corresponds to an immediate memory. There is, however, a missing component
in current deep architectures, the working memory. One model of working memory is
that of Baddeley and Hitch (1974) which includes a visual sketchpad that allows
individuals to momentarily create and revisit a mental image that is pertinent to the
task at hand. This sketchpad requires the integration of ‘what’ and ‘where’ information
from the two streams. In Chapter 7 we study a deep network that can reconstruct it’s
input through a series of sketches inspired by the notion of a visual sketchpad.
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Chapter 3

Colour and Classification

Providing a convolutional network with colour
images instead of greyscale gives only a mild improvement
in classification performance. The reason for this seems
simple: colour information is not particularly important
to the classification task. However, several works have
explored colour processing in deep convolutional networks
(Krizhevsky et al., 2012; Zeiler and Fergus, 2014; Lindsey
et al., 2019; Rafegas and Vanrell, 2018; Olah et al., 2020a).
If colour information is not of value to the classification task, then that would call in to
question the validity of analysing colour representations in classification networks.
This raises the important question of how we can determine if a network relies on
colour to inform it’s decisions.

Visualising learned features is well established in deep learning. The work of Erhan
et al. (2009) used gradient ascent to construct an input (a super-stimulus) that
maximised the networks prediction logit for a particular class. The super-stimuli
produced by these early works are noisy images that rarely resemble the target class.
In fact, such unconstrained gradient ascent was also used in early demonstrations of
the phenomenon of adversarial examples (Szegedy et al., 2013). Many subsequent
visualisation works, particularly the works of Olah et al. (2017) and Mordvintsev et al.
(2018), have built on this to propose mechanisms through which more visually
appealing super-stimuli may be constructed. However, we believe that the full extent
of the value that these approaches can provide has not yet been demonstrated.

In this chapter we contend that super-stimuli may hold the key to understanding
whether ImageNet-trained networks use colour to make their decisions. We propose
generating super-stimuli for a set of classes that are all characterised by a particular
colour and assessing whether these colours are present. We start by reviewing
approaches for generating super-stimuli. Next, we define a set of fruit classes, chosen
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for their characteristic colours, and generate super-stimuli for each using the reviewed
methods for a range of network architectures. Our results show that the characteristic
colours are recovered in the generated super-stimuli for some architectures and not
others. This presents a concrete demonstration that convolutional networks do
sometimes use colour information for their classifications. Anecdotally, our results
suggest that the characteristic colours are recovered more readily in the super-stimuli
of more performant architectures. We further note that the super-stimuli, particularly
those produced by a Compositional Pattern Producing Network (CPPN) following the
approach of Mordvintsev et al. (2018), capture the characteristic shape of the target
class in many cases. This perhaps disagrees with the conventional wisdom and key
results such as the findings of Geirhos et al. (2019), although it may also be considered
as complementary to this work since the authors only argue that CNNs are biased
towards texture rather than wholly consumed by it. We subsequently extend our
approach to propose an additional set of classes that are characterised jointly by their
colour and pattern: animals. We again find good evidence for the use of colour
information when classifying images as one of these classes. Regarding shape, the
super-stimuli produced for the animal set arguably capture the characteristic shapes of
their target classes even more closely. This is again most evident for stimuli generated
with a CPPN.

3.1 Feature Visualisation

In this section, we review approaches for constructing super-stimuli, particularly
following the work of Olah et al. (2017). In essence this constitutes a collection of
tricks and approaches that each improve the quality of generated visualisations. We go
on to review an approach to using Compositional Pattern Producing Networks
(CPPNs) from Stanley (2007) applied to the construction of super-stimuli by
Mordvintsev et al. (2018).

3.1.1 Gradient Ascent With Raw Pixels

To establish a baseline, we first show the result of gradient ascent in pixel space
without any amendments in Figure 3.1. The image was produced by optimizing the
input of a ResNet-18 to maximise the output for the hummingbird class (94).
Although some mild texture is present, the image is noisy and bears no resemblance to
a hummingbird. As previously mentioned, the lack of resemblance relates to the well
known failure of CNNs to generalise out of distribution and there susceptibility to tiny
adjustments of the input that is also responsible for the phenomenon of adversarial
examples (Szegedy et al., 2013). To produce more interpretable super-stimuli, we must
therefore look to constrain the input to the space of natural images.
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Figure 3.1: Gradient ascent in pixel space to maximise the output for the humming-
bird class (94) of an ImageNet-trained ResNet-18.

Figure 3.2: Gradient ascent in colour-corrected pixel space to maximise the output
for the hummingbird class (94) of an ImageNet-trained ResNet-18.

3.1.2 Colour Correlation

The first approach taken by Olah et al. (2017) to improve the quality of generated
super-stimuli is to perform gradient ascent in a de-correlated pixel space. The
motivation for this is that gradient ascent treats the channels of the input as
independent. However, in reality, the R, G, and B values of natural images are not
independent and are instead correlated. As a result, gradient ascent on the pixel values
can produce colours that would not be found in natural images. To address this, the
authors propose to correlate the colour channels of the input according to statistics
taken from the ImageNet data set before passing it to the model so that gradient
ascent is performed in a de-correlated colour space. Denoting the de-correlated
channels as XYZ, we obtain the RGB model input with∣∣∣∣∣∣∣∣

0.5628 0.1948 0.0433
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Figure 3.2 shows the result of the hummingbird ascent in the de-correlated colour
space. The resultant super-stimulus now contains much more natural colours in
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Figure 3.3: Gradient ascent in colour-corrected pixel space with random spatial shifts,
scales, and rotations to maximise the output for the hummingbird class (94) of an

ImageNet-trained ResNet-18.

comparison to the result from Figure 3.1.

3.1.3 Augmentation

The second technique that can be employed to improve the quality of generated
super-stimuli is data augmentation. This regularisation technique is commonly used
elsewhere in the deep learning literature and consists of applying random transforms to
the input at each step. We can use this technique in gradient ascent with one caveat:
the augmentations must be differentiable. Many different augmentation techniques can
be employed and the exact recipe can be tuned to obtain the best results, however, for
our purposes we have found a combination of random scale, random rotation, and
spatial jitter (where the input is shifted vertically and horizontally by a random
number of pixels) introduced by Mordvintsev et al. (2015) to work well. By employing
this technique, we force the super-stimulus to represent the target in a way that is
robust to spatial shifts, changes in scale, and rotations. Figure 3.3 shows the result of
the hummingbird ascent with the addition of data augmentation. The visual artefacts
present in this super-stimulus are much larger and more defined than in the previous
attempts and it can now be said to resemble in some way a hummingbird.

3.1.4 Fourier Space

We have seen how results can be improved by performing ascent in a decorrelated
colour space. Another form of correlation prevalent in natural images is spatial
correlation. The final innovation of Olah et al. (2017) is to perform gradient ascent on
the parameters of an image in Fourier space. The motivation for this is that a spatially
consistent (that is, equal in all spatial positions) correlation can be modelled by
independent variables in Fourier space. An example given by the authors to illustrate
this face is to consider that a convolution can express a spatially consistent correlation.
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Figure 3.4: Gradient ascent in colour-corrected Fourier space with random spatial
shifts, scales, and rotations to maximise the output for the hummingbird class (94) of

an ImageNet-trained ResNet-18.

Figure 3.5: Gradient ascent on the parameters of a colour-corrected CPPN with
random spatial shifts, scales, and rotations to maximise the output for the hummingbird

class (94) of an ImageNet-trained ResNet-18.

In Fourier space, by the convolution theorem, such a convolution becomes a pointwise
multiplication. To implement this technique, we differentiably apply the inverse
Fourier transform to the image parameters before then colour correcting and
augmenting the image. Figure 3.4 shows the super-stimulus generated with this
technique. Two observations can be made regarding this result. First, it resembles a
natural image much more closely than our previous attempts. Second, the
super-stimulus now recovers textures, patterns, and colours that we would tend to
associate with a hummingbird. This result shows that although there is a space of
super-stimuli that do not resemble the target class according to a human observer,
there is a also a space of equivalent super-stimuli that do. This approach is of most
utility when we wish to study super-stimuli that are constrained to the realm of
natural images rather than out-of-distribution artefacts.

3.1.5 Compositional Pattern Producing Networks (CPPNs)

An alternative image parametrisation in the same vein as gradient ascending in Fourier
space is the Compositional Pattern Producing Network (CPPN) (Stanley, 2007). A
CPPN is a network which maps coordinates x and y to RGB values. In the context of
the production of super-stimuli, Mordvintsev et al. (2018) perform gradient ascent to
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learn the weights of a CPPN. The CPPN is implemented as a multi-layer CNN with
1× 1 filters whose input is a grid of coordinates. The result of this parametrisation for
the hummingbird ascent (again using colour correction and augmentation) is given in
Figure 3.5. The figure appears glassy and with bold colours and shapes, a key
characteristic of super-stimuli generated with this approach. This example arguably
resembles a hummingbird most closely out of all the techniques demonstrated here,
capturing its vibrant colours and shape characteristics.

3.2 Methods

In this section we introduce our approach to characterising how classifiers use colour
through the production of super-stimuli. We introduce the notion of a trait group; a
collection of classes that are characterised by a particular property such as a
characteristic colour or pattern. We subsequently specify two such trait groups that
will be used in our experiments.

Humans naturally form a strong association between object classes and particular
attributes or traits. For example, it is unambiguously true that we associate oranges
with being orange. Indeed, if shown a picture of an orange and asked to explain how
you know it is an orange, while your may be extraordinarily verbose it would almost
surely include a statement of this simple fact.

We take the view that super-stimuli represent a collection of the visual features that
are required in order for the network to classify an image as belonging to the target
class. As such, an effective test of whether CNN classifiers use colour information in a
manner that is at all sensible is to produce super-stimuli for classes that are well
characterised by their colour. For example, if a network does not effectively require
that an image classified as containing an orange is orange in colour then, we argue, it
is likely that the network does not make meaningful use of colour anywhere. It would,
however, be flippant to form such a judgement on the basis of super-stimuli for a single
class. We therefore suggest using a group of classes that are all well characterised by a
common trait.
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For our experiments, the first trait group we define is that of fruits (with the
corresponding ImageNet class index given in brackets)

fruits = {strawberry(949),

lemon(951),

apple(948),

orange(950),

pomegranate(957),

pineapple(953)} .

These fruit classes are all well characterised by their colour.

Recent efforts, most notably from Geirhos et al. (2019), have shown that
ImageNet-trained CNNs are biased towards texture information and tend to ignore
shape. It is therefore relevant to ask whether networks rely on both colour and texture
/ pattern when classifying an image as a tiger for example, or on texture / pattern
alone. To this end, we additionally define the animals trait group (with the
corresponding ImageNet class index given in brackets)

animals = {tiger(292),

cheetah(293),

brown bear(294),

badger(362),

zebra(340),

ladybird(301)} .

These classes are all jointly characterised (at least to human observers) by a
combination of colour and texture / pattern.

3.3 Results

In this section we report our results producing super-stimuli for a range of
ImageNet-trained convolutional networks for our two trait groups: fruits and animals.
We compare super-stimuli for the following pretrained architectures: AlexNet
(Krizhevsky et al., 2012), VGG-16 (Simonyan and Zisserman, 2014), Inception-V1
(Szegedy et al., 2015), MobileNet-V2 (Sandler et al., 2018), and ResNet-50 (He et al.,
2016). To produce the super-stimuli, we use both the Fourier space technique from
Olah et al. (2017) and the CPPN technique from Mordvintsev et al. (2018) that were
explored in Section 3.1.
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Figure 3.6: Super-stimuli for the ‘fruits’ trait group for a range of ImageNet-trained
CNNs obtained by gradient ascent in Fourier space following Olah et al. (2017).

3.3.1 Fruits - Fourier Space

Figure 3.6 gives super-stimuli for the ‘fruits’ trait group produced by gradient ascent
on image parameters in Fourier space following Olah et al. (2017). The results show
that the networks do, on the whole, characterise the fruit classes by their colour. This
is particularly the case for ResNet-50 where all of the super-stimuli include the correct
colour for their corresponding class. The super-stimuli for AlexNet, VGG-16, and
Inception-V1 do generally include the characteristic colour, but also multiple vibrant
artefacts that would not typically be associated with the fruit classes such as blues and
purples. These colours are also present in the super-stimuli for the other models but
are much less dominant. This suggests that AlexNet, VGG-16, and Inception-V1 are
less selective regarding colour when classifying images as one of our fruit classes
compared to MobileNet-V2 and ResNet-50.
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Figure 3.7: Super-stimuli for the ‘fruits’ trait group for a range of ImageNet-trained
CNNs obtained by gradient ascent on the parameters of a CPPN following Mordvintsev

et al. (2018).

3.3.2 Fruits - CPPN

Figure 3.7 gives super-stimuli of the ImageNet-trained models for the ‘fruits’ trait
group obtained by learning the parameters of a CPPN following Mordvintsev et al.
(2018). The results again demonstrate that CNNs do generally associate each fruit
class with its characteristic colour. The observation that AlexNet, VGG-16, and
Inception-V1 are not as selective regarding colour is reiterated here. For example, the
pineapple super-stimuli do not include any of the characteristic yellow-orange of
pineapple flesh and instead include intense reds that would be construed as pineapple
coloured. Similarly, the orange super-stimuli for these networks mostly populated by
greens, blues, and reds. Somewhat strikingly, the super-stimuli produced with this
approach include characteristic shapes that are associated with the target class. For
example, the Inception-V1 and ResNet-50 examples both depict a somewhat realistic
strawberry shape. This is particularly true for the ResNet-50 which correctly places a
green stalk at the top of the strawberry. For another example, consider the
MobileNet-V2 super-stimulus for pomegranate, where seeds are enveloped by a layer of
pith. This disagrees somewhat with the findings of Geirhos et al. (2019) which would
suggest that we should predominantly recover texture and colour in these super-stimuli.
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Figure 3.8: Super-stimuli for the ‘animals’ trait group for a range of ImageNet-trained
CNNs obtained by gradient ascent in Fourier space following Olah et al. (2017).

3.3.3 Animals - Fourier Space

In Figure 3.8 we give super-stimuli for the ‘animals’ trait group produced by gradient
ascent on image parameters in Fourier space following Olah et al. (2017). In contrast
with the results for the ‘fruits’ group, the images here do not reflect the characteristic
colours as clearly. Instead, the images presented here predominantly show the
characteristic texture and occasionally shape cues of their target classes. For example,
although there is a slight difference in colour between the tiger and cheetah images for
AlexNet they are more clearly differentiated by the different patterns (stripes and
spots) present. There are several exceptions to this, however. For example, all
networks except Inception-V1 recover both the characteristic shape and deep red colour
of a ladybird. There are additional cases where characteristic shapes are recovered. In
particular, the bear images include multiple allusions to bear ears. Similarly, the zebra
stimulus for MobileNet-V2 appears to resemble the hind legs of a zebra.
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Figure 3.9: Super-stimuli for the ‘animals’ trait group for a range of ImageNet-trained
CNNs obtained by gradient ascent on the parameters of a CPPN following Mordvintsev

et al. (2018).

3.3.4 Animals - CPPN

Figure 3.9 shows the super-stimuli obtained for the ‘animals’ trait group by optimising
the parameters of a CPPN following Mordvintsev et al. (2018). Several interesting
observations can be made regarding this figure. Firstly, the images do generally
capture the characteristic colours of their corresponding classes. This is true with the
notable exception of the Inception-V1 images. Here, the cheetah is given as red and
the bear and ladybird as green. For the VGG-16, the tiger and cheetah images appear
to be entirely noise artefacts without any real resemblance to their target classes. The
second interesting observation that can be made is that the MobileNet-V2 and
ResNet-50 images recover high-quality characteristic shape cues such as: a bears ear, a
badgers snout, a tigers leg, or a ladybirds shell. This constitutes a clear demonstration
that certain ImageNet-trained networks do employ an uncanny representation of shape
when classifying images.
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3.4 Summary

In this chapter we have considered whether CNNs use colour to their advantage when
classifying images. To this end, we reviewed and re-implemented approaches to the
production of super-stimuli with the aim of generating super-stimuli for classes that
are well characterised by colour. Next, we proposed two groups of such classes which
we refer to as trait groups: fruits, and animals. We generated stimuli for these groups
for a range of CNN architectures using gradient ascent in Fourier space and gradient
ascent on the parameters of a CPPN. Our results show that the characteristic colours
of the classes are recovered in the super-stimuli. Furthermore, the super-stimuli for
some models bore an uncanny likeness to their subjects not just in terms of colour but
also in terms of shape and composition, particularly when generated with a CPPN. It
could be suggested that there is an inductive bias in the CPPN approach that causes
this shape likeness. However, although such a bias could explain the production of
natural shapes, it cannot account for the recovery of characteristic shapes. Instead, the
presence of characteristic shapes can only be explained by a selectivity of the model (if
the model places a greater weight on colour and texture cues as observed by Geirhos
et al. (2019)). Ultimately, our work here proposes a new application for super-stimuli
when twinned with targets that are characterised by a particular trait of interest and
presents new evidence for the representation of shape in deep convolutional networks.
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Chapter 4

Architecture and Opponency

The tendency for learning machines to exhibit
oriented-edge receptive fields, similar to those found
in nature, has long been observed (Lehky and Sejnowski,
1988; Olshausen and Field, 1996; Bell and Sejnowski,
1997; Shan et al., 2007; Wang et al., 2015; Krizhevsky
et al., 2012; Lindsey et al., 2019; Olah et al., 2020a).
However, learning machines rarely exhibit the functional
organisation found in nature. In convolutional neural
networks, we typically find oriented-edge receptive fields in early layers, rather than a
progression from centre-surround receptive fields to oriented-edge receptive fields as is
common in biological vision (Hubel and Wiesel, 2004). In an important work, Lindsey
et al. (2019) demonstrate that the addition of a bottleneck to a deep convolutional
network can induce centre-surround receptive fields, suggesting a causal link between
anatomical constraints and the nature of learned visual processing. In order to refine
our understanding of this causal relationship, we pursue an electrophysiological
interpretation of convolutional networks which incorporates opponency and colour
tuning.

Cells with centre-surround and oriented edge receptive fields are spatially opponent.
From the classic work of Kuffler (1953), Hubel and Wiesel (1962, 2004) and others
(summarised in Troy and Shou (2002) and Martinez and Alonso (2003)), these neurons
form the building blocks of feature extraction in the primary visual cortex. Formally, a
neuron that is excited by a particular stimulus and inhibited by another in the same
stimulus space is said to be opponent to that space. For example, if a neuron is excited
by stimulus in some part of the visual field and inhibited in another, it is spatially
opponent. Alternatively, if a neuron is excited by stimulus of a certain wavelength and
inhibited by stimulus of another, it is spectrally opponent. Spectral opponency, first
hinted at by the complementary colour system from Goethe (1840) and later detailed
by Hering (1920), was only observed and characterised at a cellular level around 1960
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(De Valois et al., 1958b; Wagner et al., 1960; Wiesel and Hubel, 1966; Naka and
Rushton, 1966; Daw, 1967). Combined, the theories of spatially opponent feature
extraction in the visual cortex (Kuffler, 1953; Hubel and Wiesel, 1962, 2004; Troy and
Shou, 2002), trichromacy (Young, 1802; Helmholtz, 1852; Maxwell, 1860), and spectral
opponency (De Valois et al., 1966) constitute a deep understanding of the early layers
of visual processing in nature.

The notional elegance of the above theories has served to motivate much of the
progress made in computer vision, most notably including the development of
multi-layer (deep) Convolutional Neural Networks (CNNs) (Le Cun et al., 1990; Bottou
et al., 1994; Le Cun et al., 1995) that are now so focal in our collective interests.
Multi-layer CNNs are learning models designed to mimic the functional properties,
namely spatial feature extraction and retinotopy, of the retina, Lateral Geniculate
Nucleus (LGN), and primary visual cortex. By virtue of the ease with which one can
train such models, multi-layer CNNs offer a unique opportunity to study the
emergence of visual phenomena across the full gamut of constraints and conditions of
interest. It is widely observed that trained convolutional neurons experience the same
kinds of receptive fields as those found in nature, and that the learned features become
successively more abstract with depth (Krizhevsky et al., 2012; Zeiler and Fergus, 2014;
Olah et al., 2017, 2020a). However, we do not typically see structural organisation of
these cell types. For example, edge and colour information is confounded in the first
layer of ZFNet (Zeiler and Fergus, 2014), with some colour information also encoded in
the second layer. Furthermore, as addressed by Lindsey et al. (2019), none of the
convolutional neurons have centre-surround receptive fields of the kind observed in
retinal ganglion cells. Rafegas and Vanrell (2018) analysed colour selectivity in a deep
CNN, finding cells which are excited by two groups of stimuli that are roughly opposite
in hue. To classify these cells as opponent would additionally require an understanding
of the stimuli which inhibit each cell. There has been some exploration of the role of
inhibition in deep CNNs (Olah et al., 2018), although we are not aware of any
demonstration that learned convolutional cells are ever truly opponent in the sense
that they are both inhibited below and excited above a baseline by some stimuli.

With the exception of recent developments in meta learning (e.g. Zoph and Le, 2016;
Tan and Le, 2019), new convolutional architectures are typically designed with the aim
of increasing either width (Zagoruyko and Komodakis, 2016) or depth (Szegedy et al.,
2015; He et al., 2016) whilst preventing the vanishing gradient problem with: auxiliary
losses (Szegedy et al., 2015), skip connections (He et al., 2016), dense connections
(Huang et al., 2017), or stochastic depth (Huang et al., 2016) to name a few. However,
the finding by Lindsey et al. (2019) that network architecture can impact the
fundamental ‘type’ of function that is learned (rather than simply affecting capacity)
suggests a new approach to both architecture design and interpretability. Specifically,
if we can improve our understanding of the bias introduced by the network
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architecture, we may be able to design new architectures with specific goals in mind or
better interpret the performance of pre-existing ones.

Clearly, research in this space has the potential to impact our understanding of both
deep learning and the neuroscience of vision. In order to realise this potential,
large-scale studies are needed which properly establish the connections between the
model architecture, the data space, and the kind of visual processing that is learned.
Lindsey et al. (2019) mainly rely on qualitative assessment for the identification of
centre-surround and oriented edge receptive fields, but do propose some quantitative
analyses such as the variance in gradient with respect to different inputs as a measure
of the linearity of the neuron. The highly detailed analyses of Olah et al. (2020b) give
a comprehensive understanding of the function of particular neurons or circuits in deep
networks, however, each functional unit or group is currently identified manually. The
procedure proposed by Rafegas and Vanrell (2018) could be automated but involves
the costly process of determining image patches which most excite each cell. The
Brain-Score project from Schrimpf et al. (2018) is an attempt at providing an
assessment of the similarity between a given network and various neural and
behavioural recordings from primates. This is uninformative in the sense that it does
not provide any information regarding precisely how the function of the network is
similar to that of the primate visual system. The same could be said of the work of
Gomez-Villa et al. (2019), who find evidence that CNNs are susceptible to the same
visual illusions as those that fool human observers.

In this chapter, we develop a framework for automatically classifying convolutional
cells in terms of their spatial and colour opponency, based on electrophysiological
definitions from the neuroscience literature. In addition, we propose a method of
obtaining a hue sensitivity curve for a given network, inspired by similar methods in
psychophysics. Combined, these approaches provide a descriptor of the functions
learned by CNNs that provides rich insight into how they encode information. We
apply our framework on a colour variant of the model from Lindsey et al. (2019) and
demonstrate that, following the introduction of a bottleneck, different cell types tend
to be organised according to their depth in the network, with no such organisation
found in networks without a bottleneck. We detail the relationship between data,
architecture, and learned representation through a series of control experiments. In
total, we have trained 2490 models over 9 different settings, all of which have been
made publicly available, alongside code for all of our experiments, via PyTorch-Hub at
https://github.com/ecs-vlc/opponency.

https://github.com/ecs-vlc/opponency
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(a) θ = 0° (b) θ = 45° (c) θ = 90° (d) θ = 135°

Figure 4.1: Examples of grating patterns used as stimuli for the spatial opponency
experiments. These samples have been generated using PsychoPy (Peirce et al., 2019),

with different angles (θ), frequency of 4, and phase of 0.
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Figure 4.2: Our approach for obtaining a spatial tuning curve for cells in a deep
network.

4.1 Methods

In this section we detail our methodology for classifying convolutional cells according
to their spatial and colour processing. Generalising physiological definitions discussed
in Section 2.1.2, to classify a cell as opponent we require: a set of stimuli, the ability to
measure the response of the cell to each stimulus, and a measurement of the baseline
response of the cell (in order to establish excitation and inhibition). The response of
each neuron to the input is readily available in a deep network, and we define the
baseline as the response of the cell to a black input (a matrix of zeros). If there exists
a stimulus for which the cell is excited (responds above the baseline) and a stimulus for
which the cell is inhibited (responds below the baseline), then the cell is opponent to
the axis of variance of the stimuli set. We first describe the two stimuli sets that we
will use for the classification of spatial and colour opponency. We go on to discuss
automatic classification of a cell as double opponent and how we can infer the specific
‘type’ of an opponent cell. In addition, we introduce an approach for studying the hue
sensitivity curve of a deep network, inspired by Bedford and Wyszecki (1958) The
experiments laid out in this section will form our core results. We will later perform a
control study to determine how well these results extend to different settings.

4.1.1 Spatial opponency

To classify spatial opponency, we require a set of stimuli that vary spatially. Following
Johnson et al. (2001), we construct a set of high contrast greyscale gratings produced
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Figure 4.3: Our approach for obtaining a colour tuning curve for cells in a deep
network.

from a sinusoidal function for a range of rotations, frequencies, and phases. Figure 4.1
gives some example stimuli generated using PsychoPy (Peirce et al., 2019) with various
degrees of rotation. We compute the response of each cell to each stimulus and
compare these to the baseline to obtain a tuning curve which can be used to perform
an automatic classification. Figure 4.2 depicts our process for obtaining the spatial
tuning curve of a cell.

In addition to spatially opponent, we have spatially non-opponent and spatially
unresponsive. A non-opponent cell is one which may be excited or inhibited by the
stimuli but does not cross the baseline. An unresponsive cell is one which is neither
excited nor inhibited by any of the stimuli. We do not use any form of tolerance when
making the above classifications. The reason for this is that each cell will activate in
its own space, and so the relative effect of a fixed tolerance could vary greatly between
cells. As a consequence of this design decision, it is likely that the output of any
unresponsive cells lies in a clipped region of the activation function. For example, if
using Rectified Linear Units (ReLUs), the cell response may remain at 0 for all of the
stimuli. Such cells are either highly tuned to a particular, complex stimulus or merely
unresponsive to all stimuli. That said, our interests here are primarily bound to the
existence and distribution of opponent and non-opponent cells only; we are not aware
of any demonstration that unresponsive cells are found in nature. Recall that although
the described stimuli are oriented edges, they can still be used to infer centre-surround
spatial opponency since a cell with a characteristic centre-surround receptive field
would be highly tuned to a particular frequency and phase, but responsive to a broad
range of angles.

4.1.2 Colour opponency

To classify spectral opponency, De Valois et al. (1966) vary the stimuli according to
wavelength. For our experiments we propose using stimuli which vary in hue, rather
than wavelength. The reason for this is that the trained networks will expect an RGB
input and there is no exact mapping from wavelength to RGB. We could consider a
more biologically valid colour representation such as the cone response space used by
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Lehky and Sejnowski (1999) but opt for RGB as it is the standard practice in deep
learning. Following the approach shown in Figure 4.3, we sample colours in the Hue,
Saturation, Lightness (HSL) colour space for all integer hue values with saturation of
1.0 and lightness of 0.5. We then convert our stimuli to RGB before forwarding to the
network and constructing the colour tuning curve. We can perform classification by
following the same process of comparing to the baseline as in the spatial setting. We
use the terms hue opponency, and colour opponency interchangeably to refer to the
different cell types found through this process.

4.1.3 Double opponency

As discussed, we can automatically classify a cell as double opponent if it is both
colour and spatially opponent. Our interests here lie in whether or not double
opponent cells emerge in convolutional networks trained with a classification objective.
Note that it has been observed that most spectrally opponent cells in macaque V1 are
also orientation selective (Johnson et al., 2008), that is, they are double opponent.
Unlike in the single opponent cases, we do not define a notion of double non-opponency
or double unresponsiveness (although such classifications could be made if required).

4.1.4 Excitatory and inhibitory colours

Using the colour tuning curve, we can further determine the hue which most excites or
inhibits each cell. Since cells are typically equipped with a non-linear activation
function, there may be a wide range of stimuli for which they produce the lowest
response. As such, we use the pre-activation output to infer the most inhibitory
stimulus. This excitation and inhibition data will allow us to plot the distribution of
colours to which cells in networks are tuned. Note that this distribution is insufficient
to describe the type of opponency since it does not permit an understanding of
whether there are distinct classes of opponent cell. For example, the distribution of
excitation and inhibition does not distinguish between two groups of cells that are red
/ green opponent and blue / yellow opponent respectively, or many groups of cells that
are red / green opponent, green / blue opponent, blue / red opponent etc. One option
would be to applying a clustering technique to the most excitatory and inhibitory
responses. However, this would introduce additional challenges through the need for
appropriate algorithm and hyper-parameter choice. Instead, we can additionally study
the conditional distribution of maximal excitation, given maximal inhibition by some
colours in a chosen range. We suggest evaluation of these conditional distributions for
the following hue ranges: red ([315°, 45°)), yellow ([45°, 75°)), green ([75°, 165°)), cyan
([165°, 195°)), blue ([195°, 285°)), and magenta ([285°, 315°)). By enabling direct
assessment of the inhibition / excitation pairs, this will give a much deeper
understanding of the kinds of opponency present in the networks being analysed.
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Figure 4.4: Plot of the Red, Green and Blue components of the Hue to RGB conver-
sion. This function is piece-wise differentiable.

4.1.5 Hue Sensitivity

In addition to the hue tuning curve, we can consider the hue sensitivity of a network.
Specifically, we look to replicate the experiments of Bedford and Wyszecki (1958), who
showed that the change needed to elicit a just-noticeable difference in hue to a human
observer is a complex function of wavelength. It is expected that such a sensitivity
curve, though over hue rather than wavelength, will enable a more holistic view of
colour tuning.

To perform a similar experiment to Bedford and Wyszecki (1958), note that the
just-noticeable difference method is inversely related to the gradient of the perceived
colour with respect to wavelength, which can be seen as a form of sensitivity. By virtue
of automatic differentiation, it is trivial to obtain the gradient of the activation in a
layer of our network with respect to the RGB input. Since the conversion from HSL to
RGB (shown in Figure 4.4) is piece-wise differentiable, we can further obtain the
approximate gradient of the activation with respect to hue. Note that we use the
hidden layer activation of a network rather than a notion of ‘perceived’ colour, so it is
unclear whether these results should reflect the biological data. Furthermore, in light
of the above, one might expect that the predominant features of the sensitivity curve
should derive from the relative responses of the RGB channels as a function of hue.

4.2 Results

We now present the results for our core experiments with Retina-Net models trained
on colour CIFAR-10. We will later perform a control study and provide an in-depth
discussion of the implications of these results, our aim in this section is merely to
present the core findings of this work.
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(b) Greyscale
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Figure 4.5: (a) Schematic of the Retina-Net model from (Lindsey et al., 2019). (b, c)
CIFAR-10 test accuracy for the different combinations of retinal bottleneck and ventral

depth explored in the experiments. Mean and standard error given over 10 trials.

4.2.1 Retina-Net

Since we are interested in understanding the casual link between architectural
constraints and learned representation, we adopt the same deep convolutional model of
the visual system as Lindsey et al. (2019), referred to as Retina-Net. This model,
depicted in Figure 4.5a, consists of a model of the retina which feeds into a model of
the visual cortex and Ventral Visual Stream (VVS). The retina model consists of a pair
of convolutional layers with ReLU nonlinearities. The ventral network is a stack of
convolutional layers (again with ReLUs) followed by a two layer MLP (with 1024
ReLU neurons in the hidden layer, and a 10-way softmax on the output layer). Note
that Lindsey et al. (2019) additionally explore a model of the LGN, which can be
considered as an extension of the retinal bottleneck (Ghodrati et al., 2017). We do not
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include such an exploration in this work as we are primarily focused on opponency and
colour tuning in the bottleneck layer.

As with Lindsey et al.’s work, the networks are trained to perform classification on the
CIFAR-10 data set (Krizhevsky, 2009), the only difference being that our model
expects RGB inputs rather than greyscale. The choice of an object categorisation task
is validated by previous studies which show there is a strong correlation between
neural unit responses of CNNs trained on such a task and the neural activity observed
in the primate visual stream (Yamins et al., 2014; Güçlü and van Gerven, 2015;
Cadena et al., 2017). For further discussion of these results, please refer to Lindsey
et al. (2019). Note that there may be many other learning tasks that are biologically
valid in the sense that they yield similar functional properties. For example,
self-supervised learning through deep information maximisation (Hjelm et al., 2018)
and contrastive predictive coding (Hénaff et al., 2019) may present viable alternatives
to the supervised object recognition used here.

We train models across the same range of hyperparameters as Lindsey et al. (2019).
Specifically these are: bottleneck width NBN ∈ {1, 2, 4, 8, 16, 32}, and ventral depth
DV V S ∈ {0, 1, 2, 3, 4}. Again following Lindsey et al. (2019) we perform 10 repeats,
with error bars denoting the standard deviation in result across all repeats. Networks
were trained for 20 epochs with the RMSProp optimizer and a learning rate of 1e− 4
with initial weights sampled via the Xavier method (Glorot and Bengio, 2010). We
note that in order to replicate the results from Lindsey et al. (2019), we required
additional regularisation. Specifically, we use a weight decay of 1e− 6 and data
augmentation (random translations of 10% of the image width/height, and random
horizontal flipping). Figures 4.5b and 4.5c give the average terminal accuracy for
models trained both on greyscale and colour images respectively. The greyscale
accuracy curves match those given in Lindsey et al. (2019). The accuracy for networks
trained on colour images is generally higher, particularly for networks with no ventral
layers. We will later discuss additional training settings that are variants of the above.

4.2.2 Characterising Single Cells

To begin, we illustrate our framework for characterising single cells. Figure 4.6 shows
the first order receptive field approximations, orientation tuning curves, and colour
tuning curves for four cells in the bottleneck layer of a network with NBN = 4 and
DV V S = 2. Following Lindsey et al. (2019), the receptive field approximation is the
gradient (obtained through back-propagation) of the output of a single convolutional
filter in a single spatial position (that is, a single convolutional ‘neuron’) with respect
to a blank input with a constant value of 0.01. This small positive amount is required
to ensure that each of the cells is in the linear region of the ReLU activation function
(that is, the gradient is non-zero). The gradient image is then normalised and scaled so
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(b) Orientation tuning curve for frequency and phase with minimal response
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(c) Orientation tuning curve for frequency and phase with maximal response
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(d) Colour tuning curve

Figure 4.6: Characterisation of the 4 cells in the second retinal layer of a network
with NBN = 4 and DV V S = 2. (a) The receptive field approximation obtained from
the gradient of the cell with respect to a blank image. (b) & (c) Orientation tuning
curves for the frequency and phase combination that yielded the smallest and largest
response respectively. (d) Colour tuning curve over the hue wheel. Cells 1, 3 and 4 are

double opponent, cell 2 is non-opponent.
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that it can be interpreted visually. Visually, cells 1, 3, and 4 appear to be greyscale
edge filters, whereas cell 2 is red / blue or magenta / cyan centre-surround. However,
the limitation of this analysis is the noise in the approximation. For example, one
could argue that cell 1 is centre-surround with a dark centre and a magenta surround.
Assessments given for any of the cells will be similarly contentious. Furthermore, this
representation permits no understanding of inhibition. For example, cell 2 may be
better described as tuned to blue hues in the interval (180°, 270°), rather than
centre-surround opponent.

To further characterise each cell, we employ our described approach. To characterise
spatial opponency, in Figures 4.6b and 4.6c we provide orientation tuning curves for
the frequency and phase which elicit the weakest and strongest responses respectively.
If the cell responds above the baseline in one tuning curve and below in the other, or if
either curve crosses the baseline, then the cell is spatially opponent. We can therefore
say that, by our definition, cells 1, 3 and 4 are spatially opponent. In contrast, cell 2 is
merely spatially non-opponent, always responding above the baseline for any choice of
rotation, frequency, and phase. In addition to classifying opponency, we can identify
the orientation tuning of each cell by further study of the curves in Figure 4.6c. Figure
4.6d gives the colour tuning curves for each cell. As hue is the only parameter to
consider, classification here is simpler; the cell is hue opponent if the tuning curve
crosses the baseline. Given this definition, we can say that cells 1, 3 and 4 are hue
opponent, although the extent of inhibition is different in each case. Furthermore, for
every cell we can identify the range of hues to which it is tuned.

Following interpretation of the tuning curves we can now state that cells 1, 3 and 4 are
double opponent and that cell 2 is non-opponent both spatially and with regard to
hue. Furthermore, for each cell we can state the orientation and hue to which it is
tuned. For example, cell 2 is broadly excited by blue stimuli but with a distinct peak
at a hue of around 240°. Cell 2 is spatially tuned to lines oriented in the interval
(0°, 45°). Although it is true that this approach gives us a deeper understanding of
each cell, the real value is in the fact that each of the above steps can trivially be
automated over the whole cell population. We therefore transition away from studying
single cells, and instead consider the distributions of different cell types for the
remainder of the chapter.

4.2.3 Characterising Cell Populations

For each result in this section, we automate cell classification following our described
method and present the distribution of each cell type as a function of retinal
bottleneck width and ventral depth. This allows us to understand the effect that these
two architectural variables have on the kinds of cells that are learned and where they
are found in the network. Note, however, that cells in deeper layers are expected to
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have a highly non-linear response and thus may have receptive field properties that are
quite different to the opponent cells observed in shallower layers. As such, observations
regarding these deeper layers (‘Ventral 2’ in particular) should be considered only in
the context of our approach and may not generally apply to the broader understanding
of opponency.

Spatial opponency Figure 4.7 gives the distribution of spatially opponent,
spatially non-opponent, and spatially unresponsive cells as a function of bottleneck
width for a range of ventral depths. For a small bottleneck, the vast majority of cells
in the second retinal layer are spatially opponent. Conversely, cells in the first ventral
layer are predominantly spatially non-opponent. For deeper networks with less
constrained bottlenecks the distributions are approximately equal in each of the layers.
Almost all cells respond to some configuration of the grating stimulus, with only a
small fraction of the population being spatially unresponsive. These findings are
consistent with the observations that unresponsiveness has not been observed in the
neuroscience literature and that the majority of cells in primate V1 are orientation
tuned (Livingstone and Hubel, 1984). Regarding ventral depth, the results show a
consistent reduction in spatial opponency in the last convolutional layer (‘Retina 2’
when depth is 0, ‘Ventral 1’ when depth is 1 etc.). There is a corresponding spike in
spatial opponency in the penultimate convolutional layer (‘Retina 2’ when depth is 1,
‘Ventral 1’ when depth is 2 etc.). The average number of opponent cells in each layer
does not differ greatly.

Colour opponency Curves showing how the distributions of the colour opponent
classes change for the second retinal and first two ventral layers as the bottleneck is
increased, for a range of ventral depths, are given in Figure 4.8. As the bottleneck
decreases, the second retina layer exhibits a strong increase in hue opponency, nearing
100% for a bottleneck of one. Conversely, cells in the first ventral layer show a decrease
in hue opponency over the same region. For all but the tightest bottlenecks, up to half
of the cells are hue non-opponent. Hue non-opponent cells show almost the exact
opposite pattern to hue opponent cells. The implication of this result is that networks
with strong hue opponent representations in the bottleneck layer exhibit an increase in
hue non-opponent cells in ‘Ventral 1’. Since this spike in opponency returns in ‘Ventral
2’, we speculate that ‘Ventral 1’ merely preserves the opponent code from ‘Retina 2’
for downstream processing, and learns a set of filters that are tuned but non-opponent.
This is inconsistent with the evidence that spatially tuned cells in primate V1 are also
colour opponent (Lennie et al., 1990; Johnson et al., 2001). However, it should be
stressed that our model of the primary visual cortex and ventral stream is highly
simplified. In particular, we do not explicitly model the LGN or subsequent projections
to different layers of V1 and greater similarity may well be observed in such a case.
Similarly to the results for spatial opponency, there is a consistent reduction / spike in
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Figure 4.7: Distribution of spatially opponent, non-opponent, and unresponsive cells
in different layers of our model as a function of bottleneck width, for a range of ventral
depths. Functional organisation emerges for networks with tight bottlenecks. The last
convolutional layer (‘Retina 2’ when depth is 0, ‘Ventral 1’ when depth is 1 etc.) exhibits
a reduction in spatial opponency. The penultimate convolutional layer (‘Retina 2’ when

depth is 1, ‘Ventral 1’ when depth is 2 etc.) exhibits an increase.
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Figure 4.8: Distribution of colour opponent, non-opponent, and unresponsive cells in
different layers of our model as a function of bottleneck width, for a range of ventral
depths. Functional organisation again emerges for networks with tight bottlenecks.
Furthermore, the last and penultimate convolutional layers exhibit a reduction and in-
crease in colour opponency respectively. The echoes the spatial findings from Figure 4.7
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hue opponency in the last and penultimate convolutional layers respectively. Averaged
over bottleneck width, the number of hue opponent cells is generally lower than the
number of spatially opponent cells.

Double opponency Figure 4.9 shows the distribution of double opponent cells as a
function of bottleneck size and ventral depth, giving a similar picture to the spatial
and hue opponency plots. The results suggest that the majority of hue opponent cells
are also spatially opponent. This finding is in alignment with the observation that
most hue opponent cells in the macaque V1 are also orientation selective (Johnson
et al., 2008).

Types of opponency The plots in Figure 4.10 show the distribution over the hue
wheel of the most excitatory and most inhibitory colours for cells in our models before
and after training. The key observation here is that maximal excitation and inhibition
before training is naturally aligned to the hues that correspond with RGB values of
255 or 0. This is a quirk of the convolutional architecture. Since at initialisation the
function of the network is smooth, if the cell is excited by a particular channel, it will
be most excited when that channel is maximised and vice-versa. The effect of training,
regarding both excitation and inhibition, is to reduce the proportion of cells that are
tuned to red, yellow, cyan, and blue, and increase the proportion of cells that are
tuned to green and magenta. In addition some cells in the bottleneck layer (‘Retina 2’)
become most excited by orange / red and cyan / blue. Unlike the random networks,
this changes as a function of depth, tending to broaden the range of excitatory and
inhibitory hues. Note that this corresponds to the network learning a complex,
non-linear, colour system. Cells in deeper layers are not only excited by particular
channels but by the specific hue of the input.

One could speculate that the distribution in Figure 4.10 indicates that the type of
opponency that is learned corresponds well with the cone opponency observed in
primates. However, as discussed, Figure 4.10 does not permit an understanding of the
discrete types of opponency that are learned. Furthermore, the figure does not
differentiate between the different model architectures. In Figure 4.11, we additionally
plot the distribution of excitatory colours for all cells in the bottleneck layer, given that
they are most inhibited by red, green, magenta, cyan, yellow, and blue respectively.
These are plotted for ‘Shallow’ (DV V S ∈ {0, 1}) and ‘Deep’ (DV V S ∈ {3, 4}) networks
with ‘Narrow’ (NBN ∈ {1, 2, 4}) and ‘Wide’ (NBN ∈ {8, 16, 32}) bottlenecks.

We can now observe that the primary opponent axis in our networks is green /
magenta, with cells that are inhibited by red or magenta and excited by green being
unique to the ‘Wide’ / ‘Shallow’ networks. In addition, we can say that the majority of
hue opponent cells (that is, cells in the ‘Narrow’ networks) are channel opponent. In



48 Chapter 4. Architecture and Opponency

0.0

0.2

0.4

0.6

0.8

D
ep

th
0

Double Opponent

Retina 2

Ventral 1

Ventral 2

0.0

0.2

0.4

0.6

0.8

D
ep

th
1

0.0

0.2

0.4

0.6

0.8

D
ep

th
2

0.0

0.2

0.4

0.6

0.8

D
ep

th
3

10 20 30
0.0

0.2

0.4

0.6

0.8

D
ep

th
4

0.00 0.25 0.50 0.75 1.00
Bottleneck Size

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
n
ta

ge

Figure 4.9: Distribution of double opponent cells in different layers of our model as a
function of bottleneck width and ventral depth. Most spatially opponent cells are also
colour opponent and so these distributions bare strong similarity to those in Figures

4.7 and 4.8
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Figure 4.10: Distribution of excitatory and inhibitory hues for cells in different layers
of networks with random weights, and networks trained on RGB images. Maximal
excitation and inhibition before training is naturally aligned to the hues that correspond
with RGB values of 255 or 0. Trained networks show a preference for green and magenta.
Some cells are highly non-linear, maximally excited by orange / red and cyan / blue.

the ‘Wide’ networks, we find cells which are broadly excited by orange / red and cyan
/ blue. These cells persist in the first ventral layer, and are not typically present in
‘Narrow’ networks. This suggests that the ‘Wide’ networks are responsible for the
peaks in Figure 4.10. We find the presence of cells which are excited by blue and
inhibited by yellow, red, and green more prominently in the ‘Deep’ networks, with
particular prevalence in the ‘Narrow + Deep’ networks. In general, the range of
excitatory and inhibitory hues is greater in the ‘Wide’ networks, suggesting increased
prevalence of complex, non-linear cells. This mirrors the finding from Lindsey et al.
(2019) that cells in this setting tend to have a non-linear receptive field. Note that we
have found that cells in the ventral layer (not included in the figure) are excited and
inhibited by a much wider range of hues, particularly in the ‘Narrow’ networks. This
suggests that the bottleneck induces an efficient colour code that enables cells in later
layers to become attuned to highly specific hues. Recall that we observe an increase in
the proportion of colour tuned but non-opponent cells in ‘Ventral 1’ in models with
tight bottlenecks, corroborating this assertion.

Hue Sensitivity Figure 4.12 gives the results for the hue sensitivity experiment.
We again provide plots for ‘Shallow’ and ‘Deep’ networks with ‘Narrow’ and ‘Wide’
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Figure 4.11: Conditional distribution of excitatory hues for cells that are most in-
hibited by red ([315°, 45°)), yellow ([45°, 75°)), green ([75°, 165°)), cyan ([165°, 195°)),
blue ([195°, 285°)), and magenta ([285°, 315°)) for ‘Shallow’ (DV V S ∈ {0, 1}) and
‘Deep’ (DV V S ∈ {3, 4}) networks with ‘Narrow’ (NBN ∈ {1, 2, 4}) and ‘Wide’
(NBN ∈ {8, 16, 32}) bottlenecks. ‘Narrow’ networks learn a simple colour system, with
cells that are maximally excited / inhibited by extreme RGB values (dashed vertical

lines). ‘Deep’ networks show an increase in cells that are most excited by blue.
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Figure 4.12: Mean gradient of the sum of the bottleneck layer response with respect to
hue for ‘Shallow’ (DV V S ∈ {0, 1}) and ‘Deep’ (DV V S ∈ {3, 4}) networks with ‘Narrow’
(NBN ∈ {1, 2, 4}) and ‘Wide’ (NBN ∈ {8, 16, 32}) bottlenecks. The shaded region
indicates the standard error across the trained models. Discontinuities derive from the
conversion from HSL to RGB. Sensitivity is an approximately linear function of hue
for ‘Narrow’ networks, and particularly in the ‘Narrow + Deep’ setting, again showing
a simple colour code in the bottleneck layer. Conversely, ‘Wide + Shallow’ networks

exhibit a highly non-linear sensitivity to hue.

bottlenecks so that these results can be understood in the context of the previous
section. Since we are taking the gradient of the response, the sensitivity is undefined
where there are discontinuities in the conversion from HSL to RGB (dotted vertical
lines). The first point to note is that the straight lines in the sensitivity curves
correspond to at most a quadratic response to hue. In contrast, non-linear sensitivity
curves suggest a higher order hue response. In light of this, we can observe a general
transition from highly non-linear hue response in the ‘Wide + Shallow’ networks to a
more linear hue response in the ‘Narrow + Deep’ networks. This is in line with our
findings in the previous section and again mirrors the findings from Lindsey et al.
(2019). Regarding tuning to specific colours, Lehky and Sejnowski (1990) note that
gradient of the tuning curve (such as the curves in Figure 4.6d) is maximal when the
stimulus is to either side of the peak. As such, where there are peaks in the
distribution of cells that are excited by a particular hue we should expect
corresponding troughs in the sensitivity curve. As an example, note that the troughs
in sensitivity to orange / red in the ‘Wide + Shallow’ (and to a lesser extent in the
‘Narrow + Shallow’ and ‘Wide + Deep’) networks matches the peaks in excitation
observed in Figure 4.11. A similar observation can be made regarding the trough in
sensitivity to cyan / blue in the ‘Wide + Shallow’ networks. The blue excitation that
is a uniquely prominent feature in the ‘Narrow’ networks has also resulted in a
corresponding dip in sensitivity. However, this has manifested as a sudden drop rather
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Figure 4.13: Distribution of spatially and colour opponent, non-opponent, and unre-
sponsive cells in different layers of our models with Gaussian weights (mean and variance
from filters of the same depth in a reference pre-trained model with NBN = 32 and
DV V S = 4) as a function of bottleneck width. Some opponency is explained by simple

statistics of the filters. Functional organisation emerges only as a result of training.

than a smooth transition since it lies at the discontinuous boundary between blue with
a green component and blue with a red component. Ultimately these results
demonstrate that low level analysis of the colour tuning distributions provides valid
insights into the high level functional properties of the networks.

4.3 Control Experiments

In this section we perform a series of targeted experiments to assess how well our
results extend to different settings. These experiments are intended to improve our
understanding of the conditions under which the various forms of opponency emerge,
supporting a comprehensive discussion.

4.3.1 Random weights

Although we have presented strong evidence that cells in trained networks exhibit
spatial, colour, and double opponency, we have not yet demonstrated that this is
learned. To determine if this opponency is learned, we require a demonstration that it
is not present at initialisation (when the weights are random). We have therefore
performed our experiments on randomly initialised models. We find that networks
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with random weights (that is, following the Xavier initialisation (Glorot and Bengio,
2010)) never exhibit spatial or hue opponency. Instead, most cells are non-opponent
and their distribution over the layers does not change significantly with the bottleneck
size. These results demonstrate that all of the opponency in our networks is learned.
However, it could be the case that opponency derives from simple statistics of the
convolutional filters. In order to understand this further we experimented with
networks whose filter weights are Gaussian with the same mean and variance as the
filters of the same depth in a reference pre-trained model. The results for this
experiment are given in Figure 4.13. Although we do find some opponency in this case,
we do not find the same structure. Of particular note are the unresponsive, not present
in the trained networks. These findings reflect the fact that a degree of structure in the
receptive fields is required in order for a cell to exhibit a consistent opponent or
non-opponent response.

4.3.2 Greyscale

As previously mentioned, in addition to the colour models we trained a batch of
models with greyscale inputs. The results in Figure 4.14a validate that spatially
opponent cells still emerge and have a similar distribution throughout the layers as
that of cells in models trained with RGB inputs. Furthermore, this validates our
classification approach since, from Lindsey et al. (2019), it is known that the
Retina-Net model learns centre-surround and oriented edge (both spatially opponent)
filters with greyscale input.

4.3.3 Distorted colour

To further explore the idea that the opponency in our networks derives from the
statistics of the data, we trained a batch of models on images with distorted colour.
Specifically, we convert the images into HSV space and offset the hue channel by 90°,
before converting back into RGB and forwarding to the network. Our interest here is
not in whether opponency emerges, but in the effect this distortion has on it.
Figure 4.14b shows the distribution of excitatory and inhibitory colours in networks
trained with distorted inputs. Here, the most prevalent excitatory and inhibitory
colours are aligned with the RGB extremes closest to a 90° rotation of the peaks in
Figure 4.10. This is consistent with our observation that the vast majority of colour
opponent neurons are channel opponent. In contrast, the additional excitation peak
has been rotated by exactly 90° from orange / red to green. This demonstrates that
the cells which are excited by specific hues emerge as a result of the statistics of the
data, not of the input colour space.
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Figure 4.14: (a) Distribution of spatially opponent, non-opponent, and unresponsive
cells in different layers of our model as a function of bottleneck width, for models trained
with greyscale images showing that the known spatial opponency from Lindsey et al.
(2019) is detected by our method. (b) Distribution of excitatory and inhibitory hues
for cells in different layers of networks trained on images with distorted colour (hue
rotation of 90°). The most prevalent excitatory and inhibitory colours are aligned with

the RGB extremes closest to a 90° rotation of the peaks in Figure 4.10.

4.3.4 CIELAB space

In a similar vein to our experiments with distorted colour, we now perform
experiments to validate whether opponency is still a feature in networks trained on
images in the CIELAB colour space. The CIELAB colour space encodes colour in
terms of lightness (L*), and two opponent axes: green / red (a*), and blue / yellow
(b*). Each axis is non-linear such that uniform changes in CIELAB space correspond
to uniform perceptual changes in colour. This will allow us to understand if functional
organisation still emerges when receptive fields are naturally opponent, that is,
structure would require the cells to learn to ‘ignore’ the inherent opponency of the a*
and b* channels. Figure 4.15a shows the distribution of spatially and colour opponent
cells in this setting. The distribution is nearly identical to that of networks trained on
images in RGB space, with the same characteristic functional organisation. In Figure
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Figure 4.15: (a) Distribution of spatially and colour opponent, non-opponent, and
unresponsive cells in different layers of models trained on images in LAB space as a
function of bottleneck width, showing that functional organisation is not unique to
RGB. (b) Excitatory / inhibitory hues in LAB space for random and trained networks.
Training increases prevalence of blue / green, and excitation by orange / red and cyan

/ blue.
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Figure 4.16: Distribution of spatially and colour opponent, non-opponent, and un-
responsive cells in different layers of models trained on Street View House Numbers
(SVHN) (Netzer et al., 2011) as a function of bottleneck width. Spatial opponency is
present, with a similar distribution to the networks trained on CIFAR-10. Colour oppo-
nency is generally lower, increasing only slightly for networks with narrow bottlenecks.

4.15b, we plot the distribution of most excitatory and inhibitory colours in CIELAB
space for random and trained networks. We again find that the distribution for
random networks naturally aligns to hues which represent extreme values in the input
colour space; CIELAB encodes colour on green / red and blue / yellow axes. Following
training, we find that the majority of cells are most excited or inhibited by either green
or blue. This bares some similarity to the RGB networks, which aligned to green and
magenta following training. Again in accordance with the RGB networks, we find cells
which are most excited by orange / red or cyan / blue, further showing that tuning to
these particular colours is an artefact of the data rather than the colour space.

4.3.5 Street view house numbers

In addition to our experiments with CIFAR-10, we have trained a batch of networks on
the Street View House Numbers (SVHN) data set (Netzer et al., 2011). This is a digit
recognition (10 classes) problem with the same spatial resolution (32 × 32) as
CIFAR-10. The distributions of the different cell types for these models are shown in
Figure 4.16. The results show that spatial opponency is abundant in the second retina
layer and increases for models with tight bottlenecks. In the first two ventral layers,
the proportion of spatially opponent cells is generally lower (≈ 20%) and does not
change significantly with bottleneck size. Colour opponency is muted in comparison to
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Figure 4.17: Distribution of spatially and colour opponent, non-opponent, and un-
responsive cells in different layers of models trained on ImageNet (Russakovsky et al.,
2015) as a function of bottleneck width, showing how our findings transfer to a higher
resolution setting. There is an increase in opponency for narrow bottlenecks which
decays rapidly. Emergent organisation is observed only partially in the networks with

the tightest bottlenecks.

the CIFAR-10 experiments and increases in the second retina layer only slightly for
tight bottlenecks. This is unsurprising since colour is not expected to be an important
feature in the house number recognition problem. The largest networks in this setting
achieved over 90% accuracy.

4.3.6 ImageNet

Our experiments thus far have focused on low resolution (32 × 32) images. It is now
important to understand whether our findings generalise to a higher resolution setting.
To that end, we have trained networks on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) data set (Russakovsky et al., 2015) at a resolution of
128 × 128. Due to hardware constraints, we perform only 3 repeats across the full
range of ventral depths and bottleneck widths. We adapt the Retina-Net model
slightly, adding average pooling with a window of size 4 before the first fully connected
layer. Figure 4.17 gives the distributions of the different spatial and colour cell types
respectively for models trained on ImageNet. As with CIFAR-10, the results show an
increase in the proportion of spatially and colour opponent cells in the bottleneck layer
of networks with a tight bottleneck. Unlike the CIFAR-10 results, this opponency
decays rapidly and the emergent organisation is observed only partially in the networks
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Figure 4.18: Distribution of spatially and colour opponent, non-opponent, and un-
responsive cells in different layers of models trained on the Intel scene classification
challenge data set (Intel, 2018) as a function of bottleneck width. With fewer classes (6
in this case), the number of opponent cells is much higher. The distribution of opponent
cells in ‘Retina 2’ bares strong similarity with the results from CIFAR-10. This does

not extend to the ventral layers, which have near-identical cell distributions.

with the tightest bottlenecks. The percentage of opponent cells was generally lower
than in networks trained on CIFAR-10. This could be related to the fact that the
Retina-Net model does not effectively ‘fit’ to ImageNet; the trained models achieved an
accuracy between 5% and 20%. Although the number of double opponent cells in this
setting (not shown in the figure) is much lower, the vast majority of spatially opponent
cells are also colour opponent. We do not find a spike in opponency in the penultimate
convolutional layer in general in the ImageNet trained models.

4.3.7 Intel scene classification

In addition to our experiments with ImageNet, we have trained a batch of models on
the Intel scene classification challenge (Intel, 2018) data set. This is a natural scene
classification problem with 6 classes and the same spatial resolution as ImageNet. As
such, these models allow us to explore opponent cell types in a high resolution setting
where the model obtains stronger performance (up to 80% for the largest models). The
results in Figure 4.18 show that models trained in this setting exhibit a much higher
percentage of spatially and colour opponent cells than in models trained on ImageNet,
particularly in the second retina layer. We again find that the percentage of opponent
cells in the first two ventral layers is equal and broadly independent of bottleneck size,
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Figure 4.19: Distribution of spatially and colour opponent, non-opponent, and un-
responsive cells in different layers of models trained on mosaic images as a function of
bottleneck width with example mosaic images. These results show that when the spa-
tial structure of the input is removed some spatial opponency, particularly in ‘Retina
2’, is removed also. Colour opponency is similarly affected, suggesting a complex de-

pendence between spatial and colour processing.

not showing the emergent structure observed in CIFAR-10 except in the extreme case
of NBN = 1.

4.3.8 Classifying mosaics

We also performed experiments to determine whether there are conditions under which
certain types of opponency can be removed. To attempt to ablate spatial oppponency,
we trained a batch of models to classify mosaic images. These are images that have
been separated into smaller squares which have then been shuffled (see examples in
Figure 4.19 for reference). Figure 4.19 gives the distribution of spatially and colour
opponent cells in these networks. The figure shows that some of the spatial opponency
is removed in this setting. Notably, ‘Retina 2’ exhibits a moderately lower proportion
of spatial opponency, such that it is now in line with ‘Ventral 2’. This could be due to
the fact that the impact of the mosaic images depends heavily on the size of the
receptive field. We further note that colour opponency is affected to the same extent as
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Figure 4.20: Distribution of spatially and colour opponent, non-opponent, and un-
responsive cells in different layers of models trained on images with shuffled colour
channels as a function of bottleneck width with example shuffled images. When con-
sistent colour information is removed, most colour opponency is also removed. Spatial

opponency remains.

spatial. This suggests that the efficacy of colour opponent cells is in some way reduced
in the mosaic setting.

4.3.9 Shuffled colour channels

To attempt to ablate colour opponency, we remove colour information by randomly
shuffling the channels of inputs to the network (see examples in Figure 4.20 for
reference). The resultant distribution plots in Figure 4.20 show that this alteration
removes the vast majority of colour opponent cells, whilst spatial opponency remains.
Since the information present in shuffled images is the same, this experiment
demonstrates that colour opponency arises out of a need to consistently infer the
colours in the inputs. We speculate that this aids in classification since each class will
be associated with a set of features that vary both spatially and in hue. By shuffling
the channels we remove the ability to repeatedly associate a particular input tuple
with a particular class. This view is supported by the fact that the models in this
setting generally reached a lower accuracy than the models trained on standard colour
images and sometimes failed to match the models trained on greyscale images.
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4.4 Summary

Equipped with the results of our experiments, we now summarise the conclusions which
can be drawn regarding spatial and colour processing in convolutional neural networks.

Our primary finding is that the addition of a bottleneck in the Retina-Net model
induces functional organisation when trained on colour (RGB) CIFAR-10. We have
further shown that this finding generalises to networks trained on images in the
CIELAB colour space. There is some evidence that this result differs when the
networks are trained on other data sets; although the key finding, that structure
emerges only with the tightest bottlenecks, remains. In the case of ImageNet, more
experimentation with a model capable of fitting to the data would be required to
understand this fully. Regarding network depth, our experiments have uncovered an
increase in the number of opponent cells in the penultimate convolutional layer of the
network and a corresponding decrease in the last convolutional layer. Our experiments
with random networks demonstrate that all of the discussed opponency is learned and
that most opponency is not a result of simple statistics of the weights.

In addition to these high level observations, we have shown that an analysis based on
approaches from neuroscience can yield a rich understanding of the function performed
by a trained network. For example, we have shown that the deep Retina-Net model
with a tight bottleneck learns a set of double opponent filters in the bottleneck layer,
followed by a set of spatially and colour tuned but non-opponent filters in the first
ventral layer, with opponency returning in the second ventral layer. Cells which are
maximally excited by blue are a unique feature of these networks not present when the
bottleneck is relaxed. Furthermore, these networks tend to learn linear, channel
opponent, neurons rather than neurons which are opponent to specific hues. We
speculate that this is due to the increased need to learn an efficient colour code in the
tight bottleneck case.

The key implication of our core findings is that the model architecture can be the
source of an inductive bias towards the number of opponent cells. While this finding
alone may be of interest, whether it is of any practical significance depends on whether
opponency is desirable. By virtue of the fact that opponent cells represent a more
efficient encoding of the input, one might speculate that an increase in opponency
could lead to increased generalisation performance. This view is mildly supported by
the plot in Figure 4.5c, where the networks with NBN = 2 and DV V S = 4 obtained the
highest accuracy.

We have also demonstrated a number of similarities between the learned
representations of our networks and representations observed in nature. The large
amount of double opponent cells we find in the retina layer of networks with tight
bottlenecks is consistent with what is known about cells in the retina and LGN (Hubel
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and Wiesel, 2004). There are some consistencies and some inconsistencies between the
ventral layers of the model and what is known about spatial and colour processing in
the visual cortex. However, as discussed, it is not clear that the ventral convolutional
architecture is a good analogue of the structure of the visual cortex and so such
comparisons should be treated with scepticism. Our finding that the type of
opponency learned is aligned with extreme values in the input colour space accords
with the physiological finding that opponency in early stages of the visual pathway is
aligned with cone responses (Shevell and Martin, 2017).

The consequence of these demonstrations is not to suggest that convolutional neurons
and biological neurons are similar. Instead, we have shown that similarity in the data
space, architecture, and problem setting can give rise to similarity in the emergent
functional properties. In addition to the above, we have demonstrated some settings in
which opponency is either hindered or removed entirely. This kind of controlled
experiment may enable the exploration of hypotheses relating to the neuroscience of
vision. Specifically, through construction of a data set which mimics an environment,
or an architecture which mimics an anatomy, one might seek a better explanation of
the differences in visual processing between species. This potential is hinted at by our
experiments with SVHN, which show that networks trained on the digit recognition
task have fewer colour opponent cells.
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Chapter 5

Opponency and Robustness

Convolutional Neural Networks (CNNs) with a bottleneck
designed to mimic the anatomical constraint imposed
by the optic nerve have recently been shown to learn
representations which more closely align with those found
in primate visual systems. Specifically, Lindsey et al.
(2019) showed that a reduction in the number of channels
or convolutional neurons in the second layer of a CNN
gives rise to centre-surround receptive fields in the first
two layers followed by orientation selectivity in subsequent layers. Lindsey et al.’s
experiments were based on a relatively simple model of the visual system (aka
‘Retina-Net’) constructed with a model of the retina (the first two layers up to the
bottleneck), a model of the ventral stream (stacked convolutional layers) and a pair of
fully connected layers to produce a classification. These models were trained on a
greyscale version of the CIFAR-10 data set (Krizhevsky, 2009). In Chapter 4, we
showed that the same network architecture (albeit with colour input) learns a simple
opponent colour code in the bottleneck layer followed by a reduction in colour
opponency in later layers. We further demonstrated that the general trend that the
bottleneck induces opponency was true across a range of data sets from CIFAR-10 to
ImageNet (Russakovsky et al., 2015).

Modern neural networks for solving large-scale classification problems like ImageNet
look very different to the aforementioned ‘Retina-Net’ and its colour variant, and do
not incorporate any form of bottleneck near the input layer. At the same time, other
recent research has demonstrated that there may be benefits to better modelling of the
visual system in state-of-the-art models. For example, Geirhos et al. (2019) show that
CNNs trained on ImageNet are biased towards texture information in contrast to
Human observers who make classifications predominantly according to shape
information. They subsequently show that promoting a shape bias in trained models
can improve both accuracy and robustness. Dapello et al. (2020) show that simulating
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the function performed by the primary visual cortex over the input increases
robustness to adversarial attacks in which images which have been imperceptibly (to a
human) adjusted such that the classification given by the trained network is no longer
correct. Their model for simulating V1 (V1Block) is based on the classical observations
(for example by Hubel and Wiesel (2004)) that the receptive fields of cells in V1 are
orientation selective (modelled as Gabor filters) and that these cells can be described
as either simple or complex (modelled with different acitvation functions). Parameters
for the Gabor filters in the V1Block are sampled according to known distributions
from the neuroscience literature rather than being learned. The model also assumes
that the input to the V1Block is just the normalised pixel values (subtract 0.5 and
divide by 0.5 for each RGB colour channel) and eschews any notion of processing
performed by the retina itself, or by the Lateral Geniculate Nucleus (LGN).

Since convolutional neurons already reflect many of the functional properties of cells
found in the early visual system, it is prudent to ascertain whether more simple
modifications, such as the bottleneck explored in Chapter 4, can be used to the same
effect. This chapter starts to ask what happens if we place a bottleneck at the
beginning of a performant classification network trained on the ImageNet data set. We
first show that the bottleneck induces similar emergence of relevant cell types, but
with some important differences. In particular, we find that very tight bottlenecks give
rise to cells that are perhaps better described as luminance opponent rather than
colour opponent. In addition, we find that the stark differences between receptive fields
of cells in networks with different bottlenecks, observed by Lindsey et al. (2019), are
more nuanced with centre-surround receptive fields seeming to emerge for all
bottlenecks. We further show that the introduction of the bottleneck introduces a
small but consistent shape bias. Finally, we consider the adversarial robustness of our
models, showing that the bottleneck slightly improves robustness to natural adversarial
examples but actually reduces robustness measured as a worst-case accuracy following
multiple attacks.

5.1 Methods

This section outlines our approach to constructing an anatomically constrained ResNet
model. In order to add a bottleneck to an existing model, we propose pre-pending the
‘Retina’ portion of the model from Lindsey et al. (2019). This consists of two
convolutional layers with 32 channels and NBN channels respectively, where NBN is
the bottleneck width. Unlike the model of Lindsey et al. (2019) which uses a kernel
size of 9, we choose the kernel size to ensure a large enough receptive field whilst
preserving consistency with the first layer of the target model where possible (e.g. 7 for
a ResNet). Padding is chosen such that the resolution of the output is the same as the
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Figure 5.1: Anatomically constrained ResNet-50 model diagram. The only modifica-
tion to the ResNet-50 architecture is that it expects an input with NBN channels. We

trained such models on the ImageNet data set for NBN ∈ {1, 2, 4, 8, 16, 32}.

resolution of the input. In this way the bottleneck acts as a kind of parameterised
pre-processing of the input.

We trained constrained variants of a ResNet-50 (depicted in Figure 5.1) for the range
of bottleneck widths used by Lindsey et al. (2019) (NBN ∈ {1, 2, 4, 8, 16, 32}) on the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al.,
2015) data set. We trained three repeats of each model variant, giving 18 models in
total. Models were trained on the ImageNet 2012 training set on nodes equipped with
four NVidia Quadro RTX 8000 GPUs. The following setup was used:

Batch size: 1024
Optimiser: SGD with the following:

initial lr: 0.1
momentum: 0.9
weight decay: 1e-4
schedule: lr drops by factor of 10 at 30 and 60 epochs
epochs: 90

Data Augmentation: Random resized cropping to 224x224
random horizontal flipping
normalisation using standard ImageNet mean and s.d.

5.2 Early Visual Representations in Anatomically
Constrained ResNets

In this section, we study early visual representations in our constrained ResNet model
using the methodologies introduced in Chapters 4 and 3 and other methods from the
literature.
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32

NBN Grey-scale Colour

Figure 5.2: Grey-scale and colour receptive field visualisations for networks with
NBN = 1 and NBN = 32.

1

32

NBN Response Input

Figure 5.3: Cell responses to an example input for the same cells used in Figure 5.2
from networks with NBN = 1 and NBN = 32.

5.2.1 Receptive Field Visualisations

We begin our analysis with a subjective assessment of the receptive fields of cells in our
trained networks. Figure 5.2 shows the receptive field visualisations in grey-scale and
colour for cells in the Retina-2 layer of networks with NBN = 1 and NBN = 32. These
are computed by taking the gradient of the response of the centre neuron to a blank
stimulus (constant value of zero) and then applying min / max normalisation to obtain
an image. The results show that the cells in networks with NBN = 1 are somewhat
centre-surround, but with quite a small extent. In contrast, the cells in networks with
NBN = 32 have much smoother receptive fields that are sensitive to changes over a
much larger region of the input. Although it is true that we find exclusively
centre-surround cells in the networks with NBN = 1, we also find some centre-surround
cells in the networks with NBN = 32.

To try to better understand the functions performed by these cells, we plot the
response of each cell to an example input in Figure 5.3. The results show that when
NBN = 1, the Retina-2 cells preserve most of the edge information in the image (with
perhaps a mild edge enhancement effect) and respond in accordance with the
brightness of the input (albeit inverted for two of the cells). In contrast, the Retina-2
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cells in networks with NBN = 32 distort the input heavily, performing specific colour
opponent edge detection functions.

5.2.2 Opponency

Next, we compute the distribution of opponent cell types, following the approach from
Chapter 4, in the second retina layer (Retina-2) and first ResNet layer (ResNet-1).
This approach consists of presenting a set of stimuli which vary in hue to the cell in
order to obtain a hue response curve. The cell is colour opponent if the response curve
crosses the baseline response of the cell to a zero stimulus. Interestingly, our results
show that networks with NBN = 1 have no colour opponent cells in either of the layers
we studied. This contrasts with the finding from Chapter 4 that almost all cells in the
retina layers of more constrained networks were colour opponent. We presume that the
range of colour stimuli in ImageNet is sufficiently broad that when restricted to one
channel, better performance can be obtained with a luminance opponent encoding
than a colour opponent one. To test this, we additionally present a set of stimuli which
vary in luminance (i.e. full field grey-scale stimuli with values ranging from zero to
one) and perform the same process of comparing to the baseline (response of the cell to
constant stimulus of 0.5 for this experiment) to infer luminance opponency. Note that
any cell whose response is linear in the sense that extremes of input value correspond
to extremes of response will be classified as luminance opponent. It is therefore
appropriate to say that any cells which are not luminance opponent are to some degree
non-linear.

Figures 5.4a and 5.4b give the results for this experiment in the Retina-2 and ResNet-1
layers respectively. The results show that the vast majority of colour opponent cells
are also luminance opponent, particularly in the more constrained networks. In the
Retina-2 layer, there is an increase in cells which are luminance opponent, but not
colour opponent, for networks with NBN < 4. This in turn suggests an increase in the
linearity of cell response for these networks, which accords with the findings of Lindsey
et al. (2019). Almost all cells in the first ResNet layer are luminance opponent. In
both layers, approximately half of the cells are also colour opponent in networks with
all but the tightest bottlenecks, where the percentage of colour opponent cells drops to
zero. Ultimately, the pattern in the colour opponent cell distribution shown in
Chapter 4 is replaced with a similar pattern in luminance opponent cell distribution in
these networks. This is accords with our findings in Section 5.2.1.

5.2.3 Super-stimuli

In the neuroscience literature, the distinction between luminance opponency and
colour opponency is often unclear. For example, it has been argued that many of the



68 Chapter 5. Opponency and Robustness

4 8 16 32
NBN

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
n
ta

ge

Luminance Colour Both

(a) Retina-2 opponent cell distribution
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(b) ResNet-1 opponent cell distribution

Figure 5.4: Colour and luminance opponency distributions in the Retina-2 and
ResNet-1 layers of anatomically constrained ResNet-50 models.

cells which preferred achromatic stimuli in Monkey V1, described by Hubel and Wiesel
(1968), may be better described as colour opponent but with imbalanced cone response
such that they are also responsive to luminance (Johnson et al., 2001; Lennie et al.,
1990; Schluppeck and Engel, 2002; Shapley and Hawken, 2011). We therefore must
ascertain whether the luminance opponent cells are still able to convey valuable
information regarding the colour of the input.

To do this, we employ the approach from Chapter 3 to obtain super stimuli which the
networks classify with high confidence as a range of classes which are characterised by
a particular colour (a trait group). Figure 5.5 shows these stimuli for the ‘fruits’ trait
group for models with NBN = 1 and NBN = 32. From the figure we can see that the
networks with a single (NBN = 1) luminance opponent channel in the bottleneck layer
still make use of colour to inform their decisions, learning the characteristic red of a
strawberry, yellow of a lemon, green of an apple, and so on. This is possible since these
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Figure 5.5: Super-stimuli for various classes of fruit for networks with NBN = 1 and
NBN = 32 obtained by gradient ascent in Fourier space following Olah et al. (2017).
Even when the networks are restricted to a single channel (NBN = 1), they still learn

a strong representation of colour.
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Figure 5.6: The shape bias (following Geirhos et al. (2019)) across bottleneck widths.

luminance opponent cells may still have a broad non-opponent hue response that
uniquely encodes colour over at least part of the hue wheel.

5.2.4 Shape Bias

It is clear from Figure 5.5 that neither of the models is particularly biased towards
shape in that the super stimuli have appropriate textures and colours but not shapes.
To quantify this, we finally measure the shape bias of the models. Following Geirhos
et al. (2019), we evaluate the models on the ‘StylizedImageNet’ data set 1, which
contains images with a texture-shape cue conflict, requiring networks to recognise
objects based on shape rather than texture. Figure 5.6 shows that networks with
tighter bottlenecks exhibit a small increase in shape bias. The model with a bottleneck
width of 1 trained on ImageNet achieves the highest shape bias, outrunning a standard
(i.e. without our modification) ResNet-50 model. Note, however, that the shape bias of

1Available from https://github.com/rgeirhos/Stylized-ImageNet

https://github.com/rgeirhos/Stylized-ImageNet
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Figure 5.7: Top-1 accuracy on the ILSVRC validation set across different bottleneck
widths.

all of the models is far lower than the models trained with the approach from Geirhos
et al. (2019).

5.3 What Effect Does a Bottleneck Have on
Performance?

In this section we explore whether the changes in function induced by the bottleneck
correspond to any tangible improvement in performance. The most obvious first step is
to consider the effect of the bottleneck on the accuracy of the model. Figure 5.7 shows
that networks with bottleneck width of 4 or greater all achieve validation set
performance that is within the margin of error (one standard deviation) of the others
and that networks with tighter bottlenecks show a small but clear drop in performance.
Importantly, all of the networks perform within 2% of the pre-trained ResNet-50
without our modification provided in torchvision (76.15%), which has minor differences
in the training procedure that might explain this. This contrasts with the networks
considered by Dapello et al. (2020) which show a larger reduction of around 4.5%
reaching an accuracy of 71.7% (although again note that there are differences in the
training procedure). Note that in addition to small differences in training procedure,
our bottleneck layers do not make use of modern conventions such as BatchNorm which
are known to provide important performance benefits, particularly in deeper networks.

5.3.1 Robustness to natural adversarial examples

We now consider robustness to the ImageNet-A data set (Hendrycks et al., 2019),
which contains 7500 naturally occurring images which are consistently mis-classified by
pre-trained models. The images correspond to 200 ImageNet classes in which normal
models (ResNet50, VGG16, etc) have a top-1 accuracy of more than 90% using the



5.3. What Effect Does a Bottleneck Have on Performance? 71

4 8 16 32
NBN

2.0

2.5

3.0

A
cc

u
ra

cy

Figure 5.8: Robustness to natural adversarial examples from the ImageNet-A data
set (Hendrycks et al., 2019) as a function of bottleneck width.
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Figure 5.9: Model calibration, Area Under the Response Rate Accuracy curve (AU-
RRA), on ImageNet-A (Hendrycks et al., 2019) as a function of bottleneck width.

Networks with tighter bottlenecks exhibit improved calibration.

ImageNet validation data set. The ImageNet-A data set typically results in a top-1
accuracy of around 2-3% on the same models. Figure 5.8 shows the top-1 accuracy of
our models on the ImageNet-A data set. Figure 5.9 shows the Area Under the
Response Rate Accuracy curve (AURRA) which measures how calibrated the models
are (how a model’s confidence in its prediction relates to its accuracy). Both of these
figures illustrate that the tighter bottlenecks do induce slightly better performance on
this task.

5.3.2 Robustness to L∞ constrained artificial attacks

To study a more general notion of adversarial robustness, we follow the guidelines
given by Carlini et al. (2019). We use FoolBox (Rauber et al., 2017, 2020) to compute
the worst case performance of the models under a range of attacks. We explore a range
of perturbations using different L∞ thresholds between 0 and 1.0. The attacks include
Projected Gradient Descent, which was utilised by Dapello et al. (2020) to
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Figure 5.10: Robust accuracy of different bottlenecks (line styles) against L∞ adver-
sarial attack budgets.

demonstrate improved robustness of their model. We use the following adversarial
attacks with L∞ perturbation budgets between 0.0 and 1.1. Each attack uses the
FoolBox (Rauber et al., 2020) implementation with default parameters.

• Fast Gradient Sign Method (Goodfellow et al., 2015)

• Projected Gradient Descent (Madry et al., 2018)

• Basic Iterative Method (Kurakin et al., 2017)

• Additive Uniform Noise

• DeepFool (Moosavi-Dezfooli et al., 2016)

Figure 5.10 shows the robust accuracy, the worst-case performance following all
attacks, of the models across different L∞ perturbation budgets. Results were
computed by sampling 10000 images from the ImageNet validation set uniformly for
each class. The results show that the increased opponency and small increase in shape
bias actually correspond to a decrease in robustness to targeted adversarial examples.

It is now pertinent to ask whether this result is unique to the ImageNet-trained
ResNet models or also applies to the models trained on CIFAR-10 from Chapter 4. We
therefore perform the same suite of attacks as in our ImageNet experiments but over
the whole CIFAR-10 test set. Figure 5.11 shows the worst case accuracy for these
models following all attacks. The results again show that no significant difference is
obtained through the introduction of a bottleneck.
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Figure 5.11: Robust accuracy of the CIFAR-10 trained models from Chapter 4 with
different bottleneck widths (line styles) against L∞ adversarial attack budgets.

5.4 Summary

In this chapter we have explored the addition of a bottleneck to ImageNet trained
ResNet-50 models. We have shown that cells in the bottleneck layer of models with
tight bottlenecks learn opponent receptive fields in accordance with the CIFAR-10
results from Chapter 4. In contrast to those results, the opponent cells we find here are
best described as luminance opponent rather than colour opponent. That said, we have
shown that these luminant opponent cells still exhibit some form of spectral response
and that, even in the extreme case of NBN = 1, the model is able to learn about
colour. Whether the cells in networks with tight bottlenecks have centre-surround
receptive fields of the kind observed by Lindsey et al. (2019) is unclear, although there
is some evidence that they do. It is clear, however, that the Retina-2 cells respond
more linearly in networks with tight bottlenecks, echoing the finding of Lindsey et al.
(2019). We have further shown that these differences in function correspond to a small
but consistent increase in the shape bias of the networks.

Our investigation into the performance of the different bottlenecked models is
surprising in the sense that it perhaps asks more questions than it answers. At the
outset our hypothesis was that the bottleneck might encourage both shape bias as well
as adversarial robustness; the typical nature of centre-surround opponent cells
observed in prior studies would for example suggest that the early network would
perform isotropic band-pass filtering (like a Laplacian of Gaussian) which one
presumes would naturally bias to towards shape representations. In terms of accuracy,
the different bottlenecks only have a mild effect with the tightest bottlenecks (below 8)
having slightly worse performance. The results of testing the models on natural
adversarial examples indicates that the tightest bottlenecks do perform better on the
ImageNet-A data set (both in terms of accuracy and calibration). However, it is
unclear whether this increase corresponds to an increase in robustness or merely
indicates that the type of function learned differs for tighter bottlenecks. In any case,
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the worst case accuracy, computed after a set of targeted adversarial attacks, shows
that adversarial robustness actually decreases slightly as the bottleneck is tightened.
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Chapter 6

Foveation and Function

In nature, visual attention is the movement of
the eyes (Yarbus, 1967), and often body (Held and Hein,
1963), which enables us to process intractable quantities
of information by restating the problem as one of
time rather than bandwidth or functional capacity. In the
previous chapters, we have shown that each convolutional
filter in a convolutional neural network can be seen to have
functional expressivity similar to that of a retinal ganglion
cell. The tiling of this single filter over the image is accounted for by the spatial
redundancy observable throughout the human visual system as a space preserving
retinal mapping (retinotopy) (Purves et al., 1997). Indeed, modern convolutional
neural networks (particularly models of attention) tick a lot of boxes in comparison to
the simplified biological model. There is, however, one glaring omission: foveation.

In the context of deep learning, foveation is not well explored. This is likely due to the
fact that many practitioners believe foveation to be superfluous to the objectives of
artificial vision. However, even if foveation is truly without value to the goal of greater
generalisation performance, an effective model of foveation may yet prove useful.
Specifically, if we are able to characterise the conditions required for the emergence of
the phenomena surrounding foveation, we may help to understand why our vision is
foveated if not for performance reasons.

One such phenomenon, and as a consequence of the interconnectivity found
throughout the visual pathway, is that neurons may integrate information over
multiple scale spaces. In the Inferior Temporal (IT) cortex (part of the ‘what’
pathway), evidence has been found for neurons which modulate their receptive field
according to the input. In Rolls et al. (2003), the authors studied neurons in macaque
IT as they performed an object search task. Their results show neurons that have a
large receptive field when the objects are placed in a blank scene. In contrast, when
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the scene is complex, the receptive fields are markedly reduced in size. It is suggested
that this translation variance facilitates an unambiguous representation of object
features in complex scenes (Rolls and Deco, 2002). The potential for integration of
information over multiple scale spaces and modulation of receptive field size is
exhibited in foveation. Specifically, downstream neurons can trade off between relying
on information from just one scale space or integrating features over multiple scale
spaces. This enables a much more dramatic change in receptive field sizes than would
be possible without foveation. It is therefore possible that foveation may provide value
in a setting where a network is required to perform both a localisation task and a
recognition task in parallel. Furthermore, we may look to such a network for the
emergence of these multi-modal cells.

Regarding colour processing, it has been widely observed that colour sensitivity in
humans and trichromatic primates decays with eccentricity (Mullen, 1991;
Stromeyer III et al., 1992). In Chapter 4 we extensively studied the notion of
opponency in neural networks. We further showed that the cells in the Retina-Net
models are in fact channel (RGB) opponent. This is an analogue of the cone
opponency observed in nature where the red-green (RG) and blue-yellow (BY)
opponent systems pit L cones against M cones and S cones against a combination of L
and M cones respectively. Several works have additionally shown differences between
the cone contrast sensitivity of the RG and BY opponent systems with eccentricity
(Mullen and Kingdom, 2002; Mullen et al., 2005; Murray et al., 2006; Hansen et al.,
2009). RG sensitivity is much greater than BY sensitivity at the fovea but decays more
rapidly, matching BY sensitivity within 25° of eccentricity (Mullen and Kingdom,
2002). The RG and BY opponent systems also exhibit distinct morphology. For
example, there is evidence of BY opponency in the koniocellular layers of primate LGN
with RG opponency mediated only by cells in the parvocellular layers (Hendry and
Reid, 2000). These distinct pathways consequently innervate distinct areas of the
primary visual cortex (Chatterjee and Callaway, 2003). Trichromatic vision,
supporting RG opponency, is a recent evolutionary development compared to the older
dichromatic vision, supporting BY opponency, of many primate species (Lucas et al.,
2003). These unique evolutionary origins offer one explanation for the differences
between the presentation of and discrepancy between the two cone opponent systems.
However, it may also be the case that there are inductive biases in the object detection
task that give rise to changes in RG and BY sensitivity with eccentricity.

In order to consider the above phenomena we require a model of foveation that
incorporates both a scale-space and a spatially variant function. In this chapter, we
start by introducing the foveated convolution. This is a stack of convolutional layers,
each sampling at a different scale, that receive as input successively smaller centre
crops of the image.
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In a first experiment, we show that the Spatial Transformer Network
(STN) (Jaderberg et al., 2015), a popular deep model of visual attention (Ablavatski
et al., 2017), fails to perform in a visual search problem (scattered CIFAR-10: a
CIFAR-10 (Krizhevsky, 2009) image is placed randomly on a large blank canvas and
the network is required to classify it) that is trivial to a human observer. Although
many components (for example, a visual memory (Baddeley and Hitch, 1974))
contribute to the success of human visual attention we show that the addition of a
foveated convolution can dramatically improve the localisation performance of deep
networks augmented with STNs. These attention policies are learned without any
enhancement to or supervision of the localisation network (as in Ablavatski et al.
(2017)) or increase in the total number of parameters.

In our second experiment, we study a variant of the STN model where the localisation
and classification networks have shared weights. This enables us to study a setting
where the convolutional network is tasked with both localisation and object
recognition in parallel. We show that the addition of a foveated convolution improves
performance on this task. Furthermore, by analysing the receptive fields of neurons in
these networks we provide evidence for a multi-modal representation, enabled by the
foveated convolution, that supports the dual objective.

In our final experiment, we extend the foveated convolution model to allow for multiple
layers of spatially variant function. Studying opponency in these models, we find a
reduction in opponent cells in the periphery, echoing the findings from nature. We
show that this pattern does not emerge in a baseline model with a locally connected
layer (which supports spatially variant function without a scale space). We
subsequently propose an approach for inferring RG or BY stimulus preference,
extending our work from Chapter 4. Applying this analysis to our multi-layer foveated
models, we show a reduction in RG preference moving from the centre to the
periphery. We again report results for a baseline locally connected network, in this
instance showing that it exhibits the same reduction in RG preference in the periphery.
On the basis of these findings, we suggest that the reduction in opponency in the
periphery emerges as a result of the scale space representation offered by foveation. In
contrast, the reduction in RG preference does not require a scale space and is instead
in some way induced by the object detection task.

6.1 Foveated Convolutions

In this section we draw inspiration from the distribution of ganglion cells on the retina
in order to construct a convolutional model of foveation following the observations
from Section 2.1.3. To model foveation we require oversampling at the centre and
undersampling at the periphery. We model oversampling with two transpose
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Figure 6.1: The foveated convolution operation. Left shows the crop area and ‘input
: output’ pixel ratio for each convolution, right shows the output tensor for a foveated
convolution with N channels. To add this component to the model from Figure 6.2 we

replace the first layer of the classifier with a foveated convolution.

convolutions which operate only on the central regions of the input. We subsequently
have a traditional convolutional layer with a stride of one which operates on a slightly
larger region. Finally, we use layers with increased dilation and stride to model the
undersampling that occurs towards the periphery. We take dilation and stride to be
equal since the relative increase in dendritic spread is approximately inversely
proportional to the change in ganglion-cone cell ratio. The input crop is chosen so that
the output from each convolutional layer is equal and maximal (that is, the layer with
the highest stride operates on the full image). Combining each of these design choices,
we obtain a layer of the form depicted in Figure 6.1. This layer bares a strong
resemblance to the sampling process in image foveation but with a fixed number of
discrete scale spaces rather than a continuous transition.

The output of a foveated convolution with 32 channels (the number used in our
experiments) will contain 8 channels from each of four convolutional layers. The first
acts on the whole image with a stride and dilation of 2. The second, acting on a centre
crop of the image with half the width and height, has a stride and dilation of 1. The
third layer, acting on a centre crop of the image with a quarter of the width and
height, is a transpose layer with a stride of 2. The final layer, acting on a centre crop
of the image with an eighth of the width and height, is a transpose layer with a stride
of 4. By virtue of their stride, the dilated layers address only a fraction of the pixels in
the image. Although this is appropriate since there are fewer cone cells towards the
periphery, we can further model the increase in size of peripheral cone cells by
swapping the dilated layer with an average pooling followed by a convolution with a
stride and dilation of 1. All convolutional layers have a kernel size of 3 in our foveated
layer.
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Localisation Network Classifier

Figure 6.2: The basic network architecture for a translation-only STN. At each step,
the output of the localisation network is used to construct a sampling grid. This is then

interpolated over the image to obtain the classifier input.

6.2 Experiment One: The Impact of Foveation on
Localisation Performance

In this section we present our first experiment studying the impact of foveated
convolutions on localisation performance of a Spatial Transformer Network
(STN) (Jaderberg et al., 2015). We construct the scattered CIFAR-10 data set which
illustrates a limitation of standard STNs and show that the addition of foveated
convolutions can alleviate this problem.

6.2.1 Scattered CIFAR-10

Translation invariance is a property long thought desirable in image processing models
(Nixon and Aguado, 2012). A model can be considered translation invariant if the
quality of its inference is not altered by translations of its inputs. However, translation
invariance is not always desirable; if the feature extraction following a spatial attention
mechanism is translation invariant, there will be no motivation for the model to learn
an interesting policy. By virtue of their action over the input, convolutional networks
exhibit a degree of translation invariance. This makes attention mechanisms such as
STNs followed by standard convolutional layers sometimes struggle to localise the
input.

Consider a visual search problem we call scattered CIFAR-10 where a
CIFAR-10 (Krizhevsky, 2009) image is placed randomly on a large blank canvas and
the network is required to classify it. It is trivial for a human observer to determine
the location of the image in the canvas and subsequently attempt to classify it. An
illustration of the scattered CIFAR-10 problem and the architecture of a translational
STN, where the attention mechanism is limited to only translating the input rather
than a full affine transform, is given in Figure 6.2. To perform well on scattered
CIFAR-10, the attention mechanism will need to learn to align the images. If that
alignment is made to a repeatable point, such as the centre of the image, the challenge
becomes effectively solved. Specifically, one can envisage a two stage process where the
attention policy is first learned using a simple classification network and then fixed to
act as a pre-processor for a more complicated network. In this setting, if the
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Figure 6.3: The transformed results, after training on scattered CIFAR-10, for: a
Spatial Transformer Network (STN), an STN with multi-scale extraction (STN-MS), a
FoveaNet (FN), and STN with a full affine glimpse (STN-FA), and a FoveaNet with a

full affine glimpse (FN-FA).

Table 6.1: Classification error of a three layer CNN equipped with different attention
mechanisms on scattered CIFAR-10.

Model Error
CNN 58.77± 0.29%
CNN with global pooling 52.71± 0.47%
STN 60.02± 2.18%
STN multi-scale 57.55± 2.72%
FoveaNet 50.41± 1.39%
Pooled FoveaNet 49.53± 0.82%
STN full affine 47.70± 1.70%
Pooled FoveaNet full affine 45.83± 0.61%

localisation network (which decides the glimpse parameters) performs well, it should
be possible to get the same accuracy as can be obtained on vanilla CIFAR-10 with any
architecture.

6.2.2 Localisation Performance

The second row of Figure 6.3 shows the transformed images emitted by the attention
mechanism of a simple CNN with a translational STN over the input (top row). The
classification error for this model and a non-attentional baseline with the same
classification architecture are given in Table 6.1. This model uses a localisation network
of four convolutional layers (kernel sizes of 7, 5, 3 and 3) followed by a linear layer with
32 neurons and a final linear layer which regresses the 2 translation parameters.
Following the translational affine transformation, a three layer convolutional network
(kernel size of 3 and stride of 2 in each layer), 128 neuron linear layer and final 10
neuron softmax layer perform the classification step. We use ReLU nonlinearity
throughout and train for 50 epochs with the Adam optimiser (initial learning rate of
0.0001). From the figure we can see that the model fails to appropriately localise the
input, instead collapsing to zero translation in both directions.
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We additionally conduct experiments using the multi-scale approach employed by Ba
et al. (2014); Mnih et al. (2014). This approach is costly when using STNs since the
image needs to be differentiably scaled multiple times on the forward pass. The third
row of Figure 6.3 shows the outcome of this experiment, extracting glimpses at 3
scales. The figure shows an improvement over the baseline when using multi-scale
glimpse extraction.

The fourth row of Figure 6.3 shows the result of our model augmented with a foveated
convolution layer (substituted for the first layer of the classifier). This has the same
number of weights as the previous model but is now able to almost perfectly solve the
localisation problem. Consequently, the terminal error of the model (given in Table
6.1) has significantly improved. The foveated layer with pooling instead of strided
downsampling (Pooled FoveaNet) gives a small improvement in localisation
performance and accuracy as shown in Table 6.1.

It could be argued that the STN performs poorly as a result of the constraint that it
can only translate the input. The fifth row of Figure 6.3 shows the transformed images
in a model with a full affine STN. The network still fails to localise in this setting,
whilst adding unnecessary rotation and scale. The sixth row show the transformed
images for a FoveaNet with a full affine mechanism. In this setting we still find
unnecessary rotation and scale but the scattered images have been correctly pose
normalised. These observations are also echoed by the classification error in Table 6.1.

An alternative approach to translation invariance is to equip a CNN with global
pooling. This takes a spatially global average of each feature map such that the
terminal activations are translation invariant. As Table 6.1 shows, the performance is
still worse than that of a foveated convolution, and of course without any of the
localisation benefits.

6.2.3 Foveated Pre-processing

The results in Figure 6.3 show that when the localisation problem is effectively solved
the scattered image is reliably transformed to the centre of the canvas. This property
makes it possible to use the pre-trained STN mechanism followed by a centre crop as a
preprocessing technique. Since the STN is lightweight for inference and does not need
to be trained any further, this can be achieved with a negligible change in computation
cost.

We now perform experiments using this pre-processing followed by a PreAct ResNet-18
for classification. In this setting, the full advantage of foveated convolutions becomes
clear. The results, given in Table 6.2, show that foveated convolutions can be used to
completely solve scattered CIFAR-10, obtaining a superior result to the ResNet trained
on vanilla CIFAR-10. We suspect that the reason for the increase is that the attention
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Table 6.2: Classification error of a PreAct ResNet-18 following preprocessing by ap-
plying a centre crop on the transformed output of a pre-trained attention mechanism

on scattered CIFAR-10.

Model Error
No crop 6.17± 0.08%
STN + crop 53.77± 0.63%
STN multi-scale + crop 38.66± 9.08%
Pooled FoveaNet + crop 6.13± 0.08%
Vanilla CIFAR-10 9.28± 0.09%

No crop: 10 hours, 12GB GPU memory
Others: 2 hours, 2GB GPU memory

step acts as a small augmentation, similar to a padded random crop. As a further
baseline, we measure the performance of the ResNet-18 trained on full scattered
CIFAR-10 images. Although this performs very well, the increased resolution resulted
in an approximately five fold increase in memory usage and training time. Strangely,
the ResNet trained on scattered CIFAR-10 outperforms the same network on vanilla
CIFAR-10; we again suspect that this is because the scattering acts as an extremely
costly augmentation.

6.3 Experiment Two: Multi-modal Neurons in Foveated
Networks

In this section we propose a variant of the model from Section 6.2 where the weights
are shared between the localisation network and the classifier and the convolutional
architecture is based on the Retina-Net model from Lindsey et al. (2019) and
Chapter 4. We train this model on a more challenging variant of the scattered
CIFAR-10 task where additional distractor fragments are added that we refer to as
cluttered CIFAR-10. Finally, we study the receptive fields of cells in these networks
and find evidence for a change in receptive properties depending on the stimulus that
we suggest facilitates the dual objective of localisation and classification.

6.3.1 Cluttered CIFAR-10

Inspired by Cluttered MNIST used in (Ba et al., 2014), we now construct Cluttered
CIFAR-10 by embedding CIFAR-10 images in a canvas along with randomly sampled
patches from the rest of the dataset. This is a more challenging variant of the visual
search task explored in Section 6.2. Figure 6.4 shows the cluttered CIFAR-10 input
and transformed outputs for two models. The first model is the result of replacing the
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Figure 6.4: Top: The model input for cluttered CIFAR-10. Middle: The transformed
outputs for the non-foveated model. Bottom: The transformed outputs for the foveated

model

localisation and classification networks with the Retina-Net architecture with a
bottleneck of 8 and a ventral depth of 4 (refer to Section 4.2.1 for details on the
meaning of these hyper-parameters). The second model is a variant of the first where
the first layer (Retina 1) has been substituted with a foveated convolution. For both
models the weights of the localisation and classification network are shared. The figure
reflects the results from 6.2 in that the standard model (middle row) generally
regresses to the identity transform, whereas the model augmented with foveated
convolutions manages to correctly localise the image in at least some of the examples
despite the increased complexity of the problem. This improved localisation is also
reflected in the terminal classification errors; the non-foveated model achieved an error
of 64.4%, whereas the foveated model achieved an improvement at 57.8%.

6.3.2 Receptive Field Analysis

In order to visualise the receptive fields of neurons in our models, we can employ the
approach of Lindsey et al. (2019) where the gradient of the cell is taken with respect to
a blank stimulus. For our purposes, we need a way to differentiate between receptive
fields with respect to simple stimulus (representing the background) and complex
stimulus (representing the object). Since the cluttered CIFAR-10 images do not
resemble natural images, we note that any stimulus where the input is greater than
zero corresponds to stimulus from an object. We therefore study receptive fields with
respect to two inputs: one containing zeros representing the background and another
containing ones representing the foreground.

Figure 6.5 gives the receptive fields for neurons in the ‘V1’ layer of the non-foveated
model in response to bright stimulus (top) and dark stimulus (bottom). The figure
shows that the receptive fields with respect to the two stimuli are largely consistent,
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Figure 6.5: Top: Receptive fields for cells in layer ‘V1’ of the non-foveated model
following a bright stimulus. Bottom: Receptive fields for the corresponding cells in

response to a dark stimulus.

Figure 6.6: Top: Receptive fields for cells in layer ‘V1’ of the foveated model following
a bright stimulus. Bottom: Receptive fields for the corresponding cells in response to

a dark stimulus.

both in terms of the size of the receptive field and the sensitivity (brightness of the
image here corresponds to the magnitude of the gradient).

Figure 6.6 gives the receptive fields for neurons in the ‘V1’ layer of the non-foveated
model. Here we find a stark contrast between the receptive fields with respect to the
two stimuli. With respect to the bright foreground stimulus, receptive fields are large
and complex. With respect to the dark stimulus receptive fields are small, typically
with a single region of consistent high sensitivity at the centre.

There are a few observations we can make regarding these results. The first is that the
cells in the foveated network are highly non-linear in their activation. This derives
from the fact that a linear cell would have the same gradient with respect to all
stimuli. The second observation is that these receptive fields correspond to two modes
of operation for the neurons: classification, and localisation. In the classification mode
(bright stimulus) the cells exhibit a wide and detailed receptive field required to convey
information about the features in the object (the CIFAR-10 image). In the localisation
mode (dark stimulus) the cells exhibit a small, specific receptive field needed to convey
information about the precise location of the stimulus. The presence of these
multi-modal neurons is enabled by the scale space representation of the foveated
convolution layer.

Having characterised the receptive fields on neurons in the ‘V1’ layer, it is now
pertinent to ask whether these receptive field properties are upheld in later layers. To
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Figure 6.7: Top: Receptive fields for cells in layer ‘V4’ of the non-foveated model
following a bright stimulus. Bottom: Receptive fields for the corresponding cells in

response to a dark stimulus.

Figure 6.8: Top: Receptive fields for cells in layer ‘V4’ of the foveated model following
a bright stimulus. Bottom: Receptive fields for the corresponding cells in response to

a dark stimulus.

this end, in Figures 6.7 and 6.8 we plot the receptive fields for cells in the ‘V4’ layer of
the non-foveated and foveated models respectively. Our findings here echo our findings
in the ‘V1’ layer. At this higher level of abstraction, the ‘V4’ cells in the foveated
model in localisation mode (dark stimulus) now appear to act as rudimentary edge and
blob detectors. These cells convey features that are of clear utility when trying to find
the CIFAR-10 image in a cluttered canvas.

6.4 Experiment Three: Opponency and Eccentricity

In this section we study the distributions of opponent cells against eccentricity
according to the definitions from Chapter 4 in networks equipped with foveated
convolutions. We analyse these distributions in order to determine whether the
characteristic differentials observed in nature emerge. We additionally propose a new
method for determining the stimulus preference of cells in our networks in order to
further study the distribution of RG and BY preference.

6.4.1 Multiple Layers of Foveation

For our experiments here we require two layers of foveated function since we have
observed in Chapter 4 that receptive fields akin to those of retinal ganglion cells are
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1:1

2:1

4:1

Figure 6.9: The inverse foveation pooling operation. Groups of feature maps from
different scale spaces are resampled and inserted in to each other to produce a single

feature map.

predominantly found in second layer units. In general, strided and transpose
convolutions can be substituted for interpolation followed by a standard convolution.
Using this principle, we can separate the foveated convolution model into a stack of
interpolation layers, which each receive different centre crops of the input, followed by
a stack of convolutional layers which all have the same hyper-parameters. In essence
this is as a spatial pyramid followed by parallel independent convolutional layers.

In addition to multiple layers of foveation, we require the ability to increase the
number of scales so that we have a smooth transition in scale space across the image
(in the retina this transition is continuous). The number of scales in the pyramid, NS ,
is a hyper-parameter of the model. The size of the centre crop is chosen such that the
scaled output has the same spatial resolution as the original image. We then sample
the scale factors for the interpolation uniformly sampled between 1 and 4. Note that
we avoid downsampling such that when NS = 1 this is equivalent to a standard
non-foveated model. We follow the spatial pyramid with two layers of grouped
convolutions in NS groups with kernel size of 3, stride of 1, and no input padding.
Grouped convolutions are equivalent to parallel layers with the same hyper-parameters.
There are 32×NS filters in the first layer and 64×NS in the second layer.

Following the foveated portion of the network we need to re-scale the different groups
to all be in the same scale space. In addition, we need to remove the centre portions of
the peripheral groups since they should only communicate information about the
periphery. This can be achieved with an inverse of the spatial pyramid operation,
where successive scales are downsampled and inserted into the centre of the previous
scale. The output from this layer is a single block of feature maps where the distance
of a given pixel from the centre determines which group of convolutions it derives from.
A diagram of this inverse pooling operation is given in Figure 6.9. For the remainder of
the model we use four convolutional layers with 128, 256, 512, and 512 units
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Figure 6.10: Distribution of colour opponent cells against eccentricity in foveated
(NS = 7) and non-foveated (NS = 1) variants of our model trained on CIFAR-10.
Colour opponency increases in the centre of the visual field to over twice that of the

periphery.

respectively followed by a fully connected layer. We use kernel size of 3, stride of 2,
and input padding of 1 for the convolutional layers.

We additionally report results using locally connected networks. These are akin to a
convolution where the weights of each filter at each spatial position are learnable
independently of each other. These locally connected networks exhibit spatially variant
function but not spatially variant scale.

To study the impact of channel responses on opponency, we train networks on images
in multiple colour spaces that have different cone response characteristics. Specifically,
we use: RGB, LMSCAT02, and LMSHPE. A visual depiction of the RGB / LMS channel
responses to wavelength and a description of the approach for converting between the
colour spaces is given in Section 2.1.1.

In order to follow deep learning best practices we normalise inputs to have zero mean
and unit deviation according to statistics computed over the whole data set after
transformation into the target colour space. All models are trained for 200 epochs
using Stochastic Gradient Descent (SGD) with momentum of 0.9, an initial learning
rate of 0.1, and L2 weight decay of 10−4. We divide the learning rate by 10 at epochs
100 and 150. For data augmentation, we use random horizontal flipping only. We use
batchnorm layers followed by ReLU activation functions for all hidden layers in all
models. For the experiments in this section, the error region gives the 95% confidence
interval following 10 repeats with independent random initialisation of the weights.

6.4.2 Distribution of Opponent Cells

Figure 6.10 gives the distribution of opponent cells against eccentricity in models
trained on the CIFAR-10 data set in the RGB, LMSCAT02, and LMSHPE colour spaces
respectively. The figure shows a peak in opponency in the centre of the visual field and
a reduction in the periphery that is consistent in all three colour spaces. The
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Figure 6.11: Distribution of colour opponent cells against eccentricity in our locally
connected model trained on CIFAR-10. Locally connected layers, where receptive field
size is constant across the visual field, do not exhibit a change in opponency with

eccentricity.
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Figure 6.12: Distribution of colour opponent cells against eccentricity in foveated
(NS = 7) and non-foveated (NS = 1) variants of our model with random weights.

Random networks do not exhibit a change in opponency with eccentricity.

non-foveated networks exhibit opponency at the same level as the perihperal cells in
the foveated networks. This is to be expected since these neurons have the same
receptive field size and scale space.

Figure 6.11 gives the opponency distribution with eccentricity for networks with locally
connected layers. The results show that colour opponency stays broadly constant
across the visual field in these models. This suggests that the scale space representation
is required in order for the differential distribution of opponency to emerge.

We additionally report results for the same analysis in networks with random weights
in Figure 6.12. The figure shows that the opponency distribution does not change
significantly with eccentricty. Furthermore, the results for foveated and non-foveated
networks are within the margin of error of each other. This suggests that the
differential distribution of opponency is a learned result rather than an innate property
of the networks.
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Figure 6.13: Distribution of channel opponent stimulus preference against eccentricity
in a foveated (NS = 7) model trained on CIFAR-10. RG preference increases in the

centre of the visual field and is traded for BY preference the periphery.
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Figure 6.14: Distribution of channel opponent stimulus preference against eccentricity
in our locally connected model trained on CIFAR-10. RG preference increases in the

centre of the visual field and is traded for BY preference the periphery.

6.4.3 Distribution of RG / BY Preference

We now wish to determine the preference for RG / BY channel opponency in our
networks. To this end we construct two sets, RG and BY, of sinusoidal grating stimuli
using PsychoPy (Peirce et al., 2019). Each grating set is configured to isolate RG or
BY inputs. We first determine the maximum response of each unit to each grating set
over all angles, frequencies, and phases. We then label each unit as either preferring
RG or BY stimuli depending on which grating set elicits the strongest response. Note
that a consequence of this approach is that all cells are labelled as either RG or BY
preferring. This contrasts with the approach from biology where both RG and BY
sensitivity can decay with eccentricity.

In Figure 6.13 we plot the distributions of RG and BY preference with eccentricity for
networks equipped with foveated convolutions. The figure shows that RG preference is
at it’s highest in the centre of the visual field and decays towards the periphery. There
is a drop in RG preference at the very edge of the visual field that we suspect is an
artefact of the foveated convolution.

Figure 6.14 gives the RG and BY preference curves for our locally connected model.
The figure shows that our locally connected variant exhibits the same characteristic
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change in RG and BY preference that we found in networks with foveated
convolutions. We do not find the drop in RG preference at the edge of the visual field
in this setting. This accords with our assertion that these drops are an artefact of the
foveated convolution.

6.5 Summary

In this chapter we have taken inspiration from biology to design the foveated
convolution, a layer of stacked convolutions with a foveated receptive field. We have
shown that the addition of a foveated convolution dramatically improves localisation
performance in a visual search task and that this gives a corresponding reduction in
classification error. This unsupervised localisation is sufficiently reliable that a PreAct
ResNet-18 can be trained on top to completely solve scattered CIFAR-10 with an
approximately five fold reduction in complexity over training on the full images. We
have further shown that foveation can facilitate a multi-modal representation where
cells switch between a localisation mode and a classification mode depending on the
nature of their input.

One interpretation of the scale space representation of the foveated convolution is that
it changes the data distribution with eccentricity. Specifically, patches from each scale
are sampled with a different scale factor and thus contain distinct visual features as a
result. In Chapter 4 we showed that the data distribution plays a critical role in the
emergence of opponency. For example, cells in networks with random weights do not
exhibit the same opponent characteristics. Furthermore, experiments with different
data sets yielded changes in the opponency distribution. On this basis, we contend
that foveation gives rise to the differential distribution of opponency with eccentricity
by changing the data distribution. This is consistent with the results presented here
where a foveated convolution, which exhibits both a spatially variant scale space and
function, gave rise to a differential distribution of opponency with eccentricity. In
contrast, a locally connected network, which exhibits spatially variant function but
consistent scale, did not give rise to a differential distribution of opponency with
eccentricity.

Regarding the differential distribution between RG and BY, we find the same
characteristic curve for both foveated convolutions and locally connected networks.
This finding suggests that the RG / BY differential is not caused by the scale space
representation of foveation but instead emerges from the data distribution and the
object classification task. However, more experimentation would be needed to
understand this relationship fully.
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Chapter 7

Attention and Memory

In the previous chapters we have considered techniques
for analysing specific aspects of deep networks at a cellular
level using insight from electrophysical and psychophysical
studies. However, much of the effort applied
to understanding visual intelligence has been devoted to a
higher-level, psychological, model of vision. In this chapter
we look to build a deep model that accords with a high
level view of the visual system and thereby understand the
challenge and potential of such an approach.

David Marr posited that vision is composed of stages which lead from a two
dimensional input to a three dimensional contextual model with an established notion
of object (Marr, 1982). This higher order model is built up in the visual working
memory as a visual sketchpad which integrates notions of pattern and texture with a
notion of pose (Baddeley and Hitch, 1974). Visual attention plays a key role in the
construction of these percepts by enabling objects to be appreciated from a range of
perspectives and their spatial footprint to be inferred.

In deep learning, there exists an extensive collection of approaches to visual attention
(Ablavatski et al., 2017; Ba et al., 2014; Gregor et al., 2015; Jaderberg et al., 2015;
Mnih et al., 2014; Sønderby et al., 2015). Directly inspired by visual attention in
nature, deep visual attention corresponds to adaptive filtering of the model input
typically through the use of a glimpsing mechanism which allows the model to select a
portion of the image to be processed at each step. With the objective of integrating
pose and texture, visual attention models face two key challenges:

• to derive notions of pose and object from visual features,

• and to effectively model long range dependencies over a sequence of observations.
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Various models have been proposed and studied which hope to enable deep networks
to construct a notion of pose. The representation of pose can either be implicit or
explicit in the nature of the objective. For example, transformational attention models
learn an implicit representation of object pose by applying one or more transforms to
an image with the objective of object classification (Jaderberg et al., 2015; Ablavatski
et al., 2017). The transform policy in these cases has the objective of improving
downstream performance, that is, making it easier for the resultant image to be
classified. It is presumed therefore that the transform is pose-normalising in the sense
that it removes information about the objects pose and retains information about its
class. Other models such as Transformational Autoencoders and Capsule Networks
harness an explicit understanding of positional relationships between objects and
object-parts (Hinton et al., 2011; Sabour et al., 2017).

A long range dependency is a connection between two observations that are far apart
(at a long range) in a sequence. In visual attention this concept encompasses several
important properties. For example, the realisation that when you look away from and
then back to an object it is still the same object (object permanence) requires
understanding of a long range dependency. In deep learning, sequence processing tasks
are typically handled using Recurrent Neural Networks (RNNs).

Short term memories have previously been studied as a way of improving the ability of
RNNs to learn long range dependencies. The ubiquitous Long Short-Term Memory
(LSTM) network is perhaps the most commonly used example of such a model
(Hochreiter and Schmidhuber, 1997). More recently, the fast weights model, proposed
by Ba et al. (2016) provides a way of imbuing recurrent networks with an ability to
attend to the recent past and thus establish connections between current and past
observations. From these approaches, it is evident that memory is a central
requirement for any method which attempts to augment deep networks with the ability
to attend to visual scenes.

The core concept which underpins memory in neuroscience is synaptic plasticity, the
notion that synaptic efficacy, the strength of a connection, changes as a result of
experience (Purves et al., 1997). These changes occur at multiple time scales and,
consequently, much of high level cognition can be explained in terms of the interplay
between immediate, short and long term memories. An example of this can be found
in vision, where each movement of our eyes requires an immediate contextual
awareness and triggers a short term change. We then aggregate these changes to make
meaningful observations over a long series of glimpses. Fast weights (Ba et al., 2016)
draw inspiration from the Hebbian theory of learning (Hebb, 1949) which gives a
framework for how this plasticity may occur. In Miconi et al. (2018), the authors show
that weights updated by a Hebbian rule can be combined with weights learned through
backpropagation to act as a content-addressable memory.
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In this chapter, we propose expanding transformational visual attention models to
incorporate visual memory at multiple time-scales. These are: weights learned through
back-propagation (long term), a parts-based representation formed from a series of
sketches (working / medium-term), plastic weights (short-term), and the hidden state
of an RNN (immediate). In the process of this endeavour, we wish to understand the
challenges faced when attempting to use deep learning to realise a high-level
psychological model. At its core, our model consists of LSTM layers that produce a
series of glimpses (different affine transforms of the input). Our model then includes a
Hebbian mechanism based on the Perceptron from Rosenblatt (1962) which integrates
features from these glimpses. We show that this model can be trained to classify
images from the MNIST and CIFAR-10 datasets. We then demonstrate that it is
possible to learn this memory representation in an unsupervised manner by painting
images, similar to the Deep Recurrent Attentive Writer (DRAW) network (Gregor
et al., 2015). Using this representation, we demonstrate competitive classification
performance on MNIST and performance on CIFAR-10 that exceeds a baseline VAE
with self supervised features. Furthermore, we demonstrate that the model can learn a
disentangled space over the images in CelebA (Liu et al., 2015) separating the faces
from their backgrounds, shedding light on some of the higher order functions that are
enabled by visual attention and associative memory. Finally, we show that the model
can perform both classification and sketching tasks in parallel to produce a visually
interpretable classifier.

7.1 An Associative Visual Working Memory

In this section, we detail our model. At a high level, we build on the model from
Ablavatski et al. (2017) to include a Hebbian network that integrates glimpse features
and a mechanism for image reconstruction (auto-encoding) that we refer to as a visual
sketchpad. The Hebbian mechanism, our ‘Memory Network’, is akin to a short-term
memory in the sense that it acts as a store for information from the whole sequence.
We will later show that a key advantage of the Hebbian approach lies in the ability to
project multiple query vectors through the memory and obtain different, goal-oriented,
latent representations for one set of weights. Derived from the memory network are
sketch features, sketches, and finally the full canvas. The canvas is the result of
transforming and combining a sequence of sketches according to positional information
from the glimpses. Combined, these components are an analogue of a working memory,
where the same information is represented in parallel at multiple levels of abstraction.

In Section 7.1.1 we detail the plastic ‘Memory Network’ and update policy. Then in
Section 7.1.2 we describe our model of visual attention which is used to build up the
memory representation for each image. Finally, in Section 7.1.3 we will discuss the
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Figure 7.1: The two layer Hebb-Rosenblatt memory architecture. This is a novel,
differentiable module inspired by Rosenblatts perceptron that can be used to ‘learn’ a
Hebbian style memory representation over a sequence and can subsequently be projected

through to obtain a latent space.

different model ‘heads’ which use these spaces to perform different tasks, including our
sketchpad mechanism.

7.1.1 Hebb-Rosenblatt Redux

We require our Hebbian mechanism to concurrently perform two tasks, learning from
the conditioning stimuli (the glimpses) and being queried to perform downstream
objectives (classification and sketching). We draw inspiration from various models of
plasticity to derive a differentiable learning rule that can be used to iteratively update
the weights of a memory space, during the forward pass of a deep network. This
memory layer can subsequently be queried to obtain context dependant latent spaces.
Early neural network models used learning rules derived from the Hebbian notion of
synaptic plasticity (Hebb, 1949; Block, 1962; Block et al., 1962; Rosenblatt, 1962). The
phrase ‘neurons that fire together wire together’ captures this well. If two neurons
activate for the same input, we increase the synaptic weight between them; otherwise
we decrease. The information in biological networks is typically seen as being encoded
by the timing of activations and not their number. However, a windowed calculation of
the firing rate provides a reasonable, continuous valued approximation (Dayan and
Abbott, 2001; Rolls and Deco, 2002) that we can use to create a differentiable
short-term memory unit that can be integrated with deep networks.

Consider the two layer network inspired by the early multi-layer perceptron models of
Rosenblatt (1962) shown in Figure 7.1 with an input layer LI and output layer LII,
with weights at time t given by W(t) ∈ RSm×Sm , where Sm denotes the size of the
memory. Consider now that we present a sequence of conditioning stimuli

X = (x(n))Nsn=0, x(n) ∈ RSm (7.1)
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to the model. For the stimulus x(n), LI will have an activation φ(x(n)), where

φ : RSm → [0, Φ]Sm ⊂ RSm (7.2)

is a neuron-wise bounded rectified function. A corollary of this in nature is that the
firing rate in a given window is non-negative and has a maximum value governed by
the refractory period (Dayan and Abbott, 2001). For simplicity, we will consider the
memory input to have been pre-processed such that x(n) = φ(x(n)).

Cells in LII receive stimulus via two sets of afferent connections and consequently
activate according to two terms, the bias and the projection. Let

β(n) = diag(θ)x(n) (7.3)

represent the bias term (where θ ∈ RSm are tunable, neuron-wise bias weights) and

γ(n)(t) = W(t)x(n) (7.4)

represent the projection term. The response of LII to stimulus x(n) at time t can be
written

y(n)(t) = φ(β(n) + γ(n)(t)) . (7.5)

The Hebbian change in some synaptic weight, following the presentation of the nth
stimulus for some period ∆t is proportional to the product of the activations in the
input and output neurons. For some weight W (t+ ∆t)ij , we increment by some
amount of the product of activations x(n)i y

(n)
j and decrement by some amount of its

previous value W (t)ij . We can therefore use the outer product to write

W(t+ ∆t) = W(t) + ∆tdiag(η)(y(n)(t)x(n)>)− ∆tdiag(δ)W(t) , (7.6)

where at each step, we reduce the weights matrix by some neuron-wise decay rate
δ ∈ RSm and apply the increment with some neuron-wise learning rate η ∈ RSm . This
rule allows for the memory to make associative observations over the sequence of input
stimuli, capturing salient information. By virtue of the bias term (not present in
traditional Hebbian formulations) we can initialise the weights to zero
(W(0) = 0Sm,Sm) and still learn a meaningful representation. This should enable more
effective learning over short sequences of stimuli which are each presented only once
since we do not introduce a ‘false memory’. Note that if we remove the projection term
and the activation function φ and set θ = 1Sm we obtain the term used in the fast
weights model of Ba et al. (2016). Furthermore, it can be seen that our model is a
special case of the differentiable plasticity architecture (Miconi et al., 2018), where the
matrix of error-corrected weights is constrained to be diagonal and the activation
functions are bounded rectifiers.
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Figure 7.2: The attentional working memory model which produces an update to
the memory. See Section 7.1.2 for a description of the structure and function of each

module.

One central innovation of our approach lies in our specific treatment of the plastic
network as a memory mechanism. For this setting, we consider the response of the
second layer to some query stimulus x(q), not present in the conditioning sequence.
Query stimuli do not trigger a plastic update and are not affected by the bias term,
instead they give rise to latent representations conditioned on the plastic weights.
Specifically, the representation derived from a query stimulus is given by
γ(q)(t) = W(t)x(q), where we omit the bias term so that the projection is not
dependant on the specific query used, only on the content of the memory.

Defining mnq = x(n)>x(q), a fuzzification of the number of cells in LI which are active
for both stimuli n and q, we can show that γ(q)(t) depends on the mnq of the
conditioning stimuli. From the definition of γ(q) we have

γ(q)(t0 + ∆t)− γ(q)(t0) = (W(t0 + ∆t)−W(t0))x(q) , (7.7)

substituting in Equation 7.6 we get

γ(q)(t0 + ∆t)− γ(q)(t0) = ∆t
[
diag(η)(y(n)(t0)x(n)>)x(q) − diag(δ)W(t0)x(q)

]
= ∆t

[
diag(η)y(n)(t0)(x(n)>x(q))− diag(δ)W(t0)x(q)

]
= ∆t

[
diag(η)y(n)(t0)mnq − diag(δ)γ(q)(t0)

]
. (7.8)

This is the key property of associative learning, that the response of the network is
dependent on the association between the current input (in our case a query) and the
previous inputs (the glimpse features). For our model, this suggests that different
query vectors can be used to obtain draw out context dependent features from the
series of glimpses.

7.1.2 The Short Term Attentive Working Memory Model (STAWM)

Here we describe in detail the STAWM model shown in Figure 7.2. This is an attention
model that allows for a sequence of sub-images to be extracted from the input so that
we can iteratively learn a memory representation from a single image. STAWM is
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based on the Deep Recurrent Attention Model (DRAM) and uses components from
Spatial Transformer Networks (STNs) and the Enriched DRAM (EDRAM) (Ba et al.,
2014; Jaderberg et al., 2015; Ablavatski et al., 2017). The design is intended to extend
the previous models of visual attention to incorporate our suggested working memory
based on a visual sketchpad, which starts with a Hebbian network.

At the core of the model, a two layer RNN defines an attention policy over the input
image. As with EDRAM, each glimpse is parameterised by an affine matrix, A ∈ R3×2,
which is sampled from the output of the RNN. At each step, A is used to construct a
flow field that is interpolated over the image to obtain a fixed size glimpse in a process
denoted as the glimpse transform

tA : RHi×Wi → RHg×Wg , (7.9)

where Hg ×Wg and Hi ×Wi are the sizes of the glimpse and image respectively.
Typically the glimpse is a square of size Sg such that Hg = Wg = Sg and we can write
the glimpse sequence as

G = (g(n))
Ng
n=0, g(n) ∈ RSg×Sg . (7.10)

Features obtained from the glimpse are then combined with the location features and
used to update the memory with Equation 7.6. Each glimpse is used to update the
memory only once, such that Ng = Ns. This differs from the approach in Miconi et al.
(2018) where each stimulus is used to update the weights multiple times.

Context and Glimpse CNNs Our model includes two Convolutional Neural
Networks (CNNs) for obtaining visual features from the image and from the glimpses
(which are essentially smaller images). We refer to these networks as the context and
glimpse CNNs. The context CNN is given the full input image and expected to
establish the top-down contextual information required when making decisions about
where to glimpse. Output from the context CNN is used as the initial input and initial
hidden state for the emission RNN to support this behaviour. From each glimpse we
extract features with the glimpse CNN that are then collected in the ‘Memory
Network’ and fed back into the attention network to inform the next glimpse.

Aggregator and Emission RNNs The aggregator and emission RNNs, shown in
Figure 7.2, formulate the glimpse policy over the input image. The aggregator RNN
receives the features from the series of glimpses in its hidden state (initialised to zero
when no glimpses have yet been made). The emission RNN takes this aggregate of
knowledge about the image and an initial hidden state from the context network to
define the glimpse policy over the image.
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By initialising the hidden states in this way, we expect the model to learn an attention
policy which is motivated by the difference between what has been seen so far and the
total available information. We use LSTM units for both networks because of their
stable learning dynamics (Hochreiter and Schmidhuber, 1997). We give these layers
the same size so that they can be conveniently implemented as a two layer LSTM. We
use two fully connected layers to transpose the output down to the six dimensions of A
for each glimpse. The last of these layers has the weights initialised to zero and the
biases initialised to the affine identity matrix as with spatial transformer networks
(Jaderberg et al., 2015).

Memory Network The memory network takes the output from a multiplicative
‘what, where’ pathway and passes it through our Hebbian layer with weights
W ∈ RSm×Sm , where Sm is the memory size. The ‘what’ and ‘where’ pathways are
fully connected layers which project the glimpse features (‘what’) and the RNN output
(‘where’) to the memory size. We then take the elementwise product of these two
features to obtain the input to the memory, x ∈ RSm . We can think of the memory
network as being in one of three states at any point in time, these are: update,
intermediate and terminal. The update state of the memory is a dynamic state where
any signal which propagates through it will trigger an update to the weights using the
rule in Equation 7.6. In STAWM, this update will happen Ng times per image, once
for each glimpse stimulus.

For the intermediate and terminal states, no update is made to the plastic weights for
signals that are projected through. In the intermediate state we observe the memory
at some point during the course of the attention policy. Conversely, in the terminal
state we observe the fixed, final value for the memory after all Ng glimpses have been
made. We can use the intermediate or terminal states to observe the latent space of
our model conditioned on some query vector. That is, at different points during the
glimpse sequence, different query vectors can be projected through the memory to
obtain different latent representations. For a self-supervised setting we can fix the
weights of our model so that the sequence of conditioning stimuli, X, cannot be
changed by the optimizer.

7.1.3 Using the Memory

We now have an architecture that can be used to build up or ‘learn’ a Hebbian
memory over a series of glimpses of an image. We use the output from the context
CNN as a base that is projected into different queries for the different aims of the
network. We do this using linear layers, the biases of which can learn a static
representation which is then modulated by the image context. We ‘detach’ the image
context meaning that no gradient can propagate back from the query to the context
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Figure 7.3: The classification model which uses the terminal state of the memory.
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Figure 7.4: The drawing model which uses intermediate states of the memory.

CNN. This ensures that the context network is not polluted by divergent updates and
prevents a trivial case where the glimpses are ignored and the query is used to convey
information about the image rather than to address the memory. In this section we
will characterise the two network ‘heads’ which make use of latent vectors (the queries)
derived from the memory to perform the tasks of classification and drawing. We will
also go on to discuss ways of constraining the sketches in a variational setting to force
the model to learn a ‘space’ of sketches that can be sampled enabling direct assessment
of what the model has learned.

Classification For the task of classification, the query vector is projected through
the memory in exactly the same fashion as a linear layer to derive a latent vector. This
latent representation is then passed through a single classification layer which projects
from the memory space down to the number of classes as shown in Figure 7.3. A
softmax is applied to the network output and the entire model (including the attenion
mechanism) is trained by backpropagation to minimise the categorical cross entropy
between the network predictions and the ground truth targets. We therefore expect
STAWM to learn a context dependant attention policy that is motivated by the need
to classify the images from the series of glimpses.

Learning to Draw To construct a visual sketchpad we propose a novel approach
with the auxiliary model depicted in Figure 7.4. The drawing model uses each
intermediate state of the memory to query a latent space and compute an update,
U ∈ RHg×Wg , to the canvas, C ∈ RHi×Wi , that is made after each glimpse. Computing
the update or sketch is straightforward, we simply use a transpose convolutional
network (‘Transpose CNN’) with the same structure as the glimpse CNN in reverse.
However, as the features were observed under the glimpse transform, tA, we allow the
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emission network to further output the parameters, A−1 ∈ R3×2, of an inverse
transform

tA−1 : RHg×Wg → RHi×Wi (7.11)

at the same time. The sketch will be warped according to tA−1 before it is added to
the canvas. To add the sketch to the canvas there are a few options. We will consider
two possibilities here: addition and masking.

The addition method is to simply add each update to the canvas matrix and finally
apply a sigmoid after the glimpse sequence has completed to obtain pixel values. This
gives an expression for the final canvas

CNg = σ

C0 +
Ng∑
n=0

tA−1(Un)

 , (7.12)

where C0 ∈ {c}Hi×Wi , σ is the sigmoid function and Ng is the total number of
glimpses. We can modulate c to alter the base colour of the canvas. Choosing c = 0
gives a base colour of grey, which is appropriate for colour settings such as CIFAR-10,
whereas c = −6 gives a black canvas which is more appropriate for MNIST. The virtue
of this method is its simplicity. However, for complex colour reconstructions,
overlapping sketches will be required to counteract each other such that they may not
be viewable independently of each other.

An alternative approach, the masking method, could help to prevent these issues.
Ideally, we would like the additions to the canvas to be as close as possible to painting
in real life. In such a case, each brush stroke replaces what previously existed
underneath it, which is dramatically different to the effect of the addition method. In
order to achieve the desired replacement effect we can allow the model to mask out
areas of the canvas before the addition is made. We therefore add an extra channel to
the output of the transpose CNN, the alpha channel. This mask, P ∈ RHg×Wg , is
warped by tA−1 as with the rest of the sketch. A sigmoid is applied to the output from
the transpose CNN so that the mask contains values close to one where replacement
should occur and close to zero elsewhere.

Ideally, the mask values would be precisely zero or one. To achieve this, we could take
P as the probabilities of a Bernoulli distribution and then draw

B ∼ Bern(tA−1(σ(P)) . (7.13)

However, the Bernoulli distribution cannot be sampled in a differentiable manner. We
will therefore use an approximation, the Gumbel-Softmax (Jang et al., 2016) or
Concrete (Maddison et al., 2016) distribution, which can be differentiably sampled
using the reparameterization trick. The Concrete distribution is modulated with the
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temperature parameter, τ , such that

lim
τ→0

Concrete(p, τ ) = Bern(p) . (7.14)

We can then construct the canvas iteratively with the expression

CN =CN−1 � (1−B) + tA−1(σ(UN )) � B ,

B ∼ Concrete(tA−1(σ(P)), τ ) , (7.15)

where C0 ∈ {0}Hi×Wi and � is the elementwise multiplication operator. Note that this
is a simplified over operator from alpha compositing where we assume that objects
already drawn have an alpha value of one (Porter and Duff, 1984).

Learning a Sketch Space Although similar in its objective, our approach differs
from the DRAW model from Gregor et al. (2015) in that we have a sketch sequence
that is generated independently of the positional information that is jointly required to
construct the canvas. An important consequence of this is that it is not possible to use
STAWM as a fully generative model since you would need to not only generate a
sequence of sketches but also the sequence of correlated sketch positions. We can,
however, use STAWM as a generative model in the sketch space, rather than the image
space if we constrain the sketches to derive from a variational latent space.

A common approach in reconstructive models is to model the latent space as a
distribution whose shape over a mini-batch is constrained using a Kullback-Liebler
(KL) divergence against a (typically Gaussian) prior distribution. We employ this
variational approach, as shown in Figure 7.4, for two key reasons. The first is to enable
sampling of the latent space as discussed. The second is to impose an information
bottleneck on each glimpse to encourage representation over multiple glimpses. Using
the natural logarithm, the KL term here measures precisely the number of nats
required to encode the latent factors over the prior (Cover and Thomas, 2012). By
minimising this, we implicitly limit the amount of information that can be conveyed
with each sketch. As with Variational Auto-Encoders (VAEs) (Kingma and Welling,
2013), the latent space is modelled as the variance (σ2) and mean (µ) of a multivariate
Gaussian with K components and diagonal covariance. For input x ∈ RHi×Wi and
some latent factors z ∈ RK , the β-VAE (Higgins et al., 2016) uses the objective

L = EpD(x)qφ(z |x) [log pθ(x | z)]− βEpD(x) [DKL (qφ(z |x) ‖ p(z))] , (7.16)

where pD(x) is the underlying probability of observing an x from the dataset D.

For our model, we do not have a single latent space but a sequence of glimpse
sub-spaces

Z = (z(n))Ngn=0, z(n) ∈ RK . (7.17)
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We can derive a term for the KL divergence between the posterior and the prior for
the joint distribution of the glimpses

DKL
(
qφ(z(0) . . . z(Ng) |x) ‖ p(z(0) . . . z(Ng))

)
. (7.18)

Assuming that elements of Z are conditionally independent, we have

qφ(Z |x) =
Ng∏
n=0

qφ(z(n) |x), p(Z) =
Ng∏
n=0

p(z(n)) . (7.19)

We can therefore re-write the joint KL term and simplify

DKL (qφ(Z |x)) ‖ p(Z)) = Eqφ(Z |x)

[
log qφ(Z |x)

p(Z)

]
, (7.20)

= Eqφ(z(0) |x) . . .Eqφ(z(Ng ) |x)

log
Ng∏
n=0

qφ(z(n) |x)
p(z(n))

 , (7.21)

=
Ng∑
n=0

Eqφ(z(0) |x) . . .Eqφ(z(Ng ) |x)

[
log qφ(z(n) |x)

p(z(n))

]
. (7.22)

Since Eqφ(z(i) |x)

[
log qφ(z(n) |x)

p(z(n))

]
= log qφ(z(n) |x)

p(z(n)) , ∀ z(i) ∈ Z \ {z(n)}, we have

DKL (qφ(Z |x)) ‖ p(Z)) =
Ng∑
n=0

Eqφ(z(n) |x)

[
log qφ(z(n) |x)

p(z(n))

]
, (7.23)

=
Ng∑
n=0

DKL
(
qφ(z(n) |x) ‖ p(z(n))

)
. (7.24)

Finally, by the linearity of expectation, we can write

L = EpD(x)qφ(Z |x) [log pθ(x |Z)]− β
Ng∑
n=0

EpD(x)

[
DKL

(
qφ(z(n) |x) ‖ p(z(n))

)]
. (7.25)

For our experiments we set the prior to be an isotropic unit Gaussian (p(z) = N (0, I))
yielding the KL term

DKL (qφ(z |x) ‖N (0, I)) = −1
2
(
1 + log σ2 −µ2 −σ2

)
, (7.26)

and thus the joint KL term

DKL (qφ(Z |x) ‖N (0, I)) = −1
2

Ng +
Ng∑
n=0

[
log σ2

(n) −µ2
(n) −σ2

(n)

] , (7.27)

where (µ(n), σ(n)) = z(n).
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Table 7.1: Supervised classification performance of our model on the MNIST dataset.
Mean and standard deviation reported from 5 trials.

Model Error
RAM, Sg = 8, Ng = 5 1.34%
RAM, Sg = 8, Ng = 6 1.12%
RAM, Sg = 8, Ng = 7 1.07%
STAWM, Sg = 8, Ng = 8 0.41%±0.03
STAWM, Sg = 28, Ng = 10 0.35%±0.02

7.2 Experiments

In this section we discuss the results that have been obtained using the STAWM
model. Our code is implemented in PyTorch (Paszke et al., 2017) with torchbearer
(Harris et al., 2018).

7.2.1 Classification

We first perform classification experiments on handwritten digits from the MNIST
dataset (LeCun, 1998) using the model in Figure 7.3. We perform some experiments
with Sg = 8 in order to be comparable to previous results in the literature. We also
perform experiments with Sg = 28 where each glimpse can communicate the whole
image subjected to a different transform. The MNIST results are reported in Table 7.1
and show that STAWM obtains superior classification performance on MNIST
compared to the RAM model. It can also be seen that the over-complete strategy
obtains performance that is competitive with the state of the art of around 0.25% for a
single model (Sabour et al., 2017), with the best STAWM model from the 5 trials
obtaining a test error of 0.31%. This suggests an alternative view of visual attention as
enabling the model to learn a more powerful representation of the image. That is, by
subjecting the image to series of affine distortions and subsequently observing salient
features, the model can learn a more robust representation.

We additionally experimented with classification on CIFAR-10 (Krizhevsky, 2009) but
found that the choice of glimpse CNN was the dominating factor in performance,
rather than the number of glimpses or size of the memory. For example, using
MobileNetV2 (Sandler et al., 2018) as the glimpse CNN we obtained a single run
accuracy of 93.05%, whereas performance with the three layer CNN used for the
MNIST experiments did not exceed 80%.



104 Chapter 7. Attention and Memory

(a) Sg = 4, line drawing

(b) Sg = 6, parts based

(c) Sg = 8, compression

Figure 7.5: Canvas updates for the drawing model on MNIST with Sg = 8, Sg = 6
and Sg = 4, Ng = 12. The first 6 rows give the drawing sequence (we omit the first 6
steps for brevity) and the bottom row shows the target image. Best viewed in colour.

7.2.2 Drawing - Addition

For our second experiment, we report results using our model as an autoencoder
trained to reconstruct the input. Some example reconstruction sketch sequences for
models with different glimpse sizes are given in Figure 7.5. The figure shows that there
are three types of drawing policy that can be learned using the addition method. First,
the model can simply compress the image into a square equal to the glimpse size and
decompress later. Second, the model can learn to trace lines such that all of the notion
of object is contained in the pose information instead of the features. Finally, the
model can learn a pose invariant, parts based representation.

The most significant control of the type of sketching policy learned is the glimpse size.
At Sg = 8 or above, enough information can be stored to make a simple compression
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Figure 7.6: CIFAR-10 reconstructions for the baseline β-VAE and the drawing model
with Sg = 16, Ng = 8. Top: baseline results. Middle: drawn results. Bottom: target

images. Best viewed in colour.

Figure 7.7: Canvas updates for the drawing model on CIFAR-10 with Sg = 16,
Ng = 8. The first 8 rows give the drawing sequence and the bottom row shows the

target image. Best viewed in colour.

the most successful option. Conversely, at Sg = 4 or below, the model is forced to
simply draw lines. When Sg = 6 with Ng = 12 we obtain an appropriate balance
between the two extreme and the model learns to reconstruct the image as a sequence
of object parts. In this way the model has learned an implicit notion of class since each
deviate of a particular character is drawn with the same sequence of parts, with the
sketch transform being use to cater the parts to the individual example.

We also report results painting images from CIFAR-10. To establish a baseline we
show reconstructions from a reimplementation of β-VAE (Higgins et al., 2016). To be
as fair as possible, our baseline uses the same CNN architecture and latent space size
as STAWM. This is still only an indicative comparison as the two models operate in
fundamentally different ways. Autoencoding CIFAR-10 is a much harder task due to
the large diversity in the training set for relatively few images (Recht et al., 2018;
Gregor et al., 2015). However, our model marginally outperforms the baseline with a
terminal mean squared error of 0.0083±0.0006 vs 0.0113±0.0001 for the VAE.

On inspection of the glimpse sequence given in Figure 7.7 we can see that although
STAWM has not learned the kind of parts-based representation we had hoped for, it
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has learned to scan the image vertically and produce a series of slices. The reason for
this seems clear; any ‘edges’ in the output where one sketch overlaps another would
have values that are scaled away from the target, resulting in a constant pressure for
the sketch space to expand. This is not the case in MNIST, where overlapping values
will only saturate the sigmoid and still produce valid images.

7.2.3 Drawing - Masking

An approach that may enable the learning of meaningful sketch policies on complex
data is the masking method discussed in Section 7.1.3. To test our model in this
setting we use the CelebA dataset (Liu et al., 2015), which contains a large number of
pictures of celebrity faces. The model is trained with the auto-encoding objective and
the addition of a KL divergence for the joint distribution of the glimpse spaces with a
Gaussian prior given in Equation 7.27 to encourage the model to learn a space of
sketches.

Figure 7.8 shows the learned sketch sequence for images from the CelebA data set.
The model begins by drawing backgrounds, then moving on to the hair and ears,
before finally drawing the face. The sequence is repeated for every image, with the last
sketch consistently painting the face to the canvas.

An advantage of the masking method is that we have an explicit mask for the regions
drawn at each step. Since the face region is drawn at a consistent point in the
sequence, we can use the mask as an unsupervised segmentation mask. Figure 7.9
shows the result of the drawing model on CelebA along with the target image and the
learned mask from the final glimpse elementwise multiplied with the ground truth.
Here, STAWM has learned to separate the salient face region from the background
without explicit supervision.

As a consequence of the variational objective, we can sample the sketch space and
treat the decoder as a generative model. This allows us to produce new images from
the specific part of the space which contains faces, as shown in Figure 7.10. These
imaginary faces are pose-normalised since the transform parameters are given
independently of the latent factors by the attention policy. The faces are cleanly
segmented since the alpha mask is included with the sketch. This allows us to multiply
by the mask as is usually done when producing sketches for reconstructions. That is,
we show only the pixels which have a high probability of being in the output, given by
the mask probabilities σ(P).
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Figure 7.8: Canvas updates for the drawing model on CelebA with Sg = 64, Ng = 8.
The first 8 rows give the drawing sequence and the bottom row shows the target image.

Best viewed in colour.

Figure 7.9: Output from the drawing model for CelebA with Sg = 64, Ng = 8. Top:
the drawn results. Middle: the target images. Bottom: the learned mask from the last

glimpse, pointwise multiplied with the target image. Best viewed in colour.
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Figure 7.10: Imaginary faces produced by randomly sampling the latent face sub-
space of the trained CelebA model with Sg = 64, Ng = 8. Best viewed in colour.

Table 7.2: Self-supervised classification performance of our model on the MNIST
dataset.

Model Error
DBM, Dropout (Srivastava et al., 2014) 0.79%
Adversarial (Goodfellow et al., 2014) 0.78%
Virtual Adversarial (Miyato et al., 2015) 0.64%
Ladder (Rasmus et al., 2015) 0.57%
STAWM, Sg = 6, Ng = 12 0.77%

Table 7.3: Self-supervised classification performance of our model on the CIFAR-10
dataset. Mean and standard deviation reported from 5 trials.

Model Error
Baseline β-VAE 63.44%±0.31
STAWM, Sg = 16, Ng = 8 55.40%±0.63
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Figure 7.11: Top: sketchpad results and associated predictions for a sample of mis-
classifications. Bottom: associated input images and target classes.

7.2.4 Self-Supervised Classification

In the previous experiments we have shown that a parts-based representation can be
induced in the auto-encoding setting through control of the glimpse size. One way to
view this representation is that it separates object from pose. To validate this, we now
experiment with classifying from the memory representation with frozen weights
pre-trained on the auto-encoding task. In this case, the only learnable parameters are
the weights of the two linear layers of the classification head.

We first report results on MNIST in Table 7.2. The table shows that classification
performance with the parts-based representation is competitive with contemporary
self-supervised approaches. We additionally report self-supervised results on CIFAR-10
in Table 7.3. Since the sketching model did not learn a parts-based representation of
CIFAR-10, we would not naturally expect competitive self-supervised performance.
Indeed, the results show that, although providing a small improvement over the
baseline VAE, the performance is not competitive.

7.2.5 Interpretable Classification

One of the interesting properties of the STAWM model is the ability to project
different things through the memory to obtain different views on the hidden state. We
can therefore use both the drawing network and the classification network in tandem
by using separate linear layers to obtain independent queries and simply summing the
reconstruction and classification losses. By deriving the classification and the sketch
from the same multi-modal representation, it is hoped that the sketch will provide
insight on any mis-classifications by the model.

For this experiment, with Sg = 8, the terminal classification error for the model is
1.0%. We show the terminal state of the canvas for a sample of mis-classifications in
Figure 7.11. Here, the drawing gives an interesting reflection of what the model ‘sees’
and in many cases the drawn result looks closer to the predicted class than to the
target. For example, in the rightmost image, the model has drawn and predicted a ‘2’
despite attending to a ‘7’. More generally, it can be seen that the model is
over-sensitive to the peak at the top of a ‘0’, often confusing it for a ‘6’. The opposite
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is also true, where a ‘6’ with a suppressed crest is mistakenly drawn and classified as a
‘0’. Yet another example is given by the ‘8’ whose circles have collapsed to lines
causing it to instead be drawn and classified as a ‘7’.

7.3 Summary

In this chapter we have extended deep models of visual attention to include a Hebbian
short-term ‘memory’ mechanism and the ability to sketch their input. We suggest that
this sketch combined with the short-term memory constitutes a working memory
model. This model learns a representational hierarchy with the hidden state of the
memory giving rise to a series of sketches for which we have joint pose information
that is then integrated in the canvas. Under the right conditions, and through careful
choices of hyper-parameters, the model can learn a parts-based representation that is
valuable as a self-supervised feature for classification.

Regarding sketch policies, we have shown that a model equipped with a masking
mechanism can learn to sketch human faces. In particular, the model learns to employ
a consistent sketching policy where the final sketch represents the face. As a result, we
are able to reliably obtain a mask the can be used to segment the faces in the images.
This unsupervised segmentation behaviour is not induced in the model through a
particular loss or construction, and is instead an emergent property of the system.

In a final experiment, we have shown that the Hebbian mechanism can act as a
multi-modal representation to jointly address both classification and reconstruction
objectives. In this setting, the model produces sketches that accord with its
predictions. As such, we are able to interpret mis-classifications by the model through
analysis of the corresponding sketch.
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Chapter 8

Conclusions and Future Work

In this thesis we have taken inspiration from biology in order to study deep networks.
In one vein, we have used biological analyses as the basis for new approaches to the
interpretation of the function learned by trained models. Tangentially, we have
considered novel architectures inspired by human anatomy and psychology to expand
the generalisation capabilities of modern deep learning architectures. Combined these
efforts provide a clear mandate for further exploration of ideas built on the foundations
of biological inspiration. We now briefly summarise the key findings of this work,
before detailing our suggested directions for future work.

Chapter 3 introduced a method for determining whether CNNs use colour when
classifying images. We first reviewed and re-implemented approaches to the generation
of high-quality super-stimuli. Next, we introduced the notion of a trait group; a set of
classes that are all uniquely defined by a particular trait. We defined the‘fruits’ and
‘animals’ trait groups that are well characterised by their colour and by a combination
of colour and pattern / texture respectively. Our results presented super-stimuli for
these classes for a range of CNN architectures. Analysing these results, we made a few
observations First, we noted that CNNs generally do make use of colour, although this
can change dramatically between architectures. Second, we observed that the
characteristic shapes of the classes were, in many cases, recovered by the super-stimuli,
suggesting that CNNs may not be as biased against shape as previously thought.

In Chapter 4 we introduced techniques for the interpretation of convolutional networks
in terms of how they process colour. We showed that colour and spatial opponency of
convolutional cells can be characterised using long established techniques from biology.
We further showed that the emergence of opponent representations mirrors what is
found in nature. We subsequently demonstrated that the characteristics of this colour
processing are affected by the chosen architecture of the convolutional network.
Through a comprehensive set of studies, we detailed this connection and shed light on
the causal relationship between network architecture and the emergence of opponency.
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Chapter 5 built on the findings of Chapter 4 to study the impact of opponency on
performant models trained on the large scale ImageNet dataset. In particular,
Chapter 5 questioned whether an increase in the percentage of opponent cells gives a
corresponding increase in shape bias or adversarial robustness. We additionally
expanded on the analyses introduced in Chapter 4 to include a notion of luminance
opponency. Our results showed that an increase in opponency does not have a
significant impact on adversarial robustness. Although this was a negative result, it
demonstrated the limitations of an approach based purely on distributions of opponent
cells. Although such analyses are valuable for characterising the nature of learned
functions, they are not necessarily good indicators for more complex metrics such as
generalisation performance.

In Chapter 6 we introduced a convolutional model of foveation. In our first
experiment, we studied a failure of spatial transformer networks to localise their input.
We showed that the foveated convolution improves localisation performance effectively
solving the observed localisation problem. In our second experiment, we analysed the
receptive fields of cells in the foveated convolution layer of networks tasked with both
localization and classification of the input. Our analyses showed that cells in the
foveated networks are able to modulate the size of their receptive field based in the
input in order to support both tasks with a single representation. This mirrors similar
findings of multi-modal cells in macaque inferior temporal cortex. For our final
experiment, we extended the foveated convolution to allow for multiple layers of
foveation in order to study how opponency varies with eccentricity. Our results showed
a reduction in opponency with eccentricity, consistent with observations from foveated
trichromatic vision in nature. We further developed a method for establishing the
stimulus preference (Red-Green or Blue-Yellow) of cells. Analysis of these results
showed a reduction in Red-Green opponency in the periphery. This again accords with
observations from trichromatic primates. By comparison with results from locally
connected networks (which allow spatially variant function without a scale-space) we
showed that the characteristic distribution of Red-Green preference is induced by
spatially variant function whereas the peripheral reduction in opponency requires a
scale-space.

With the objective of exploring mechanisms for visual memory in deep networks,
Chapter 7 introduced a visual attention network equipped with a visual memory
capable of reconstructing a scene by producing a series of sketches. Through a series of
experiments, we demonstrated various emergent properties of this model. First, we
showed that by controlling the glimpse size, we can control the drawing mode;
transitioning from line drawing to parts-based reconstruction and finally iterative
refinement. Next, we demonstrated that the model learns a repeatable sketching
procedure when trained on images of faces. The procedure is sufficiently repeatable
that we were able to use the alpha masks from the ‘face’ sketch to extract the faces
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from the images. Finally, we showed that a sketching model trained in tandem with a
classification objective can learn to draw what it sees, giving the ability to visually
asses and interpret misclassifications. These experiments demonstrate the potential for
emergent phenomena in the largely untapped realm of deep network architectures
inspired by nature.

Combined, our efforts have encompassed two themes: interpretation and
generalisation. Regarding interpretation, we have presented clear evidence for the
potential of interpretation techniques based on approaches from biology. Regarding
generalisation, we have seen the value of biological inspiration for expanding the
horizons of deep networks, imbuing them with enhanced capabilities, and giving rise to
complex emergent phenomena.

8.1 Directions for Future Work

Naturally, this thesis leaves a number of open questions and potential directions for
future study. In this section, we present examples of such directions and provide a
recommendation for future work.

8.1.1 Transferring Opponent Representations

Following the findings of Chapter 4, we suggest that opponent cells may be of greater
utility in transfer learning. Transfer learning is the practice of using some or all of a
pre-trained network as a fixed feature extractor for a new task. Our contention is that
opponent representations constitute a more general form of visual feature than those
typically learned by a CNN. On this basis we suppose that opponent representations
may be more transferable to novel settings. Specifically, one can envisage a scenario
where the pre-bottleneck weights are fixed, and the post-bottleneck weights are
updated to fit a new data set.

8.1.2 Cascading Opponent Representations

The finding from Chapter 4 that the penultimate layer exhibits a spike in opponency
may provide insight to the efficacy of layer-wise training procedures such as deep
cascade learning (Marquez et al., 2018). These approaches progressively increase the
depth of the network freezing all but the last convolutional layer each time. Based on
the evidence presented in this work that the number of opponent cells is related to the
distance to the output layer, one might speculate that cascade learning increases the
number of opponent cells. That said, whether the opponent cells in later layers inherit
the same properties as opponent cells in earlier layers remains to be determined. Note
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that cascade learning has been found by Du et al. (2019) to work well with transfer
learning, potentially also tying in to the suggestions in Section 8.1.1.

8.1.3 Quantifying Representations of Shape in Super-Stimuli

Chapter 3 considered super-stimuli as an approach for determining the nature of
information used by a network to classify its input. Contrary to our expectations, the
super-stimuli effectively recovered a notion of shape regarding each of the classes in our
proposed trait groups. However, the absence of a metric to quantify this shape
representation makes it difficult to determine how repeatable these findings are and to
make meaningful comparisons between different models. In light of this fact, an
important direction for future work is to try to quantify the extent of shape, colour,
and texture in these super-stimuli or at least in the representations that they exploit.
One possible avenue through which such a metric may be constructed is information
theory. In particular, mutual information is a compelling concept as a measure of the
extent to which one representation reduces uncertainty about another. However,
mutual information is notoriously difficult to measure, although recent approaches
such as mutual information neural estimation from Belghazi et al. (2018) may improve
its viability.

8.1.4 Simulating a Retina at the Front of V1Net

In this work we have provided evidence for the emergence of opponent representations
in learning machines. We have not found evidence for improved adversarial robustness
as a result of these opponent representations. This contrasts with the findings from
Dapello et al. (2020) that fixed Gabor filter representations in the first layer have a
dramatic impact on robustness. We suspect that this is because the cells in our
networks are learnable floating point functions and as such can be manipulated by
minute changes in the input.

To test this theory, we suggest implementing a fixed bank of cone opponent
centre-surround filters that mimic the filters learned by our models. This filter bank
would then be included at the front of a convolutional network and evaluated for its’
impact on adversarial robustness. Furthermore, we would expect this model and the
V1Net model from Dapello et al. (2020) to complement each other such that they can
be used in conjunction for even further improvements in robustness.

8.1.5 Foveation, Opponency, and a Scale-Space

In Chapter 6 we explored a convolutional model of foveation and showed how the
presence of a scale-space representation induces a reduction in peripheral opponency.
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This experiment starts to provide insight in to the emergence of opponency, however,
further examination is required to unpack it fully. We first propose a control
experiment to study the number of opponent cells in a series of models trained with
progressively increased scale factors. If the results show an increase in opponency as
the scale factor is increased then this experiment will prove that opponency
presentation can be controlled by the input scale.

In addition to a control study, we propose further investigation into the underlying
reason that an increase in scale corresponds to a reduction in opponency. One possible
explanation is that opponent representations are more valuable in object-centric vision
where spatial frequencies are higher. To test this theory, we could construct a data set
of landscape classes (or any other group of natural image classes that are not
object-centric) and assess whether the peripheral reduction in opponency remains.
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Umut Güçlü and Marcel AJ van Gerven. Deep neural networks reveal a gradient in the
complexity of neural representations across the ventral stream. Journal of
Neuroscience, 35(27):10005–10014, 2015.

Thorsten Hansen, Lars Pracejus, and Karl R Gegenfurtner. Color perception in the
intermediate periphery of the visual field. Journal of vision, 9(4):26–26, 2009.

Ethan Harris, Matthew Painter, and Jonathon Hare. Torchbearer: A model fitting
library for pytorch. arXiv preprint arXiv:1809.03363, 2018.

Ethan Harris, Daniela Mihai, and Jonathon Hare. Spatial and Colour Opponency in
Anatomically Constrained Deep Networks. In Workshop on Shared Visual
Representations in Humans and Machines (SVRHM), 2019a. URL
https://arxiv.org/abs/1910.11086.

Ethan Harris, Mahesan Niranjan, and Jonathon Hare. Foveated Convolutions:
Improving Spatial Transformer Networks by Modelling the Retina. In Workshop on
Shared Visual Representations in Humans and Machines (SVRHM), 2019b.

Ethan Harris, Daniela Mihai, and Jonathon Hare. Anatomically Constrained ResNets
Exhibit Opponent Receptive Fields; So What? In Workshop on Shared Visual
Representations in Humans and Machines (SVRHM), 2020a.

Ethan Harris, Daniela Mihai, and Jonathon Hare. How Convolutional Neural Network
Architecture Biases Learned Opponency and Colour Tuning. Neural Computation,
2020b. URL https://arxiv.org/abs/2010.02634.

H. K. Hartline. The response of single optic nerve fibers of the vertebrate eye to
illumination of the retina. American Journal of Physiology-Legacy Content, 121(2):
400–415, 1938. .

http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1910.11086
https://arxiv.org/abs/2010.02634


122 REFERENCES

H. K. Hartline. The nerve messages in the fibers of the visual pathway∗. J. Opt. Soc.
Am., 30(6):239–247, Jun 1940. . URL
http://www.osapublishing.org/abstract.cfm?URI=josa-30-6-239.

H. Keffer Hartline, Henry G. Wagner, and E. F. Macnichol. The peripheral origin of
nervous activity in the visual system. Cold Spring Harbor symposia on quantitative
biology, 17:125–41, 1952.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Donald Olding Hebb. The organization of behavior: A neuropsychological theory. New
York: Wiley, 1949.

Richard Held and Alan Hein. Movement-produced stimulation in the development of
visually guided behavior. Journal of comparative and physiological psychology, 56(5):
872, 1963.

Hermann von Helmholtz. LXXXI. On the theory of compound colours. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4(28):
519–534, 1852.
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