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Abstract—Hybrid transceiver design in multiple-input
multiple-output (MIMO) Tera-Hertz (THz) systems relying on
sparse channel state information (CSI) estimation techniques
is conceived. To begin with, a practical MIMO channel model
is developed for the THz band that incorporates its molecular
absorption and reflection losses, as well as its non-line-of-
sight (NLoS) rays associated with its diffused components.
Subsequently, a novel CSI estimation model is derived by
exploiting the angular-sparsity of the THz MIMO channel.
This is followed by designing a sophisticated Bayesian learning
(BL)-based approach for efficient estimation of the sparse
THz MIMO channel. The Bayesian Cramer-Rao Lower Bound
(BCRLB) is also determined for benchmarking the performance
of the CSI estimation techniques developed. Finally, an optimal
hybrid transmit precoder and receiver combiner pair is
designed, which directly relies on the beamspace domain CSI
estimates and only requires limited feedback. Finally, simulation
results are provided for quantifying the improved mean
square error (MSE), spectral-efficiency (SE) and bit-error rate
(BER) performance for transmission on practical THz MIMO
channel obtained from the HIgh resolution TRANsmission
(HITRAN)-database.

Index Terms—Bayesian learning, beamspace representation,
HITRAN-database, hybrid MIMO systems, molecular absorp-
tion, sparse channel estimation, tera-Hertz communication,
transceiver design

I. INTRODUCTION

TERA-HERTZ (THz) wireless systems are capable of
supporting data rates up to several Tera-bits per second

(Tbps) [1]–[3] in the emerging 6G landscape. The avail-
ability of large blocks of spectrum in the THz band, in
the range of 0.1 THz to 10 THz, can readily fulfil the ever-
increasing demand for data rates. This can in turn support
several bandwidth-thirsty applications such as augmented real-
ity (AR), virtual reality (VR), wireless backhaul and ultra-high
speed indoor communication [1]. However, due to their high
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carrier frequency, THz signals experience severe propagation
losses and blockage, beyond a few meters. Moreover, the high
molecular absorption due to the vibrations of the molecules
at specific frequencies, and the higher-order reflections [4]
become cumbersome in the THz band. Hence, the practical
realization of THz systems faces numerous challenges. A
promising technique of overcoming these obstacles is con-
stituted by multiple-input multiple-output (MIMO) solutions
relying on antenna arrays, which are capable of improving
the signal strength at the receiver via the formation of ‘pencil-
sharp beams’ having ultra-high directional gains [5]. However,
the conventional MIMO transceiver architecture, wherein each
transmit and receive antenna is connected to an individual
radio frequency (RF) chain, becomes unsuitable at such high
frequencies, mainly due to the power hungry nature of the
analog-to-digital converters coupled with their high sampling-
rate [6]. Hence, the hybrid transceiver architecture, originally
proposed by Molish et al. in their pioneering work [7], [8],
is an attractive choice for such systems, since it allows the
realization of a practical transceiver employing only a few RF
chains. Furthermore, in conventional MIMO systems, the var-
ious signal processing operations are typically implemented in
the digital domain. By contrast, the signal processing tasks are
judiciously partitioned between the RF front-end and baseband
processor in a hybrid MIMO transceiver, with the former han-
dling the analog processing via analog phase shifters (APSs),
while the latter achieves baseband processing in a digital
signal processor (DSP). Naturally, the overall performance of
the hybrid architecture, for example, its achievable spectral-
efficiency (ASE) and bit-error-rate (BER), critically depend on
the design of the baseband and RF precoder/ combiner, which
ultimately rely on the accuracy of the channel state information
(CSI) available. Thus, high-precision channel estimation holds
the key for attaining robust performance and ultimately for
realizing the full potential of THz MIMO systems. A detailed
overview and a comparative survey of the related works is
presented next.

A. Related Works and Contributions

The pioneering contribution of Jornet and Akyildiz [4]
developed a novel channel model for the entire THz band, i.e.
for the band spanning 0.1 − 10 THz. Their ground-breaking
work relied on the concepts of radiative transfer theory [9] and
molecular absorption for developing a comprehensive model
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[10]. Their treatise evaluated the total path-loss by meticu-
lously accounting for the molecular absorption, the reflections
as well as for the free-space loss components. Later Yin
and Li [11] developed a general MIMO channel model for a
hybrid THz system and subsequently proposed distance-aware
adaptive beamforming techniques for improving the signal-to-
noise power ratio (SNR). However, their framework assumes
the availability of perfect CSI, which is rarely possible in
practice. To elaborate, CSI estimation in a THz hybrid MIMO
system is extremely challenging owing to the low SNR and
massive number of antenna elements. Hence, the conventional
Least Square (LS) and Minimum Mean Square Error (MMSE)-
based CSI estimation would incur an excessive pilot-overhead.
Therefore, they are unsuitable for CSI acquisition in practical
THz systems.

Early solutions [12]–[16] proposed for the milli-meter
wave (mmWave) band exploited the angular-sparsity of the
channel to achieve improved CSI estimation and tracking at
a substantially reduced pilot-overhead. Several optimization
and machine learning based algorithms are also proposed
for hybrid transceiver design in mmWave MIMO systems.
In this context, the authors of [17] proposed a joint beam
selection and precoder design for maximizing the sum-rate of
a downlink multiuser mmWave MIMO system under transmit
power constraints. The pertinent optimization problem has
been formulated as a weighted minimum mean squared error
(WMMSE) problem, which is then efficiently solved using the
penalty dual decomposition method. A joint hybrid precoder
design procedure has been described in [18] for full-duplex
relay-aided multiuser mmWave MIMO systems, considering
also the effects of imperfect CSI. The authors of [19] and
[20] successfully developed two-timescale hybrid precoding
schemes for maximizing the sum-rate, and reducing both the
complexity as well as CSI feedback overhead. A frame-based
transmission scenario is considered in their work, wherein
each frame comprises a fixed number of time slots. The long-
timescale RF precoders are designed based on the available
channel statistics and are updated once in a frame. By contrast,
the short-timescale baseband precoders are optimized for each
time slot based on the low-dimensional effective CSI. Hence,
an optimization based solution is developed in [19], whereas
a deep neural network (DNN)-aided technique is designed
in [20]. The angular-sparsity is also a key feature of the
THz MIMO channel [5], [21], which arises due to the highly
directional beams of large antenna arrays, coupled with high
propagation losses and signal blockage in the THz regime. In
fact, Sarieddeen et al. [5] showed that the THz MIMO channel
is more sparse than its mmWave counterpart. However, there
are only a few recent studies, such as [22]–[24], which develop
sparse recovery based CSI estimation techniques for THz
MIMO systems. A brief review of these and the gaps in the
existing THz literature are described next.

The early work of Gao et al. [25] successfully developed
an a priori information aided fast CSI tracking algorithm for
discrete lens antenna (DLA) array based THz MIMO systems.
Their model relies on a practical user mobility trajectory [26]
to develop a time-evolution based framework for the angle
of arrival (AoA)/ angle of departure (AoD) of each user.

Subsequent contributions in this direction, such as [27] and
[28], consider base station (BS) cooperation and a multi-
resolution codebook, respectively, for improving the accuracy
of channel tracking obtained via the a priori information aided
scheme of [25]. However, this improved tracking accuracy is
achieved at the cost of inter-BS cooperation, which neces-
sitates additional infrastructure and control overheads. Kaur
et al. [29] developed a model-driven deep learning technique
for enhancing the channel tracking accuracy in a THz MIMO
system. Their algorithm relies on a deep convolutional neural
network trained offline in advance to learn the non-linear
relationship between the estimates based on [25] and the
original channel. Another impressive contribution [6] by He
et al. proposes a model-driven unsupervised learning network
for beamspace channel estimation in wide-band THz MIMO
systems. Furthermore, a deep learning assisted signal detection
relying on single-bit quantization is proposed in the recent
contribution [30]. A fundamental limitation of [25], [27]–[29]
is that they consider single antenna users. More importantly,
their estimation accuracy is highly sensitive to the accuracy of
the time-evolution model employed and they do not incorpo-
rate the effect of molecular absorption into their THz channel,
which renders the model inaccurate in reproducing the true
radio propagation environment.

Schram et al. [23] employed an approximate message
passing (AMP)-based framework for CSI estimation in THz
systems. The sparse channel estimation framework developed
considers only a single-input single-output (SISO) THz sys-
tem, where the channel impulse response (CIR) is assumed
to be sparse. Ma et al. [24] conceived sparse beamspace CSI
estimation for intelligent reflecting surface (IRS)-based THz
MIMO systems. The optimal design of the phase shift matrix
at the IRS has been determined in their work based on the BS
to IRS and IRS to user equipment (UE) THz MIMO chan-
nels. Recent treatises, such as [31]–[33], address the problem
of wideband CSI acquisition in THz systems. Specifically,
Dovelos et al. [31] consider an orthogonal frequency division
multiplexing (OFDM)-based THz hybrid MIMO system and
develop orthogonal matching pursuit (OMP)-based techniques
for CSI estimation. Balevi and Andrews [33] have considered
generative adversarial networks for channel estimation in an
OFDM-based THz hybrid MIMO system. On the other hand,
Sha and Wang [32] derived a CSI estimation and equalization
technique for a single-carrier THz SISO system accounting
also for realistic RF impairments. A list of novel contributions
of our paper is presented next. Our novel contributions are
also boldly and explicitly contrasted to the existing literature
in Table-I.

B. Novel Contributions

1) We commence by developing a practical distance and
frequency dependent THz MIMO channel model that
also incorporates the molecular absorption and reflection
losses together with the traditional free-space loss. Note
that almost all the existing contributions utilize the
classical Saleh-Valenzuela channel model of [34], which
does not consider the diffused rays for each multipath
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TABLE I: Boldly contrasting our novel contributions to the state-of-the-art

Feautures [4] [6] [11] [24] [29] [25] [23] [33] [31] Proposed
THz hybrid MIMO X X X X X
APSs-based hybrid architecture X X X X X
CSI estimation X X X X X X X X
Angular-sparsity X X X X X X X
Molecular absorption losses X X X X
Reflection losses X X X
Transceiver design X X X
Optimal power allocation X X
MSE lower bound X X
Diffused-ray modeling X
Optimal pilot design X
Limited CSI feedback X

component together with first- and second-order reflec-
tions. Furthermore, the path-gains in most of the existing
treatises are simply modeled as Rayleigh fading channel
coefficients without considering the molecular absorp-
tion and multiple reflections. Hence, an important aspect
of the channel model developed is that it incorporates
several diffused rays for each of the reflected multipath
components including their associated reflection and
molecular absorption losses. This results in broadening
the beamwidths of the signals and mimics a practical
THz MIMO channel.

2) The existing research on the development of sparse CSI
estimation schemes for a point-to-point analog phase
shifter (APS) based hybrid MIMO THz system is very
limited, since most of the authors have considered only
single-antenna users, focusing predominantly on discrete
lens antenna (DLA) arrays. Hence for considering a
point-to-point APS-based hybrid MIMO architecture,
an efficient frame-based channel estimation model is
developed, which frugally employs a low number of
pilot beams for exciting the various angular modes of
the channel. Subsequently, using a suitable ‘sparsifying’-
dictionary, a beamspace representation is developed for
the THz MIMO channel, followed by the pertinent
sparse channel estimation model. For this, BL-based
channel estimation techniques are derived for exploiting
the intrinsic sparsity of the THz MIMO channel. Note
that the proposed BL-based technique is novel in the
context of THz MIMO channel estimation, since it has
not been explored as yet in THz hybrid MIMO systems.

3) The design of the optimal pilot beams used for CSI
estimation, which can significantly enhance sparse signal
recovery, has not been considered in the existing THz
literature either. Moreover, it is also desirable to develop
bounds to benchmark the performance of the CSI esti-
mation schemes. To this end, another key contribution
of this work is the design of a specific pilot matrix
that minimizes the so-called ‘total-coherence’1 defined
in [35], [36] for enhancing the performance of sparse
signal recovery. Furthermore, to benchmark the MSE

1The total coherence of a matrix Φ̃ having G columns, denoted as µt
(
Φ̃
)

,

is defined as µt
(
Φ̃
)

=
∑G

i=1

∑G
j=1,j 6=i

∣∣∣Φ̃H
i Φ̃j

∣∣∣2, where the quantities

Φ̃i and Φ̃j represent the ith and jth columns, respectively, of the matrix Φ̃.

performance of our sparse CSI estimators, the Bayesian
Cramer-Rao lower bound (BCRLB) is also derived for
the CSI estimates.

4) To the best of our knowledge, the existing hybrid
transceiver design approaches found in the THz litera-
ture, such as [37], assume the availability of perfect CSI,
which is impractical due to the large number of antennas,
resulting in excessive pilot overheads. Crucially, no joint
beamspace channel estimation and hybrid transceiver
design procedure is available in the THz literature.
To address this problem, a capacity-approaching hybrid
transmit precoder (TPC) and MMSE-optimal hybrid
receiver combiner (RC) are developed, which can di-
rectly employ the estimate of the beamspace domain
channel obtained from the proposed CSI estimators. The
proposed algorithm requires only limited CSI of the
beamspace channel, namely the non-zero coefficients
and their respective indices, which substantially reduces
the feedback required. Furthermore, in contrast to the
existing hybrid transceiver designs [12], [13], [38], the
proposed scheme requires no iterations, and hence it is
computationally efficient.

5) Our simulation results demonstrate the enhanced per-
formance of our channel estimators, TPC and RC for
various practical simulation parameters. In this context,
this paper calculates the molecular absorption coeffi-
cient using the parameters obtained from the HITRAN
database [39], which is suitable for the entire THz band,
specifically for the higher end spanning from 1 to 10
THz. On the other hand, most of the existing works
employ models, which are only valid for the lower end
around 0.1 to 0.3 THz.

C. Organization and Notation

The main focus of this work is on hybrid transceiver design
relying on the BL-based estimated beamspace domain CSI.
To achieve this, in Section-II, we begin with the THz MIMO
system and channel model, which incorporates the specific
molecular absorption and reflection losses arising in the THz
regime. This is followed by developing its sparse beamspace
domain representation and a novel frame-based channel es-
timation model in Section-III, which excites various angular
modes of the THz MIMO channel. Furthermore, in order to
improve the sparse CSI estimation performance, the mutual
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coherence of the equivalent sensing matrix has also been min-
imized in Section-III, which results in the optimal choice of the
training precoders/combiners to be employed during channel
estimation. Subsequently, the proposed BL and MBL-based
sparse channel estimation schemes are developed in Section-
IV, which is followed by the BCRLB for benchmarking their
CSI estimation performance. Finally, based on the estimated
CSI, the problem of designing the optimal capacity hybrid
precoder and optimal MMSE hybrid combiner is addressed in
Section-V. Our simulation results are presented in Section-VI,
followed by our conclusions in Section-VII.

Notation: The notation floor[a] represents the greatest in-
teger, which is less than a, whereas rem[a, b] denotes the
remainder, when a is divided by b; the ith element of the
vector a and (i, j)th element of the matrix A are denoted by
a(i) and A(i, j), respectively; IN denotes an identity matrix
of size N ; vec(A) vectorizes the columns of the matrix A
and vec−1(a) denotes the inverse vectorization operation; the
Kronecker product of two matrices A and B is denoted by
A⊗B;

II. THZ MIMO SYSTEM AND CHANNEL MODEL

The schematic of our THz hybrid MIMO system is por-
trayed in Fig. 1, where NT and NR denote the number of
transmit antennas (TAs) and receive antennas (RAs), respec-
tively, whereas NRF denotes the number of RF chains. Further-
more, NS is the number of data streams, where NS ≤ NRF,
while NRF << min(NT , NR) [5], [24]. The transmitter is
composed of two major blocks, the digital baseband TPC
F̄BB ∈ CNRF×NS and the analog RF TPC F̄RF ∈ CNT×NRF .
At the receiver side, W̄RF ∈ CNR×NRF denotes the RF RC,
whereas W̄BB ∈ CNRF×NS represents the baseband RC. As
described in [5], [24], the analog RF TPC F̄RF and RC
W̄RF are comprised of APSs. Hence, for simplicity, these are
constrained as |F̄RF(i, j)| = 1√

NT
, |W̄RF(i, j)| = 1√

NR
,∀i, j.

Thus, the baseband system model of our THz MIMO system
is given by

ȳ = W̄H
BBW̄H

RFHF̄RFF̄BBx̄ + W̄H
BBW̄H

RFv̄, (1)

where ȳ ∈ CNS×1 is the signal vector received at the output
of the baseband RC, x̄ ∈ CNS×1 represents the transmit
baseband signal vector at the input of the baseband TPC,
whereas the quantity v̄ ∈ CNR×1 is the complex additive white
Gaussian noise (AWGN) at the receiver having the distribution
of CN

(
0NR×1, σ

2
vINR

)
. The matrix H ∈ CNR×NT in (1)

represents the baseband equivalent of the THz MIMO channel,
whose relevant model is described next.

A. THz MIMO Channel Model

As described in [11], the THz MIMO channel can be
modeled as the aggregation of a line-of-sight (LoS) and a
few NLoS components. The LoS propagation results in a
direct path between the BS and the UE, whereas the NLoS
propagation results in some indirect multipath rays after re-
flection from the various scatterers present in the environment.

Thus, the THz MIMO channel H, which is a function of the
operating frequency f and distance d, can be expressed as

H(f, d) = HLoS(f, d) + HNLoS(f, d), (2)

where the LoS and NLoS components are given by

HLoS(f, d)

=

√
NTNR
Nray

Nray∑
j=1

αL,j(f, d)GatG
a
rar

(
φrL,j

)
aHt
(
φtL,j

)
, (3)

HNLoS(f, d)

=

√
NTNR

NNLoSNray

NNLoS∑
i=1

Nray∑
j=1

αi,j(f, d)GatG
a
rar

(
φri,j
)
aHt
(
φti,j
)
.

(4)

Here, the quantities αL,j(f, d) and αi,j(f, d) represent the
complex-valued path-gains of the LoS and NLoS components,
respectively, NNLoS denotes the number of NLoS multipath
components, whereas Nray signifies the number of diffused-
rays in each multipath component. Furthermore, Gat and Gar
represent the TA and RA gains, respectively. The quantities
φrL,j and φtL,j denote the AoA and AoD of the jth ray in the
LoS multipath component, respectively, whereas φri,j and φti,j
represent the AoA and AoD of the jth diffuse-ray in the ith
NLoS multipath component. The vectors ar(φ

r) ∈ CNR×1

and at(φ
t) ∈ CNT×1 denote the array response vectors of the

uniform linear array (ULA) corresponding to the AoA φr at
the receiver and AoD φt at the transmitter, respectively. These
are defined as

ar(φ
r) =

1√
NR

[
1, e−j

2π
λ dr cos(φr), . . . , e−j

2π
λ (NR−1)dr cos(φr)

]T
,

(5)

at(φ
t) =

1√
NT

[
1, e−j

2π
λ dt cos(φt), . . . , e−j

2π
λ (NT−1)dt cos(φt)

]T
,

(6)

where dr and dt represent the antenna-spacings at the receiver
and transmitter, respectively, and λ denotes the operating
wavelength.

Let the complex path-gain α(f, d) be expressed as
α(f, d) = |α(f, d)|ejψ, where |α(f, d)| is the magnitude of
the complex path-gain and ψ is the associated independent
phase shift. According to [4], [11], the magnitude of the LoS
path gain |αL,j(f, d)| can be modeled as

|αL,j(f, d)|2 = Lspread(f, d)Labs(f, d), (7)

where Lspread(f, d) and Labs(f, d) represent the spreading (or
the free-space) and molecular absorption losses respectively,
which are given by

Labs(f, d) = e−kabs(f)d, Lspread(f, d) =

(
c

4πfd

)2

. (8)

Here, c denotes the speed of light in vacuum and kabs(f) is the
molecular absorption coefficient. Similarly, for the jth diffuse-
ray of the ith NLoS multipath component, the magnitude of
the complex path-gain can be expressed as [5], [11]

|αi,j(f, d)|2 = Γ2
i,j(f)Lspread(f, d)Labs(f, d), (9)
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Fig. 1: Block diagram of a THz hybrid MIMO system.

where Γi,j(f) denotes the first-order reflection coefficient of
the jth diffuse-ray of the ith NLoS component. For higher-
order reflections, the equivalent reflection coefficient is equal
to the product of individual reflection coefficients of the re-
spective scattering media. Further details on the calculation of
the absorption coefficient kabs(f) and the reflection coefficient
Γi,j(f) are given in the subsequent subsections.

B. Calculation of the Reflection Coefficient Γ(f)

Due to the small wavelength of the THz signal, the reflection
coefficient Γ(f) is an important parameter to be taken into
account while evaluating the losses of the NLoS components
[11], [40]. This is in turn defined in terms of the Fresnel
reflection coefficient (γ) and the Rayleigh roughness factor
(%), as Γ(f) = γ(f)%(f), where the coefficients γ(f) and
%(f) are given by:

γ(f) =
Z(f) cos (θin)− Z0 cos (θref)

Z(f) cos (θin) + Z0 cos (θref)
,

%(f) = e
− 1

2

(
4πfσ cos(θin)

c

)2

. (10)

In the above expressions, θin denotes the angle of incidence,
while θref represents the angle of refraction, which obeys θref =

sin−1
(

sin(θin)Z(f)
Z0

)
. The quantity Z(f) denotes the wave

impedance of the reflecting medium, whereas Z0 = 377 Ω
represents the wave impedance of the free space and σ in
(10) denotes the standard deviation of the reflecting surface’s
roughness.

C. Absorption Coefficient kabs(f) [4]

As described in [4], the absorption coefficient kabs(f) of the
propagation medium at frequency f can be evaluated as

kabs(f) =
∑
i,g

ki,gabs(f), (11)

where, ki,gabs denotes the absorption coefficient of the ith
isotopologue2 of the gth gas. The quantity ki,gabs(f) can be

2Molecules, which only differ from others in their isotopic composition,
are termed as isotopologues of each other.

mathematically defined as

ki,gabs(f) =

(
p

p0

)(
TSTP

T

)
Qi,gσi,g(f), (12)

where p and T denote the system pressure and temperature,
respectively, while TSTP and p0 represent the temperature at
standard pressure and reference pressure, respectively. The
quantity σi,g denotes the absorption cross-section of the ith
isotopologue of the gth gas, defined as σi,g(f) = Si,gGi,g(f),
and Qi,g is the molecular volumetric density, defined as
Qi,g =

(
p
RT

)
qi,gNA. Here, R denotes the gas constant and

NA represents Avogadro’s number. The quantities qi,g and Si,g

signify the mixing ratio and the line intensity, respectively, of
the ith isotopologue of the gth gas, which can be directly ob-
tained from the HITRAN database [10]. The quantity Gi,g(f)
is the spectral line shape, defined as

Gi,g(f) =

(
f

f i,gc

) tanh
(

cfh
2kBT

)
tanh

(
cfi,gc h
2kBT

)F i,g(f), (13)

where kB denotes the Boltzmann constant, h represents the
Planck constant and F i,g(f) is the Van Vleck-Weisskopf line
shape [41], which is evaluated as follows

F i,g(f) =
100cfαi,gL
πf i,gc

2∑
n=1

1

(f + (−1)nf i,gc )2 + (αi,gL )2
. (14)

The quantities f i,gc and αi,gL obey:

f i,gc = f i,gc0 + δi,g
p

p0

αi,gL =
[
(1− qi,g)αair

0 + qi,gαi,g0

]( p

p0

)(
T0

T

)γ
, (15)

where f i,gc0 and δi,g denote the zero-pressure resonance fre-
quency and linear pressure shift, respectively, which are also
obtained from the HITRAN database. In (15), αair

0 and αi,g0

represent the broadening coefficient of the air and of the ith
isotopologue of the gth gas, respectively, whereas γ denotes
the temperature broadening coefficient, all of which can be
directly obtained from the HITRAN database, and the quantity
T0 denotes the reference temperature. The parameters involved
in the calculation of molecular absorption coefficient kabs(f),
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their units and the values of various constants are summarized
in Table-I of [4]. Furthermore, the HITRAN database is
accessible online from [39].

From the channel model presented in this section, it can be
readily observed that the THz MIMO channel is significantly
different from its mmWave counterpart. First of all, note that
the THz MIMO channel is highly dependent on the carrier
frequency f and distance d, not just due to the free-space
loss Lspread(f, d), but more importantly due to the nature
of molecular absorption loss Labs(f, d) = e−kabs(f)d, where
the absorption coefficient kabs(f) is highly dependent on the
molecular composition of the propagation medium, system
pressure, temperature and the operating frequency. In fact, as
evaluated in [4], even the water vapor molecules present in
a standard medium lead to a significant loss, which affects
the overall system performance in the THz band. By contrast,
in the mmWave band, these atmospheric losses only become
significant in the presence of raindrops/ fog. Due to this, THz
signals experience severe propagation losses beyond a few
meters. Furthermore, due to the extremely short wavelength
of THz signals, the indoor surfaces, which can be regarded as
smooth in the comparatively lower mmWave band, now appear
rough in the THz regime [11]. Hence, it can be observed from
(7) and (9) that the complex-valued path gains αL,j(f, d) and
αi,j(f, d) in the THz band for the LoS and NLoS components,
respectively, differ significantly due to their increased higher-
order reflection losses. Additionally, due to the large number of
antennas, the THz MIMO channel becomes highly directional
and more sparse in nature in comparison to its mmWave
counterpart. It has also been verified both in [4] and also in our
simulation results that at certain frequencies, the molecular ab-
sorption is very high, which reduces the total bandwidth to just
a few transmission windows. Hence, the molecular absorption
plays a critical role in deciding the operating frequency and
bandwidth. The next section describes the channel estimation
model proposed for our THz MIMO systems. For ease of
notation, we drop the quantities (f, d) from the THz MIMO
channel representation in the subsequent sections, since these
parameters are fixed for the channel under consideration.

III. THZ MIMO CHANNEL ESTIMATION MODEL

Consider the transmission of NF = NT
NRF

training frames
and MT training vectors, where MT < NT . This implies that
MT

NF
training vectors are transmitted in each frame. Let FRF,i ∈

CNT×NRF represent the RF training TPC and Xp,i ∈ CNRF×
MT
NF

denote pilot matrix corresponding to the ith training frame.
The received pilot matrix Ỹi ∈ CNR×

MT
NF can be represented

as

Ỹi = HFRF,iXp,i + Ṽi, (16)

where Ṽi ∈ CNR×
MT
NF denotes the noise matrix having

independent and identically distributed (i.i.d.) elements obey-
ing CN (0, σ2

v). Upon concatenating Ỹi for 1 ≤ i ≤ NF , as
Ỹ =

[
Ỹ1, Ỹ2, · · · , ỸNF

]
∈ CNR×MT , one can model the

received pilot matrix as

Ỹ = HFRFXp + Ṽ, (17)

where the various quantities are defined as
FRF = [FRF,1,FRF,2, · · · ,FRF,NF ] ∈ CNT×NT , Ṽ =[
Ṽ1, Ṽ2, · · · , ṼNF

]
∈ CNR×MT and

Xp = blkdiag (Xp,1,Xp,2, · · · ,Xp,NF ) ∈ CNT×MT , (18)

Similarly, let NC = NR
NRF

represent the number of combining-
steps, whereas MR denote the number of combining vectors.
In each combining-step, we combine the pilot output Ỹ using
MR

NC
combining vectors in the baseband, where MR < NR.

Let WRF,j ∈ CNR×NRF denote the RF RC and WBB,j ∈
CNRF×

MR
NC represent the baseband RC of the jth combining

step. The received pilot matrix Yj ∈ C
MR
NC
×MT at the output

of the jth baseband RC is obtained as Yj = WH
BB,jW

H
RF,jỸ.

Let Y =
[
YT

1 ,Y
T
2 , · · · ,YT

NC

]T ∈ CMR×MT represent the
stacked received pilot matrices Yj , 1 ≤ j ≤ NC . The end-to-
end model can be succinctly represented as

Y = WH
BBWH

RFHFRFXp + V, (19)

where the various quantities have the following expressions:
WRF = [WRF,1,WRF,2, · · · ,WRF,NC ] ∈ CNR×NR ,V =

WH
BBWH

RFṼ ∈ CMR×MT and

WBB = blkdiag (WBB,1, · · · ,WBB,NC ) ∈ CNR×MR . (20)

One can now exploit the properties of the matrix Kronecker
product [42] to arrive at the following THz MIMO channel
estimation model

y = Φh + v, (21)

where y = vec (Y) ∈ CMTMR×1 represents the received
pilot vector and v = vec (V) ∈ CMTMR×1 denotes the
noise vector. The quantity h = vec(H) ∈ CNTNR×1 is the
equivalent THz MIMO channel vector and the matrix Φ ∈
CMTMR×NTNR represents the sensing matrix obeying Φ =[(

XT
p FTRF

)
⊗
(
WH

BBWH
RF

)]
. Finally, the noise covariance ma-

trix Rv ∈ CMTMR×MTMR , defined as Rv = E
{
vvH

}
, is

given as Rv = σ2
v

[
IMT

⊗
(
WH

BBWH
RFWRFWBB

)]
. At this

point, it can be noted that the expressions for the conventional
LS and MMSE estimates of the THz MIMO channel vector h
can be readily derived from the simplified model in (21), as

ĥLS = (Φ)
†
y and ĥMMSE =

(
R−1
h + ΦHR−1

v Φ
)−1

ΦHy,
(22)

where Rh = E
[
hhH

]
∈ CNTNR×NTNR represents the

channel’s covariance matrix. However, a significant drawback
of these conventional estimation techniques is that they re-
quire an over-determined system, i.e., MTMR ≥ NTNR, for
reliable channel estimation. This results in unsustainably high
training overheads due to the high number of antennas. Thus,
conventional channel estimation techniques are inefficient for
such systems. Furthermore, as described in [5], [11], the THz
MIMO channel exhibits angular-sparsity, which is not ex-
ploited by these conventional techniques. Leveraging the spar-
sity of the THz MIMO channel can lead to significantly im-
proved channel estimation performance as well as bandwidth-
efficiency, specifically where we have the ‘ill-posed’ THz
MIMO channel estimation scenario of MTMR << NTNR.
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Thus, the next subsection derives a sparse channel estimation
model for THz MIMO systems.

A. Sparse THz MIMO Channel Estimation Model

Let GT and GR signify the angular grid-sizes obeying
(GT , GR) ≥ max(NT , NR). The angular grids ΦT and ΦR for
the AoD and AoA, respectively, are given as follows, which
are constructed by assuming the directional-cosines cos(φi) to
be uniformly spaced between −1 to 1:

ΦT =

{
φi : cos(φi) =

2

GT
(i− 1)− 1, 1 ≤ i ≤ GT

}
, (23)

ΦR =

{
φj : cos(φj) =

2

GR
(j − 1)−1, 1 ≤ j ≤ GR

}
. (24)

Let AR(ΦR) ∈ CNR×GR and AT (ΦT ) ∈ CNT×GT represent
the dictionary matrices of the array responses constructed
using the angular-grids ΦR and ΦT as follows

AR(ΦR) = [ar(φ1),ar(φ2), · · · ,ar(φGR)],

AT (ΦT ) = [at(φ1),at(φ2), · · · ,at(φGT )]. (25)

Owing to the choice of grid angles considered in (23) and (24),
the matrices AR(ΦR) and AT (ΦT ) are semi-unitary, i.e., they
satisfy

Ai(Φi)A
H
i (Φi) =

Gi
Ni

INi , i ∈ {R, T}. (26)

Using the above quantities, an equivalent angular-domain
beamspace representation [6], [15] of the THz MIMO channel
H (c.f. (2)) can be obtained as

H ' AR(ΦR)HbA
H
T (ΦT ), (27)

where Hb ∈ CGR×GT signifies the beamspace domain channel
matrix. Note that when the grid sizes GR and GT are large,
i.e., the quantization of AoA/ AoD grids is fine enough, the
above approximate relationship holds with equality. Due to
high free-space loss, as well as reflection and molecular ab-
sorption losses in a THz system, the number of multipath com-
ponents is significantly lower [5], [11], [21]. Furthermore, the
THz MIMO channel comprises only a few highly-directional
beams, which results in an angularly-sparse multipath channel.
Hence, only a few active AoA/ AoD pairs exist in the channel,
which makes the beamspace channel matrix Hb sparse in
nature.

Once again, upon exploiting the properties of the matrix
Kronecker product in (27), one obtains

h = vec(H) = [A∗T (ΦT ) ⊗ AR(ΦR)] hb, (28)

where hb = vec(Hb) ∈ CGRGT×1. Finally, the sparse CSI
estimation model of the THz MIMO system can be obtained
via substitution of (28) into (21), yielding

y = Φ̃hb + v, (29)

where Φ̃ = ΦΨ ∈ CMTMR×GRGT represents the equiva-
lent sensing matrix, whereas Ψ = [A∗T (ΦT ) ⊗ AR(ΦR)] ∈
CNRNT×GRGT represents the sparsifying-dictionary. Alterna-
tively, one can express the equivalent sensing matrix Φ̃ as

Φ̃ =
[(

XT
p FTRFA

∗
T (ΦT )

)
⊗
(
WH

BBWH
RFAR(ΦR)

)]
. (30)

It can be readily observed that the equivalent sensing matrix
Φ̃ depends on the choice of the RF TPC FRF, of the RF RC
WRF, of the baseband RC WBB and of the pilot matrix Xp

employed for estimating the channel. Therefore, minimizing
the total coherence [35], [36] of the matrix Φ̃ can lead to
significantly improved sparse signal estimation. We now derive
the optimal pilot matrix Xp and the baseband RC WBB, which
achieve this.

Lemma 1. Let us set the RF TPC and RC to the normal-
ized discrete Fourier transform (DFT) matrices as follows:
FRFFHRF = FHRFFRF = INT and WRFWH

RF = WH
RFWRF =

INR . Then the ith diagonal block Xp,i, 1 ≤ i ≤ NF , of
the pilot matrix Xp defined in (18), and jth diagonal block
WBB,j , 1 ≤ j ≤ NC , of the baseband RC WBB defined in
(20), may be formulated as

Xp,i = U
[
IMT
NF

0MT
NF
×NRF−

MT
NF

]T
VH

1

WBB,j = U
[
IMR
NC

0MR
NC
×NRF−

MR
NC

]T
VH

2 , (31)

for which the total coherence µt
(
Φ̃
)

of the equivalent

dictionary matrix Φ̃ is minimized, where the matrices
U,V1 and V2 are arbitrary unitary matrices of size NRF ×
NRF ,

MT

NF
× MT

NF
and MR

NC
× MR

NC
, respectively.

Proof. Given in Appendix-A of our arXiv preprint [43].

The next subsection develops an efficient BL-based frame-
work, which leads to a significantly improved estimation
accuracy of the THz MIMO channel.

IV. BL-BASED SPARSE CHANNEL ESTIMATION IN THZ
MIMO SYSTEMS

The proposed BL-based sparse channel estimation technique
relies on the Bayesian philosophy, which is especially well-
suited for an under-determined system, where MTMR <<
GTGR. A brief outline of this procedure is as follows. The BL
procedure commences by assigning a parameterized Gaussian
prior f(hb; Γ) to the sparse beamspace CSI vector hb. The
associated hyperparameter matrix Γ is subsequently estimated
by maximizing the Bayesian evidence f(y; Γ). Finally, the
MMSE estimate of the beamspace channel is obtained us-
ing the estimated hyperparameter matrix Γ̂, which leads to
an improved sparse channel estimate. The various steps are
described in detail below.

Consider the parameterized Gaussian prior assigned to hb
as shown below [44]

f(hb; Γ) =

GRGT∏
i=1

(πγi)
−1 exp

(
− |hb(i)|

2

γi

)
, (32)

where the matrix Γ=diag (γ1, γ2, · · · , γGRGT )∈RGRGT×GRGT
comprises the hyperparameters γi, 1 ≤ i ≤ GRGT . Note
that the MMSE estimate ĥb corresponding to the sparse
estimation model in (29) is given by [45]

ĥb =
(
Φ̃HR−1

v Φ̃ + Γ−1
)−1

Φ̃HR−1
v y, (33)
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which can be readily seen to depend on the hyperparam-
eter matrix Γ. Therefore, the estimation of Γ holds the
key for eventually arriving at a reliable sparse estimate
of the beamspace channel vector hb. In order to achieve
this, consider the log-likelihood function log [f(y; Γ)] of
the hyperparameter matrix Γ, which can be formulated as
log [f(y; Γ)] = c1 − log [det (Ry)] − yHR−1

y y, where we
have c1 = −MTMR log(π) and the matrix Ry = Rv +

Φ̃ΓΦ̃H ∈ CMTMR×MTMR represents the covariance matrix
of the pilot output y. It follows from [44] that maximization
of the log-likelihood log [f(y; Γ)] with respect to Γ is non-
concave, which renders its direct maximization intractable.
Therefore, in such cases, the Expectation-Maximization (EM)
technique is eminently suited for iterative maximization of
the log-likelihood function, with guaranteed convergence to
a local optimum [45]. Let γ̂(j−1)

i denote the estimate of the
ith hyperparameter obtained from the EM iteration (j − 1)
and let Γ̂(j−1) denote the hyperparameter matrix defined as
Γ̂(j−1) = diag

(
γ̂

(j−1)
1 , γ̂

(j−1)
2 , · · · , γ̂(j−1)

GRGT

)
. The procedure

of updating the estimate Γ̂(j) in the jth EM-iteration is
described in Lemma 2 below.

Lemma 2. Given the ith hyperparameter γ̂
(j−1)
i ,

the update γ̂
(j)
i in the jth EM-iteration, which

maximizes the log-likelihood function L
(
Γ|Γ̂(j−1)

)
=

Ehb|y;Γ̂(j−1) {log f(y,hb; Γ)} , is given by

γ̂
(j)
i = R

(j)
b (i, i) +

∣∣∣µ(j)
b (i)

∣∣∣2 , (34)

where µ
(j)
b = R

(j)
b Φ̃HR−1

v y ∈ CGRGT×1 and R
(j)
b =[

Φ̃HR−1
v Φ̃ +

(
Γ̂(j−1)

)−1
]−1

∈ CGRGT×GRGT .

Proof. Given in Appendix-B of our arXiv preprint [43].

The EM procedure is repeated until the estimates of the

hyperparameters converge, i.e. the quantity
∥∥∥∥Γ̂(j)

− Γ̂
(j−1)

∥∥∥∥2

F
becomes smaller than a suitably chosen threshold ε or the
number of iterations reaches a maximum limit Kmax. The BL-
based estimate ĥb,BL, upon convergence of the EM procedure,
is given by ĥb,BL = µ

(j)
b . The BL algorithm of THz MIMO

CSI estimation is summarized in Algorithm-1 of our arXiv
preprint [43]. Furthermore, its multiple measurement vector
(MMV)-BL (MBL) extension is also given therein in Section-
IV-A. Finally, to benchmark the performance, the BCRLB
of the CSI estimation model of (29) is derived in the next
subsection.

A. BCRLB for THz MIMO Channel Estimation

The Bayesian Fisher information matrix (FIM) JB ∈
CGRGT×GRGT can be evaluated as the sum of FIMs associated
with the pilot output y and the beamspace CSI hb, denoted by
JD and JP, respectively. Hence, one can express the Bayesian
FIM JB as [46]: JB = JD + JP, where the matrices JD
and JP are determined as follows. Let the log-likelihoods
corresponding to the THz MIMO beamspace channel hb and

the pilot output vector y be represented by L(hb; Γ) and
L(y|hb), respectively. These log-likelihoods simplify to

L(y|hb) = log [f (y|hb)]

= c2 −
(
y − Φ̃hb

)H
R−1
v

(
y − Φ̃hb

)
(35)

= c2 − yHR−1
v y + hHb Φ̃HR−1

v y + yHR−1
v Φ̃hb

− hHb Φ̃HR−1
v Φ̃hb, (36)

L(hb; Γ) = log [f(hb; Γ)] = c3 − hHb Γ−1hb, (37)

where the terms c2 = −MTMR log (π) − log [det(Rv)] and
c3 = −GRGT log (π)− log [det (Γ)] are constants that do not
depend on the beamspace channel hb. The FIMs JD and JP
expressed in terms of these log-likelihoods are defined as [46]

JD = −Ey,hb

{
∂2L(y|hb)
∂hb∂hHb

}
, JP = −Ehb

{
∂2L(hb; Γ)

∂hb∂hHb

}
.

(38)

The quantity JD simplifies to JD = Φ̃HR−1
v Φ̃, since the

(i, j)th element of the Hessian matrix ∂2L(y|hb)
∂hb∂hHb

evaluated as
∂2L(y|hb)
∂hb,i∂hb,j

becomes zero for the initial four terms of (36). As

for the last term, the Hessian matrix evaluates to Φ̃HR−1
v Φ̃.

Similarly, the FIM JP evalulates to JP = Γ−1. Thus, the
Bayesian FIM JB evaluates to JB = Φ̃HR−1

v Φ̃+Γ−1. Finally,
the MSE of the estimate ĥb can be bounded as

MSE
(
ĥb

)
= E

{∥∥∥ĥb − hb

∥∥∥2
}

≥ Tr
{
J−1

B

}
= Tr

{(
Φ̃HR−1

v Φ̃ + Γ−1
)−1

}
.

(39)

Furthermore, upon exploiting the relationship between the
CSI vector h and its beamspace representation hb given in
(28), one can express the BCRLB for the estimated CSI
Ĥ as MSE

(
Ĥ
)
≥ Tr

{
ΨJ−1

B ΨH
}
. The next part of this

paper presents the hybrid TPC and RC design using the CSI
estimates obtained from the OMP and BL techniques described
above.

V. HYBRID TRANSCEIVER DESIGN FOR THZ MIMO
SYSTEMS

This treatise develops a novel joint hybrid transceiver de-
sign, which directly employs the beamspace channel estimates
obtained via the proposed BL-based estimation techniques.
Note that the existing mmWave and THz contributions, such
as [12], [13], [37], assume the availability of the full CSI for
designing the RF precoder F̄RF and combiner W̄RF, which is
challenging to obtain due to the large number of antennas and
propagation losses. Furthermore, these works either consider
the true array response vectors to be perfectly known or
employ a codebook for designing the RF precoder/ combiner.
To the best of our knowledge, none of the existing papers
have directly employed the estimate ĥb of the underlying
beamspace channel for designing the hybrid precoder, which is
naturally the most suitable approach, given the availability of
the beamspace domain channel estimates. The proposed THz
hybrid transceiver design addresses this open problem.
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A. Hybrid TPC Design

The baseband symbol vector x̄ of (1) comprised of i.i.d.
symbols has a covariance matrix given by Rx̄ = E

{
x̄x̄H

}
=

1
Ns

INS . The transmit signal vector x̃ ∈ CNT×1 is formulated
as x̃ = F̄RFF̄BBx̄, while the power constraint on the hybrid
TPC is given by ‖F̄RFF̄BB‖2F ≤ PTNS , which is equivalent
to restricting the total transmit power at the output of the
TPC to PT , yielding E

{
x̃H x̃

}
= PT . To design the optimal

TPCs F̄opt
BB ∈ CNRF×NS and F̄opt

RF ∈ CNT×NRF , one can
maximize the mutual information I

(
F̄BB, F̄RF

)
= log2

∣∣∣INR+

HF̄RFF̄BBF̄HBBF̄HRFH
H
∣∣∣, subject to the power constraint. Thus,

the optimization problem of the hybrid TPC can be formulated
as {

F̄opt
BB , F̄

opt
RF

}
=

arg max
(F̄BB,F̄RF)

log2

∣∣∣INR + HF̄RFF̄BBF̄HBBF̄HRFH
H
∣∣∣,

s.t. ‖F̄RFF̄BB‖2F ≤ PTNS ,

|F̄RF(i, j)| = 1√
NT

, 1 ≤ i ≤ NT , 1 ≤ j ≤ NRF. (40)

Note that the above optimization problem is non-convex owing
to the non-linear constraints on the elements of F̄RF, which
renders it intractable. To circumvent this problem, one can
initially design the optimal fully-digital TPC F̄ ∈ CNT×NS
via the substitution F̄RFF̄BB = F̄ in the above optimization
problem and ignoring the constant magnitude constraints.
Upon obtaining the fully-digital TPC F̄opt, one can then
decompose it into its RF and baseband constituents represented
by the matrices F̄opt

RF and F̄opt
BB , respectively. The well-known

water-filling solution for design of the fully-digital TPC is as
follows.

Let H = UΣVH represent the singular value decompo-
sition (SVD) of the THz MIMO channel. The optimal fully-
digital TPC F̄opt is expressed as

F̄opt = V1P
1/2, (41)

where V1 = V (:, 1 : NS) ∈ CNT×NS and the matrix
P ∈ RNS×NS+ represents a diagonal power allocation matrix,
whose ith diagonal element pi, 1 ≤ i ≤ NS , can be derived
as pi = max

{
0,
(
λ− σ2

v

(Σ(i,i))2

)}
. The quantity λ denotes

the Lagrangian multiplier [47], which satisfies the power
constraint

∑NS
i=1 pi ≤ PTNS . Subsequently, the optimal hybrid

TPCs F̄opt
BB and F̄opt

RF can be obtained from the optimal fully-
digital TPC F̄opt as the solution of the approximate problem
[21]{

F̄opt
BB , F̄

opt
RF

}
=

arg min
(F̄BB,F̄RF)

∥∥F̄opt − F̄RFF̄BB
∥∥2

F
,

s.t.
∥∥F̄RFF̄BB

∥∥2

F
≤ PTNS ,

∣∣F̄RF(i, j)
∣∣ =

1√
NT

. (42)

Although the above optimization problem is non-convex,
the following interesting observation substantially simplifies
hybrid TPC design. Note that the THz MIMO channel of
(2) can be compactly represented as H = ĀRDĀH

T , where

Algorithm 1 Hybrid transceiver design from the estimated
beamspace THz MIMO channel ĥb

Input: Estimated beamspace channel ĥb, optimal fully-digital
TPC F̄opt and MMSE RC W̄M, output covariance matrix Ryy,
number of RF chains NRF, array response dictionary matrices
AR(ΦR) and AT (ΦT )
Initialization: F̄RF = [ ], W̄RF = [ ], hb,abs = |ĥb|, construct
an ordered set S from the indices of elements of the vector
hb,abs, so that hb,abs [S(1)] ≥ hb,abs [S(2)] ≥ hb,abs [S(3)] ≥
, · · · ≥ hb,abs [S(GRGT )]
for i = 1, 2, . . . , NRF

1) j = floor [(S (i)− 1) /GR] + 1;
k = rem [(S (i)− 1) , GR] + 1;

2) F̄RF =
[
F̄RF at (φj)

]
; W̄RF =

[
W̄RF ar (φk)

]
;

end for
F̄BB =

(
F̄RF

)†
F̄opt;

W̄BB =
(
W̄H

RFRyyW̄RF
)−1

W̄H
RFRyyW̄M;

Output: F̄BB, F̄RF, W̄BB, W̄RF

ĀR ∈ CNR×(NLoS+1)Nray and ĀT ∈ CNT×(NLoS+1)Nray are the
matrices that comprise (NLoS + 1)Nray array response vectors
corresponding to the AoAs and AoDs of all the multipath
components, respectively, whereas the diagonal matrix D ∈
C(NLoS+1)Nray×(NLoS+1)Nray contains their complex path-gains.
Thus, the row- and column-spaces of the channel matrix H
obey

R (H∗) = C
(
ĀT

)
, C (H) = C

(
ĀR

)
, (43)

where R(·) and C(·) represent the row and column spaces,
respectively, of a matrix. At this juncture, using the SVD of
H together with (41), one can conclude that

C
(
Fopt

)
⊆ C (V1) ⊆ C (V(:, 1 : ρ)) = R (H∗) , (44)

where we have ρ = rank(H) and ρ ≥ NS . Hence, from (43)
and (44), one can deduce that

C
(
F̄opt

)
⊆ C

(
ĀT

)
. (45)

This implies that a suitable linear combination of the columns
of ĀT can determine any column of the matrix F̄opt. Further-
more, since it is evident that the array response vectors at also
satisfy the non-convex constraints of (42), courtesy (6), the
columns of the matrix ĀT are a suitable candidate for the RF
TPC F̄RF. However, a pair of key challenges remain. Firstly,
the array response matrix ĀT is unknown. To compound this
problem, one can only choose NRF columns of ĀT for the
design of the RF TPC, owing to the fact that there are only NRF
RF chains. Both the above-mentioned issues can be efficiently
addressed by employing the estimate ĥb of the beamspace
channel as follows.

Note that the dominant coefficients of the beamspace chan-
nel matrix Hb (c.f. (27)) represent the active (AoA, AoD)-
pairs. Therefore, to design the RF TPC F̄RF, one can directly
employ the estimate Ĥb of the beamspace channel matrix
derived from the estimation techniques proposed in Section-
IV. The salient steps in the proposed hybrid transceiver design
procedure are detailed in Algorithm-1. We commence by
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arranging the elements of the quantity |ĥb| in descending
order and determine the NRF entries that have the highest
magnitude. The corresponding locations in the beamspace
matrix representation yield the active (AoA, AoD)-pairs. More
precisely, the column indices, represented by j in Step-1
of Algorithm-1, provide the active AoDs in the transmit
angular grid ΦT , whereas the row indices, denoted by k,
yield the active AoAs. The RF TPC F̄RF can be subsequently
constructed from the NRF-dominant columns of the transmit
array response dictionary matrix AT (ΦT ) (c.f. (25)). Finally,
the baseband TPC F̄BB can be obtained from the LS estimate
as F̄BB =

(
F̄RF

)†
F̄opt. The procedure of the hybrid RC design

in THz MIMO systems is described next.

B. Hybrid MMSE RC Design

This subsection describes the design of the hybrid MMSE
RC components W̄BB ∈ CNRF×NS and W̄RF ∈ CNR×NRF

relying on the estimated beamspace channel matrix Ĥb. To-
ward this, for a given hybrid TPC F̄BB and F̄RF, one can
minimize the MSE of approximation between the transmit
baseband symbol vector x̄ ∈ CNS×1 and the output ȳ, which
obey (1), subject to the constant-magnitude constraints on the
elements of the RF RC W̄RF. Let y ∈ CNR×1 denote the
signal impinging at the RAs, which is given by

y = HF̄RFF̄BBx̄ + v̄.

Thus, the RC design optimization problem can be formulated
as{

W̄opt
RF ,W̄

opt
BB

}
= arg min

(W̄RF,W̄BB)
E
{∥∥x̄− W̄H

BBW̄H
RFy
∥∥2

2

}
,

s.t.
∣∣W̄RF(i, j)

∣∣ =
1√
NR

. (46)

As detailed in Appendix-C of our arXiv preprint [43], the
above optimization problem can be reformulated as{

W̄opt
RF ,W̄

opt
BB

}
= arg min

(W̄RF,W̄BB)

∥∥∥R1/2
yy

(
W̄M − W̄RFW̄BB

)∥∥∥2

F

s.t.
∣∣W̄RF(i, j)

∣∣ =
1√
NR

, (47)

where the matrices Ryy ∈ CNR×NR and W̄M ∈ CNR×NS
represent the covariance matrix of the output vector y and the
optimal MMSE RC, respectively. These can be formulated as

Ryy =
1

NS

(
HF̄RFF̄BBF̄HBBF̄HRFH

H +NSσ
2
vINR

)
, (48)

W̄M =HF̄RFF̄BB
(
F̄HBBF̄HRFH

HHF̄RFF̄BB +NSσ
2
vINS

)−1
.

(49)

Since we have C
(
W̄M

)
⊆ C (H) = C

(
ĀR

)
, similar to the

simplified TPC design, one can design the RF RC W̄RF from
the array response vectors of the NRF active AoAs obtained
from the estimated beamspace channel. Finally, the baseband
RC W̄BB can be derived using the following weighted-LS
solution: W̄BB =

(
W̄H

RFRyyW̄RF
)−1

W̄H
RFRyyW̄M. For con-

venience, the hybrid RC design is also presented in Algorithm-
1. Note that a key advantage of the proposed hybrid MMSE

RC design is that the processed signal ȳ = W̄H
BBW̄H

RFy
directly yields the MMSE estimate of the transmit symbol
vector x̄.

Note that the SOMP technique, as described in [13], re-
quires NRF iterations for selecting the NRF dominant array
response vectors via a computationally intensive correlation
method (Step-4 and 5 of Algorithm-1 in [13]), followed by
an intermediate LS solution in each iteration. By contrast, the
proposed hybrid precoder design framework is able to directly
compute the final baseband precoder using the LS solution,
once the RF precoder is derived using the estimated beamspace
domain CSI. Thus, the proposed hybrid precoder design has a
significantly lower computational cost, while performing very
similar to the ideal fully-digital benchmark, as demonstrated
in our simulation results of Fig. 3 and Fig. 4. Furthermore, the
framework for beamspace domain CSI estimation, followed by
our hybrid transceiver design developed requires significantly
lower feedback, since the receiver only has to feed back a few
indices of the dominant beamspace components together with
their quantized gains in order to construct the hybrid precoder
of the transmitter.

The objectives of the proposed hybrid transceiver opti-
mization problems in (40) and (46) of this treatise are to
design a capacity-optimal hybrid precoder and MMSE-optimal
hybrid combiner. We would like to clarify that the proposed
solution does not guarantee optimality, since our solution
directly employs the estimate ĥb of the beamspace domain
channel obtained from the proposed BL-based CSI estimators.
Hence, its performance heavily relies on the estimated CSI,
as demonstrated in our simulation results of Fig. 3 and 4,
which will always be the case for any practical solution
developed for this problem. However, a solid mathematical
foundation established after (42) justifies its low complexity
and significantly improved performance that is close to the cor-
responding optimal fully-digital solution. On the other hand,
the existing optimization algorithms conceived for hybrid
transceiver design, such as [17], [18], may guarantee certain
optimality, but they are typically iterative and computationally
complex.

C. Computational Complexity

This subsection derives the computational cost of the pro-
posed THz hybrid MIMO transceiver design, which is directly
coupled with the beamspace domain CSI estimation module.
The computational complexity order of the BL technique may
be shown to be O

(
G3
RG

3
T

)
, which arises due to the matrix

inversion of size-[GRGT ×GRGT ]. On the other hand, the
worst-case complexity order of the OMP scheme is seen to
be O

(
M3
TM

3
R

)
, which arises due to the intermediate LS

estimate required in each iteration. Finally, the computational
cost of the hybrid transceiver design presented in Algorithm-1
relying on the estimated BL-based CSI is seen to be on the
order of O

(
N3
T +N3

RF +N3
S

)
. Here, the O

(
N3
T

)
term arises

due to the SVD of the THz MIMO channel H, O
(
N3

RF

)
is

due to the LS solution of the baseband precoder F̄BB and
combiner W̄BB, whereas O

(
N3
S

)
is due to the calculation of

the fully-digital MMSE solution in (49). Thus, it can be readily
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observed that the overall computational cost of obtaining the
OMP-based estimated CSI followed by the hybrid transceiver
design is lower than that of employing the BL-based estimated
CSI. However, as discussed later in our simulation results, the
performance of the proposed hybrid transceiver design using
OMP-based CSI is poor in comparison to that obtained via the
BL-based CSI for an identical pilot overhead. Hence, there is a
trade-off between the computational cost and the performance
improvement attained.

VI. SIMULATION RESULTS

The performance of the proposed CSI estimation techniques
conceived for our hybrid THz MIMO transceiver design is
illustrated by our simulation results. For this study, the mag-
nitudes of the LoS and NLoS complex path-gains α(f, d)
have been generated using (7) and (9), respectively, whereas
the associated phase shifts ψ are generated as i.i.d. samples
of a random variable uniformly distributed over the interval
(−π, π]. The molecular absorption coefficient kabs(f) has
been computed using the procedure described in Section-
II-C relying on the HITRAN database [10]. The operating
carrier frequency f and the transmission distance d are set
to 0.3 THz and 10 m, respectively, unless stated otherwise.
Furthermore, an office scenario is considered with the sys-
tem pressure p and temperature T set to 1 atm and 296 K,
respectively, which has the following molecular composition:
water vapour (1%), oxygen (20.9%) and nitrogen (78.1%).
The THz MIMO channel is generated using a single LoS and
NNLoS = 4 NLoS components, in which 3 NLoS components
have first-order reflections, whereas the 4th NLoS compo-
nent is assumed to have a second-order reflection from the
respective scatterer. Furthermore, each multipath component
is composed of Nray ∈ {1, 3} diffused rays, whose AoAs/
AoDs follow i.i.d. Gaussian distributions with an angular
spread of standard deviation of 1/10 radian around the mean
angle of the particular multipath component [48]. The standard
deviation of the roughness of various reflecting media is set
as σ ∈ {0.05, 0.13, 0.15}mm [40]. The TA and RA gains, Gat
and Gar , respectively, are set to Gat = Gar = 25 dB. Given the
various channel parameters mentioned above, the THz MIMO
channel has been generated using (2)-(4).

For simulation, this work considers two THz MIMO sys-
tems, namely System-I and System-II, having the simulation
parameters described below. For System-I, the number of TAs/
RAs is set to NT = NR = 32 with NRF = 8 RF chains
at both the ends. The number of training vectors, MT and
MR, is set to MT = MR = 24, which can be seen to be
lower than NT and NR. The angular grid sizes, GT and
GR, for this system are set as GT = GR = 36, which
is higher than max(NT , NR). By contrast, the simulation
parameters of System-II are as follows: NT = NR = 16,
NRF = 4, MT = MR = 12 and GT = GR = 20.
Note that, in contrast to the conventional channel estimation
models, which are typically over-determined, the setting for
System-I results in a [576 × 1296]-size equivalent sensing
matrix Φ̃, thus leading to an under-determined system, as
described by Eq. (29). However, as shown in the simulation

results, the proposed sparse estimation techniques developed
in our paper are able to estimate the THz MIMO CSI with
the desired accuracy even in such a challenging scenario.
Furthermore, the antenna spacings, dt and dr, for both the
Systems have been set to dt = dr = λ

2 . The SNR is defined as
SNR = 10 log10

(
1
σ2
v

)
dB. For the OMP technique described

in our arXiv preprint [43], the stopping parameter εt is set to
εt = σ2

v , whereas for the BL technique, we set ε = 10−6 and
Kmax = 50.

A. THz Hybrid MIMO Channel Estimation
Fig. 2(a) and Fig. 2(b) illustrate the sparse channel estima-

tion performance versus SNR for the THz MIMO System-
I and System-II, respectively, in terms of the normalized

MSE (NMSE), which is defined as NMSE =
‖Ĥ−H‖2

F

‖H‖2F
.

The performance of the proposed BL-based algorithms is
also compared to that of the popular sparse signal recovery
technique FOCal Underdetermined System Solver (FOCUSS)
[49], typically used in the field of image reconstruction.
The performance of all the competing techniques is also
benchmarked against the BCRLB, as derived in Section-IV-A.
From both the figures, one can conclude that the proposed
BL-based sparse channel estimation technique outperforms
the OMP and FOCUSS, which is attributed to its robustness
toward the tolerance parameter ε and Kmax, and toward the
dictionary matrix Φ̃. On the other hand, the sensitivity of
the OMP technique to the stopping threshold εt and to the
dictionary matrix lead to structural and convergence errors, as
described in [44], thus degrading the eventual sparse recovery
of the beamspace channel. Furthermore, the OMP technique
suffers due to its greedy nature and error propagation, since
the error encountered in the selection of the indices cannot
be rectified in the subsequent iterations, thus negatively im-
pacting its performance. On the other hand, the performance
of FOCUSS is poor due to its convergence deficiencies and
sensitivity to the regularization parameter [44]. In Fig. 2(b),
the proposed techniques are also compared to low-complexity
approximate message passing (MP)-based sparse Bayesian
learning (AMP-SBL) [50], which is the Bayesian extension of
the MP algorithms developed in [51], [52]. The performance of
the AMP-SBL algorithm is poor in comparison to the proposed
BL algorithm, since it only tracks the a posteriori mean
and variance of each element in the sparse vector, leading
to its sub-optimal performance, especially at high SNR. One
can also note from Fig. 2(a) that the proposed MMV-BL
(MBL) technique approaches the BCRLB upon increasing the
number of measurements M . This is significant, since the
BCRLB is derived for an ideal scenario, where the AoAs/
AoDs are perfectly known, whereas the BL framework does
not rely on this idealized simplifying assumption. Another
interesting observation is as follows. When the THz MIMO
channel has Nray = 3 diffused rays, the performance of
all the competing schemes degrades. The reason behind this
degradation is that the diffused rays lead to broadening the
beamwidth of the AoAs/ AoDs, which essentially increases
the support of the beamspace channel, eventually degrading
the performance of sparse signal recovery. However, one can
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Fig. 2: NMSE versus SNR comparison for a THz MIMO (a) System-I; (b) System-II.

also verify that this degradation is minimal for the proposed
BL scheme, which outperforms the others in this scenario as
well. Furthermore, one can also note that the proposed sparse
estimation frameworks are capable of accurately estimating
the NR×NT THz MIMO channel using MT and MR beam-
patterns, where MTMR << NTNR. It is plausible that this is
not possible using the conventional LS and MMSE schemes,
as described in Section-III. Thus, its superior CSI estimation
performance coupled with its lower pilot overhead make the
proposed BL-based sparse estimation framework ideally suited
for THz MIMO systems.

B. THz MIMO Hybrid Transceiver Design
This subsection evaluates both the ASE in bits/sec/Hz

and the BER to illustrate the performance of the pro-
posed hybrid transceiver design. The ASE is computed us-
ing the well-known Shannon capacity formula as C =

log2

∣∣∣INS + 1
NS

R−1
n HeqH

H
eq

∣∣∣ , where the matrices Rn and
Heq denote the covariance of the combined noise and
equivalent baseband channel, respectively, given by Rn =
σ2
vW̄

H
BBW̄H

RFW̄RFW̄BB,Heq = W̄H
BBW̄H

RFHF̄RFF̄BB. The
quantities W̄RF,W̄BB, F̄RF and F̄BB have been evaluated using
the proposed hybrid transceiver design described in Algorithm-
1, which in turn requires the estimated beamspace domain CSI
obtained from the OMP or BL schemes. The ASE of a fully-
digital THz MIMO system having perfect CSI is also plotted
therein to benchmark the performance and to demonstrate
the gap between the proposed hybrid and ideal baseband
transceiver architectures.

Fig. 3(a) plots the ASE versus SNR for System-I. Observe
that the proposed hybrid transceiver design using the estimated
beamspace domain CSI yields an ASE that is reasonably close
to that of the fully-digital system having perfect CSI. This
demonstrates the efficacy of the proposed hybrid transceiver

design as well as that of the OMP and BL-based sparse CSI
estimation techniques. The improved CSI estimation accuracy
of the BL technique also leads to higher ASE in comparison
to the same achieved using OMP-based CSI. Furthermore,
the ASE is also plotted for two different frequencies, viz.,
f ∈ {0.3, 0.5} THz. Observe from the figure that due to
the high free-space losses characterized by (8), the ASE of
the THz MIMO system at the higher operating frequency
f = 0.5 THz is lower than that at f = 0.3 THz, for a given
transmission distance of d = 10 m. A similar observation can
be made in Fig. 3(b) for System-II, where the effect of varying
the transmission distance is also presented. Once again, due to
the high free-space losses, the ASE of the THz MIMO system
at the higher transmission distance of d = 10 m is lower than
at d = 5 m. Fig. 3(c) illustrates another interesting result by
considering the pair of frequencies f ∈ {6.2, 8.0} THz for
the same transmission distance of d = 1 m. Note that the
ASE of the THz MIMO system for f = 6.2 THz is lower
than at f = 8.0 THz, which is in contrast to the results of
Figs. 3(a)-(b). Following the procedure described in Section-
II-C and employing the HITRAN database, the molecular
absorption coefficients kabs(f) at f = 6.2 THz and 8.0
THz approximately evaluate to ≈ 3.1 m−1 and ≈ 0.3 m−1,
respectively. Hence, the poor performance at f = 6.2 THz
can be attributed to the higher molecular absorption losses
at this operating frequency, which is a characteristic feature
of the THz MIMO channel. Therefore, in order to precisely
characterize the system performance at a specific frequency,
one must consider the effect of the molecular absorption coeffi-
cient kabs(f) and the associated losses Labs(f, d), as described
in (8). Finally, Fig. 4(a) plots the BER versus SNR using the
proposed hybrid transceiver design for quadrature-phase shift
keying (QPSK) modulation. A similar trend is observed, where
the proposed design using the BL-based estimated CSI yields
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Fig. 3: ASE versus SNR comparison for a THz MIMO, (a) System-I; (b) System-II, with different frequencies and distances;
(c) Effect of molecular absorption losses on ASE
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Fig. 4: (a) BER versus SNR comparison, for THz MIMO System-II; (b) NMSE versus SNR comparison for a THz MIMO
System-I considering low-resolution ADCs and APSs.

a BER sufficiently close to the benchmark. Furthermore, the
BER of the THz MIMO system at f = 0.3 THz is lower than
at f = 0.5 THz.

C. Effects of Low-Resolution ADCs and APSs

Fig. 4(b) analyzes the effects of employing low-resolution
ADCs on the CSI estimation performance of the proposed
BL-based approaches. For this, the quantized pilot output
yq corresponding to the pilot output y of (29) is expressed
as yq = Q(y), where Q(·) represents the element-wise
quantization operator. Hence, the ith element yq(i) of the
quantized pilot output is given as

yq(i) = Q(Real[y(i)]) + jQ(Imag[y(i)]).

Note that for a bq-bit quantizer, the number of levels Nq = 2bq ,
which implies that the quantizer output Q(y) for any scalar
y ∈ R is given as

Q(y) =


v1, y ∈ [u0, u1];
v2, y ∈ (u1, u2];
...

...
vNq , y ∈ (uNq−1, uNq ],

where u0 < u1 < · · · < uNq
denote the quantization thresh-

olds, whereas {vi}
Nq

i=1 represent the quantizer output levels.
For simplicity, we consider a uniform mid-point quantizer,
which obeys

ui = (−Nq/2 + i)∆, i = 0, . . . , Nq,

vi = (ui−1 + ui)/2, i = 1, . . . , Nq,



14

where ∆ denotes the quantization step-size. Furthermore, the
model of the quantized pilot output yq can be expressed as

yq = Φ̃hb + v + vq,

where vq denotes the additional quantization noise. The
NMSE performance of the proposed sparse channel estimation
schemes considering different ADC resolutions is illustrated
in Fig. 4(b). One can readily observe that the NMSEs of
the proposed techniques for bq = 6-bit ADC resolution are
almost identical to that of the ∞-bit resolution, i.e. for the
analog pilot outputs. Furthermore, the NMSE increases upon
decreasing the ADC resolution, which is attributed to the in-
creased quantization noise. However, for the low-SNR regime
of −10 dB to 10 dB, which is a typical scenario in the THz
band, the NMSEs achieved for 4- and 3-bit ADC resolutions
are still acceptable. This demonstrates the feasibility of the
proposed CSI estimation schemes for practical THz hybrid
MIMO systems also, which demand low-resolution ADCs due
to their high bandwidth for the sake of reducing their power
consumption.

Fig. 4(b) also demonstrates the effects of using low-
resolution APSs on the CSI estimation performance. Note that
setting the RF TPC and RC using the DFT matrices requires
log2(NT )- and log2(NR)-bit APSs, respectively. Thus, 5-bit
APSs are sufficient for efficient sparse CSI estimation in a
THz hybrid MIMO system having NT = NR = 32 antennas.
Furthermore, the proposed CSI estimation model is general,
and it can also operate with APSs having further low resolution
of 3- and 4-bit, as seen in the Fig. 4(b).

VII. CONCLUSIONS

This work developed a practical MIMO channel model
considering several key aspects of the THz band, such as the
reflection losses and molecular absorption. Then a sparse CSI
estimation model was developed for exploiting the underlying
angular-sparsity of the THz MIMO channel, followed by the
BL-based frameworks for CSI estimation. Furthermore, the
BCRLB was also determined for benchmarking the perfor-
mance of the proposed channel estimation techniques. Finally,
optimal hybrid TPC and RC designs were developed, which
directly employ the estimated beamspace domain CSI and
require only limited CSI feedback. Our simulation setup
employed practical THz MIMO channel parameters obtained
from the HITRAN-database. The proposed BL framework was
seen to yield both an MSE performance close to the BCRLB
and an improved ASE. Furthermore, the proposed frameworks
require a reduced number of pilot beams for sparse signal
recovery using compressed measurements. However, both the
ASE and BER degraded upon increasing the frequency as well
as the transmission distance, which became particularly pro-
nounced at certain specific frequencies, where the molecular
absorption was extremely high.
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