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Abstract

In this paper, we introduce and analyze two new inertial-like algorithms with the

Bregman divergence for solving the pseudomonotone variational inequality problem in a

real Hilbert space. The first algorithm is inspired by the Halpern-type iteration and the

subgradient extragradient method and the second algorithm is inspired by the Halpern-

type iteration and Tseng’s extragradient method. Under suitable conditions, we prove

some strong convergence theorems of the proposed algorithms without assuming the
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Lipschitz continuity and the sequential weak continuity of the given mapping. Finally, we

give some numerical experiments with various types of Bregman divergence to illustrate

the main results. In fact, the results presented in this paper improve and generalize the

related works in the literature.

Keywords: Bregman divergence; Hilbert space; Strong convergence; Variational inequality

problem; Pseudomonotone mapping
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1 Introduction

In 1966, Hartman and Stampacchia [24] first introduced the variational inequality problem

(VIP) for used in the study of partial differential equations with unilateral boundary conditions

and free boundary value problems of elliptic type from mechanics. The VIP has been intensively

and wildly studied and it has been found that it also can be applied to real world problems

such as equilibrium problems, optimal control problems, machine learning, signal processing

and linear inverse problems (see, for example, [15, 16, 29, 30, 34, 37, 50]).

Throughout this paper, we assume that H is a real Hilbert space, whose inner product

and norm are denoted by ⟨·, ·⟩ and ∥ · ∥, respectively. Let C be a nonempty, closed and convex

subset of H and A : C → H be a given mapping. The variational inequality problem (shortly,

(VIP)) is formulated as follows:

Find a point z ∈ C such that ⟨Az, x− z⟩ ≥ 0, ∀x ∈ C. (1.1)

We denote by VI(C,A) the solution set of the problem (VIP) (1.1). A concrete example of the

problem (VIP) is the problem of solving a system of some equations. Clearly, if C = H = Rm,

then

z ∈ VI(C,A) ⇐⇒ Az = 0.

Another example of VIP is the constrained optimization problem. In fact, if we set A := ∇f ,

where ∇f is the gradient of a continuously differentiable convex function f , then z ∈ V I(C,A)

if and only if z solves the following minimization problem:

min
x∈C

f(x), (1.2)
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where C is a closed and convex subset of Rm. It is also known that the problem (VIP) can

equivalently be rewritten as the following fixed point equation involving the metric projection

PC of H onto C:

z = PC(z − λAz), (1.3)

where λ > 0.

There are various methods for solving the problem (VIP). One well-known method to solve

the problem (VIP) is the extragradient method (EGM), which was originally introduced by

Antipin [4] for solving the saddle point problem, and was later extended by Korpelevich [35]

to the problem (VIP) in the finite dimensional Euclidean space. The method (EGM) is of the

following form: for each n ≥ 1, 
x1 ∈ Rm,

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn),

(1.4)

where A is a monotone and L-Lipschitz continuous mapping and λ ∈
(
0, 1

L

)
.

The algorithm converges to a point of VI(C,A) provided that VI(C,A) is nonempty. In recent

years, the method (EGM) was widely extended to infinite dimensional Hilbert spaces by many

authors (see, for example, [13, 28, 44, 54]). It is remarked that this method requires calculating

two projections onto C and two evaluations of A in each iteration. However, this may be

difficult when the feasible set C has complicated structures.

In order to overcome some disadvantages of the method (EGM), Censor et al. [13] replaced

the second projection onto C of the method EGM by a projection onto a half space, which

significantly reduces the difficulty of calculating projection onto the whole feasible set twice.

This method is called the subgradient extragradient method (SEGM), which is of the following

form: for each n ≥ 1,
x1 ∈ H,

yn = PC(xn − λAxn),

xn+1 = PTn(xn − λAyn),

Tn = {x ∈ H : ⟨xn − λAxn − yn, x− yn⟩ ≤ 0},

(1.5)

where λ ∈
(
0, 1

L

)
. The weak convergence of SEGM was established provided that VI(C,A) is

nonempty.
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On the other hand, Tseng [54] proposed a single projection method known as Tseng’s

extragradient method (TEGM) and is of the following form: for each n ≥ 1,
x1 ∈ H,

yn = PC(xn − λAxn),

xn+1 = yn − λ(Ayn − Axn),

(1.6)

where A is monotone and L-Lipschitz continuous and λ ∈
(
0, 1

L

)
. He proved that this method

converges weakly to a point of VI(C,A). Note that this method only requires calculating one

projection onto the feasible set C in each iteration, which is simple than the original method

(EGM).

Another important method which overcomes the challenges in the method (EGM) is Popov’s

subgradient extragradient method (PSEGM), which was introduced by Malitsky and Semenov

[39]. They improved the method (EGM) by combining the advantages of the method (SEGM)

and Popov’s extragradient method introduced by Popov [44], which is of the following form:

for each n ≥ 1, 
y0, x1, y1 ∈ H,

yn+1 = PC(xn+1 − λAyn),

xn+1 = PTn(xn − λAyn),

Tn = {x ∈ H : ⟨xn − λAyn−1 − yn, x− yn⟩ ≤ 0}.

(1.7)

It was proved that the method (PSEM) converges weakly to point of VI(C,A) provided λ ∈(
0, 1

3L

)
. The advantages of the method (PSEGM) are computing one projection onto the

feasible set C and one evaluation of the mapping A in each iteration.

Unfortunately, most of these methods mentioned above obtained only weak convergence

results which are not enough to make it efficient from the numerical point of view. More so, in

many applied disciplines, strong (or norm) convergence results are often more desirable than

weak convergence. For instance, it translates the physically tangible property that the energy

∥xn−p∥2 of the error between the iterate xn and a solution p eventually become small (se [6]).

More importance of strong convergence was also underlined in Güler [22]. Furthermore, the

stepsizes of all methods mentioned above required a prior knowledge of the Lipschitz constant

of the cost operators, which is very difficult to estimate. Even when it could be estimated, it

is often too small which affects the rate of convergence of the methods.

On the other hand, the inertial technique was introduced to speed up the convergence rate of

algorithms by Polyak [43] in 1964. This technique originates from an implicit discretization
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method of the second-order dynamical systems (heavy ball with friction) in solving the smooth

convex minimization problem. For approximating the null point of a maximal monotone op-

erator A, Alvarez and Attouch [1] introduced the following inertial proximal point algorithm

(IPPA): for each n ≥ 1, 
x0, x1 ∈ H,

yn = xn + θn(xn − xn−1),

xn+1 = JA
λn
(yn),

(1.8)

where JA
λn

is the resolvent operator of A for any λn > 0 and θn(xn − xn−1) is called the

inertial extrapolation with θn ∈ [0, 1). In recent years, the inertial technique has been applied

to improves the performance of the algorithms for solving the problem (VIP) and related

optimization problems. Chbani and Riahi [14] proposed a new type of inertial term, which

is known as relaxed inertial algorithm (RIA), whose structure is a convex combination of two

iterates xn−1 and xn, that is, for each n ≥ 1,

yn = (1− θn)xn + θnxn−1 = xn + θn(xn−1 − xn). (1.9)

They also proposed two modifications of the algorithm (IPPA) with relaxed inertial (1.9) for

solving the equilibrium problem. Under suitable conditions, they obtained both weak and

strong convergence of the algorithms to a solution of the equilibrium problem.

In general, many algorithms based on the Halpern-type algorithm [23], the viscosity approxima-

tion algorithm [41], the hybrid projection algorithm [42] and the shrinking projection algorithm

[33] have been usually constructed to provide the strong convergence.

In 2019, Thong et al. [52] applied the inertial technique in (1.8) with the method (SEGM)

(1.5) for solving the monotone problem (VIP) in a real Hilbert space. They proposed two

algorithms, that is, the first algorithm is based on the hybrid projection method, which is of

the following form: for each n ≥ 1,

x0, x1 ∈ C,

un = xn + θn(xn − xn−1),

yn = PC(un − λAun),

zn = αnun + (1− αn)(yn − λ(Ayn − Aun)),

Cn = {w ∈ H : ∥zn − w∥ ≤ ∥un − w∥},

Qn = {w ∈ H : ⟨w − xn, x1 − xn⟩ ≤ 0},

xn+1 = PCn∩Qn(x1).

(1.10)
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The second algorithm is based on the shrinking projection method, which is of the following

form: for each n ≥ 1, 

C1 = C,

x0, x1 ∈ C,

un = xn + θn(xn − xn−1),

yn = PC(un − λAun),

zn = αnun + (1− αn)(yn − λ(Ayn − Aun)),

Cn+1 = {w ∈ Cn : ∥zn − w∥ ≤ ∥un − w∥},

xn+1 = PCn+1(x1),

(1.11)

where {θn} is a bounded real sequence and {αn} is a sequence in [0, 1) with 0 ≤ αn ≤ α < 1.

They proved that the sequences {xn} generated by (1.10) and (1.11) converge strongly to a

point in VI(C,A) provided λ ∈
(
0, 1

L

)
. However, the hybrid (shrinking) projection method

requires constructing the sets Cn and Qn (Cn+1) and computing a projection of x1 onto the

set Cn ∩Qn (Cn+1), which make calculating at each iteration even more complicated.

It would be interesting to extend the methods to solve the problem (VIP) in a more general

class of monotone mappings. In this regards, Thong and Vuong [51] proposed a modifica-

tion of the method (TEGM) with Armijo-type linesearch procedure for solving the problem

(VIP) involving a pseudomonotone mapping. To be more precise, they proposed the following

algorithm:

Algorithm A. (The method (TEGM) for the pseudomonotone problem (VIP))

Step 0: Given γ > 0, l ∈ (0, 1) and µ ∈ (0, 1). Let x1 ∈ H be arbitrary.

Step 1: Compute

yn = PC(xn − λnAxn),

where λn := γlmn and mn is the smallest non-negative integer m satisfying

γlm∥Axn − Ay∥ ≤ µ∥xn − yn∥.

Step 2: Compute

xn+1 = yn − λn(Ayn − Axn).

Update n := n+ 1 go to Step 1.

They proved that, if A : H → H is a pseudomonotone mapping satisfying the following

additional assumptions:
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(A1) A is L-Lipschitz continuous;

(A2) A is sequentially weakly continuous,

then the sequence {xn} generated by Algorithm A converges weakly to a point of V I(C,A).

Very recently, Khanh et al. [32] also proposed the following modified method (SEGM)

with the Armijo-type linesearch procedure for solving the pseudomonotone problem (VIP) in a

Hilbert space:

Algorithm B. The method (SEGM) for the pseudomonotone problem (VIP)

Step 0. Given γ > 0, l ∈ (0, 1) and µ ∈ (0, 1). Let x1 ∈ H be arbitrary.

Step 1.Compute

yn = PC(xn − λnAxn),

where λn := γlmn and mn is the smallest non-negative integer m satisfying

γlm∥Axn − Ay∥ ≤ µ∥xn − yn∥.

Step 2. Construct the half-space

Tn = {x ∈ H : ⟨xn − λnAxn − yn, x− yn⟩ ≤ 0}

and compute

xn+1 = PTn(xn − λnAyn).

Update n := n+ 1 go to Step 1.

The weak convergence of the sequence {xn} generated by Algorithm B was also established

under the assumptions (A1) and (A2). Note that theses assumptions are standard assumption,

which often assumed in many recent works. However, these assumptions may be stringent in

practice (see, for example, [9, 15, 32, 36, 50, 51, 53]).

It is worth noticing that most of the methods use the Euclidean squared norm. The use of

the Bregman divergence instead of the Euclidean squared norm is an elegant and effective

technique for solving problem in many areas of applied sciences, such as in machine learning

[2], clustering [8] and optimization [10].

In 2018, Gibali [20] (see also [26]) proposed a nice extension of the method (PSEGM) with

Bregman divergence technique for approximating a solution of the problem (VIP) for a class
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of monotone mapping in a real Hilbert space. Recently, Gibali et al. [21] proposed two inertial

Bregman method (SEGM) with Armijo-type linesearch procedure for solving the monotone

problem (VIP) which such algorithms are based on the hybrid projection and shrinking pro-

jection methods. However, most of inertial algorithms with Bregman divergence for solving

both monotone and pseudomonotone problems (VIP) have not considered the Halpern-type

method due to the structure of Bregman divergence and the inertial term in such algorithms.

Motivated and inspired by the above works, in this paper, we propose two new relaxed

inertial algorithms with the Bregman divergence for solving the pseudomonotone problem

(VIP), which provide strong convergence in Hilbert spaces. For the first one, we combine

the method (SEGM) and Halpern-type iteration and, for the second one, we combine the

method (TEGM) and Halpern-type iteration. Finally, we give some numerical experiments

with various types of the the Bregman divergence to show the effectiveness of the algorithms

and some numerical experiments to the image deblurring problem.

The main contributions of this paper are highlighted as follows:

(1) It is known that any inertial algorithm with the Bregman divergence requires to use

the hybrid projection method or the shrinking projection method, which ensures to obtain

the strong convergence. In this situation, we prove some strong convergence theorems of the

proposed algorithms without using two mentioned methods.

(2) The inertial parameter of the proposed algorithms contain a computation procedure

of the gradient of f at two iterates xn−1 and xn. This approach is quite new and different

from many recent works related to inertial algorithms for solving the problem (VIP) (see, for

example, [3, 15, 50, 53]).

(3) We prove some strong convergence theorems of the proposed alorithms without as-

suming standard the assumptions (A1) and (A2), which are more relaxed than many recent

works related to the pseudomonotone problem (VIP) (see, for example, [9, 15, 32, 36, 50, 51]).

2 Preliminaries

Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and the induced norm ∥ · ∥. The

following notations are adopted throughout the paper:

• R denotes the set of all real numbers;
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• N denotes the set of all positive integers;

• xn ⇀ x denotes the weak convergence of the sequence {xn} to x;

• xn → x denotes the strong convergence of the sequence {xn} to x.

Let f : H → R ∪ {+∞} be the extend real-valued function. We denote the domain of f by

domf , that is,

domf = {x ∈ H : f(x) < +∞}.

A function f is said to be proper if domf ̸= ∅ and it is said to be lower semi-continuous if the

set {x ∈ H : f(x) ≤ r} is closed for all r ∈ R. A function f is said to be convex if, for any

x, y ∈ domf and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (2.1)

and it is also said to be strictly convex if the strict inequality holds in (2.1) for all x, y ∈ domf

with x ̸= y and t ∈ (0, 1). Throughout this paper, we assume that f : H → R ∪ {+∞} is a

proper, semi-continuous and convex function. The subdifferential of f at x defined by

∂f(x) = {u ∈ H : f(y)− f(x) ≥ ⟨u, y − x⟩, ∀y ∈ H}.

The conjugate function of f is the function f ∗ on H defined by

f ∗(x∗) = sup
x∈H

{⟨x∗, x⟩ − f(x)}, ∀(x, x∗) ∈ H ×H.

It is known that x∗ ∈ ∂f(x) is equivalent to f(x) + f ∗(x∗) = ⟨x∗, x⟩ (see [49, Theorem

7.4.5]). We also know that, if f is a proper, lower seimi-continuous and convex function, then

f ∗ : H → R∪{+∞} is a proper, lower semi-continuous and convex function (see [49, Theorem

7.4.2]).

A function f is said to be Gâteaux differentiable at x ∈ int(domf) if there is ∇f ∈ H such

that

lim
t→0

f(x+ ty)− f(x)

t
= ⟨∇f(x), y⟩, ∀y ∈ H. (2.2)

When the limit (2.2) is attained uniformly for ∥y∥ = 1, we say that f is Fréchet differentiable

at x. A function f is said to be Gâteaux differentiable (Fréchet differentiable) if it is Gâteaux

differentiable everywhere (Fréchet differentiable everywhere) and f is said to be uniformly

Fréchet differentiable (or, equivalently, f is uniformly smooth) on a subset C of H if the limit

(2.2) is attained uniformly for x ∈ C and ∥y∥ = 1. We also know that, if f is uniformly

Fréchet differentiable and bounded on bounded subsets of H, then ∇f is uniformly continuous

on bounded subsets of H (see [46, Proposition 2]).
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Definition 2.1. A function f : H → R is said to be:

(1) uniformly convex with modulus ϕ if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− t(1− t)ϕ(∥x− y∥),

for all x, y ∈ domf and t ∈ (0, 1), where ϕ is an increasing function vanishing only at 0;

(2) strongly convex with a constant σ > 0 if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− σ

2
t(1− t)∥x− y∥2 (2.3)

for all x, y ∈ domf and t ∈ (0, 1).

We know that f is uniformly convex if and only if f ∗ is Fréchet differentiable and ∇f ∗

is uniformly continuous (see [56, Theorem 3.5.10]). Obviously, f is strongly convex with a

constant σ if and only if it is uniformly convex with modulus ϕ(s) = σ
2
s2 and it is also

equivalent to the following inequality (see [7, Theorem 5.24]):

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ σ

2
∥x− y∥2

for all x ∈ domf and y ∈ int(domf). A function f is said to be Legendre if f is essentially

smooth and essentially strictly convex in the sense of [47, Section 26]. If f is additionally

assumed to be Gâteaux differentiable, then the bifunction Df : domf × int(domf) → [0,+∞)

defined by

Df (x, y) := f(x)− f(y)− ⟨∇f(y), x− y⟩

is called the Bregman divergence (distance) with respect to f [10]. In fact, the Bregman

divergence is one kind of measurement of the difference between two points (or distribution

in statistics) on a differentiable convex function of Legendre type. Note that the Bregman

divergence is not a usual metric because it is asymmetric and does not satisfy the triangle

inequality. The Bregman divergence with respect to various types of f can be seen as follows

[5, 26]:

Example 2.2. Let x = (x1, x2, · · · , xm)
T and y = (y1, y2, · · · , ym)T be two points in Rm.

(1) The Kullback–Leibler divergence

DKL
f (x, y) =

m∑
i=1

(
xi ln

(xi

yi

)
+ yi − xi

)
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Figure 1: The Bregman divergence with respect to f

generated by the function fKL(x) =
∑m

i=1 xi lnxi with its domain domfKL = {x ∈ Rm : xi >

0, i = 1, 2, · · · ,m} and its gradient

∇fKL(x) = (1 + ln(x1), 1 + ln(x2), · · · , 1 + ln(xm))
T .

In statistics, the Kullback–Leibler divergence is used to measure the difference between two

probability distributions.

(2) The Itakura–Saito divergence

DIS
f (x, y) =

m∑
i=1

(xi

yi
− ln

(xi

yi

)
− 1

)
generated by the function f IS(x) = −

∑m
i=1 lnxi with its domain domf IS = {x ∈ Rm : xi >

0, i = 1, 2, · · · ,m} and its gradient ∇f IS(x) = −
(

1
x1
, 1
x2
, . . . , 1

xm

)T

. In signal processing,

the Itakura–Saito divergence is used to measure the difference between original spectrum and

approximation of that spectrum.

(3) The Bregman divergence

DFD
f (x, y) =

m∑
i=1

(
xi ln

(xi

yi

)
+ (1− xi) ln

(1− xi

1− yi

))
.

generated by the Fermi-Dirac entropy function

fFD(x) =
m∑
i=1

(
xi lnxi + (1− xi) ln(1− xi)

)
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with its domain domfFD = {x ∈ Rm : 0 < xi < 1, i = 1, 2, · · · ,m} and its gradient

∇fFD(x) =
(
ln
( x1

1− x1

)
, ln

( x2

1− x2

)
, . . . , ln

( xm

1− xm

))T

.

(4) The squared Mahalanobis divergence

DSM
f (x, y) =

1

2
(x− y)TQ(x− y)

generated by the function fSM(x) = 1
2
xTQx with its domain domfSM = Rm and its gradient

∇fSM(x) = Qx, where Q = diag(1, 2, · · · ,m). The Squared Mahalanobis divergence is used

to measure the difference between standard deviation and mean in a normal distribution.

(5) The squared Euclidean divergence

DSE
f (x, y) =

1

2
∥x− y∥2

generated by the function fSE(x) = 1
2
∥x∥2 with its domain domfSE = Rm and its gradient

∇fSE(x) = x.

Note that, if f is strongly convex, then, for any x ∈ domf and y ∈ int(domf),

Df (x, y) ≥
σ

2
∥x− y∥2. (2.4)

Moreover, it is known that if f is twice continuously differentiable, then it is strongly convex

if and only if ∇2f(x) ⪰ σI for all x ∈ domf , where ∇2f(x) is the Hessian matrix at x, I is the

identity matrix and the notation ⪰ means that ∇2f(x)− σI is positive semi-definite (see [7]).

The following important properties follow from the definition of the Bregman divergence:

(1) (The two-point indentity) for any x, y ∈ int(domf),

Df (x, y) +Df (y, x) = ⟨∇f(x)−∇f(y), x− y⟩; (2.5)

(2) (The three-point indentity) for any x ∈ domf and y, z ∈ int(domf),

Df (x, y) = Df (x, z)−Df (y, z) + ⟨∇f(z)−∇f(y), x− y⟩. (2.6)

The Bregman projection with respect to f of y ∈ int(domf) is the unique point in C,

denoted by Πf
C , defined by

Πf
C(y) := argmin{Df (x, y) : x ∈ C}.
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Figure 2: The Bregman projection with respect to f

In particular, if f(x) = 1
2
∥x∥2, then Πf

C reduces to the metric projection PC . It is known that

Πf
C is continuous (see [5, Theorem 4.3]). Moreover, Πf

C has the following properties (see [11]):

for each y ∈ H,

⟨∇f(Πf
C(y))−∇f(y), x− Πf

C(y)⟩ ≥ 0, ∀x ∈ C (2.7)

and

Df (x,Π
f
C(y)) +Df (Π

f
C(y), y) ≤ Df (x, y), ∀x ∈ C. (2.8)

The property (2.8) is also called the generalized Pythagorean theorem.

Figure 3: The generalized Pythagorean theorem

Let f : H → R be a Legendre function. Let Vf : H ×H → [0,+∞) associated with f be

defined by

Vf (x, x
∗) = f(x)− ⟨x∗, x⟩+ f ∗(x∗), ∀(x, x∗) ∈ H ×H.

We know the following properties [40, Proposition 1]:

(1) Vf is nonnegative and convex in the second variable;
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(2) Vf (x, x
∗) = Df (x,∇f ∗(x∗)) for all (x, x∗) ∈ H ×H;

(3) Vf (x, x
∗) + ⟨y∗,∇f ∗(x∗)− x⟩ ≤ Vf (x

∗ + y∗, x) for all (x, x∗) ∈ H ×H and y∗ ∈ H.

Since Vf is convex in the second variable, it follows that, for all z ∈ H,

Df

(
z,∇f ∗

( N∑
i=1

ti∇f(xi)

))
≤

N∑
i=1

tiDf (z, xi), (2.9)

where {xi}Ni=1 ⊂ H and {ti}Ni=1 ⊂ (0, 1) with
∑N

i=1 ti = 1.

Definition 2.3. A mapping A : C → H is said to be:

(1) monotone if ⟨Ax− Ay, x− y⟩ ≥ 0 for all x, y ∈ C;

(2) pseudomonotone if ⟨Ax, y − x⟩ ≥ 0, we have ⟨Ay, y − x⟩ ≥ 0 for all x, y ∈ C;

(3) L-Lipschitz continuous if there exists a constant L > 0 such that ∥Ax−Ay∥ ≤ L∥x− y∥
for all x, y ∈ C;

(4) sequentially weakly continuous on C if, for each sequence {xn} ⊂ C such that xn ⇀ x,

we have Axn ⇀ Ax.

Remark 2.4. It is observe that every monotone mapping is a pseudomonotone mapping, but

converse is not true. The example of a pseudomonotone mapping but not necessarily monotone

can be found in [31].

Lemma 2.5. ([17]) Let C be a nonempty closed and convex subset of H and A be a pseu-

domonotone and continuous mapping of C into H. Then z is a solution of the problem (VIP)

if and only if

⟨Ax, x− z⟩ ≥ 0, ∀x ∈ C.

Lemma 2.6. For any a, b ∈ R and ϵ > 0. Then the following inequality holds:

2ab ≤ a2

ϵ
+ ϵb2.

Proof. Since 0 ≤
(

1√
ϵ
a−

√
ϵb
)2

= a2

ϵ
− 2ab+ ϵb2, we have 2ab ≤ a2

ϵ
+ ϵb2. This completes the

proof. □

Following the proof line as in Lemma 2 of [18], we obtain the following result:
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Lemma 2.7. For all x ∈ H and α ≥ β > 0, the following inequalities hold:∥∥∥x− Πf
C∇f ∗(∇f(x)− αAx)

α

∥∥∥ ≤
∥∥∥x− Πf

C∇f ∗(∇f(x)− βAx)

β

∥∥∥
and

∥x− Πf
C∇f ∗(∇f(x)− βAx)∥ ≤ ∥x− Πf

C∇f ∗(∇f(x)− αAx)∥.

Lemma 2.8. ([27]) Let H1 and H2 be two real Hilbert spaces. Suppose that A : H1 → H2 is

uniformly continuous on bounded subsets of H1 and M is a bounded subset of H1. Then A(M)

is bounded.

The following lemmas are useful in our proofs.

Lemma 2.9. ([38]) Let {an} be a sequence of real numbers such that there exists a subse-

quence {ni} of {n} such that ani
< ani+1 for all i ∈ N. Then there exists an increasing

sequence {mk} ⊂ N such that limk→∞ mk = ∞ and the following properties are satisfied by all

(sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk := max{j ≤ k : aj ≤ aj+1}.

Lemma 2.10. ([14]) Let {an}, {γn}, {δn} and {tn} be sequences of nonnegative real numbers

such that {γn} ⊂ [0, 1
2
], lim supn→∞ sn ≤ 0,

∑∞
n=n0

δn < ∞,
∑∞

n=n0
tn = ∞ and, for each

n ≥ n0 (where n0 is a positive integer),

an+1 ≤ (1− tn − γn)an + γnan−1 + tnsn + δn.

Then limn→∞ an = 0.

3 Algorithms and their convergence

In this section, we propose two relaxed inertial algorithms for solving pseudomonotone vari-

ational inequalities. In order to establish the convergence of the algorithms, the following

assumptions are need:

Assumption A1. The feasible set C is a closed and convex subset of a real Hilbert space H;
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Assumption A2. The function f : H → R is σ-strongly convex, Legendre which is bounded

and uniformly Fréchet differentiable on bounded subsets of H;

Assumption A3. The mapping A : H → H is pseudomonotone and uniformly continuous

which satisfies the following condition: for each {qn} ⊂ H such that qn ⇀ q,

lim inf
n→∞

∥Aqn∥ = 0 =⇒ Aq = 0; (3.1)

Assumption A4. The solution set of VIP is nonempty, that is, VI(C,A) ̸= ∅;

Assumption A5. The positive sequence {ξn} satisfies limn→∞
ξn
αn

= 0, where {αn} ⊂ (0, 1)

such that

lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞.

Remark 3.1. From Assumption A3, we consider the following aspects:

(1) When H is a finite-dimensional Hilbert space, it suffices to assume that the mapping

A is continuous pseudomonotone and it is not necessary to assume (3.1).

(2) The uniform continuity is weaker than the Lipschitz continuity. Clearly, if A is Lips-

chitz continuous, then A is uniformly continuous, but the converse is not true.

For example, let A : [0,∞) → [0,∞) be a mapping define by

Ax =
√
x, ∀x ∈ [0,∞).

For each ϵ > 0, let δ = ϵ2 and |x− y| < δ, where x, y ≥ 0. To estimate |Ax−Ay|, we consider
possible two cases of x, y. In the case x, y ∈ [0, δ). Using the fact that A is strictly increasing,

we have

|Ax− Ay| < A(δ)− A(0) <
√
δ = ϵ.

Otherwise, in the case x /∈ [0, δ) or y /∈ [0, δ), we have max{x, y} ≥ δ. It follows that

|Ax− Ay| = |
√
x−√

y| =
∣∣∣ x− y√

x+
√
y

∣∣∣ ≤ |x− y|√
max{x, y}

<
δ√
δ
=

√
δ = ϵ.

Thus A is uniformly continuous and, for each n ∈ N, we have∣∣∣A( 1
n

)
− A(0)

∣∣∣ = √
1

n
=

√
n
∣∣∣ 1
n
− 0

∣∣∣.
Thus A is not Lipschitz continuous.

(3) Note that (3.1) is weaker than the sequential weak continuity of the mapping A.
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Indeed, let A : ℓ2 → ℓ2 be a mapping define by

Ax = x∥x∥, ∀x ∈ ℓ2.

Let {qn} ⊂ ℓ2 such that qn ⇀ q and lim infn→∞ ∥Aqn∥ = 0. By the weak lower semi-continuity

of the norm, we have

∥q∥ ≤ lim inf
n→∞

∥q∥.

It follows that

∥Aq∥ = ∥q∥2 ≤ lim inf
n→∞

∥q∥2 = lim inf
n→∞

∥Aqn∥ = 0,

which implies that ∥Aq∥ = 0. To show that A is not sequentially weakly continuous, choose

qn = en + e1, where {en} is a standard basis of ℓ2, that is, en = (0, 0, · · · , 1, · · · ) with 1 at the

n-th position. It is clear that qn ⇀ e1 and

Aqn = A(en + e1) = (en + e1)∥en + e1∥ ⇀
√
2e1,

but Ae1 = e1∥e1∥ = e1. Hence A is not sequentially weakly continuous.

(4) If A is monotone, then (3.1) can be removed.

Now, we propose the first algorithm, which combines the Halpern-type iteration and the

subgradient extragradient method. The algorithm is shown as below.
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Algorithm 1: The relaxed inertial subgradient extragradient algorithm for

the problem (VIP)

Step 0. Given θ ∈ [0, 1/2], γ > 0, l ∈ (0, 1) and µ ∈ (0, σ), where σ is a constant given

by (2.4). Let x0, x1 ∈ H be arbitrary.

Step 1. Given the current iterates xn−1 and xn (n ≥ 1). Choose θn such that

0 ≤ θn ≤ θ̄n, where

θ̄n =

 min
{ ξn

∥∇f(xn−1)−∇f(xn)∥
, θ
}
, if xn−1 ̸= xn,

θ, otherwise.

(3.2)

Set un = ∇f ∗(∇f(xn) + θn(∇f(xn−1)−∇f(xn))) and compute

yn = Πf
C∇f ∗(∇f(un)− λnAun),

where λn = γlmn , with mn is the smallest nonnegative integer m satisfying

γlm∥Aun − Ayn∥ ≤ µ∥un − yn∥. (3.3)

If un = yn or Ayn = 0, then stop and yn is a solution of the problem (VIP).

Otherwise, go to Step 2.

Step 2. Construct the half-space

Tn = {x ∈ H : ⟨∇f(un)− λnAun −∇f(yn), x− yn⟩ ≤ 0}

and compute

zn = Πf
Tn
∇f ∗(∇f(un)− λnAyn).

Step 3. Compute

xn+1 = ∇f ∗(αn∇f(x1) + (1− αn)∇f(zn)).

Update n := n+ 1 go to Step 1.

Remark 3.2. (1) If f(x) = 1
2
∥x∥2 and θn = 0, then Algorithm 1 reduces to the following one:
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for each n ≥ 1, 
yn = PC(xn − λnAxn),

zn = PTn(xn − λnAyn),

xn+1 = αnx1 + (1− αn)zn,

(3.4)

where λn = γlmn , with mn is the smallest nonnegative integer m satisfying

γlm∥Axn − Ayn∥ ≤ µ∥xn − yn∥ (3.5)

and

Tn = {x ∈ H : ⟨xn − λnAxn − yn, x− yn⟩ ≤ 0}.

Algorithm (3.4) is a modification of the method (SEGM) without the relaxed inertial term for

pseudomonotone problem (VIP) with a non-Lipschitz mapping.

(2) From (3.2), it is easy to see that θn∥∇f(xn−1) − ∇f(xn)∥ ≤ ξn for all n ∈ N. Since

limn→∞
ξn
αn

= 0, it follows that

lim
n→∞

θn
αn

∥∇f(xn−1)−∇f(xn)∥ ≤ lim
n→∞

ξn
αn

= 0.

Lemma 3.3. The Armijo-line search rule (3.3) is well-defined.

Proof. If un ∈ V I(C,A), then un = Πf
C∇f ∗(∇f(un) − γAun) and mn = 0. In this case, we

consider un /∈ VI(C,A) and assume that the contrary for all m ≥ 1. Thus we have

γlm∥Aun − A(Πf
C∇f ∗(∇f(un)− γlmAun))∥ > µ∥un − Πf

C∇f ∗(∇f(un)− γlmAun)∥,

which implies that

∥Aun − A(Πf
C∇f ∗(∇f(un)− γlmAun))∥ > µ

∥un − Πf
C∇f ∗(∇f(un)− γlmAun)∥

γlm
. (3.6)

Now, we consider two possible cases of un, that is, un ∈ C and un /∈ C. If un ∈ C, then

un = Πf
C(un). By the continuity of Πf

C , we have

lim
m→∞

∥un − Πf
C∇f ∗(∇f(un)− γlmAun)∥ = 0

and, by the uniform continuity of A, we have

lim
m→∞

∥Aun − A(Πf
C∇f ∗(∇f(un)− γlmAun))∥ = 0. (3.7)
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Combining (3.6) and (3.7), we get

lim
m→∞

∥un − Πf
C∇f ∗(∇f(un)− γlmAun)∥

γlm
= 0.

Also, by the uniform continuity of ∇f , we have

lim
m→∞

∥∇f(un)−∇f(Πf
C∇f ∗(∇f(un)− γlmAun))∥

γlm
= 0. (3.8)

Let vn = Πf
C∇f ∗(∇f(un)− γlmAun). From (2.7), it follows that

⟨∇f(vn)−∇f(un) + γlmAun, x− vn⟩ ≥ 0, ∀x ∈ C,

which implies that〈∇f(vn)−∇f(un)

γlm
, x− vn

〉
+ ⟨Aun, x− vn⟩ ≥ 0, ∀x ∈ C. (3.9)

Letting m → ∞ in (3.9), by (3.8), we have

⟨Aun, x− un⟩ ≥ 0, ∀x ∈ C.

That is, un ∈ VI(C,A), which is a contradiction.

On the other hand, if un /∈ C, then we have

lim
m→∞

∥un − Πf
C∇f ∗(∇f(un)− γlmAun)∥ = lim

m→∞
∥un − Πf

C(un)∥ > 0 (3.10)

and

lim
m→∞

γlm∥Aun − A(Πf
C∇f ∗(∇f(un)− γlmAun))∥ = 0. (3.11)

Combining (3.6), (3.10) and (3.11), we also get a contradiction. This completes the proof. □

Remark 3.4. (1) We note that the pseudomonotonicity of the mapping is not used in the proof

of Lemma 3.3.

(2) It is obvious that 0 < λn ≤ γ for all n ∈ N.

Lemma 3.5. Suppose that Assumptions A1-A4 are satisfied. Let {un} generated by Algorithm

1. If there exists a subsequence {unk
} of {un} such that {unk

} converges weakly to v ∈ H and

limk→∞ ∥unk
− ynk

∥ = 0, then v ∈ VI(C,A).
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Proof. Let {unk
} be a subsequence of {un} such that unk

⇀ v ∈ H. Since limk→∞ ∥unk
−ynk

∥ =

0 and {ynk
} ⊂ C, we have ynk

⇀ v ∈ C. By the definition of ynk
and (2.7), we have

⟨∇f(ynk
)−∇f(unk

) + λnk
Aunk

, x− ynk
⟩ ≥ 0, ∀x ∈ C,

which implies that

λnk
⟨Aunk

, x− ynk
⟩ ≥ ⟨∇f(unk

)−∇f(ynk
), x− ynk

⟩, ∀x ∈ C.

Hence we have

⟨Aunk
, x− unk

⟩ ≥
〈∇f(unk

)−∇f(ynk
)

λnk

, x− ynk

〉
+ ⟨Aunk

, ynk
− unk

⟩, ∀x ∈ C. (3.12)

Now, we consider two possible cases. In the first case, we assume that lim infk→∞ λnk
> 0.

By the weakly convergent of {unk
}, we have {unk

} is bounded and since A is uniformly con-

tinuous, it follows from Lemma 2.8 that {Aunk
} is bounded. Moreover, since ∇f is uniformly

continuous, we have

lim
k→∞

∥∇f(unk
)−∇f(ynk

)∥ = 0.

Taking the limit inferior as k → ∞ in (3.12), we have

lim inf
k→∞

⟨Aunk
, x− unk

⟩ ≥ 0, ∀x ∈ C.

In the second case, we assume that lim infk→∞ λnk
= 0. Let

wnk
= Πf

C∇f ∗(∇f(unk
)− λnk

l−1Aunk
).

Clearly, we have λnk
l−1 > λnk

. Then, from Lemma 2.7, it follows that

∥unk
− wnk

∥ ≤ 1

l
∥unk

− ynk
∥ → 0 as k → ∞.

Moreover, we have

∥Aunk
− Awnk

∥ → 0 as k → ∞. (3.13)

By the Armijo linesearch rule (3.3), we have

λnk
l−1∥Aunk

− Awnk
∥ > µ∥unk

− wnk
∥.

That is,

1

µ
∥Aunk

− Awnk
∥ >

∥unk
− wnk

∥
λnk

l−1
. (3.14)
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Combining (3.13) and (3.14), we get

lim
k→∞

∥unk
− wnk

∥
λnk

l−1
= 0

and hence

lim
k→∞

∥∇f(unk
)−∇f(wnk

)∥
λnk

l−1
= 0.

Moreover, we have

⟨∇f(wnk
)−∇f(unk

) + λnk
l−1Aunk

, x− wnk
⟩ ≥ 0, ∀x ∈ C.

It follows that

⟨Aunk
, x− unk

⟩ ≥
〈∇f(unk

)−∇f(wnk
)

λnk
l−1

, x− wnk

〉
+ ⟨Aunk

, wnk
− unk

⟩, ∀x ∈ C. (3.15)

Taking the limit inferior as k → ∞ in (3.15), we have

lim inf
k→∞

⟨Aunk
, x− unk

⟩ ≥ 0, ∀x ∈ C.

On the other hand, we observe that

⟨Aynk
, x− ynk

⟩ = ⟨Aynk
− Aunk

, x− unk
⟩+ ⟨Aunk

, x− unk
⟩+ ⟨Aynk

, unk
− ynk

⟩.

Again, sinceA is uniformly continuous, limk→∞ ∥unk
−ynk

∥ = 0 and lim infk→∞⟨Aunk
, x−unk

⟩ ≥
0, we have

lim inf
k→∞

⟨Aynk
, x− ynk

⟩ ≥ 0.

Next, we show that v ∈ V I(C,A). In order to show this, we consider two possible cases

as follows:

Case 1. Suppose that lim infk→∞ ∥Aunk
∥ = 0. Since unk

⇀ v and by (3.1), we have Av = 0.

Hence v ∈ V I(C,A).

Case 2. Suppose that lim infk→∞ ∥Aunk
∥ > 0. Let {ϵk} be a positive real sequence such that

ϵk → 0 as k → ∞. For each ϵk, we denote by Nk the smallest positive integer such that

⟨Âynk
, x− ynk

⟩+ ϵk ≥ 0, ∀k ≥ Nk, (3.16)

where Âynk
is the unique vector of Aynk

, that is, Âynk
=

Aynk

∥Aynk
∥ . Since, for each k ≥ 1,

Aynk
̸= 0 (otherwise, ynk

∈ VI(C,A)), it follows from (3.16) that

⟨Aynk
, x− ynk

⟩+ ∥Aynk
∥ϵk ≥ 0, ∀k ≥ Nk. (3.17)
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Setting vnk
=

Aynk

∥Aynk
∥2 , we have ⟨Aynk

, vnk
⟩ = 1. Thus we can write (3.17) as

⟨Aynk
, x+ ϵk∥Aynk

∥vnk
− ynk

⟩ ≥ 0, ∀k ≥ Nk.

The pseudomonotonicity of A implies that

⟨A(x+ ϵk∥Aynk
∥vnk

), x+ ϵk∥Aynk
∥ − ynk

⟩ ≥ 0, ∀k ≥ Nk. (3.18)

Since ϵk → 0, {∥Aynk
∥vnk

} is bounded. By the continuity of A, we have

⟨Ax, x− v⟩ ≥ 0, ∀x ∈ C.

By Lemma 2.5, we get v ∈ VI(C,A) This completes the proof. □

Lemma 3.6. Suppose that Assumptions A1-A4 are satisfied. Then the sequence {xn} generated

by Algorithm 1 satisfies the following inequality:

Df (p, zn) ≤ Df (p, un)−
(
1− µ

σ

)
Df (yn, un)−

(
1− µ

σ

)
Df (zn, yn), ∀p ∈ V I(C,A).

In particular, if µ ∈ (0, σ), then Df (p, zn) ≤ Df (p, un).

Proof. Let p ∈ V I(C,A). By the definition of the Bregman divergence, we have

Df (p, zn) = Df (p,Π
f
Tn
∇f ∗(∇f(un)− λnAyn))

≤ Df (p,∇f ∗(∇f(un)− λnAyn))−Df (zn,∇f ∗(∇f(un)− λnAyn))

= Vf (p,∇f(un)− λnAyn)− Vf (zn,∇f(un)− λnAyn)

= f(p)− ⟨∇f(un)− λnAyn, p⟩+ f ∗(∇f(un)− λnAyn)− f(zn)

+⟨∇f(un)− λnAyn, zn⟩ − f ∗(∇f(un)− λnAyn)

= f(p)− ⟨∇f(un), p⟩+ λn⟨Ayn, p⟩ − f(zn) + ⟨f(un), zn⟩ − λn⟨Ayn, zn⟩
= f(p)− ⟨∇f(un), p⟩+ f(un)− f(zn) + ⟨∇f(un), zn⟩ − f(un)

+λn⟨Ayn, p⟩ − λn⟨Ayn, zn⟩
= Df (p, un)−Df (zn, un)− λn⟨Ayn, zn − p⟩. (3.19)

Using the fact that ⟨Ap, yn−p⟩ ≥ 0 and the pseudomonotonicity of A, we have ⟨Ayn, yn−p⟩ ≥ 0.

It follows that

⟨Ayn, zn − p⟩ = ⟨Ayn, yn − p⟩+ ⟨Ayn, zn − yn⟩ ≥ ⟨Ayn, zn − yn⟩. (3.20)

Combining (3.19) and (3.20), we have

Df (p, zn) ≤ Df (p, un)−Df (zn, un) + λn⟨Ayn, yn − zn⟩. (3.21)
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Then, using (2.5) and (2.6), we get

Df (p, zn) ≤ Df (p, un)−Df (zn, yn) +Df (un, yn)− ⟨∇f(yn)−∇f(un), zn − un⟩
+λn⟨Ayn, yn − zn⟩

= Df (p, un)−Df (zn, yn)−Df (yn, un) + ⟨∇f(un)−∇f(yn), un − yn⟩
−⟨∇f(yn)−∇f(un), zn − un⟩+ λn⟨Ayn, yn − zn⟩

= Df (p, un)−Df (zn, yn)−Df (yn, un) + ⟨∇f(un)−∇f(yn), zn − yn⟩
+λn⟨Ayn, yn − zn⟩

= Df (p, un)−Df (zn, yn)−Df (yn, un) + ⟨∇f(un)− λnAun −∇f(yn), zn − yn⟩
+λn⟨Aun − Ayn, zn − yn⟩. (3.22)

It is clear that zn ∈ Tn and hence

⟨∇f(un)− λnAun −∇f(yn), zn − yn⟩ ≤ 0. (3.23)

Combining (3.22) and (3.23), we have

Df (p, zn) ≤ Df (p, un)−Df (zn, yn)−Df (yn, un) + λn⟨Aun − Ayn, zn − yn⟩
≤ Df (p, un)−Df (zn, yn)−Df (yn, un) + λn∥Aun − Ayn∥∥zn − yn∥
≤ Df (p, un)−Df (yn, un)−Df (zn, yn) + µ∥un − yn∥∥zn − yn∥
≤ Df (p, un)−Df (yn, un)−Df (zn, yn) +

µ

2
∥un − yn∥2 +

µ

2
∥zn − yn∥2

≤ Df (p, un)−
(
1− µ

σ

)
Df (yn, un)−

(
1− µ

σ

)
Df (zn, yn). (3.24)

Since µ ∈ (0, σ), we have 1− µ
σ
= σ−µ

σ
> 0. Consequently, we have(

1− µ

σ

)
Df (yn, xn) +

(
1− µ

σ

)
Df (zn, yn) ≥ 0.

Then, from (3.24), it follows that

Df (p, zn) ≤ Df (p, un). (3.25)

This completes the proof. □

Now, we prove strong convergence theorem of Algorithm 1.

Theorem 3.7. Suppose that Assumptions A1-A5 are satisfied. Then the sequence {xn} gen-

erated by Algorithm 1 converges strongly to z ∈ V I(C,A), where z = Πf
V I(C,A)(x1).
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Proof. First, we show that {xn} is bounded. Let p ∈ V I(C,A). From (2.9), it follows that

Df (p, un) = Df (p,∇f ∗(∇f(xn) + θn(∇f(xn−1)−∇f(xn))))

= Df (p,∇f ∗((1− θn)∇f(xn) + θn∇f(xn−1)))

≤ (1− θn)Df (p, xn) + θnDf (p, xn−1) (3.26)

and so, from (3.25) and (3.26),

Df (p, xn+1) ≤ αnDf (p, x1) + (1− αn)Df (p, zn)

≤ αnDf (p, x1) + (1− αn)Df (p, un)

≤ αnDf (p, x1) + (1− αn)(1− θn)Df (p, xn) + (1− αn)θnDf (p, xn−1)

≤ αnDf (p, x1) + (1− αn)max{Df (p, xn), Df (p, xn−1)}
≤ max{Df (p, x1), Df (p, xn), Df (p, xn−1)}.

Hence {Df (p, xn)} is bounded. From the relation Df (x, y) ≥ σ
2
∥x − y∥2 for all x, y ∈ H,

we can see that {xn} is bounded and consequently {un}, {yn} and {zn} are bounded. Let

z = Πf
V I(C,A)(u). From Lemma 3.6 and (3.26), we have

Df (z, xn+1) ≤ αnDf (z, x1) + (1− αn)Df (z, zn)

≤ αnDf (z, x1) + (1− αn)Df (z, un)− (1− αn)
(
1− µ

σ

)
Df (yn, un)

−(1− αn)
(
1− µ

σ

)
Df (zn, yn)

≤ αnDf (z, x1) + (1− αn)(1− θn)Df (z, xn) + (1− αn)θnDf (z, xn−1)

−(1− αn)
(
1− µ

σ

)
Df (yn, un)− (1− αn)

(
1− µ

σ

)
Df (zn, yn).

This implies that

(1− αn)
(
1− µ

σ

)
Df (yn, un) + (1− αn)

(
1− µ

σ

)
Df (zn, yn)

≤ Df (z, xn)−Df (z, xn+1) + (1− αn)θn(Df (z, xn−1)−Df (z, xn)) + αnK, (3.27)

where K = supn≥1{|Df (z, x1)−Df (z, xn)|}.

Now, we consider the following two possible cases to prove limn→∞Df (z, xn) = 0.

Case 1. There exists N ∈ N such that Df (z, xn+1) ≤ Df (z, xn) for all n ≥ N . This gives

{Df (z, xn)} is convergent and consequently

lim
n→∞

(Df (z, xn)−Df (z, xn+1)) = lim
n→∞

(Df (z, xn−1)−Df (z, xn)) = 0.

Then (3.27) implies that limn→∞Df (yn, un) = limn→∞Df (zn, yn) = 0. Hence we have

lim
n→∞

∥∇f(yn)−∇f(un)∥ = lim
n→∞

∥∇f(zn)−∇f(yn)∥ = 0.
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Thus we have

∥∇f(zn)−∇f(un)∥ ≤ ∥∇f(zn)−∇f(yn)∥+ ∥∇f(yn)−∇f(un)∥
→ 0 as n → ∞. (3.28)

Note that

∥∇f(xn+1)−∇f(un)∥ ≤ ∥∇f(xn+1)−∇f(zn)∥+ ∥∇f(zn)−∇f(un)∥
= αn∥∇f(x1)−∇f(zn)∥+ ∥∇f(zn)−∇f(un)∥.

It follows from (3.28) that

lim
n→∞

∥∇f(xn+1)−∇f(un)∥ = 0. (3.29)

Since αn ∈ (0, 1), we have θn∥∇f(xn−1)−∇f(xn)∥ ≤ θn
αn
∥∇f(xn−1)−∇f(xn)∥ → 0 as n → ∞.

Thus we have

∥∇f(un)−∇f(xn)∥ = θn∥∇f(xn−1)−∇f(xn)∥ → 0 as n → ∞. (3.30)

It follows from (3.29) and (3.30) that

∥∇f(xn+1)−∇f(xn)∥ ≤ ∥∇f(xn+1)−∇f(un)∥+ ∥∇f(un)−∇f(xn)∥
→ 0 as n → ∞.

Hence we have

lim
n→∞

∥xn+1 − xn∥ = 0. (3.31)

In fact, since {xn} is bounded, we assume that there exists a subsequence {xnk
} of {xn} such

that xnk
⇀ v and

lim sup
n→∞

⟨∇f(x1)−∇f(z), xn − z⟩ = lim
k→∞

⟨∇f(x1)−∇f(z), xnk
− z⟩.

From (3.30), it follows that ∥un−xn∥ → 0 and hence unk
⇀ v. Since ∥∇f(ynk

)−∇f(unk
)∥ → 0,

we have ∥ynk
− unk

∥ → 0. By Lemma 3.5, we get v ∈ V I(C,A). Then, from (2.7), we obtain

lim sup
n→∞

⟨∇f(x1)−∇f(z), xn − z⟩ = ⟨∇f(x1)−∇f(z), v − z⟩ ≤ 0.

Also, from (3.31), we obtain

lim sup
n→∞

⟨∇f(x1)−∇f(z), xn+1 − z⟩ ≤ 0. (3.32)
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By the properties of Vf , we get

Df (z, xn+1) = Vf (z, αn∇f(x1) + (1− αn)∇f(zn))

≤ Vf (z, αn∇f(x1) + (1− αn)∇f(zn)− αn(∇f(x1)−∇f(z)))

+αn⟨∇f(x1)−∇f(z), xn+1 − z⟩
= Vf (z, αn∇f(z) + (1− αn)∇f(zn)) + αn⟨∇f(x1)−∇f(z), xn+1 − z⟩
= Df (z,∇f ∗(αn∇f(z) + (1− αn)∇f(zn)) + αn⟨∇f(x1)−∇f(z), xn+1 − z⟩
≤ αnDf (z, z) + (1− αn)Df (z, zn) + αn⟨∇f(x1)−∇f(z), xn+1 − z⟩
≤ (1− αn)((1− θn)Df (z, xn) + θnDf (z, xn−1))

+αn⟨∇f(x1)−∇f(z), xn+1 − z⟩
= (1− αn − (1− αn)θn)Df (z, xn) + (1− αn)θnDf (z, xn−1)

+αn⟨∇f(x1)−∇f(z), xn+1 − z⟩. (3.33)

Using Lemma 2.10 and (3.32), we obtain limn→∞ Df (z, xn) = 0 and hence xn → z as n → ∞.

Case 2. There exists a subsequence {Df (z, xni
)} of {Df (z, xn)} such that

Df (z, xni
) ≤ Df (z, xni+1), ∀i ∈ N.

It follows from Lemma 2.9 that there exists a nondecreasing sequence {mk} of N such that

limk→∞mk = ∞ and the following inequalities hold for all k ∈ N:

Df (z, xmk
) ≤ Df (z, xmk+1) (3.34)

and

Df (z, xk) ≤ Df (z, xmk+1). (3.35)

From (3.27), it follows that

(1− αmk
)
(
1− µ

σ

)
Df (ymk

, umk
) + (1− αmk

)
(
1− µ

σ

)
Df (zmk

, ymk
)

≤ Df (z, xmk
)−Df (z, xmk+1) + (1− αmk

)θmk
(Df (z, xmk−1)−Df (z, xmk

)) + αmk
K

≤ αmk
K,

where K > 0. Then we obtain

lim
k→∞

Df (ymk
, umk

) = lim
k→∞

Df (zmk
, ymk

) = 0.

Hence we have

lim
k→∞

∥∇f(ymk
)−∇f(umk

)∥ = lim
k→∞

∥∇f(zmk
)−∇f(ymk

)∥ = 0.
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Using the same arguments as in the proof of Case 1, we can show that

lim
k→∞

∥∇f(zmk
)−∇f(umk

)∥ = 0, lim
k→∞

∥∇f(xmk+1)−∇f(umk
)∥ = 0,

lim
k→∞

∥∇f(umk
)−∇f(xmk

)∥ = 0, lim
k→∞

∥∇f(xmk+1)−∇f(xmk
)∥ = 0

and

lim sup
k→∞

⟨∇f(x1)−∇f(z), xmk+1 − z⟩ ≤ 0. (3.36)

Also, from (3.33) and (3.34), we can show that

Df (z, xmk+1) ≤ (1− αmk
− (1− αmk

)θmk
)Df (z, xmk

) + (1− αmk
)θmk

Df (z, xmk−1)

+αmk
⟨∇f(x1)−∇f(z), xmk+1 − z⟩

≤ (1− αmk
)Df (z, xmk

) + αmk
⟨∇f(x1)−∇f(z), xmk+1 − z⟩

≤ (1− αmk
)Df (z, xmk+1) + αmk

⟨∇f(x1)−∇f(z), xmk+1 − z⟩.

Since αmk
> 0, it follows from (3.35) that

Df (z, xk) ≤ Df (z, xmk+1) ≤ ⟨∇f(x1)−∇f(z), xmk+1 − z⟩. (3.37)

Combining (3.36) and (3.37), we get

lim sup
k→∞

Df (z, xk) ≤ 0.

This gives lim supk→∞Df (z, xk) = 0 and hence xk → z as k → ∞. From above Cases 1

and 2, we can conclude that the sequence {xn} converges strongly to z = Πf
V I(C,A)(x1). This

complete the proof. □

Next, we propose the second relaxed inertial algorithm, which combines the Halpern-type

iteration and Tseng’s extragradient method. The algorithm is of the following form:
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Algorithm 2: Relaxed inertial Tseng’s extragradient algorithm for the prob-

lem (VIP)

Step 0. Given θ ∈ [0, 1/2], γ > 0, l ∈ (0, 1) and µ ∈ (0, σ), where σ is a constant given

by (2.4). Let x0, x1 ∈ H be arbitrary.

Step 1. Given the current iterates xn−1 and xn for each n ≥ 1. Choose θn such that

0 ≤ θn ≤ θ̄n, where

θ̄n =

 min
{ ξn

∥∇f(xn−1)−∇f(xn)∥
, θ
}
, if xn−1 ̸= xn,

θ, otherwise.

Set un = ∇f ∗(∇f(xn) + θn(∇f(xn−1)−∇f(xn))) and compute

yn = Πf
C∇f ∗(∇f(un)− λnAun),

where λn = γlmn , with mn is the smallest nonnegative integer m satisfying

γlm∥Aun − Ayn∥ ≤ µ∥un − yn∥.

If un = yn or Ayn = 0, then stop and yn is a solution of the problem (VIP).

Otherwise, go to Step 2.

Step 2. Compute

zn = ∇f ∗(∇f(yn)− λn(Ayn − Aun)).

Step 3. Compute

xn+1 = ∇f ∗(αn∇f(x1) + (1− αn)∇f(zn)).

Update n := n+ 1 go to Step 1.

Remark 3.8. If f(x) = 1
2
∥x∥2 and θn = 0, then Algorithm 2 reduces to the following one: for

each n ≥ 1, 
yn = PC(xn − λnAxn),

zn = yn − λn(Ayn − Axn),

xn+1 = αnx1 + (1− αn)zn,

(3.38)

where λn is defined in (3.5). Algorithm (3.38) is a modification of the method (TEGM) without

the relaxed inertial term for the pseudomonotone problem (VIP) with a non-Lipschitz mapping.
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Lemma 3.9. Suppose that Assumptions A1-A4 are satisfied. Then the sequence {xn} generated

by Algorithm 2 satisfies the following inequality:

Df (p, zn) ≤ Df (p, un)−
(
1− µ

σ

)
Df (yn, un)−

(
1− µ

σ

)
Df (zn, yn), ∀p ∈ VIP(C,A).

In particular, if µ ∈ (0, σ), then Df (p, zn) ≤ Df (p, un).

Proof. Let p ∈ V I(C,A). By the definition of the Bregman divergence, we have

Df (p, zn) = Df (p,∇f ∗(∇f(yn)− λn(Ayn − Aun)))

= f(p)− f(zn)− ⟨∇f(yn)− λn(Ayn − Aun), p− zn⟩
= f(p)− f(zn)− ⟨∇f(yn), p− zn⟩+ λn⟨Ayn − Aun, p− zn⟩
= f(p)− f(yn)− ⟨∇f(yn), p− yn⟩+ ⟨∇f(yn), p− yn⟩+ f(yn)− f(zn)

−⟨∇f(yn), p− zn⟩+ λn⟨Ayn − Aun, p− zn⟩
= f(p)− f(yn)− ⟨∇f(yn), p− yn⟩ − f(zn) + f(yn) + ⟨∇f(yn), zn − yn⟩

+λn⟨Ayn − Aun, p− zn⟩
= Df (p, yn)−Df (zn, yn) + λn⟨Ayn − Aun, p− zn⟩. (3.39)

From (2.6), it follows that

Df (p, yn) = Df (p, un)−Df (yn, un) + ⟨∇f(un)−∇f(yn), p− yn⟩. (3.40)

Substituting (3.40) into (3.39), we have

Df (p, zn) = Df (p, un)−Df (yn, un)−Df (zn, yn) + ⟨∇f(un)−∇f(yn), p− yn⟩
+λn⟨Ayn − Aun, p− zn⟩. (3.41)

By the definition of yn, we have

⟨∇f(un)− λnAun −∇f(yn), p− yn⟩ ≤ 0,

which implies that

⟨∇f(un)−∇f(yn), p− yn⟩ ≤ λn⟨Aun, p− yn⟩. (3.42)
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Substituting (3.42) into (3.41), we have

Df (p, zn) ≤ Df (p, un)−Df (yn, un)−Df (zn, yn) + λn⟨Aun, p− yn⟩
+λn⟨Ayn − Aun, p− zn⟩

= Df (p, un)−Df (yn, un)−Df (zn, yn) + λn⟨Aun, p− yn⟩
+λn⟨Ayn, p− zn⟩ − λn⟨Aun, p− zn⟩

= Df (p, un)−Df (yn, un)−Df (zn, yn) + λn⟨Aun, zn − yn⟩
+λn⟨Ayn, p− zn⟩

= Df (p, un)−Df (yn, un)−Df (zn, yn) + λn⟨Aun, zn − yn⟩
−λn⟨Ayn, yn − p⟩+ λn⟨Ayn, yn − zn⟩

= Df (p, un)−Df (yn, un)−Df (zn, yn) + λn⟨Aun − Ayn, zn − yn⟩
−λn⟨Ayn, yn − p⟩.

Since p ∈ V I(C,A) and yn ∈ C, we have ⟨Ap, yn − p⟩ ≥ 0, which implies by the pseudomono-

tonicity of A that ⟨Ayn, yn − p⟩ ≥ 0. From (2.4), we have

Df (p, zn) ≤ Df (p, un)−Df (yn, un)−Df (zn, yn) + λn⟨Aun − Ayn, zn − yn⟩
≤ Df (p, un)−Df (yn, un)−Df (zn, yn) + λn∥Aun − Ayn∥∥zn − yn∥
≤ Df (p, un)−Df (yn, un)−Df (zn, yn) + µ∥un − yn∥∥zn − yn∥
≤ Df (p, un)−Df (yn, un)−Df (zn, yn) +

µ

2
∥un − yn∥2 +

µ

2
∥zn − yn∥2

≤ Df (p, un)−
(
1− µ

σ

)
Df (yn, un)−

(
1− µ

σ

)
Df (zn, yn). (3.43)

Since µ ∈ (0, σ), we have 1− µ
σ
= σ−µ

σ
> 0. This implies that(

1− µ

σ

)
Df (yn, xn) +

(
1− µ

σ

)
Df (zn, yn) ≥ 0.

Then from (3.43), we obtain

Df (p, zn) ≤ Df (p, un).

This completes the proof. □

Theorem 3.10. Suppose that Assumptions A1-A5 are satisfied. Then the sequence {xn} gen-

erated by Algorithm 2 converges strongly to z ∈ VI(C,A), where z = Πf
V I(C,A)(x1).

Proof. The proof of theorem is quite similar to that of Theorem 3.7, so we omit it here. □
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Next, we also utilize Algorithm 1 and Algorithm 2 for solving the problem (VIP) with

fixed point constraints.

Let C be a nonempty subset of H and S : C → C be a mapping with a fixed point

set is nonempty, that is, F (S) := {x ∈ C : x = Sx} ̸= ∅. A point z ∈ C is called an

asymptotic fixed point of S [45] if C contains a sequence {xn}, which converges weakly to z

and limn→∞ ∥xn − Sxn∥ = 0. We denote F̂ (S) by the set of asymptotic fixed points of S. A

mapping S is said to be Bregman quasi-nonexpansive [12] if F (S) ̸= ∅ andDf (v, Sx) ≤ Df (v, x)

for all v ∈ F (S) and x ∈ C.

Algorithm 3: Relaxed inertial subgradient extragradient algorithm for the

problem (VIP) with fixed point constraints

Step 0. Given θ ∈ [0, 1/2], γ > 0, l ∈ (0, 1) and µ ∈ (0, σ), where σ is a constant given

by (2.4). Let x0, x1 ∈ H be arbitrary.

Step 1. Given the current iterates xn−1 and xn for each n ≥ 1. Choose θn such that

0 ≤ θn ≤ θ̄n, where θ̄n is defined by (3.2). Set

un = ∇f ∗(∇f(xn) + θn(∇f(xn−1)−∇f(xn)))

and compute

yn = Πf
C∇f ∗(∇f(un)− λnAun),

where λn is defined in (3.3).

Step 2. Construct the half-space

Tn = {x ∈ H : ⟨∇f(un)− λnAun −∇f(yn), x− yn⟩ ≤ 0}

and compute

zn = Πf
Tn
∇f ∗(∇f(un)− λnAyn).

(Step 3) Compute

xn+1 = ∇f ∗(αn∇f(x1) + (1− αn)(βn∇f(zn) + (1− βn)∇f(Szn))).

Update n := n+ 1 go to Step 1.

Theorem 3.11. Suppose that Assumptions A1-A5 are satisfied. Let S : H → H be a Bregman
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quasi-nonexpansive mapping such that F (S) = F̂ (S) and {βn} ⊂ (0, 1) such that

lim inf
n→∞

βn(1− βn) > 0.

If Ω := VI(C,A) ∩ F (S) ̸= ∅, then the sequence {xn} generated by Algorithm 3 converges

strongly to z ∈ Ω, where z = Πf
Ω(x1).

Proof. As proved in Theorem 3.7, it follows that {xn} is bounded and consequently {un},
{yn} and {zn} are bounded. Let z ∈ Ω and wn = ∇f ∗(βn∇f(zn) + (1 − βn)∇f(Szn)) for all

n ≥ 1. Since f is uniformly Fréchet differentiable, f is uniformly smooth (see [56, p. 207]).

This implies that f ∗ is uniformly convex (see [56, Theorem 3.5.5]). By the property of Vf and

Lemma 3.6, we have

Df (z, wn) = Vf (z, βn∇f(xn) + (1− βn)∇f(Szn))

= f(z)− ⟨z, βn∇f(xn) + (1− βn)∇f(Szn)⟩+ f ∗(βn∇f(xn) + (1− βn)∇f(Szn))

≤ βnf(z) + (1− β)f(z)− βn⟨z,∇f(zn)⟩ − (1− βn)⟨z,∇f(Szn)⟩+ βnf
∗(∇f(zn))

+(1− βn)f
∗(∇f(Szn))− βn(1− βn)ϕ

∗(∥∇f(zn)−∇f(Szn)∥)
= βn(f(z)− ⟨z,∇f(zn)⟩+ f ∗(∇f(zn)))

+(1− βn)(f(z)− ⟨z,∇f(Szn)⟩+ f ∗(∇f(Szn)))

−βn(1− βn)ϕ
∗(∥∇f(zn)−∇f(Szn)∥)

= βnDf (z, zn) + (1− βn)Df (z, Szn)− βn(1− βn)ϕ
∗(∥∇f(zn)−∇f(Szn)∥)

≤ βnDf (z, zn) + (1− βn)Df (z, zn)− βn(1− βn)ϕ
∗(∥∇f(zn)−∇f(Szn)∥)

= Df (z, zn)− βn(1− βn)ϕ
∗(∥∇f(zn)−∇f(Szn)∥)

≤ Df (z, un)−
(
1− µ

σ

)
Df (yn, un)−

(
1− µ

σ

)
Df (zn, yn)

−βn(1− βn)ϕ
∗(∥∇f(zn)−∇f(Szn)∥).

From (3.26), it follows that

Df (z, wn) ≤ (1− θn)Df (z, xn) + θnDf (p, xn−1)−
(
1− µ

σ

)
Df (yn, un)

−
(
1− µ

σ

)
Df (zn, yn)− βn(1− βn)ϕ

∗(∥∇f(zn)−∇f(Szn)∥). (3.44)

It follows that

Df (z, xn+1) ≤ αnDf (z, x1) + (1− αn)Df (z, wn)

≤ αnDf (z, x1) + (1− αn)(1− θn)Df (p, xn) + θnDf (p, xn−1)

−
(
1− µ

σ

)
Df (yn, un)−

(
1− µ

σ

)
Df (zn, yn)

−βn(1− βn)ϕ
∗(∥∇f(zn)−∇f(Szn)∥).
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This implies that

(1− αn)
(
1− µ

σ

)
Df (yn, un) + (1− αn)

(
1− µ

σ

)
Df (zn, yn)

+βn(1− βn)ϕ
∗(∥∇f(zn)−∇f(Szn)∥)

≤ Df (z, xn)−Df (z, xn+1) + (1− αn)θn(Df (z, xn−1)−Df (z, xn)) + αnK,

where K = supn≥1{|Df (z, x1) − Df (z, xn)|}. Obviously, as in the proof of Theorem 3.7, we

have

lim
n→∞

Df (yn, un) = lim
n→∞

Df (zn, yn) = lim
n→∞

ϕ∗(∥∇f(zn)−∇f(Szn)∥) = 0.

Hence we have

lim
n→∞

∥∇f(yn)−∇f(un)∥ = lim
n→∞

∥∇f(zn)−∇f(yn)∥ = 0.

By the property of ϕ∗, we have limn→∞ ∥∇f(zn) − ∇f(Szn)∥ = 0 and hence limn→∞ ∥zn −
Szn∥ = 0. Moreover, we can show that

lim
n→∞

∥∇f(zn)−∇f(un)∥ = 0 (3.45)

and

lim
n→∞

∥∇f(un)−∇f(xn)∥ = 0. (3.46)

It follows from (3.45) and (3.46) that

∥∇f(zn)−∇f(xn)∥ ≤ ∥∇f(zn)−∇f(un)∥+ ∥∇f(un)−∇f(xn)∥
→ 0 as n → ∞.

Hence we have

lim
n→∞

∥zn − xn∥ = 0. (3.47)

Since {xn} is bounded, there exists a subsequence of {xnk
} of {xn} such that xnk

⇀ v. From

(3.47), also it follows that znk
⇀ v and, since ∥zn − Szn∥ → 0, we have v ∈ F̂ (S) = F (S). In

the rest of the proof, we follow the lines of the proof of Theorem 3.7 and hence it is omitted.

This completes the proof. □
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Algorithm 4: Relaxed inertial Tseng’s extragradient algorithm for the prob-

lem (VIP) with fixed point constraints

Step 0. Given θ ∈ [0, 1/2], γ > 0, l ∈ (0, 1) and µ ∈ (0, σ), where σ is a constant given

by (2.4). Let x0, x1 ∈ H be arbitrary.

Step 1. Given the current iterates xn−1 and xn for each n ≥ 1. Choose θn such that

0 ≤ θn ≤ θ̄n, where θ̄n is defined by (3.2). Set

un = ∇f ∗(∇f(xn) + θn(∇f(xn−1)−∇f(xn)))

and compute

yn = Πf
C∇f ∗(∇f(un)− λnAun),

where λn is defined in (3.3).

Step 2. Compute

zn = ∇f ∗(∇f(yn)− λn(Ayn − Aun)).

Step 3. Compute

xn+1 = ∇f ∗(αn∇f(x1) + (1− αn)(βn∇f(xn) + (1− βn)∇f(Szn))).

Update n := n+ 1 go to Step 1.

Theorem 3.12. Suppose that Assumptions A1-A5 are satisfied. Let S : H → H be a Bregman

quasi-nonexpansive mapping such that F (S) = F̂ (S) and {βn} ⊂ (0, 1) such that

lim inf
n→∞

βn(1− βn) > 0.

If Ω := VI(C,A) ∩ F (S) ̸= ∅, then the sequence {xn} generated by Algorithm 4 converges

strongly to z ∈ Ω, where z = Πf
Ω(x1).

Proof. The proof of theorem is quite similar to that of Theorems and 3.7 and 3.11, so we omit

it here. □

4 Numerical experiments

In this section, we provide some numerical experiments with a non-Euclidean distance to

illustrate the convergence behavior of the proposed algorithms.
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Let H = Rm, then ∇f ∗ = (∇f)−1. The following lists are values of (∇f)−1 for various

functions in Example 2.2:

(1) For fKL(x), we have
(
∇fKL

)−1

(x) = (exp(x1 − 1), exp(x2 − 1), · · · , exp(xm − 1))T .

(2) For f IS(x), we have
(
∇f IS

)−1

(x) = −
(

1
x1
, 1
x2
, · · · , 1

xm

)T

.

(3) For fFD(x), we have
(
∇fFD

)−1

(x) =
(

exp(x1)
1+exp(x1)

, exp(x2)
1+exp(x2)

, · · · exp(xm)
1+exp(xm)

)T

.

(4) For fSM(x), we have
(
∇fSM

)−1

(x) = Q−1x.

(5) For fSE(x), we have
(
∇fSE

)−1

(x) = x.

Note that each f satisfies Assumption 2 (see [5, 26]). Let C be the feasible set given by

C = {x = (x1, x2, · · · , xm)
T ∈ Rm : ∥x∥ ≤ 1, xi ≥ a > 0, i = 1, 2, · · · ,m},

where a < 1√
m
. Also, we can calculate explicitly the Hessian matrix of each f . Then it is easy

to check that ∇2fKL(x) ⪰ I, ∇2f IS(x) ⪰ I, ∇2fFD(x) ⪰ I, ∇2fSM(x) ⪰ I and ∇2fSE(x) ⪰ I

for all x ∈ C. This implies that all functions are strongly convex on C with σ = 1 (see [26]).

Example 4.1. Let A : Rm → Rm (m = 100) be an operator given by

Ax =
1

∥x∥2 + 1
argminy∈Rm

{∥y∥4

4
+

1

2
∥x− y∥2

}
.

Then A is continuous pseudomonotone but not monotone. We choose θ = 0.333, γ = 2, l = 0.5,

µ = 0.38, αn = 1
n+1

, ξn = α2
n and two cases for θn, that is, θn = θmax

n := θ̄n and θn = θmin
n := 0.

Note that, when θn = θmin
n , Algorithms 1 and 2 are the modified method (SEGM) and the

modified method (TEGM) without inertial terms, respectively. We use En = ∥un−yn∥ < 10−5

as the stopping criterion and the starting points x0, x1 are generated randomly in Rm. In this

experiments, we compare Algorithm 1 and Algorithm 2 with Algorithm 1 and Algorithm 2

without the inertial terms. The numerical results of our methods have been reported in the

Table 1 and Figures 4.

Remark 4.2. From aforementioned numerical results as above, we summarize the performance

of our methods as follows:

(1) Algorithm 1 and Algorithm 2 with relaxed inertial terms (θn = θmax
n ) have a good

running effect than the algorithms without relaxed inertial terms (θn = θmin
n ) in each the
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Table 1: Numerical results for Example 4.1

Bregman divergence Alg. 1 (θn = θmin
n ) Alg. 1 (θn = θmax

n ) Alg. 2 (θn = θmin
n ) Alg. 2 (θn = θmax

n )

Iter. Time Iter. Time Iter. Time Iter. Time

DKL
f 25 0.0092 18 0.0041 16 0.0309 12 0.0124

DIS
f 70 0.0163 65 0.0160 46 0.0395 38 0.0219

DFD
f 15 0.0127 11 0.0097 8 0.0219 6 0.0068

DSM
f 4 0.0082 2 0.0022 4 0.0156 3 0.0052

Bregman divergence. This assured that adding the relaxed inertial term to algorithms has

some effect like the classical inertial algorithms for solving the problem.

(2) Algorithm 1 and Algorithm 2 with the Bregman divergence DSM
f have a number of

iterations and elapsed times less than the algorithms with the Bregman divergences DKL
f , DIS

f

and DFD
f . This is because the structure of DSM

f is not complicated to perform.

In what follows, we let f(x) = fSE(x) = 1
2
∥x∥2 for all x ∈ H. Then DSE

f is the Square

Euclidean divergence, that is, DSE
f (x, y) = 1

2
∥x − y∥2 for all x, y ∈ H. Next, we provide

numerical experiments to illustrate the performance of our algorithms in solving the image

deblurring problem and also compare them with Algorithm A proposed in [51, Algorithm 1]

and Algorithm B proposed in [32, Algorithm 3.1].

Example 4.3. The digital image restoration problem plays an important role in many applica-

tions of science and engineering such as film restoration, image and video coding, medical and

astronomical imaging, etc. [19, 48, 55]. Restoring an image from a degraded one is typically

an ill-posed inverse problem, which can be modelled by the following linear equation:

b = Bx+ v, (4.1)

where x ∈ RN is the original image, b ∈ RM is the degraded image, B ∈ RM×N is the blurring

matrix and v is an additive noise. An efficient method for recovering the original image is the

ℓ1-norm regularized least square method given by

min
x∈RN

{1

2
∥Bx− b∥22 + λ∥x∥1

}
, (4.2)

where ∥x∥2 is the Euclidean norm of x and ∥x∥1 =
∑N

i=1 |ai| is the l1-norm of x. Our main

task is to restore the original image x given the data of the blurred image b. Several iterative
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Figure 4: Numerical result for Example 4.1. Top: Algorithm 1, Left (θn = θmin
n ), Right

(θn = θmax
n ); Bottom: Algorithm 2, Left (θn = θmin

n ), Right (θn = θmax
n ).

algorithms have been introduced for treating such problems with the earliest being the projec-

tion method by Figureido et al. [19]. More so, the least square problem (4.2) can be expressed

as a variational inequality problem by setting A = BT (Bx− b). It is known that the operator

A in this case is monotone and ∥BTB∥-Lipschitz continuous (hence it is pseudomonotone and

uniformly continuous).

We consider the grey scale image of M pixels wide and N pixel height, each value is known

to be in the range [0, 255]. The quality of the restored image is measured by the signal-to-noise

ratio defined by

SNR = 20 log10

( ∥x∥2
∥x− x∗∥2

)
,

where x is the original image and x∗ is the restored image. Note that the larger the value of

SNR, the better the quality of the restored image.
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In our experiments, we use the grey test image Pout (291× 240) and Cameraman (256×
256), each test image is degraded by Gaussian 7× 7 blur kernel with standard deviation 4. We

choose γ = 2, l = 0.36, µ = 0.64, x0 = 0 ∈ RD and x1 = 1 ∈ RD, where D = M ×N. Also, we

choose αn = 1
200(n+1)

, ξn = α2
n, θ = 0.0266 and θn = θmax

n := θ̄n.

Figure 5 and 6 show the original, blurred and restored image by using the Algorithms

1, 2, A and B. Also, Figure 7 shows the graph of SNR against number of iterations for each

test image using the algorithms. More so, we report the time (in seconds) for each algorithm

in Table 2. The computational results shows that Algorithms 1 and 2 are more efficient for

restoring the degraded image than Algorithms A and B.

Figure 5: Example 4.3, Top shows original image of Pout (left) and degraded image of Pout

(right); Bottom shows recovered image by Algorithm 1, Algorithm 2, Algorithm A and Algo-

rithm B.

5 Conclusions

In this paper, we have proposed and analysed two Halpern relaxed inertial type algorithms with

the Bregman divergence for approximating solutions of the pseudomonotone problem (VIP)

in real Hilbert spaces. The strong convergence of the sequences generated by the proposed

algorithms are established without assuming the Lipschitz continuity and the sequential weak
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Figure 6: Example 4.3, Top shows original image of Cameraman (left) and degraded image of

Cameraman (right); Bottom shows recovered image by Algorithm 1, Algorithm 2, Algorithm

A and Algorithm B.

continuity of the cost mapping. Finally, we give some numerical experiments to illustrate the

performance and efficiency of the proposed methods in comparison with some existing methods.

In fact, we know that the following facts depend on the convergence rate of the proposed

methods and the existence of a solution of the problem (VIP):

(1) The inertial term;

(2) The stepsize;

(3) The Lipshitz constant:

(4) The Armijo linesearch rule:

(5) The pseodomonotonity or the monotonity of the given mapping;

(6) The norm of the given mapping.
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Figure 7: Example 4.3: Graphs of SNR values against number of iteration for Pout (Left) and

Cameraman (Right).

Table 2: Computational result for Example 4.3

Algorithms Pout Cameraman

Time (secs) SNR Time (secs) SNR

Alg. 1 28.6139 34.2679 26.0414 31.0415

Alg. 2 26.9383 34.3372 24.6394 31.0582

Alg. A 38.6904 34.0122 26.5851 33.3580

Alg. B 45.6154 32.5071 36.8937 29.6873
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[22] O. Güler, On the convergence of the proximal point algorithms for convex minimization,

SIAM Journal on Control and Optimization, 29, 403–419 (1991).

[23] B. Halpern, Fixed points of nonexpanding maps, Bull. Am. Math. Soc. 73, pp. 95–961

(1967).

[24] P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equa-

tions, Acta Math., 115, pp. 271–310 (1966).

[25] D.V. Hieu, Y.J. Cho, Y.B. Xiao and P. Kumam, Relaxed extragradient algorithm for

solving pseudomonotone variational inequalities in Hilbert spaces, Optimization, 69, pp.

2279–2304 (2020).

[26] D.V. Hieu and P. Cholamjiak, Modified extragradient method with Breg-

man distance for variational inequalities, Applicable Analysis (2020),

https://doi.org/10.1080/00036811.2020.1757078



44 L.O. Jolaoso et al.
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