Performance-enhanced amplified O-band WDM transmission using machine learning based equalization
Performance-enhanced amplified O-band WDM transmission using machine learning based equalization
We investigate the performance of a machine learning-based equalization in an amplified 4×50-Gb/s O-band WDM system. The results show that the scheme offers significant receiver sensitivity improvements over decision-feedback equalization, especially at more dispersive wavelengths.
Hong, Yang
73d5144c-02db-4977-b517-0d2f5a052807
Deligiannidis, Stavros
b20ae1a7-3ffc-4722-916c-bd3b4021e247
Taengnoi, Natsupa
afc5fb3e-224b-43b3-a161-931ed77faec1
Bottrill, Kyle R.H.
8c2e6c2d-9f14-424e-b779-43c23e2f49ac
Thipparapu, Naresh K.
a36a2b4c-b75c-4976-a753-b5fab9e54150
Wang, Yu
87b384ad-fc75-4ec9-a5aa-284452b40156
Sahu, Jayanta K.
009f5fb3-6555-411a-9a0c-9a1b5a29ceb2
Richardson, David J.
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
Mesaritakis, Charis
3e722138-feb0-45b0-ae46-e29104f270f2
Bogris, Adonis
f1d9d602-369c-4d3a-8eb9-6225d68fb275
Petropoulos, Periklis
522b02cc-9f3f-468e-bca5-e9f58cc9cad7
1 May 2021
Hong, Yang
73d5144c-02db-4977-b517-0d2f5a052807
Deligiannidis, Stavros
b20ae1a7-3ffc-4722-916c-bd3b4021e247
Taengnoi, Natsupa
afc5fb3e-224b-43b3-a161-931ed77faec1
Bottrill, Kyle R.H.
8c2e6c2d-9f14-424e-b779-43c23e2f49ac
Thipparapu, Naresh K.
a36a2b4c-b75c-4976-a753-b5fab9e54150
Wang, Yu
87b384ad-fc75-4ec9-a5aa-284452b40156
Sahu, Jayanta K.
009f5fb3-6555-411a-9a0c-9a1b5a29ceb2
Richardson, David J.
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
Mesaritakis, Charis
3e722138-feb0-45b0-ae46-e29104f270f2
Bogris, Adonis
f1d9d602-369c-4d3a-8eb9-6225d68fb275
Petropoulos, Periklis
522b02cc-9f3f-468e-bca5-e9f58cc9cad7
Hong, Yang, Deligiannidis, Stavros, Taengnoi, Natsupa, Bottrill, Kyle R.H., Thipparapu, Naresh K., Wang, Yu, Sahu, Jayanta K., Richardson, David J., Mesaritakis, Charis, Bogris, Adonis and Petropoulos, Periklis
(2021)
Performance-enhanced amplified O-band WDM transmission using machine learning based equalization.
In 2021 Conference on Lasers and Electro-Optics, CLEO 2021 - Proceedings.
IEEE..
(doi:10.1364/cleo_si.2021.sth1f.3).
Record type:
Conference or Workshop Item
(Paper)
Abstract
We investigate the performance of a machine learning-based equalization in an amplified 4×50-Gb/s O-band WDM system. The results show that the scheme offers significant receiver sensitivity improvements over decision-feedback equalization, especially at more dispersive wavelengths.
This record has no associated files available for download.
More information
Published date: 1 May 2021
Venue - Dates:
CLEO 2021 Virtual Conference, Virtual, United States, 2021-05-09 - 2021-05-14
Identifiers
Local EPrints ID: 470948
URI: http://eprints.soton.ac.uk/id/eprint/470948
PURE UUID: 57208865-5e1c-48db-9970-52637f3a4de8
Catalogue record
Date deposited: 21 Oct 2022 16:34
Last modified: 17 Mar 2024 03:41
Export record
Altmetrics
Contributors
Author:
Yang Hong
Author:
Stavros Deligiannidis
Author:
Natsupa Taengnoi
Author:
Kyle R.H. Bottrill
Author:
Naresh K. Thipparapu
Author:
Yu Wang
Author:
Jayanta K. Sahu
Author:
Charis Mesaritakis
Author:
Adonis Bogris
Author:
Periklis Petropoulos
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics