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Abstract—The novel concept of joint Compressive Sensing (CS)
and Low Density Parity Check (LDPC) coding is conceived
for Joint Source-Channel Coding (JSCC) in Wireless Sensor
Networks (WSNs) supporting a massive number of signals. More
explicitly, we demonstrate this concept for a specific scheme,
which supports a massive number of signals simultaneously, using
a small number of Internet of Things Nodes (IoTNs) based on
the concept of CS. The compressed signals are LDPC coded in
order to protect them from poor transmission channels. We also
propose the new iterative joint source-channel decoding philos-
ophy for exchanging soft extrinsic information, which combines
CS decoding and LDPC decoding by merging their respective
factor graphs. We then characterize this scheme using Extrinsic
Information Transfer (EXIT) chart analysis. Our BLock Error
Rate (BLER) results show that the proposed iterative joint
LDPC-CS decoding scheme attains about 1.5 dB gain at a BLER
of 10−3 compared to a benchmarker, which employs separate CS
and LDPC decoding. Naturally, this gain is achieved at the cost of
approximately doubling the complexity of the proposed iterative
joint LDPC-CS decoding scheme.

Index Terms—Joint source-channel coding, compressive sens-
ing, LDPC codes, factor graphs, wireless sensor networks, ex-
trinsic information transfer charts

I. INTRODUCTION

The Compressive Sensing (CS) technique has been applied
in various fields since it was first proposed [1], with Wireless
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Sensor Networks (WSNs) being an important application. In
particular, the Internet of Things Nodes (IoTNs) in WSNs
always have constrained energy resources [2], [3], and the
challenge of energy-efficient data gathering in WSNs can be
mitigated by applying CS [4]–[6]. Here, a vector of signals
may be observed by a smaller number of IoTNs according
to a sensing matrix, which describes the connectivity among
the signals and IoTNs. The observation vector may then be
used for reconstructing the signals, provided that the sensing
matrix satisfies the Restricted Isometry Property of the l1-
norm (RIP1) [7]. However, in practice, WSNs suffer not only
from constrained energy resources but also their unreliable
communication channels, which motivates intrinsically amal-
gamating CS with Joint Source-Channel Coding (JSCC) for
their conceived optimization.

Briefly, JSCC combines source coding and channel coding
together, where source coding compresses the signal by remov-
ing any predictable redundancy, and then the channel coding
protects the signal from errors by adding redundancy in a
carefully controlled manner [8]. Furthermore, while Shannon’s
source-channel coding separation theory suggests there is no
penalty for using separate source and channel coding, this only
holds when unlimited delay and complexity can be afforded,
and in the case of stationary channels and sources [9]. If
any these assumptions do not apply, then JSCC can offer a
benefit by directly transforming the source signal to a coded
signal having ‘just‘ the right appropriate amount of redundancy
for struggling the required trade-off between compression and
error correction. In particular, JSCC has been shown to offer
significant coding gain when applied to finite block length
transmission and non-stationary channels [10]. Furthermore,
JSCC also offers throughput, energy-efficiency and end-to-
end latency advantages, while makes it suitable for many
applications such as speech, image, and video transmission
[11], [12].

In recent years, JSCC has been applied in diverse scenarios.
Double LDPC codes were introduced for JSCC in [13], where
the first LDPC code was utilized for compressing the signal
to complete the source coding, while the second LDPC code
was used for protecting the compressed bits as channel coding.
Based on this concept, the authors of [14] applied Double-
Protograph LDPC (DP-LDPC) codes for JSCC, taking into
account the superiority of protograph LDPC codes for efficient
encoding and decoding [15]. JSCC has also been employed in
numerous WSNs [16]–[18], but, in the conventional approach
to signal sensing, the number of IoTNs is typically equal to
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or higher than the number of signals, implying a high cost
of deploying and maintaining the IoTNs. This is in contrast
to CS, where the number of IoTNs is typically lower than
the number of signals to be monitored, but larger than the
number of non-zero elements in a sparse measurement vector.
In this way, CS exploits the knowledge that only a few of the
signals will be activated any time, hence allowing a smaller
number of IoTNs to be adopted. Inspired by the advantages
of DP-LDPC codes for JSCC and the particular properties
of WSNs that suffer from constrained energy resources and
unreliable communication channels, in this paper, we conceive
a CS-LDPC scheme that allows a small number of IoTNs to
observe a large number of sparse time-varying signals. This
is achieved with the aid of factor graphs, by harnessing the
concept of CS and exploiting the observations that the sparse
signals have a high probability of adopting a value of zero.
More specifically, by adopting the concept of CS, fewer IoTNs
are required, thus reducing the deployment cost, effort and
maintenance. Therefore, the implementation of CS in WSNs
has received particular attention [19], [20]. As a complement
to this, LDPC codes are employed for protecting the sensing
information during transmission over an unreliable wireless
channel. Although diverse channel codes have been shown to
be beneficial in JSCC [21], [22], LDPC codes are selected here
because they are well-known to have strong error-correction
performance. Furthermore, both LDPC codes and CS can be
represented using factor graphs. Hence, we exploit this factor
graph representation to design a novel iterative joint source-
channel decoder, which iteratively exchanges soft extrinsic
information between the CS decoder and LDPC decoder.
Furthermore, it may be argued that LDPC codes have become
ubiquitous state-of-the-art for channel coding schemes, since
they have been adopted both in WiFi [23] and in 3GPP 5G
new radio standards [24]. The proposed scheme is capable of
simultaneously detecting multiple sparse signals with the aid
of a Fusion Center (FC), which represents a data processing
center that gathers all data from the distributed IoTNs via
wireless communication links and performs iterative decoder
processing in order to recover the information. Meanwhile, we
introduce an iterative joint LDPC-CS decoding algorithm for
the proposed scheme, which is shown to improve the perfor-
mance compared to separate source and channel decoding.

Iterative decoding techniques have been shown to be ben-
eficial in JSCC schemes [11], [13]. More specifically, the
authors of [11], [13] proposed a serially concatenated LDPC-
Low Density Generator Matrix (LDGM) code for JSCC. In
contrast to these prior works, the proposed scheme has a
number of important differences. Firstly, the CS decoder is
significantly different from the LDGM decoder of [11], [13]
and introduces unique challenges for which we have proposed
novel solutions. More specifically, the CS decoder relies on
the concept of using a small number of IoTNs to detect a
sparse signal among a high number of zero-valued signals.
This sparsity introduces a particular probability distribution
to the bits that are processed by the CS and LDPC encoders.
This regime is in contrast to the LDGM encoder, where all the
bits have equiprobable 0 and 1 values. This non-equiprobable
probability distribution of the different CS encoders in the pro-

TABLE I: Boldly contrasting our contributions to the state-of-
the-art

[11] [13] [14] [17] [18] [38] Proposed
JSCC

√ √ √ √ √ √ √

CS
√

LDPC codes
√ √ √ √ √ √

Factor graphs
√ √ √ √ √

EXIT charts for non-equiprobable bits
√

WSNs
√ √ √ √

posed scheme creates a particular challenge during the iterative
decoding, because the iteratively exchanged LLRs have a non-
equiprobable distribution. Furthermore, the IoTNs operate on
the basis of the non-linear OR function, in contrast to the
XOR function of the LDGM encoder, which presents unique
challenges in terms of the operations of the IoTNs. Moreover,
the proposed scheme has adopted multiple LDPC decoders for
decoding the observations gleaned from the different IoTNs
simultaneously, as well as multiple CS decoders to decode
information from different Time Slots (TSs) simultaneously. In
this way, we enable information provided by different IoTNs
and different TSs to be iteratively exchanged, so that they
assist each other’s recovery. Again, this is in contrast to the
LDPC-LDGM scheme of [11], [13], where there is only a
single LDPC decoder as well as one LDGM decoder, and
there is no information exchange between the different time
slots or different LDPC decoders.

To elaborate further, iterative decoding is achieved based
on the exchange of extrinsic soft information between two
or more constituent decoders. Based on this feature, we use
Extrinsic Information Transfer (EXIT) charts to analyze our
proposed scheme and visualize the iterative exchange of ex-
trinsic information between the two decoders [25], [26]. More
specifically, EXIT charts are powerful tools of analyzing the
convergence behavior of iterative decoding schemes by using a
decoding trajectory for intuitively illustrating the convergence
process [26]. This allows the verification, characterization and
parameterization of iterative decoding schemes at a much
lower simulation complexity than that of bit-by-bit full de-
coding simulations [27]. We boldly and explicitly contrast our
contributions to the state-of-the-art in Table I and detail them
below:

1) We conceive a new JSCC scheme for the transmission of
multiple sparse time-varying signals using a small number
of SNs and an intelligent FC. This novel scheme facili-
tates the accurate sensing of the sparse signals using a low
number of IoTNs and energy-efficient communications.

2) Considering the particular structure of the proposed JSCC
scheme, we design a new iterative joint source-channel
decoding process, which iterates between LDPC decoding
and CS decoding using a common factor graph in the
FC. Here, LDPC decoding is employed for channel
decoding, while CS decoding is employed for source
decoding. We demonstrate that the iterations exchanging
soft extrinsic information between the LDPC decoder
and the CS decoder enhances the performance of the
scheme by about 1.5 dB at a BLock Error Rate (BLER)
of 10−3 at the cost of doubling the complexity compared
to separate source-channel decoding. In order to facilitate
the flexible handling of different signals having different
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block lengths for transmission our different channels
having different capacities, we adopt the specific quasi-
cyclic protograph LDPC code, which has been adopted
by the 3GPP 5G new radio [24].

3) In order to confirm and characterize the iterative decoding
convergence of the proposed scheme, we propose a novel
technique for applying EXIT charts [28], our solution
is different from conventional EXIT charts, since we
additionally take into account the sparsity of the bits. The
associated information is iteratively exchanged, which
leads to these bits having an entropy less than 1.

The rest of this paper is organized as follows. Our novel
JSCC scheme is proposed in Section II, while its iterative joint
source-channel decoder is detailed in Section III. Then, the
complexity of the decoding process is characterized in Section
IV, whilst the EXIT chart analysis of the novel scheme is
described in Section V. Section VI provides simulation results
for the proposed scheme and our analysis demonstrates a gain
of about 1.5 dB over the benchmarker. Finally, we offer our
conclusions in Section VII.

II. SYSTEM MODEL

This section describes our novel scheme, which performs
CS and LDPC coding. The assumptions of this work are listed
below:
Assumption 1: In the proposed scheme, it is assumed that
each IoTN has knowledge of which signals it is connected to,
but not the global knowledge of the complete sensing matrix
Φ. In other words, the IoTNs do not have the knowledge of
each other’s connectivity. However, the FC is aware of the
complete sensing matrix Φ, i.e., it has the global knowledge
of which IoTNs are observing which signals. Meanwhile,
we assume that the connections between IoTNs and signals
remain unchanged across the series of T TSs. In practice, the
knowledge of the connections between the signals and IoTNs
could be obtained during the system construction phase in the
scenarios such as cooperative spectrum sensing and source
localization [29].
Assumption 2: Similar to [29], we assume that exactly K
signal elements are non-zero during each TS, but we consider
two scenarios concerning the knowledge of the FC pertaining
to sparsity K. In the first scenario, the true sparsity level K
is known a priori to the FC and hence the upper bound of
sparsity K ′ = K. In the second scenario, the true sparsity
level K is unknown to the FC, but the upper bound of sparsity
K ′ (1 ≤ K ≤ K ′) is known in the FC. In a practical CS-based
WSN, the sparsity level or the upper bound of the sparsity level
may be estimated using residual-based algorithms or cross-
validation, which is usually implemented in the FC during the
WSNs’ training phase [30].
Assumption 3: We assume the presence of a control overhead
or a side information channel that establishes connectivity,
maintains synchronization, and is used for signal acquisition.
For the sake of simplicity, this control overhead or side
information channel is not simulated in this work. However,
we note that [31] discusses these overheads for controlling
synchronization and signal acquisition in FC based WSNs.

Fig. 1 provides a block level diagram of the JSCC scheme.
The steps in the first dashed box are completed by the
IoTNs, while the steps enclosed in the second dashed box are
completed by the FC. Each part of the scheme is described as
follows.

• Sparse signals in our scheme: A factor graph is shown
at the left-hand side of Fig. 1 for characterizing the
connectivity between the N signals (V1 . . . VN ) and M
IoTNs (S1 . . . SM ). Here, we have fewer IoTNs than
signals, M < N , which is facilitated by exploiting the
sparsity of the time-varying binary sparse signals x1

to xN . In this work, these signals are assumed to be
IoTN measurements of physical quantities, such as audio
signals, temperature, etc. To elaborate further, the nth

(n ∈ [1, N ]) Variable Node (VN) Vn can be considered to
be a random variable that adopts a particular value at each
TS of the nth signal xn = [xn,1, . . . , xn,t, . . . , xn,T ],
which is a vector comprising T non-equiprobable bits.
In the proposed scheme, each element of each signal
vector adopts different values at each of the T TSs, and
each signal has the same length T . The value of the
nth signal in the tth (t ∈ [1, T ]) TS is represented as
xn,t ∈ {0, 1}. Furthermore, in each TS, we have exactly
K of the N signals adopting non-zero value, and N −K
signals having a value of zero. In cases where K is
significantly smaller than N , we have a sparse signal,
which lends itself to compressive sensing. Consider a
real-life application such as a tiger habitat with a known
number of tigers K, which is divided into N blocks of
one-square-meter tiles, where a total of M microphones
are installed throughout the habitat. Each microphone is
configured to detect tiger activity in a particular subset
of neighbouring tiles. In this case, we know that exactly
K of these one-square-meter tiles will be occupied at
any one time. When the microphones detect the noise
made by the tigers in these occupied tiles, they activate
the sensors and their transmitters, hence allowing us the
track of tigers in a non-invasive way.

• IoTNs in our scheme: The M IoTNs compress the
N (N > M ) signals to obtain the M observations.
Here, the IoTNs represent sensor nodes, which include
microphones, motion sensors, or temperature sensors, for
example. Each of the IoTNs Sm (m ∈ [1,M ]) observes
different number of signals and different combinations of
signals. The connectivity between the signals and IoTNs
are shown as dotted lines in the factor graph at the left-
hand side of the Fig. 1. In the proposed scheme, all of the
signals have the same degree Ks, which means that each
signal is observed by Ks IoTNs. However, The number
of signals observed by a IoTN is referred to as its degree,
where the set of degrees is represented by the vector
d = [d1, . . . , dm, . . . , dM ]T and dm ∈ Z0+. Note that
the IoTNs may have different degrees to each other, but
under the constraint that

∑M
m=1 dm = NKs, where N is

the number of signals and Ks is the fixed degree adopted
for each signal. Meanwhile, the connectivity between



4

.

.

.

.

.

.

.

.

𝒙1 

𝒙2 

𝒙3 

𝒙𝑁  

𝒙5 

𝒙4 

𝒚1 

𝒚𝑀  

𝒚2 

𝒚3 

𝒚4 

QPSK

CS
Decoding 

𝑉1 

𝑉2 

𝑉3 

𝑉4 

𝑉5 

𝑉𝑁  

𝑆1 

𝑆𝑀  

𝑆3 

𝑆4 

𝑆2 

𝒂1  

𝒂2  

𝒂3  

𝒂4  

𝒂𝑀  

𝒄1  

𝒄2  

𝒄3  

𝒄4  

𝒄𝑀  

𝒙 1 

𝒙 2 

𝒙 3 

𝒙 4 

𝒙 5 

𝒙 𝑁  

LDPC 
Decoding

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝒚 1
𝑒  

𝒚 2
𝑒  

𝒚 3
𝑒  

𝒚 4
𝑒  

𝒚 𝑀
𝑒  

Fusion center

LDPC 
Decoding

LDPC 
Decoding

LDPC 
Decoding

LDPC 
Decoding

Soft 
Demod

𝒃1  

𝒃2  

𝒃3  

𝒃4  

𝒃𝑀  

𝒂 3  

𝒂 4  

𝒂 𝑀  

LDPC 
Encoding

QPSK

QPSK

QPSK

QPSK

𝒂 1  

𝒂 2  LDPC 
Encoding

LDPC 
Encoding

LDPC 
Encoding

LDPC 
Encoding

Rate
Matching

Rate
Matching

Rate
Matching

Rate
Matching

Rate
Matching

𝒅1  

𝒅2  

𝒅3  

𝒅4  

𝒅𝑀  

Soft 
Demod

Soft 
Demod

Soft 
Demod

Soft 
Demod

Rate
Dematching

Rate
Dematching

Rate
Dematching

Rate
Dematching

Rate
Dematching

𝒃 1  

𝒃 2  

𝒃 3  

𝒃 4  

𝒃 𝑀  

.

.

.

.

.

.

.

.

𝚽 ∈ ℝ𝑀×𝑁  

IoTNs

Fig. 1: System model representing the relationship between signals, IoTNs and Fusion Center.

the N signals and M IoTNs may be represented by a
sensing matrix Φ ∈ {0, 1}M×N having M rows and N
columns. Here, each element in this matrix represents a
randomly selected edge in a factor graph representation
of the connectivity between the signals and IoTNs. More
specifically, each row of Φ represents the connectivity
of a corresponding IoTN, while each column represents
the connectivity of a corresponding signal. For instance,
in Fig. 1, the first IoTN senses the first signal, giving
φ1,1 = 1. By contrast, the first IoTN does not sense
the second signal, and therefore φ1,2 = 0. The use of
a sparse sensing matrix to represent the connectivity of
the signals and IoNTs has also been considered in [29]
and has found application in [32]. In a realistic example,
we may have M microphones, each of which observes a
different subset of the N audio sources, where the matrix
Φ may be used to represent the connectivity between the
microphones and sources.

• Functions performed in the IoTNs: The output of each
IoTN is a binary observation vector ym having the same
length T as the signals, where m is in the range of
1, 2, . . . ,M . The value of the mth IoTN in the tth TS is
represented as

ym,t = Xm,t(1) ∨ Xm,t(2) . . . ∨ Xm,t(dm), (1)

where Xm,t represents the set, which includes all signals
observed by the mth IoTN in the tth TS. Furthermore,
∨ denotes the OR function performed in the IoTNs.
An element ym,t of the observation vector is set to 1
only when one or more of the observed signals by that
particular IoTN adopt a value of 1 in that TS, according
to an OR function. If the observed signals are all zeros,
then the output of the connected IoTN will be 0 in that
TS. Returning to our practical example of tracing wild
animals in their natural habitat, the use of the OR function
in the generation of ym,t is reflected by the use of a
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Fig. 2: The channel capacity for the Additive White Gaussian
Noise (AWGN) Discrete-input Continuous-output Memoryless Chan-
nel (DCMC) using QPSK modulation.

microphone to detect noise from multiple sources, where
the microphone is activated whenever any of the sources
is activated, corresponding to an OR function.
After observing the connected signals, the mth IoTN will
individually encode its own observation vector ym using
an LDPC code having a block length of T . Here, we
employ the specific LDPC codes and rate matching 1

scheme that was introduced in 3GPP 5G new radio [24],
which adopts particular degree distributions for its VNs
and CNs. The resultant intermediate bit sequence am
(m ∈ [1,M ]) has a length of U bits, and it is obtained

1Rate matching adjusts the coding rate of the LDPC encoder, so that a
specified number of LDPC encoded bits are generated, which may be different
from the number of bits provided by the native LDPC encoder. Explicitly,
repetition may be used when an increased number of encoded bits is desired,
while puncturing may be used to reduce a number of encoded bits [33], in this
way, the desired coding rate may be selected for closely matching the channel
capacity. As a benefit, the channel capacity is never wasted or overloaded.
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by encoding the T bits binary observation vector T bits
binary observation vector ym using the parity check
matrix H ∈ {0, 1}W×U of the LDPC code2. Following
this, rate matching with coding rate R = T

E is applied in
order to obtain the binary bit vector bm having a length of
E. Rate matching is followed by Quadrature Phase Shift
Keying (QPSK) modulation in order to obtain the In-
phase and Quadrature (IQ) vector cm, which is a complex
vector having a length E

2 and the symbol energy E0 is
normalized to 1.

• Transmission over a channel: The IQ vector cm is
transmitted over an Additive White Gaussian Noise
(AWGN) channel to obtain the IQ vector dm, which is a
complex vector that has the same length as cm. Here,
the AWGN channel adds noise to the transmit signal
according to a zero-mean, independent and identically
distributed (i.i.d.) complex Gaussian distribution, with
variance N0. The resultant of the signal-to-noise ratio
(SNR) may be represented by SNR = E0

N0
. The effec-

tive throughput of the proposed LDPC-CS scheme is
calculated as η = H(xn,t)

N
MR log2(δ), where H(xn,t)

is the entropy of each element in the signal xn and
each element of xn has the same entropy value of
H(xn,t) = −P0 × log2(P0) − (1 − P0) × log2(1 − P0),
where P0 = N−K′

N is the a priori probability of a par-
ticular signal adopting a value of zero in a particular TS.
Furthermore, δ is the modulation order. For transmission
over a QPSK modulated AWGN channel, the Discrete-
input Continuous-output Memoryless Channel (DCMC)
capacity is shown in Fig. 2 as a function of its SNR [34].
The capacity bound of the proposed scheme is the SNR,
when the channel capacity is equal to the throughput η.

• Functions performed in the FC: In the FC, soft de-
modulation [35] is employed to transform the received
vector dm into a vector of Logarithmic Likelihood Ratios
(LLRs) b̃m, having a length E. Before decoding the LLRs
using LDPC decoding, rate dematching is applied in order
to obtain the channel LLR vector ãm, which has a length
of U . These channel LLRs ãm are entered into the LDPC
decoder, which performs iterative decoding in order to
obtain a vector of information LLRs ỹem, having the
length T . The process of LDPC encoding and decoding
is detailed in [36]–[38]. The set of all LDPC-decoded
information vectors Ỹ

e
= [ỹe1, . . . , ỹ

e
m, . . . , ỹ

e
M ]T are

then forwarded to the CS-FC, which decompresses the
signal on a TS by TS basis in order to obtain the set of
estimated bit sequences X̂ = [x̂1, . . . , x̂m, . . . , x̂N ]T .

For separate LDPC-CS decoding, the M LLR vectors are
forwarded to the CS-FC after LDPC decoding, but there is

2The length of am is obtained according to the size of the LDPC
parity check matrix H ∈ {0, 1}W×U , where U is the number of natively
LDPC-encoded bits and W is given by U − T ′, and T ′ is the number
of information bits plus some processed zero padding, as required. More
specifically, the dimensions of the parity check matrix depend on the length
of input information bits T and the choice of the base graph defined in [24].
Furthermore, there are 51 lifting sizes and 2 base graphs in [24], which allows
an appropriate value for T ′ to be selected, which is close to T .

no further communication between the LDPC decoder and
CS-FC after this. Hence, separate LDPC-CS decoding serves
as a benchmarker for the proposed scheme, where there are
several iterations between the LDPC decoder and CS decoder,
as discussed in Section III.

III. ITERATIVE JOINT LDPC-CS DECODING

In this section, we introduce our novel iterative joint LDPC-
CS decoding scheme. More specifically, Section III-A provides
the top level diagram of the scheme, while Section III-B
and Section III-C detail the operations of the LDPC and CS
components, respectively.

A. Top level diagram of iterative joint LDPC-CS decoding

Fig. 3 shows the structure of the proposed iterative joint
LDPC-CS decoding scheme, which comprises two main parts.
The first part is the LDPC decoder outputting the M LLR
vectors, which pertain to the LDPC encoded compressed bit
sequences. The LDPC decoding allows each of the TSs to help
each other’s reconstruction indirectly. The other part is the CS
decoder, which is used for detecting the M compressed bit
sequences, with consideration of the relationships between the
M IoTNs and the N signal bit sequences. The CS decoding
allows each of the IoTNs to help the reconstruction of each
other indirectly. Four different decoders are implemented.
More specifically, the Variable Node Decoder I (VNDI) and
the Check Node Decoder (CND) of Fig. 3 are used for
LDPC decoding, while the Sensor Node Decoder (SND), and
VNDII are employed for CS decoding. Each of these decoder
components comprises a number of nodes, as shown in Fig. 4.
Here, the coordinated dependency exhibits itself among the
nodes within a particular layer of a decoder, hence the nodes
in the different layers can operate in parallel.

The flow of the iterative joint LDPC-CS decoding process
is summarised in Algorithm 1. Here, the LDPC decoding
steps comprise initialization, CND update and VNDI update.
The LDPC decoder of Fig. 3 has two inputs, where the first
input is constituted by the channel LLRs represented by the
notation Ã = [ã1, . . . , ãM ], which is a matrix comprising
M channel LLR vectors ã1, . . . , ãM , where each vector has
U , elements ãm,1, . . . , ãm,U . Each of the M channel LLR
vectors is obtained by demodulating and rate-dematching the
bit sequence transmitted by the corresponding one of the
M IoTNs. Following rate dematching, channel LLRs Ã are
forwarded to the LDPC decoder. More specifically, the channel
LLRs Ã are input to the VNs I of VNDI as shown in Fig. 4.
Here, VNDI is of dimension M ×U VN I, represented as VI
in Fig. 4. The other input of the LDPC decoder of Fig. 3 is the
a priori LLR matrix Ỹ

a ∈ RM×T , which only contains the
knowledge of the non-equiprobable bit probabilities in the first
iteration, which will then be updated during the subsequent
iterations, when the CS decoder can provide feedback for the
LDPC decoder.

In the initialization step, VNDI combines the two sets of
input LLRs, namely the channel LLRs Ã and the a priori
LLRs Ỹ

a
. The output of VNDI comprises the extrinsic LLR

matrix M̃
e ∈ RM×G, which is passed to the CND through
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the factor graph connectivity based on the LDPC parity check
matrix H, shown in Fig. 4 to create the a priori LLR matrix
Ñ
a ∈ RM×G of the CND. Here, G is equal to the number of

non-zero elements in the parity check matrix H. In response,
the CND generates the extrinsic LLR matrix Ñ

e ∈ RM×G,
which is passed back through the factor graph connectivity in
order to produce the a priori LLR matrix M̃

a ∈ RM×G as the
input of the VNDI. As this point, the VNDI may be operated
again having three inputs, namely the channel LLRs Ã, the
a priori LLRs Ỹ

a
and the a priori LLRs M̃

a
gleaned from

the CND. The detailed operations performed within the CND
and VNDI will be discussed in Section III-B.

In summary, LDPC decoding is an iterative decoding pro-
cess, in which the operation of the VNDI and CND is alter-
nated for iLDPC number of iterations, as shown in Algorithm
1. Following this, VNDI generates an extrinsic LLR matrix
Ỹ
e ∈ RM×T , which is passed through the factor graph

connectivity between VNDI and SND, as shown in Fig. 4.
The output of the VNDI in the LDPC decoder becomes

the a priori LLRs Z̃
a

of the SND in the CS decoder.
However, the a priori knowledge L = [l, . . . , l] ∈ RM×T
is added into Z̃

a
before it is entered into the SND, where

L is an LLR matrix, which contains all a priori knowledge
concerning the M non-equiprobable compressed bit sequences
( y1, . . . ,ym, . . . ,yM ). More specifically, each element of L
characterizes the probability of the corresponding bits in the
compressed bit sequences ym that have a non-zero value.

As in the LDPC decoder, there are also three steps in CS
decoding. The first step is initialization, in which the a priori
LLR matrix Γ̃

a ∈ RM×F acting as the input of the SND is
set to an all zero matrix. Here, F quantifies the number of
non-zero elements of the sparse sensing matrix Φ. Then, the
SND of Fig. 3 takes the a priori LLRs Z̃

a
and Γ̃

a
as its inputs

and generates the corresponding extrinsic LLRs Γ̃
e ∈ RM×F ,

as it will be described in Section III-C. These extrinsic LLRs
are then passed through the factor graph connectivity between
the SND and VNDII as shown in Fig. 4, and are stored in the
sensing matrix Φ. The reordered LLRs become the a priori
LLR matrix Λ̃

a ∈ RM×F of the VNDII. In response, the
VNDII generates the matrix of extrinsic LLRs Λ̃

e
having the

same dimensions as Λ̃
a
, as it will be discussed in Section

III-C.
Similar to the LDPC decoder, the CS decoder also employs

an iterative decoding process, with the extrinsic LLR matrix
Λ̃
e

becoming an updated a priori LLR matrix Γ̃
a

for the SND
after reordered. In the case of separate LDPC-CS decoding,
we may perform a number of iterations (iCS) within the
CS decoder, before the VNDII arrives at its final decision
for the estimated bit matrix X̂ ∈ {0, 1}N×T . However, in
iterative joint LDPC-CS decoding, once the required number
of iterations have been performed within the CS decoder, the
SND may forward the extrinsic LLR matrix Z̃

e
to the LDPC

decoder via the factor graph connectivity between the VNDI
and SND as shown in Fig. 4. In this way, there may be
iterations between the LDPC and CS decoder, where the LDPC
decoder performs its internal iterations, and the CS decoder
performs its own internal iterations within each of the sys-

SND
VND

II
VND

I
CND

𝚲 𝑒  

𝚲 𝑎  𝚪 𝑒  

𝚪 𝑎  𝚳 𝑒  

𝚳 𝑎  𝚴 𝑒  

𝚴 𝑎  
𝐀  

LDPC 
Decoder

CS
Decoder

𝐘 𝑎  

𝐘 𝑒  𝐗  

𝐙 𝑒  

𝐙 𝑎  +

𝒍 

Fig. 3: Block diagram showing the iterative decoding inside the LDPC
and CS decoding, as well as between the LDPC and CS decoding.

tem level iterations. The system-level iterations represent the
iterations between the LDPC and CS decoder, termed as the
LDPC-CS iteration. Following the computation of the required
number (iLDPC−CS) of LDPC-CS iterations in the iterative
joint LDPC-CS decoder, the VNDII of Fig. 3 will obtain its
final decision for the estimated bit matrix X̂ ∈ {0, 1}N×T

based upon the a posteriori LLRs Γ̃
a ∈ RN×T .

During the iterative joint LDPC-CS decoding, the initializa-
tion steps of the LDPC and CS decoder are performed at the
beginning of every LDPC-CS iteration, as shown in Fig. 1. As
a result of this, the internal LLRs of the LDPC decoding will
be cleared up and the LDPC decoder will start afresh using
the new LLRs provided by the CS decoder in each iteration,
and vice versa. A practical benefit of this is that less memory
is required for storing the internal state between the LDPC-CS
iterations [39], [40] and it also prevents the iterative decoder
from converging to a local optimum. The detailed operations
of the CND, VNDI, SND and VNDII of Fig. 3 are detailed in
Section III-B.

Algorithm 1: Iterative joint LDPC-CS decoding algo-
rithm

Input: H, K ′, d = [d1, d2, . . . , dM ]T , iLDPC , iCS ,
iLDPC−CS , N , M , T , Φ, Q1, . . . ,QM ,
l = [l1, . . . , lM ]T , Ã

Output: Estimated binary signals X̂
1 for i = 1 to iLDPC−CS do
2 Initialization for LDPC decoding;
3 for ii = 1 to iLDPC do
4 CND update in the LDPC decoding;
5 VNDI update in the LDPC decoding;
6 end
7 Initialization for CS decoding;
8 SND update in the CS decoding;
9 for jj = 1 to iCS do

10 VNDII update in the CS decoding;
11 SND update in the CS decoding;
12 end
13 end
14 Perform final decision to obtain the estimated binary

signal X̂;

B. LDPC decoding

As mentioned in Section III, there are three steps in the
LDPC decoding process, namely initialization, CND update
and VNDI update. Meanwhile, as shown in Fig. 4, the LDPC
decoding process comprises M layers, where each layer pro-
cesses the information gleaned from one IoTN using a number
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Fig. 4: Factor graph illustrating the connectivity and iterative information exchange between VNDI, CND, SND and VNDII.

of parallel CNs and VNs I. Each of the nodes in a layer assists
in the LDPC decoding of a corresponding bit sequence ym,
where m ∈ [1,M ] and each of the M layers is operated in
parallel. More specifically, every CN of the CND employs
the same Sum-Product Algorithm (SPA) operation [41], while
each VN in VNDI performs the same sum operation. Hence,
in this section, we discuss the CND update and VNDI update
based upon the operation of a single CN having an index w (
w ∈ [1,W ]) and a single VN having an index u (u ∈ [1, U ])
in the mth layer.

At the beginning of LDPC decoding, the initialization step
is performed, as mentioned in Section III. In this step, the VN
having an index u is provided with a channel LLR by the rate
dematching block shown in Fig. 1. In each edge between the
CND and the VNDI as characterized by the indices (w, u),
where we have hw,u = 1

µ̃eu→w =


ãm,u + ỹam,u if 1 ≤ u ≤ T (i.e. variable node u

corresponds to a systematic bit)
ãm,u if T < u ≤ U (i.e. variable node u

corresponds to a parity bit)
(2)

where µ̃eu→w denotes the extrinsic LLR that the VN u
passes to the CN w, where it becomes the a priori LLR
ν̃au→w. Here, ãm,u represents the channel LLRs provided
for the VN u, while ỹam,u represents the a priori LLRs
provided by the CS decoder for the VN u in support of
LDPC decoding corresponding to the mth IoTN. We initialize

ỹam,u = lm = ln
(

P0m

1−P0m

)
according to Assumptions 1 and 2.

This captures the a priori knowledge of the non-equiprobable
bit values. More specifically, the mth IoTN can calculate its
probability of having zero valued bits P0m = (P0)dm , where
P0 is the a priori probability of having zero values in each
TS and dm is the degree of the mth IoTN. Furthermore,
the probability knowledge of all M IoTNs are stored in
l = [l1, . . . , lm, . . . , lM ]T .

Following the completion of LDPC initialization, the CN
update is performed. A CN combines the LLRs from its
connected VNs using the boxplus operator [41], which is
employed as follows when having two arguments

α̃� β̃ = sign(α̃)sign(β̃) min(|α̃| ,
∣∣∣β̃∣∣∣) log(1 + e−|α̃+β̃|)

− log(1 + e−|α̃−β̃|)

≈ sign(α̃)sign(β̃) min(|α̃| ,
∣∣∣β̃∣∣∣);

(3)
Note that since the boxplus operator is also associative, the
function may also be extended to a high number of inputs, as
follows for the case of calculating the extrinsic LLRs ν̃ew→u
of the wth CN in the CND

ν̃ew→u =

 ∏
u′∈V(w)\u

sign(ν̃a
u′→w)

× min
u′∈V(w)\u

(
∣∣ν̃a
u′→w

∣∣)
(4)
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where V(w) represents the set of VNs that connect to the wth
CN, and V(w)\u denotes the set V(w) when excluding the
uth VN.

Once the CN update has been completed and the LLRs have
been passed to VN I, LDPC decoder will perform the VN I
update. For the uth VN in the LDPC decoder, we compute the
extrinsic LLRs that will be passed to the CND by employing
the a priori LLR µ̃au→w that is received from the wth CN by
the uth VN, according to

µ̃
e
u→w

=


ãm,u + ỹam,u +

∑
w′∈C(u)\w µ̃

a
w′→u

if 1 ≤ u ≤ T (i.e. variable node u
corresponds to a systematic bit)

ãm,u +
∑

w′∈C(u)\w µ̃
a
w′→u

if T < u ≤ U(i.e. variable node u
corresponds to a parity bit);

(5)

Furthermore, we compute the extrinsic LLR ỹem,u that is
passed to the CS decoder of Fig. 4 by the uth VN for the
mth SN, according to

ỹem,u = ãm,u +
∑

w∈C(u)

µ̃aw→u, (6)

where C(u) represents the set of CNs that connect to the uth

VN, and C(u)\w denotes the set C(u) when excluding the cth

CN. However, the extrinsic LLR ỹem,u, which is passed to the
SN of Fig. 4, is only computed for the systematic bits, where
1 ≤ u ≤ T .

C. CS decoding

Similar to LDPC decoding, the SND and VNDII of Fig. 3
comprise multiple SNs and VNs. More specifically, CS decod-
ing is constituted of T layers, where each layer corresponds
to a different TS. Here, the set of layers are represented by a
set of independent factor graphs, where the VNs and SNs of
each layer are not connected directly to the VNs and SNs in
the other layers. Similar to the CND and VNDI in the LDPC
decoder, each SN in the SND processes the inputs provided by
its connected VNs. Likewise, each VN in the VNDII processes
the inputs provided by the connected SNs of the SND. Since
each SN performs the same operations with each other and
since each VN performs the same operations with each other,
here we describe the SND update based on a single SN having
the index m (m ∈ [1,M ]) and discuss the VNDII update based
on a single VN having the index n (n ∈ [1, N ]). Both of these
are considered for the case of the tth (t ∈ [1, T ]) TS.

As in LDPC decoding, the first step performed by each
iteration of the CS decoder is initialization. In order to
initialize the mth SN in the tth TS, we set the a priori LLR to
z̃am,t = ỹem,u+lm, where ỹem,u is the extrinsic LLR provided by
the uth VN in the mth layer of the LDPC decoder, while lm is
the a prior knowledge of the mth IoTN detecting no signals.
The SN connects to the uth VN I in the mth layer of the
LDPC decoder, which is the mth SN in the tth TS of the CS
decoder in the case of t = u. In addition to the connection to
the VN of the LDPC decoder, the mth IoTN is also connected
to the VNs of the CS decoding in VNDII. However, in the
initialization step, the a priori LLRs γam provided to the mth

SN in the tth TS by VNDII are set to zeros.
Following the initialization of the CS decoder, the SN

updates are carried out. In [42], we proposed an algorithm for

SN updates for the scenario, when the received signals are real
values. However, in this treatise the SN updates appropriately
modified to fit our scheme associated with time-varying binary
signals. According to Assumption 1 in Section II, the mth

SN has knowledge of its connections to the various signals
and hence all possible permutations of the on-and-off state of
the signals can be listed and stored in a matrix Qm. Let us
consider an example based on Fig. 4, in which the SN S2

connects to the second, third and last VNs, and hence has a
degree d2 = 3. According to Assumption 2, we may assume
that the FC has knowledge that there are only K = K ′ = 2
non-zero elements in the tth TS. By exploiting this, the SN can
be sure that only 0, 1 or 2 of the connected VNs may have non-
zero elements, and hence we may determine the permutation
matrix Q2 of S2, according to

q2 = 0 1 1 1 1 1 1

Q2 =

 0 0 0 1 1 1 0
0 0 1 0 0 1 1
0 1 0 0 1 0 1

 .
(7)

Each column of Q2 represents a specific permutation of the
on-and-off state of the connected VNs, where the number of
columns is given by

∑min{K,d2}
k=0

(
d2
k

)
. Each row represents

all possibilities for a specific one of the VN connected to the
2nd SN. Since the SN performs an OR function, the expected
output of the SN for different permutations is given by the
vector q2 = [q2(1), . . . , q2(7)], where the output of the SN
becomes the input to the LDPC encoder. For example, the
first permutation in the matrix Q2 predicts that in the tth TS,
the signals x2,t, x3,t and xN,t connected to the mth IoTN
all have zero values. In this case, the expected signal output
of the IoTN is zero, because it employs the OR function. By
contrast, the second permutation predicts that x2,t, x3,t have
zero values and xN,t has a non-zero value, resulting in an
expected signal output value of q2(2) = 1, owing to the action
of the OR function applied by the SN. Similarly, the rest of
the permutations are analogous and each has an expected IoTN
output value of 1. In the proposed scheme, Assumption 1 states
that the connections between the signals and IoTNs remain
constant across the T TSs, and hence each IoTNs has the same
permutation matrix in every TS, even though the particular
permutations adopted by the scheme will be changing from
TS to TS.

The SN update begins by calculating the probabilities of
the permutations in the matrix Q2 based on the a priori
LLRs provided by the LDPC decoder and the connected
VNs of the VNDII. The probability of the pth ∈ [1, Pm =∑min{K,dm}
k=0

(
dm
k

)
] permutation in the permutation matrix Qm

is calculated as

η(Qm(:, p)) =

{∑
n′∈N (m) γ̃

a
n′→m + z̃am,t if qm(p) = 0∑

n′∈N (m) γ̃
a
n′→m otherwise

(8)
where N (m) denotes the set of the VNs in the CS decoder that
connect to the mth SN, having a predicted value of zero in the
pth permutation. Here, γ̃an′→m is the a priori LLR provided
by the n′th VN, while z̃am,t is the a priori LLR provided by
the LDPC decoder. More specifically, in the example above
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based on S2, the 2nd permutation has x2,t and x3,t predicted
to adopt zero values, and hence N (m) includes the second and
third VNs. In this case, the adoption of the second permutation
for S2 in the tth TS results in Pr2 = γ̃a2→2 + γ̃a3→2, where
the z̃a2,t is not added because we have q2(2) = 1.

After quantifying the permutation probabilities, the extrinsic
LLRs gleaned from the mth SN by its connected VNs in the
LDPC decoder and CS decoder may be calculated as

γ̃pm→n = max (η [Qm(r, p) = 0])−max (η [Qm(r, p) = 1])
(9)

γ̃em→n = γ̃pm→n − γ̃an→m (10)

z̃pm,t = η(1)−max(η(2 : Pm)) (11)

z̃em,t = z̃pm,t − z̃am,t (12)

where η is a vector of length Pm =
∑min{K,dm}
k=0

(
dm
k

)
, which

stores the probabilities of all possible permutations for the mth

SN in the tth TS. Furthermore, η [Qm(r, p) = 0] denotes the
vector that contains the probabilities of the permutations in the
permutation matrix Qm, in which the qth column of Qm has
a zero value. Similarly, η [Qm(r, p) = 1] denotes a vector that
contains the probabilities associated with the specific rows of
permutation matrix Qm, in which the pth column has non-
zero values. Here, γ̃pm→n and γ̃em→n are the a posteriori LLR
and extrinsic LLR provided by the mth SN for the nth VN
of VNDII respectively. Likewise, γ̃an→m is the a priori LLR
provided by the nth VN in VNDII for the mth SN. However,
z̃pm,t and z̃em,t are the a posteriori LLR and extrinsic LLR of
the mth SN, which are used for performing message passing
between the LDPC and CS decoder. Here, η(1) represents the
first value of η and η(2 : Pm) is the vector containing all
values except for the first value of η. In the case of iterative
joint decoding between the LDPC and CS decoder, z̃em,t is the
extrinsic LLR provided by the mth SN of the CS decoder for
the uth VN of the VNDI gleaned from the LDPC decoder.
By contrast, there are no iterations between the LDPC and CS
decoder in the case of separate decoding, and so there is not
necessary to calculate the extrinsic LLRs ỹem,t, z̃

e
m,t since they

are not exchanged between the VNs of VNDI and the SNs.
Following the completion of the SN update, the CS decoder

performs an update for VNDII. Here, the CS VNs of VNDII
employ the same operations as the LDPC VNs of VNDI. More
specifically, the nth VN, computes

λ̃en→m =
∑

m′∈M(n)\m

λ̃am′→n (13)

Λ̃pn,t =
∑

m∈M(n)

λ̃am→n (14)

where M(n) denotes the set of SNs that are connected to the
nth VN in VNDII, and M(n)\m represents the set M(n),
when excluding the mth SN. Finally, Λ̃pn,t is the a posteriori
LLR of the nth VN in the CS decoder, which is used for
deriving the final bit decisions for the tth TS.

The final hard decision is made by exploiting the knowledge
that there are only K ′ non-zero values in each TS, and so we
can use the a posteriori LLRs for identifying the K ′ most

likely signals to be non-zero. This is achieved by sorting all
the a posteriori LLRs of VNDII in decreasing order and then
selecting those having the most positive values and decoding
them as non-zeros.

IV. COMPLEXITY ANALYSIS

The complexity of the proposed iterative joint LDPC-CS
decoding scheme may be quantified in terms of the number of
Add, Compare and Select (ACS) operations performed across
the successive iterations by the VNDI, CND, SND and VNDII
components of Fig. 3. The complexity of each operation of a
single VN u both in the VNDI of the LDPC decoder and in
the VNDII of the CS decoder may be calculated as [43]

CV Iu = CV IIu = 3(dVu − 1); (15)

where dVu
is the degree of the VN u. Similarly, the complexity

of each operation of a single CN w in the LDPC decoder is
given by [44]

CCw
= 3(dCw

− 2). (16)

where dCw
is the degree of the CN w. The different nodes

in VNDI and CND have different degrees depending on the
connectivity of the factor graphs, but, all VNs in VNDII have
the same degree Ks.

Similarly, the complexity of each visit to a single SN m
having a degree of dm by calculating Eq. (8) and Eq. (9) is
given by

CSm
= 2dm × Pm −

min{K,dm}∑
k=0

k

(
dm
k

)
, (17)

where Pm =
∑min{K,dm}
k=0

(
dm
k

)
is the number of permutations

considered by the mth IoTN. The overall complexity of the
iterative joint decoding considering all the VNs, CNs and SNs
may be calculated as

CLDPC−CS =iLDPC−CS × (iLDPC × (

U∑
v=1

CV Iu +

W∑
c=1

CCw
)

+ (iCS + 1)×
M∑
m=1

CSm
+ iCS ×

N∑
n=1

CV IIn).

(18)

V. EXIT CHART ANALYSIS OF THE PROPOSED
LDPC-CS SCHEME

In this section, we use EXIT charts for analyzing the soft-
in/soft-out consequence behavior of the proposed LDPC-CS
scheme. We begin by introducing the novel non-equiprobable
EXIT chart concept, which may be used for analyzing the
non-equiprobable bit sequences that are considered by the
proposed scheme. More specifically, Section V-A will discuss
the methods of generating LLRs for these non-equiprobable bit
sequences, as well as the calculator of the associated Mutual
Information (MI). Section V-B will introduce the process of
generating the LDPC EXIT functions, while Section V-C will
provide the corresponding discussion for the CS EXIT func-
tions. In Section V-D, we characterize the iterative decoding
trajectories, which may be plotted in the EXIT charts in order
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to characterize the exchange extrinsic information between
the LDPC and CS decoder in successive iterations. Finally,
Section V-E presents our results and discussions of the EXIT
charts introduced.

A. EXIT functions for non-equiprobable bit sequence
EXIT charts constitute powerful tools of visializing the

convergence behaviour of decoders. They help us validate our
decoding scheme at a significantly reduced simulation com-
plexity. Typically, an EXIT chart is characterized as a pair of
EXIT functions corresponding to a pair of constituent decoders
that engage in iterative extrinsic information exchange, as well
as a decoding trajectory, which characterizes the progression
of the iterative exchange as the iteration index. Here, the
quality of the iteratively exchanged a priori and extrinsic
information is quantified by the MI between the corresponding
LLR sequences and the corresponding hypothesized bit se-
quences availing from the transmitter [45]. The a priori LLRs
are generated artificially as the inputs of the corresponding
constituent decoder by relying on our EXIT-chart software to
be detailed late in Fig. 5 and 6. However, when the bits in the
transmitter do not have equiprobable values of 0 and 1, special
measures must be taken. In this section, we use an example
for characterizing the relationship between a non-equiprobable
bit sequence ω, a corresponding sequence of LLRs ω̃ and the
MI I(ω; ω̃). When generating the artificial LLRs, we must
consider the probability P0ω of the bit sequence ω adopting
the value 0, according to

ω̃i =
σ2
ω

2
(1− 2ωi) +Nω + log

(
P0ω

1− P0ω

)
, (19)

where, Nω is an independent Gaussian random variable with
zero-mean and a variance of σ2

ω [26], [45].
The MI between the non-equiprobable bit sequence ω and

the corresponding LLR sequence ω̃ may be calculated using
the so-called histogram-based method of [28]

I(ω; ω̃) =
∑
ωi=0,1

∫ +∞

−∞
fω̃|ω(ω̃i|ωi)fω(ωi)

· log2

(
fω̃|ω(ω̃i|ωi)
fω̃(ω̃i)

)
dω̃i,

(20)

where the integral may be implemented as a summation over
histogram bins. Here, each bit of the non-equiprobable ω
obeys Bernoulli distribution, and the probability mass function
of the ith element of the bit sequence ω is

fω(ωi) = (P0ω)
ωi (1− P0ω)(1−ωi). (21)

The conditional Probability Density Function (PDF) of the
LLR sequence ω̃ is given by

fω̃|ω(ω̃i|ωi) =
e−((ω̃i−σ2

ω/2×(1−2ωi)
2)/2σ2

ω)

√
2πσ2

ω

, (22)

while that of ω̃ is given by

fω̃(ω̃i) =

∫ +∞

−∞
fω̃|ω(ω̃i|ωi)fω(ωi)dωi

. (23)

For details of the derivation process, please refer to [26].
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Fig. 5: The schematic depicting the generation of the LDPC EXIT
function, where solid lines indicate parts of the real system, while
dashed lines represent our EXIT chart software.

B. LDPC EXIT function generation

Fig. 5 depicts the schematic of generating the LDPC EXIT
function, which characterizes the MI I (ym; ỹem) of the ex-
trinsic LLRs ỹm output by the LDPC decoder in response
to the SNR associated with the channel LLRs ãm and the
MI I (ym; ỹam) of the a priori LLRs ỹam. Here, the process
of generating the channel LLRs ãm is similar to that of the
discussion in Section II. More specifically, we adopt a random
sequence to generate the T elements of the signal vector ym,
where each element adopts a value of 0 with the probability
P0m. The observation vector ym comprising T binary IoTN
observations is LDPC encoded and rate matched in order to
obtain the encoded bit vector bm, which comprises E bits.
Following this, QPSK modulation is applied in order to obtain
the IQ vector cm comprising E

2 IQ symbols. As shown in
Fig. 5, we simulate the transmission of this IQ vector through
an AWGN channel, in order to obtain the received IQ vector
dm. This is then QPSK demodulated in order to obtain the
LLR vector b̃m, which comprises E number of LLRs. Next,
rate dematching is performed in order to obtain the channel
LLR vector ãm comprising T elements, before performing
LDPC decoder, as discussed in Section III-A and shown in
Fig. 4. More specifically, the channel LLRs ãm are provided
for the VNs of VNDI, as shown in Fig. 4. Meanwhile, the
LDPC decoding is also provided with the a priori LLR vector
ỹm comprising T elements, which is furnished by the CS
decoder when employed in the complete system diagram of
Fig. 3. However, in the Fig. 5, instead of generating the a priori
LLR vector ỹm artificially based on Eq. (19), we create it as a
function of the observation vector ym, so that the LLR vector
has the MI of I(ym; ỹam). When generating the a priori vector
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Fig. 6: Schematic of generating the CS EXIT function, where solid
lines are used for the parts adopted for the real system and dashed
lines represent our EXIT chart software.

ỹam, the knowledge of the probability of each element of ym
adopting a value of 0 is considered. More specifically, the
LLR vector lm = [lm, lm, . . . , lm]T is employed, which has
the same T number of elements as the signal vector ym, so
that ỹam should include knowledge of P0m. As discussed in
Section III-B, we adopt lm = log

(
P0m

1−P0m

)
, where P0m is the

probability of an element in the signal vector ym having a zero
value. Having provided the two inputs for the LDPC decoder
of Fig. 5, we perform the operations described in Section III-B,
which includes initialization, CN update and VN I update.
In response, the vector of T extrinsic LLRs ỹem is generated
and the LLR vector lm is also added to the extrinsic LLRs
ỹem before using Eq. (20) for quantifying the corresponding
MI. Finally, having calculated the extrinsic MI of each SN
individually, the final extrinsic MI may be calculated as the
average value of these M extrinsic MI values.

C. CS EXIT function generation

Fig. 6 illustrates our software used for generating the CS
EXIT function. As shown in Fig. 4, CS decoding is operated
in layers, where each layer processes a different TS using an
identical set of operations. Hence, the schematic of Fig. 6
characterizes the processing in the tth (t ∈ [1, T ]) layer
of the CS decoding, with all other layers are operating in
the same way. As for the LDPC EXIT function, the final
extrinsic MI is given by the average of the extrinsic MI values
obtained by each of the layers. The generation of the CS
EXIT function begins by generating a random sequence et
comprising N number of bits, which corresponds to the set of
signal elements generated in the tth TS, and hence corresponds
to the tth column of X. The random sequence et is constructed
using CS encoding, and then the resultant compressed signal
zt = [zt,1, . . . , zt,m, . . . , zt,M ]T is comprised of M bits
corresponding to the M observations in the tth TS. The
compressed sequence zt is the input of the LLR function,
which generates a sequence z̃at comprised of M artificial
LLRs using Eq. (19), where the MI is given by I(zt; z̃

a
t ).

During the process of generating the LLRs, the LLR constants
l = [l1, . . . , lm, . . . , lM ]T are added into the a priori LLRs
z̃at in order to capture the probability of each compressed

bit adopting the value 0, as shown in Fig. 6. Given that the
elements of the compressed signal zt are derived from M
observations in the tth TS, and because the probabilities of
the corresponding bit to adopt the value of 0 are different,
each element lm of the vector l typically adopts a different
value. The artificially generated a priori LLRs z̃at are then
entered into the CS decoder, which operates as discussed in
Section III-C, and characterized by the structure shown in
Fig. 4. This comprises a set of SNs and VNs II, where the CS
decoding includes initialization, SN update and VN II update.
Finally, the extrinsic MI I(zt; z̃

e
t ) is given by the measured

MI function, which compares the compressed bit value zt to
the M extrinsic LLRs in the sequence z̃et , where the constant
values of l are added in, as shown in Fig. 6 and characterized
using Eq. (20).

D. Iterative decoding trajectory

In order to illustrate the iterative exchange of extrinsic
information between the LDPC and CS decoder, their EXIT
functions may be plotted in the same EXIT chart by swapping
the axes of CS decoding curves. This is because the extrinsic
output of the LDPC decoder becomes the a priori input of the
CS decoder, and vice versa, as seen in Fig. 3. The iterative
exchange of extrinsic information between the LDPC and CS
decoder may be visualized as a staircase-shaped trajectory
evolving between the two EXIT functions [45]. Here, the MI
calculation using the generation of the trajectory is the same
as that used for characterizing the EXIT functions employing
Eq. (20).

Each step in the staircase-shaped trajectory represents a
specific iteration between the LDPC and CS decoder im-
proving the MI step-by-step. In cases where the EXIT chart
tunnel between the LDPC and CS EXIT functions is open,
the staircase shaped iterative decoding trajectory succeeds in
evolving between the two EXIT functions towards the top
right corner of the EXIT chart. In this way, we may quantify
the number of iterations required for reliable decoding as the
number of the steps in the trajectory within the open EXIT
tunnel. By contrast, in case of a closed EXIT chart tunnel,
the trajectory is unable to reach the upper right-hand corner.
In contrast to the conventional EXIT charts, the upper right-
hand corner of the LDPC-CS EXIT function is not at the
(1, 1) coordinate, since the extrinsic information represents
non-equiprobable bit values in the proposed scheme. Instead, it
is given by the entropy of the associated non-equiprobable bit
sequence. In the proposed system, we have M different non-
equiprobable bit sequences each having different entropies,
and so the coordinate of the top right corner of the EXIT chart
is given by the mean of all M entropies. Here, the entropy of
the tth (t ∈ [1, T ]) bit in the non-equiprobable bit sequence in
ym, where the probability of a particular bit adopting a value
of 0 is given by P0m, may be calculated as

H(ym,t) = −P0,m×log2(P0,m)−(1−P0,m)×log2(1−P0,m).
(24)
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E. EXIT chart results

The EXIT charts presented in this section characterize
the trade-off between decoding performance and complexity
as a function of the number of iterations performed during
LDPC decoding (iLDPC), CS decoding (iCS) and iterative
LDPC-CS decoding (iLDPC−CS). Explicitly, performing too
few iterations leads to poor performance, while performing
too many iterations leads to excessive complexity. Hence,
the EXIT charts offer an insightful complement to BLER
results, since the simulations are much quicker to complete and
provide insight into the internal information exchange of the
receiver. The MI of both the EXIT functions and trajectories
in the EXIT charts are calculated using Eq. (20).

Fig. 7 portrays the LDPC EXIT curves for different numbers
of iterations (iLDPC), for the case of using N = 500 signals,
M = 150 IoTNs, T = 500 TSs, K = K ′ = 5 non-zero
values in each TS and where each VN in Fig. 1 has a degree
of Ks = 5. Fig. 7 shows that as the number of iterations
(iLDPC) increases, the LDPC EXIT function evolves upwards,
which is characteristic of high-quality extrinsic LLRs and
creates a wide open EXIT chart tunnel. However, it may be
observed that there are diminishing returns for each additional
iteration, with very little extra benefit offered after performing
iLDPC = 16 iterations. Hence, we set iLDPC = 16 as
a stop criterion for LDPC decoding to strike an attractive
performance vs. complexity trade-off. Fig. 7 also characterizes
the CS EXIT functions for various numbers of iterations (iCS).
In contrast to the LDPC EXIT function, when the number
of iterations (iCS) is increased within the CS decoder, the
CS EXIT function moves downwards because of the inverted
coordinate system used for the CS decoding. Again, there are
diminishing returns for more than iCS = 3 iterations. Hence,
we recommend the selection of iCS = 3 iterations as the
stopping criterion of the CS decoder, in order to strike an
attractive performance vs. complexity trade-off.

Furthermore, EXIT charts are also capable of characterizing
the extrinsic information exchange between the LDPC and
CS decoder. Fig. 8 characterizes the EXIT functions of the
proposed iterative joint LDPC-CS scheme for different channel
SNRs, which shows that as the SNR is increased, the tunnel
between the LDPC and CS EXIT functions becomes wider.
This open tunnel between the two EXIT functions suggests
potential converge towards a low BLER. Hence, by determin-
ing the lowest SNR at which the EXIT chart tunnel becomes
open, we may predict the lowest SNR at which a low BLER
may be obtained. As shown in Fig. 8, when the channel
SNR is −6 dB, the tunnel between the LDPC and CS EXIT
functions is closed, but when the SNR is increased to about
−5.2 dB, the EXIT tunnel reaches its threshold between the
opening and closing. In cases where the SNR is −4.4 dB, the
tunnel is clearly open. This may be confirmed by plotting a
trajectory between the LDPC and CS EXIT functions, which is
measured after each iteration. The trajectory may characterize
the iterative exchange of extrinsic LLRs between the CS
and LDPC decoder in successive iterations. As the trajectory
progresses upwards to the top right in each successive step
towards the top right-hand corner of the EXIT chart, the
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decoding performance becomes better and better. However, if
the EXIT function of the CS and LDPC decoder intersect, then
the trajectory will be prevented from reaching the top right-
hand corner, indicating that iterative decoding convergence to
a low BLER is not possible at the corresponding channel SNR.
As shown in Fig. 8, when the EXIT tunnel is open at an SNR
= −4.4 dB, the staircase-shaped trajectory reaches the top
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level K = K′ = 5, the degree of each signal Ks = 5 and SNR
= −4.4 dB, when using QPSK modulation over AWGN channels.

right corner, suggesting that a low BLER may be obtained. By
contrast, when the tunnel is closed at an SNR of −6 dB, the
trajectory converges early and becomes unable to pass through
between the intersecting EXIT functions, hence a low BLER
is prevented. At an SNR of −5.2 dB, Fig. 8 shows that the
EXIT tunnel is very narrow and the trajectory is unable to
pass through the tunnel. In addition to predicting whether or
not iterative decoding converge to a low BLER is possible,
the trajectory can also predict how many iterations between
the LDPC and CS decoder are needed. In the example where
SNR is −4.4 dB, the trajectory suggests that iLDPC−CS = 6
iterations constitutes an attractive stopping criterion for achiev-
ing a low BLER. Although, there is a small mismatch between
the EXIT functions and trajectories in Fig. 8, we may observe
a broad agreement between the various trajectories and EXIT
functions.

Fig. 9 characterizes the impact of different block lengths
T and coding rates R upon the EXIT function of the LDPC
decoder. More specifically, Fig. 9 shows that as the LDPC
coding rate is reduced, while maintaining the same block
length of T = 500 and SNR = −4.4 dB, the MI of the LLRs is
increased. As a result, the EXIT tunnel opens as the coding rate
is reduced, increasing the probability of successful decoding,
as expected. Fig. 9 also characterizes the influence of different
block lengths on the EXIT functions, while maintaining the
same coding rate of R = 1

3 and SNR = −4.4 dB. As expected,
a longer LDPC block length gives superior BLER perfor-
mance, and this becomes particularly evident upon increasing
the block length from T = 500 to T = 750. However, Fig. 9
also shows that there is a diminishing return beyond this block
length, namely for T = 1000.

VI. SIMULATION RESULTS
As a complement to the EXIT charts provided in Section

V-E, this section characterizes the BLER performance of the
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LDPC-CS decoding, for the case where N = 500 signals, M = 150
IoTNs, K = K′ = 5, the degree of each signal Ks = 5, T = 500
TSs and coding rate R = 1
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communication over AWGN channels.

proposed LDPC-CS scheme, which employs iterative joint
LDPC and CS decoding components. More specifically, the
BLER plots presented in this section demonstrate that our
proposed scheme outperforms the separate LDPC/CS bench-
marker at a slightly increased complexity.

Each of the plots in this section characterizes the impact
of a different one of the three iteration parameters, namely
iLDPC , iCS and iLDPC−CS , as defined in Section III-A.
Fig. 10 considers the benchmarker, where there are no it-
erations between the LDPC and CS decoder. Following the
discussions of Fig. 10, we introduce Fig. 11, which compares
the separate decoding based benchmarker to our proposed
iterative joint LDPC-CS decoder, where both adopt a similar
complexity. Later, Fig. 12 characterizes how the number of
iterations (iLDPC−CS) performed between the LDPC and CS
decoder influence the performance of the proposed iterative
joint decoding scheme. Finally, Fig. 14 characterizes the
impact of coding rate and block length upon the performance
of the proposed iterative joint decoding scheme. Throughout
these investigations, we set the number of signals to N = 500,
the number of IoTNs to M = 150, the sparsity level to K ′ = 5
and each signal is observed by Ks = 5 IoTNs.

Fig. 10 characterizes the BLER performance of the bench-
marker for an LDPC block length spanning T = 500 TSs
at a coding rate of R = 1

3 . In order to characterize the
influence of the number of the iterations iCS performed
within the CS decoder, we maintain a constant number of
iLDPC = 2 iterations within the LDPC decoder. As shown
in Fig. 10, the BLER performance of the benchmarker is
improved significantly upon increasing iCS in CS decoding
from 1 to 3. However, when the number of iterations is
increased beyond iCS = 3, the BLER only has minor further
improvements. This observation corresponds to that, which
may be made based on the CS EXIT functions of Fig. 7,
increasing diminishing returns upon increasing the number of
iterations beyond iCS = 3. Similarly, in order to characterize
the effect of the number of iterations iLDPC performed
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within the LDPC decoder, we use a constant number of CS
decoding iterations of iCS = 3. As shown in Fig. 10, the
BLER performance increases significantly upon increasing the
number of LDPC iterations iLDPC towards iLDPC = 16, but
offers diminishing returns beyond this point. This observation
corresponds to that which may be drawn from the LDPC EXIT
functions of Fig. 7. Motivated by these observations, In order
to strike an attractive performance vs. complexity trade-off, we
recommend the selection of iLDPC = 16 and iCS = 3 for the
benchmarker employing separate LDPC-CS decoding. Using
Eq. (18), we may quantify the complexity of the benchmarker
as 1.6527× 1011 ACS operations.

Fig. 11 compares the BLER performance of the bench-
marker and of the proposed iterative joint LDPC-CS decoding
scheme for different combinations of the iterations having
different complexity, which may be compared that of our
benchmarker. For example, the combination of iLDPC = 8,
iCS = 1 and iLDPC−CS = 2 gives a benchmarker complexity
of 1.6527×1011 ACS operations according to Eq. (18). In this
case, the performance of the proposed iterative joint decoding
does not offer an improvement over the benchmarker, and
suffer from an error floor, owing to the selection of iCS = 1,
as characterized in Fig. 10. However, when we increase iCS to
2 in the proposed iterative joint LDPC-CS decoding scheme,
the error floor is removed and we may achieve about 0.9 dB
SNR gain at BLER = 10−3 compared to the benchmarker,
when adopting iLDPC = 8 and iLDPC−CS = 2. In this case,
however, the complexity of the proposed iterative joint decoder
is 2.4765 × 1011 ACS operations, which is about 1.5 times
that of the benchmarker. Furthermore, if we set the number
of the iterations within the LDPC and CS decoder to be the
same as the benchmarker, namely to iLDPC = 16, iCS = 3,
while setting iLDPC−CS = 2, the complexity of the proposed
iterative joint LDPC-CS decoder becomes twice that of the
benchmarker, but with the benefit achieving about 1.5 dB of
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3
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inside CS decoding iCS = 3, when using QPSK modulation for
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gain.
Fig. 12 characterizes the influence of the number of the

iterations iLDPC−CS performed between the LDPC and CS
decoder, when adopting iLDPC = 16 and iCS = 3. As shown
in Fig. 12, the BLER performance is improved as the number
of iterations iLDPC−CS is increased, although diminishing
returns may be observed as the number of iterations increases
towards iLDPC−CS = 6. This observation corresponds to
the trajectory of Fig. 8, which suggests that 6 iterations are
sufficient for achieving iterative decoding convergence to a low
BLER when we have SNR= −4.4 dB. The capacity bound in
this case is about −8.75 dB based on Section II. Furthermore,
as shown in Fig. 8, the EXIT tunnel opening SNR bound is
around −5.2 dB.

In Fig. 13, we consider two scenarios. In the first scenario,
the true sparsity level K is known to the FC. In this case, the
upper bound of sparsity is K ′ = K. In the second scenario,
the true sparsity level K is unknown, but the upper bound
of sparsity K ′ is known to the FC, where 1 ≤ K ≤ K ′. In
this case, we select the value of true sparsity K in each time
slot using a uniform distribution in the range spanning from 1
to K ′. Furthermore, in this case, we define the BLER as the
particular fraction of blocks in which not all non-zero entries
of the signal are identified, i.e. the particular fraction of blocks
in which there are some false positives. As seen in Fig. 13,
when the sparsity level K is lower than the upper bound K ′,
the BLER is superior to the case of known sparsity K is to be
exactly equal to the upper bound K ′. The explanation for this
counter-intuitive result is that while it is useful to have exact
knowledge of the sparsity level, this benefit is outweighed
by a stronger effect. Explicitly, having a lower value of K
results in fewer non-zero entries, and hence in easier successful
decoding. Fig. 13 demonstrates that as the sparsity level K is
increased from 5 to 10, the BLER performance is degraded and
exhibits an error floor when M = 150. In this case, employing
more IoTNs to observe the signal and obtain more information
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over AWGN channels.
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Fig. 14: BLER results of the proposed iterative joint LDPC-CS
decoding, when using different block lengths T and coding rates
R, for the case of N = 500 signals, M = 150 IoTNs, sparsity level
K = K′ = 5, the degree of each signal Ks = 5, when using QPSK
modulation for communication over AWGN channels.

can help improve the decoding performance and eliminate the
error floor, as shown in Fig. 13 when increasing M to 250.

Fig. 14 characterizes the BLER of the proposed itera-
tive joint LDPC-CS decoding scheme for different block
lengths and coding rates. Here, we adopt iteration numbers of
iLDPC = 16, iCS = 3 and iLDPC−CS = 3 in all cases. These
results indicate that superior BLER performance is obtained
for longer blocks at the same coding rate, with diminishing
returns as the long block length is increased beyond a certain
threshold. Furthermore, Fig. 14 shows that lower coding rates
lead to superior BLER performance when the same block
length is adopted, as it may be expected. These results also

confirm the accuracy of our EXIT chart analysis in Section
V-E.

VII. CONCLUSIONS

A novel joint CS and LDPC coding scheme was proposed
for JSCC in WSNs, which can support the detection of massive
number of signals, while using a relatively small number of
IoTNs. Here, the adoption of source coding ensures energy
efficient communication, while the use of channel coding pro-
tects the transmitted signals during transmission over realistic
channels. More specifically, JSCC is implemented using the
proposed iterative joint LDPC-CS decoding scheme, which we
have shown to offer beneficial performance advantages over
separate LDPC-CS decoding scheme at the cost of doubling
the complexity. More specifically, the proposed iterative joint
LDPC-CS decoding offers a gain about 1.5 dB at BLER of
10−3, at the cost of doubling the complexity. Furthermore, we
carried out the associated EXIT chart analysis for character-
izing the iterative exchange of LLRs pertaining to the non-
equiprobable bits encountered in the proposed iterative joint
LDPC-CS decoding scheme. We demonstrated that the EXIT
charts offer good performance predictions for the proposed
iterative joint LDPC-CS decoding scheme.
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