
A Benchmark for Multi-Class Object Counting and Size
Estimation Using Deep Convolutional Neural Networks

Zixu Liua,c, Qian Wangb*, Fanlin Mengd

aSouthampton Business School, University of Southampton, U.K.
bDepartment of Computer Science, Durham University, UK.

cCrop Science Centre, National Institute of Agricultural Botany, U.K.
dAlliance Manchester Business School, The University of Manchester, UK

zixu.liu@soton.ac.uk, qian.wang173@hotmail.com, fanlin.meng@manchester.ac.uk

Abstract

Automatic object counting and object size estimation in digital images can be very useful in

many real-world applications such as surveillance, smart farming, intelligent traffic systems, etc.

However, most existing research mainly focus on scenarios where only one type of object is

considered due to the lack of proper datasets. Furthermore, they use the traditional detection al-

gorithms for size estimation and can only do segmenting tasks but cannot identify different types

of objects and return corresponding individual size information. To fill these gaps, we create a

synthetic dataset and propose a benchmark for multi-class object counting and size estimation

(MOCSE) within a unified framework. We create the dataset MOCSE13 by using Unity to gener-

ate synthetic images for 13 different objects (fruits and vegetables). Besides, we propose a deep

architecture approach for multi-class object counting and object size estimation. Our proposed

models with different backbones are evaluated on the synthetic dataset. The experimental results

provide a benchmark for multi-class object counting and size estimation and the synthetic dataset

can be served as a proper testbed for future studies.

Key words: Multi-class object counting, Crowd counting, Object size estimation,

Convolutional neural networks, Synthetic dataset

1. Introduction

Object counting is a very common and challenging problem performed in different researches

and industries where the task is to obtain the number of different types of objects in still images

or videos. Counting manually is inefficient and time-consuming when the number of objects is

Preprint submitted to Elsevier September 24, 2022

large. Automated object counting which uses computer vision to replace manual methods has

received significant attention in the last few years [10, 30]. After several years of development,

automatic object counting in still images or videos (i.e. image sequences) becomes an important

technique in many real-world applications. For example, one can use a drone to take photos

of crowds from above and automatically get the number of people and vehicles in a place for

traffic planning and risk control. In the applications of smart agriculture, one can estimate the

count of plants, fruit or vegetable by simply taking photos or videos and feeding them into a

model for automatic object counting. In many applications, not only does the count of objects

matter but the sizes of objects in the images are also required (e.g., for yield estimation or object

classification by sizes). As a result, there is an urgent requirement for developing approaches to

automatic object counting and size estimation based on images.

1.1. Challenges and Research Questions

Object counting, especially crowd counting, has been studied extensively in recent years

[34, 4, 2, 5, 39, 42]. The majority of works in this area have employed deep learning techniques

and achieved impressive progress in terms of counting accuracy [39]. However, most existing

works focus on counting a single class of objects in the images. Furthermore, the images used

in most existing object size estimation works only contain one type of the object [28, 29, 7].

When there exist multiple object classes to be counted in the images, multiple models need to be

trained and deployed. It is imperative to have one unified model for multi-class object counting

and object size estimation. However, the lack of datasets containing multiple object classes in the

images and proper datasets for object size estimation has been the main barrier to such research.

Another barrier to current research is they have not explored the most advanced deep learning

techniques but use the traditional detection algorithms for size estimation. Such methods are

based on hand-crafted pixel counting [13, 11, 29], which has lower performance and cannot

return size and position information for the individual object instance. Unsurprisingly, how

to detect and identify individual object instances for different types of objects in multi-class

object size estimation is still an open problem. Existing methods such as Connected-component

labelling (CCL) [36] and the Watershed algorithm [27] can only do segmenting for all objects in

the image but cannot identify different types of objects.

2

1.2. Methodology

To overcome such barriers, we first create a benchmark dataset for multi-class object counting

and size estimation by generating synthetic images using the Unity game engine [22]. We can

conveniently generate a large number of images containing one or multiple classes of objects and

the corresponding point annotations of the object instances with nearly zero effort. In addition,

the size of each object instance in the synthesized images can also be controlled by the Unity

engine which allows us to obtain the ground truth object size information easily for each object

instance. As a result, the created synthetic dataset can serve as a proper testbed for both multi-

class object counting and object size estimation.

We unify the multi-class object counting and size estimation in one problem and propose a

solution to address this problem using deep convolutional neural network-based models. This

unified problem has a variety of potential applications and a big impact in the real world. For

example, an automatic cash register system [44] has the requirement of recognising all the fruit

instances and estimating their sizes based on which different prices can be applied. In intelligent

farm systems [34, 4, 2, 5], automatic plant and animal counting and size estimation can provide

useful information for monitoring the growth of plants and livestock.

Our proposed solution is based on the commonly used framework for single-class object

counting. Specifically, we use a backbone network to extract deep feature maps from the orig-

inal images. The backbone network can be any state-of-the-art deep learning model for image

classification as demonstrated in [42]. The backbone network is followed by two parallel heads

aiming at outputting the predicted count and size information respectively. The count informa-

tion is represented by a multi-class density map which is a stack of density maps for all object

classes. Similarly, the size information is represented by a multi-class size map. A size map

consists of the size of each object instance in the image. To overcome the barrier in current

research of multi-class object size estimation, an individual object size retrieval algorithm is pro-

posed to identify the individual object and calculate its size from the predicted size map of an

image. A generic target matching algorithm is also proposed to identify true positive (TP), false

positive (FP), and false-negative (FN) instances from the list of predicted individual objects for

the performance evaluation. In this paper, we do not bother to estimate the true diameter, length

or volume of the object but they can be derived by multiplying a constant factor (e.g., a value

relating to the camera distance to the objects and the camera distance is fixed in our datasets)

3

Single-class object counting problem:
How many bananas are there in the image? (19)
Or
How many apples are there in the image? (26)

Multi-class object counting problem:
How many bananas, apples, pears are there in

the image? (19, 26, 25)

Object size estimation problem:
What is the size of each banana/apple/pear in

the image?
([0.98, 0.92, 0.78, …],

[0.74, 0.68, 1.10, …],
[0.79, 1.05, 0.90, …])

Input >> Output

Figure 1: An illustration of the unified problem of multi-class object counting and size estimation.

with the estimated sizes. In other words, we focus on the estimation of the relative scale of an

object and refer to this relative scale as object size without causing ambiguity.

1.3. Contribution and paper structure

The contributions of this work can be summarised as follows:

• We formulate a unified problem of multi-class object counting and size estimation and

propose an approach to solve the problem by estimating class-wise density maps and size

maps.

• We create a benchmark dataset to evaluate different methods for the multi-class object

counting and size estimation problem.

• Extensive experiments on the proposed dataset are conducted to validate the effectiveness

of the proposed approach to the multi-class object counting and size estimation problem.

The rest of the paper is organized as follows: In Section 2, several state-of-the-art automated

object counting and size estimation works are reviewed. The details of our generated dataset are

introduced in Section 3. Our proposed methods for single and multi-class object counting and

size estimation are depicted in Section 4. In Section 5, we illustrate the designed experiments and

employed evaluation metrics. The results of our designed experiments are analysed in Section 6.

Section 7 concludes the paper.

4

2. Related Work

In this section, we review works relating to ours in the literature. To the best of our knowl-

edge, it is the first time the multi-class object counting and size estimation are formulated

as a unified problem to address. There exist works focusing on single-class object counting

[1, 35, 16, 41, 39, 16, 21, 26], multi-class object counting [12, 46] and object size estimation

[28, 29, 7, 43, 3] respectively.

2.1. Single-Class Object Counting

Single-class object counting has been studied in a variety of applications where varied objects

need to be counted within still images [1, 35, 16, 41]. Among them, there are a large number of

works on crowd counting which aims at counting people in still images [39, 47, 50, 49].

Liu et al. [24] present a novel fruit counting pipeline that combines deep segmentation,

frame-to-frame tracking, and 3D localization to accurately count visible fruits across a sequence

of images. Aich et al. [1] focus on the counting of rosette leaves from an RGB image. In

their method, the foreground is segmented as a first step and the segmentation results are fed

into a regression model which outputs the final count of leaves. Salami et al. [35] and Tong et

al. [41] aim at counting trees from aerial images. Both of them leverage the pipeline of image

segmentation and counting. The former employs traditional image processing methods whilst

the latter utilises convolutional neural networks for improved performance.

Another prevalent research topic of single-class object counting is crowd counting in still

images or surveillance videos. Recent advances in crowd counting are mostly based on the use

of deep convolutional neural networks to predict the density map. For a thorough review of state-

of-the-art approaches to crowd counting, we refer the readers to the survey papers [39, 16, 21].

In contrast to these single-class object counting works, our work focuses on multi-class object

counting where there exist multiple types of objects in an image and we aim to count the number

of instances for each class.

2.2. Multi-Class Object Counting

There exist very few works on multi-class object counting [12, 46]. Only very recently, Xu

et al. [46] attempt to address the multi-class object counting problem by adapting the tradi-

tional crowd counting frameworks to the one being able to handle multiple classes. Specifically,

5

they extend the number of density maps in the output of the deep neural networks from one to

the number of classes. This is a straightforward idea and will also be employed in our work.

Moreover, the authors claim there exists mutual interference in the shared feature space among

different classes. To this end, a multi-mask structure is used so that the class-wise attention

maps are learned and attended to the predicted class-wise density map. This is an extension of

segmentation based attention in the single-class crowd counting [42] which, however, applies

the attention maps to the feature maps instead of the predicted density maps. Go et al. [12]

employ a different architecture for multi-class object counting. Instead of predicting the per-

class density maps directly, they predict the total density map and class-wise probability maps

respectively from two parallel branches of networks. The per-class density map can be derived

by the element-wise multiplication operation between the total density map and the class-wise

probability maps.

Regarding the datasets for multi-class object counting, Xu et al. [46] use the VisDrone-DET

[52] and RSOC [9] datasets in their experiments. The VisDrone-DET dataset was originally

collected for object detection with bounding box annotations which can be easily converted into

point annotations commonly used in crowd counting for more practical use. Road users including

pedestrians, persons, cars, vans, buses, trucks, motors, bicycles, awning-tricycles and tricycles

are considered and annotated in the dataset. The RSOC dataset was collected from Google Earth

and the DOTA dataset [45] for remote sensing. There are four object classes including small

vehicles, large vehicles, ships and buildings in the RSOC dataset. Go et al. [12] collected a fine-

grained multi-class object counting dataset, named KR-GRUIDAE, which was claimed the first

large dataset focusing on fine-grained multi-class object counting. The images of this dataset

were captured by ecologists and contain the Red-Crowned Crane (RCC), Red-Crowned Crane

Juvenile (RCCJ), White-Naped Crane (WNC), White-Naped Crane Juvenile (WNCJ), and Anser

albifrons (AA) in various poses and views.

However, all of the aforementioned datasets share limitations in that there are only a few

object classes and the numbers of object instances in the images are not well controlled during

the data collection (e.g., many images contain only one class of objects, some classes only appear

in a few images). As a result, they may not be suitable testbeds for the research in multi-class

object counting. To fill this gap, we propose a new dataset MOCSE13 using synthetic images

without exhaustive manual data annotations. We believe this new dataset will benefit the research

6

on the topic of multi-class object counting and many others.

2.3. Object Size Estimation

Image based object size estimation can be very useful in real-world applications such as food

calorie estimation [28, 7], fruit yield estimation [13, 11], etc. For food calorie estimation, there

are usually a small number of food types and instances in the image and object segmentation

methods are used for food size estimation. Recently, deep learning based fruit yield estimation

has been widely studied for different types of fruit such as apple [13, 11], mango [43], citrus [3],

strawberry [29], olive [32], etc.

Most approaches rely on the object detection results in the first step and estimate the object

sizes based on the detection results [13, 11, 29]. In our work, we do not explicitly detect each

object instance, instead, we directly regress the object sizes from the raw images. [13] uses

a machine vision system consisting of a colour CCD camera and a time-of-flight (TOF) light-

based 3D camera for estimating apple size in tree canopies. The approach in [11] generates

3D point clouds to model the detected apples for size estimation. In contrast, our work does not

focus on the precise volume of the objects but approximates the relative size of individual objects

within the same image. In-field mango fruit size estimation method proposed in [43] focuses on

the estimation of fruit-to-camera distance using an RGB-D camera and the mango sizes in the

pixel space. Again, a detection algorithm was used based on the hand-crafted image features.

We argue that deep learning methods should be used to replace the traditional detection methods

for improved performance.

Deep learning based methods are used in [3] for fruit size estimation. Specifically, a Faster-

R-CNN model [33] was employed to detect the citrus fruit objects in images captured by a UVA

from the top view. However, object detection methods require bounding box annotations for

training which are far more costly than point annotations required by our proposed solutions.

Our work also focuses on the object size estimation within images captured from the top view

but the images are captured in more controlled conditions (the number of object instances and

object types can be properly set in Unity for generating synthetic images) and the approaches

developed based on our synthetic data can be applied to real-world scenarios such as images

captured by a UVA from the top view.

In summary, most existing object size estimation methods in the literature have the limita-

tions: 1) only one type of object exists in the images; 2) most of them have not explored the
7

most advanced deep learning techniques but use the traditional detection algorithms followed by

hand-crafted pixel counting methods for size estimation. In our work, we aim to investigate the

effectiveness of state-of-the-art deep learning models for object size estimation.

3. MOCSE13: A Synthetic Dataset

The images of the dataset are generated from the Unity engine. We first outline the process

of image generation using Unity and subsequently, the technical details are given.

• First randomly select an object from a set of 3D models then generate it above a panel in

Unity with random sizes.

• Repeat the last step a certain number of times where this number is randomly selected

from a pre-defined number range.

• All generated objects will fall to the panel while the Unity engine simulates their physical

effects during the falling process.

• The camera in Unity screenshots the panel after all objects are stable and then outputs it

along with the object information file.

• Destroy all objects to clear the panel and then start to generate the next image.

The original 3D models of 13 classes of fruit or vegetable are obtained from an Asset ”Su-

permarket with LOD” which was derived from Unity Asset Store [8]. The 3D model defines the

framework and the attached material is the surface of the object lookalike in the Unity scene.

The material can be changed to the picture taken from the real fruits or vegetables. This will

make sure the diversity of the objects in the dataset. In Unity, we set the physics properties for

all 3D objects to simulate the physical effect in the real world and the collision effect to collide

with other objects. After these settings, these 3D objects were saved as Prefabs. The Prefab in

Unity allows the user to create, configure, and store an object with all its components, property

values, and child object as a reusable asset. The Prefab Asset acts as a template when we create

new Prefab instances in the scene of Unity.

At the start of the dataset generating process, the fruit or vegetable object is randomly selected

from a set of Prefabs and then instances of random sizes are generated. This set of Prefabs only

8

contains one class of object Prefabs when generating the single-class dataset. By contrast, such

set of Prefabs will contain all selected classes of object Prefabs when generating the multi-classes

dataset. The number of the generated objects is randomly selected from a pre-defined number

range. Under the gravity simulation, all generated objects fall to the panel. With the Rigidbody

component, each object’s position and rotation are controlled through the physical simulation.

The Mesh Collider component enables the object to collide with other objects. Once all objects

are stable on the panel, the camera above the panel takes a screenshot with a pre-set resolution.

The corresponding data of all objects such as position, size, and class label are saved to a text

file. This information could mark objects in the image precisely. After saving the image and text

file, all the objects on the panel are destroyed. The next image will then start to generate. Using

different random seeds, an infinite number of images can be generated.

Our created benchmark dataset for Single-class object counting has the following settings:

• 30 images per class, and the resolution of the image is 512*512.

• 13 classes of fruits or vegetables: apple, artichoke, avocado, banana, carrot, courgette, gar-

lic, melon, onion, orange, pear, tomato, and shallot. Figure 2 shows the example Prefabs

of these classes as appeared in Unity.

• 6 groups which are the combination of counts in different ranges (large, medium, and

small amount of instances) and size in different ranges (large, medium and small size of

instances) and each group has 5 images. Table 1 gives the detail of all six groups.

• A text file is provided for each image in the dataset which contains the ground truth in-

formation of the corresponding image. The ground truth information includes the total

number of instances; label, size and position of each instance.

As said before, the set of Prefabs which were used to generate instances in the image contains

all selected classes of object Prefabs when generating a multi-class dataset. Therefore, the total

number of all objects in the images is the sum of the number of instances of each class. This is

the only difference between the Single-class dataset and the Multi-class dataset. Figure 3 shows

examples of ground truth density maps and density size maps, and corresponding estimated

density map and size map for one class (avocado) of an image in the Multi-classes dataset.

Our created benchmark Multi-class datasets have the following settings:

9

Apple Artichoke Avocado Banana Carrot Courgette Garlic

Melon Onion Orange Pear Tomato Shallot

Figure 2: The example Prefabs of 13 classes used in Unity to generate our created benchmark datasets.

Test image Ground truth - counting Ground truth - size

Estimation - counting Estimation - size

Figure 3: The ground truth density and size maps and estimated density and size maps of our model for the class of

avocado.

10

Table 1: Detail of six groups of images in the dataset.

Small amount Large amount

Small size Number range: 30-70; Size range: 0.6-0.8 Number range: 70-110; Size range: 0.6-0.8

Medium size Number range: 30-70; Size range: 0.8-1.0 Number range: 70-110; Size range: 0.8-1.0

Large size Number range: 30-70; Size range: 1.0-1.2 Number range: 70-110; Size range: 1.0-1.2

• 4 example Multi-class datasets are generated, and there are 3 classes in the images of each

dataset.

• 30 images per dataset and the resolution of the image is 512*512.

• 6 groups which are the combination of counts in different ranges (large, medium, and

small amounts of instances) and sizes in different ranges (large, medium, and small sizes

of instances) where each group has 5 images. Table 1 gives the detail of all six groups.

This count number is the total number of all objects in the image.

• A text file is provided for each image in the dataset which contains the ground truth in-

formation of the corresponding image. The ground truth information includes the total

number of instances; label, size and position of each instance.

Table 2 summarizes a comparative analysis of state-of-art object counting and size estimation

datasets with our generated dataset MOCSE13. From the table, we could see the following facts.

First, all the existing object counting datasets are the single-class counting dataset which means

only one type of object is annotated in the image. Besides, most of them focus on the crowd

counting such as ShanghaiTech [51], UCF QNRF [19], UCF CC 50 [18]. Although some of

the datasets have more images compared with ours, they are hand-annotated which could be

very costly and time-consuming. Furthermore, different from single-class object counting, our

work focuses on multi-class object counting where there exist multiple types of objects in an

image and we aim to count the number of instances for each class. Secondly, there is no public

available multi-class object counting dataset. Some works such as Xu et al. [46] can only utilize

the single-class object counting dataset which includes multiple subsets and the object detection

dataset to evaluate their work of multi-class object counting. Even after the pre-processing, such

datasets still only contain a few object classes and the numbers of object instances in the images

are not well controlled during the data collection. All these imply a suitable dataset is urgently
11

Table 2: Comparison between current single/multi-class object counting and size estimation datasets and MOCSE13.

Dataset No. of images No. of classes Public availability Object counting Size estimation Extensible Mark method

ShanghaiTech (A)[51] 482 1 X X × × hand-annotated

ShanghaiTech (B)[51] 716 1 X X × × hand-annotated

UCF QNRF[19] 1535 1 X X × × hand-annotated

UCF CC 50[18] 50 1 X X × × hand-annotated

Arabidopsis [1] 810 1 X X × × hand-annotated

KR-GRUIDAE [12] 1423 5 X X × × hand-annotated

Starberry [29] 337 1 × × X × hand-annotated

Boiled-rice [7] 360 1 × × X × hand-annotated

UAV-Orange [3] 300 1 × × X × hand-annotated

MOCSE13 (ours) 510 13 X X X X auto-annotated

required as suitable testbeds for multi-class object counting research. Thirdly, there is only one

item in the image of most of the existing object size object estimation datasets, and no existing

work focuses on multi-class object size estimation.

Here we list the following advantages of our generated dataset MOCSE13 to show how we

fill the gaps in currently object counting and size estimation datasets identified by Table 2:

• All the items in the images of dataset MOCSE13 are automatically annotated when the

images are generated, which is efficient and time-saving.

• All the generated images are randomly generated and non-repeated. Although our dataset

is a generated synthetic dataset, we can generate new images conveniently based on the

needs and requirements. This means our dataset has advantages in the aspects of dataset

size and variety compared with other datasets.

• Based on the transfer learning, our dataset could be used to train a deep learning model

and this model can be directly used in the real applications of object counting and size

estimation without further model training or fine-tuning [6, 37]. Useful prior knowledge

can be gained by deep learning and pre-training on our dataset. Afterwards, the model is

equipped with pre-trained weights for the object counting or size estimation and can be

easily adapted in the real application with further training or fine-tuning.

12

density map
 head

size map
head

CNN
backboneinput multi-class

density maps

multi-class
size maps object sizes

Figure 4: The framework of our proposed approach to multi-class object counting and size estimation.

4. Method

In this section, we introduce our proposed approach to unified multi-class object counting

and object size estimation. The extension of traditional object counting to multi-class scenarios

is first presented. Subsequently, we propose a novel method for multi-class object size estimation.

The framework of our proposed approach is illustrated in Figure 4. Our approach is implemented

in PyTorch [31] and source code is publicly available1.

4.1. Multi-Class Object Counting

Most approaches for single-class object counting are based on a similar framework in which

the raw image is fed into a deep Convolutional Neural Network (CNN) and the output is a density

map. Since the idea of the density map was first proposed in [23], density estimation-based

methods become the most common way to solve the problem of object counting in images. The

use of the deep CNN model in large-scale datasets to estimate the density map could further

improve the accuracy of object counting. The motivations for the use of deep CNN are usually to

improve the generalization to scale-variant object images [42]. The backbone of the deep CNN

model can be any state-of-the-art models for image classification such as VGG [38], Inception-

V3 [40], DenseNet [17], ResNet [15], TEDNet [20], etc. The choice of different backbones

depends on the trade-off between computational cost and accuracy as demonstrated in [42]. The

1https://github.com/liulei1260/MOCSE13

13

final object count can be derived from the output density map by simply aggregating all the pixel

values in the density map. This is based on the fact of how the density map is defined.

For density maps MMMden ∈R+H×W , where H and W are the height and width of the image, we

follow [42] using a Gaussian kernel Gσ ∈R+15×15 with a kernel size of 15×15 and fixed σ = 4:

MMMden(xxx) = H(xxx)∗Gσ (xxx), (1)

where H(xxx) = ∑
N
i=1 δ (xxx− xxxi), N is the number of point annotations in the image and δ (·) is the

Delta function. As a result, H(xxx) is a binary matrix of the same size as the image and only has

values of ones at the positions of point annotations. The density map is derived by the convolution

between H(xxx) and the Gaussian kernel Gσ (xxx).

To adapt the traditional single-class object counting (e.g., crowd counting) methods to the

multi-class object counting problems, we modify the density map head to output multiple density

maps whilst keeping the backbone of the deep model for feature representation learning. For the

c-th class, the ground truth density map is computed by:

MMMden
c (xxx) = Hc(xxx)∗Gσ (xxx), c = 1,2, ...,C. (2)

As a result, the multi-class density map MMMden ∈ R+C×H×W is a stack of per-class density map,

where C is the number of classes.

4.2. Object Size Estimation

Our proposed approach to object size estimation is composed of two stages. In the first

stage, per-class object size maps are generated by the size map head which follows the backbone

network as shown in Figure 4. In the second stage, we try to retrieve the size of each object from

the predicted size map. To this end, we propose a method for individual object size retrieval (c.f.

Section 4.2.2).

4.2.1. Object size map prediction

Inspired by the density map prediction, we attempt to predict the object size map for object

size estimation. In the density map, an object is represented by a Gaussian kernel in the local

region where the object is located in the image. Similarly, we represent the size of an object by

a Gaussian kernel weighted by the corresponding object size and the Gaussian kernel is located

in the local region of the object. As a result, the object size maps can be predicted in the same
14

way as the density maps. As shown in Figure 4, a size head is attached to the backbone network

to transform the feature maps into the predicted object size maps.

Following the notations used in Section 4.1, the ground truth multi-class size maps can be

computed by:

MMMsize
c (xxx) = Sc(xxx)∗Gσ (xxx), c = 1,2, ...,C. (3)

where S(xxx) = ∑
N
i=1 si · δ (xxx− xxxi), N is the number of point annotations in the image and δ (·) is

the Delta function. By comparison with the Hc(xxx) in Eq.(2), S(xxx) is also a matrix of the same

size as the image but has values of object sizes (i.e. si) at the positions of point annotations. The

size map is derived by the convolution between Sc(xxx) and the Gaussian kernel Gσ (xxx). We use

the same Gaussian kernel in Eq.(2) and Eq.(3).

4.2.2. Individual object size retrieval

In this subsection, the method for individual object size retrieval in our approach is intro-

duced. There are two main purposes of this method: to identify the individual object and to

calculate its size from the predicted size map of a text image.

Without the ground truth, identifying the individual object in the size map is the first step

of our retrieval method. As explained before, the size map is patched by the Gaussian kernels.

The Gaussian kernel is an isotropic function and the weight decreases as moves away from

the centre. The weight of the centre element is the maximum compared with its surrounding

elements. Based on this feature, we could identify all individual objects from the size map by a

loop through elements in the size map. Figure 5 shows part of an example size map, the weight in

each box is calculated by Eq.(3). The element in the red box has the maximum weight compared

with the weight of those elements in the blue boxes surrounding it. This element is then marked

as the centre of an object. To get the predicted size of this identified object, we need to add

all the weight of all elements in the red, blue, and green boxes. All these boxes are combined

into a 5×5 kernel. Since the size map is a size reduction version of the test image after several

convolutions, there exists a shrinking ratio set in the implemented backbone CNN model. For

example, we set this ratio as 4 for “Inception-V3”, and “VGG-16-BN”. The patched Gaussian

kernel represents a predicted object and its size is set as 15× 15 in our approach. Therefore,

this 5× 5 kernel in the size map covers almost all the elements of the patched Gaussian kernel

after several convolutions with a shrinking ratio of 4. Note this kernel size may be different with

15

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00100 0.01571 0.02508 0.00887 0.00000 0.00000

0.00000 0.03635 0.13607 0.18154 0.08605 0.00000 0.00000

0.00000 0.07287 0.24365 0.30021 0.13164 0.00000 0.00000

0.00000 0.06606 020377 0.23142 0.09457 0.00000 0.00000

0.00000 0.02828 0.06237 0.05542 0.01911 0.00000 0.00000

0.00000 0.00084 0.00047 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Figure 5: The example of a partly size map (matrix style): red box is the centre element of a Gaussian kernel, blue boxes

are used to check the centre element of the kernel and green boxes are the edge of the kernel.

different backbone CNN models due to the different shrinking ratio settings. The weight of the

elements which is not included in this kernel is relatively small and therefore could be neglected.

After this search process, a list of identified individual objects along with their position and size

information are obtained.

The next step is to identify the true positive (TP), false positive (FP), and false-negative (FN)

instances from the list of predicted individual objects. The basic idea is to match the predicted

object with an object from the list of ground truth objects which has the minimum distance with

it in the size map. We consider two scenarios when matching the objects from two lists: the

length of the predicted objects list (POL) is greater than the ground truth objects list (GTOL),

and the opposite scenario. In both cases, the positions of the predicted objects are multiplied

by the shrinking ratio first. The next step is to match the closed pairs of objects from two lists

based on Eq.(4), where DAB is the distance between objects A and B, and yA and xA represent the

position of the object A.

DAB =
√
(yA− yB)2 +(xA− xB)2 (4)

In the first scenario, for each object in GTOL, we find an object from the POL which has
16

a minimum distance with it in the size map and then mark this pair of objects with a match.

Sometimes, there may exist some objects in the POL which involve multiple matches. These

duplicate matches are caused by the overlapping items in the test figure. To identify the correct

match, we compare the size differences among these matched pairs. The object in the GTOL

which has the minimum size difference with this popular matched object in the POL keeps the

match. In the second scenario, for each object in POL, we match it with an object from the

GTOL which has a minimum distance from it in the size map. Also, we use the same way to

identify the correct match for the objects in the GTOL which has multiple matches. The multiple

matches in this scenario may be caused by the wrong prediction.

After the matching process, the objects in the POL which are not matched are marked as FP;

the objects in the GTOL which are not matched are marked as FN and the matched objects in the

two lists are marked as TP. Then we can calculate the metrics of precision, recall, F1-score, and

MAPE for the prediction. The detail of these evaluation metrics is presented in Section 5.1. The

first step of our retrieval method -identifying the individual object in the size map- is presented

in Algorithm 1: Individual Object Size Retrieval (IDSR) algorithm. Note, the s in row 6 is the

size of the kernel which is related to the shrinking ratio set in the backbone CNN model. We

set s as the ceiling value of the ratio between 15 and the size ratio, then add one to cover all the

elements of the patched Gaussian kernel (size 15× 15). The algorithm of how to identify the

TP, FP, and FN instances from the list of predicted individual objects is shown in Algorithm 2:

Target Matching (TM). Since our approach outputs the size map for each class separately in the

multi-class size problem, the proposed Algorithm 1 and 2 can also be used to do the individual

object size retrieval for the multi-class size problem.

To analyze the time complexity of Algorithm 1, the number of elementary operations of each

step needs to be counted. Assuming both the length and the width of a size map are n, where the

n equals 512 in our case. The purpose of the first part of Algorithm 1 is to identify individual

objects from the size Map. We use a sliding window in size map to loop all the points. For each

point, it will compare with all of its surrounding points once at most. If the object is identified at

this point, 3 further operations will be performed to get the related information. Therefore, the

time complexity of this algorithm is O(n2). The Algorithm 2 focuses on the operations of lists of

GTOL and POL. Assume the number of the object in this size map is m. That means the length

of GTOL or POL is m or close to m. To match the objects between two lists which needs at most

17

(m×m) operations and the related time complexity is O(m2). The rest code in the second part is

dealing the multiple matches for each object in the lists and the time complexity is also O(m2).

Hence, the time complexity of Algorithm 2 is O(m2). The maximum units of memory space

required to run Algorithm 1 and Algorithm 2 are (n2 +m2×2) that are used to save the size map

and two lists. In conclusion, the time complexity of Algorithm 1 and Algorithm 2 are O(n2) and

O(m2), repetitively. This means the execution time of our proposed algorithm is either given by

a polynomial on the size/time of the input or can be bounded by such a polynomial.

Algorithm 1 Individual Object Size Retrieval
Input: The size map and the ground truth object list (GTOL),

Output : The the predicted objects list (POL).

1: procedure IDENTIFY INDIVIDUAL OBJECTS FROM THE SIZE MAP

2: for each point in the size map (matrix) do

3: if the value of current point > all surrounding points then

4: Current point← the centre of an identified object’s Gaussian kernel.

5: The coordination of this object← current position.

6: The size of this object← sum of all values of s× s kernel around current point.

7: Append this object and its information to the POL.

8: end if

9: end for

10: end procedure

5. Experiments

5.1. Evaluation Metrics

In this section, we describe the evaluation metrics used for object counting and object size

estimation in our experiments. For single-object counting, we follow the previous works [42]

and use three metrics, i.e., the mean absolute error (MAE), the root mean squared error (RMSE)

and the mean absolute percentage error (MAPE) to evaluate the performance. The three metrics

18

Algorithm 2 Target Matching
Input: The predicted objects list (POL) and the ground truth object list (GTOL),

Output : Identified TP, FP and FN.

1: procedure IDENTIFY THE TP, FP AND FN INSTANCES

2: if the length of POL > the length of GTOL then

3: for each object in the GTOL (list) do

4: match currently object with a closed object from POL in the size map.

5: end for

6: else if the length of POL < the length of GTOL then

7: for each object in the POL (list) do

8: match currently object with a closed object from GTOL in the size map.

9: end for

10: end if

11: if exists an object in the POL or GTOL which has multiple matches then

12: Identify the correct match by size difference of each matched pair;

13: Keep the match for the pair with minimum size difference.

14: end if

15: FP, FN← the objects in the POL and GTOL without match, respectively.

16: TP← the matched objects in the two list.

17: end procedure

19

for a specific class c can be calculated as follows:

MAEc
count =

1
Ntest

Ntest

∑
i=1
|yc

i − ŷc
i | (5)

RMSEc
count =

√√√√ 1
Ntest

Ntest

∑
i=1

(yc
i − ŷc

i)
2 (6)

MAPEc
count =

1
Ntest

Ntest

∑
i=1

|yc
i − ŷc

i |
yc

i
(7)

where yc
i and ŷc

i are the ground truth and predicted count for the c-th object class in i-th test image

respectively, Ntest is the number of test images.

For multi-class object counting, we calculate the per-class evaluation metrics (e.g., MAEc
count ,

RMSEc
count and MAPEc

count) for each class using Eqs.(5-7) and the averages over all C classes can

be calculated as:

MAEcount =
1
C

C

∑
c=1

MAEc
count (8)

RMSEcount =
1
C

C

∑
c=1

RMSEc
count (9)

MAPEcount =
1
C

C

∑
c=1

MAPEc
count (10)

For the object size estimation, we first evaluate the performance of individual object retrieval

using the metrics of precision, recall and F1-score which can be computed as follows:

Precision =
1

Ntest

Ntest

∑
i=1

T Pi

T Pi +FPi
(11)

Recall =
1

Ntest

Ntest

∑
i=1

T Pi

T Pi +FNi
(12)

F1 =
2×Precision×Recall

Precision+Recall
(13)

where T Pi, FPi, FNi are the numbers of true positive, false positive and false negative instances

in the i-th test image, respectively.

Based on the retrieval results, we evaluate the size estimation errors for each object class

using MAPE. We do not use MAE and RMSE for the evaluation of object size estimation since

we do not care about the absolute values of object sizes in our experimental settings. The MAPE

20

for object size estimation is calculated over all the object instances in all the test images for a

specific object class c.

MAPEc
size =

1

∑
Ntest
i=1 ni

Ntest

∑
i=1

ni

∑
j=1

|sc
i j− ŝc

i j|
sc

i j
(14)

where sc
i j and ŝc

i j are the ground truth and predicted sizes of the j-th object instance belonging to

the c-th class in the i-th test image. When there are multiple object classes in the test images, the

overall performance can be evaluated by the average of MAPE overall C classes:

MAPEsize =
1
C

C

∑
c=1

MAPEc
size (15)

5.2. Experimental settings

In this section, we illustrate the experimental settings and designs of our all experiments.

5.2.1. Experiment of single-class object counting and size estimation

For the experiment of single-class object counting and size estimation (Section 6.1) VGG-

16-BN is implemented in PyTorch [31]. The “Adam” optimizer is employed for training. This

experiment aims to evaluate the approach to object counting and size estimation for the single-

class object. The learning rate is set to 1e-4 and reduced by a factor of 0.5 after every 50 epochs.

Since the model can always converge after around 100 epochs for all test classes, we set the total

number of the training epochs to 200. As stated in Section 3, we have 30 images with labels of

class and size for each class. There are 13 classes of fruit or vegetable in total. Each class of

dataset contains 6 groups which is the combination of counts in different ranges and sizes. In

the experiments, we randomly select three images from each group as the training image set and

the rest of the two images are set as the test image set. The training and testing ratio is 1.5 in

our case. During the training process, rather than preparing the patch in advance, we randomly

select 8 images from the training set and 4 patches are randomly cropped from each selected

image. Therefore, each iteration of training generates a batch of 32 training patches. In this

way, the model processes more diverse training patches, which helps to alleviate the potential

over-fitting problem. The output of VGG-16-BN has the size of 128∗128 (i.e. 1/4 of the input

size). The method we use to adapt the ground truth density and size map is the sum-pool, which

has the same size as the output. As stated in [14] [48], horizontally flipping the training patches

and corresponding density or size map with a set probability for data augmentation could be

beneficial for the training process. Therefore, we set this probability as 0.5. For testing, the
21

density map or size map of the test figure could be output by feeding the whole image to the

network. The predicted count can be computed by aggregating all the pixel values in the density

map. The size map is used for the individual object size retrieval process.

For the single-class object counting and size estimation, we also design and implement a

separate experiment to examine the effect of different number of the class instance in the training

and test images on the prediction result. Except for the training and test sets of images, the rest

of the experiment setting remains the same as the experiment of single-class object counting and

size estimation. Based on Table 1, we create three comparative experiment datasets. We first use

the images which contain the large and medium size of instances to train the model and images

contain the small size of instances for testing; then use the images which contain the small and

large size of instances to train the model and images contain the medium size of instances to test;

finally, use the images which contains the small and medium size of instances to train the model

and images contain the large size of instances to test.

5.2.2. Experiment of multi-class object counting and size estimation

For the multi-class object counting and size estimation, we design 4 comparative experi-

ments. In each experiment, 3 classes of fruits or vegetables are selected and then we generate

the training and test image dataset which only contains these 3 classes of instances from Unity.

These experiment datasets also follow the setting stated in Table 1. The rest of the experiment

settings keeps the same with the experiment of single-class object counting and size estimation.

The results of this part are stated in Section 6.2.

5.2.3. Experiment on the different number of training images

We also evaluate the effect of the different number of training images on the prediction result

in our approach. We run 5 experiments in which 6, 18, 30, 42, and 60 images are used for

training, respectively. The number of the test images keeps the same as in previous experiments:

12. These datasets only contain one class of instance: banana, and the number of images of all 6

groups (group detail is shown in Table 1) are equally generated and selected. The corresponding

experiment results are stated in Section 6.3.

5.2.4. Experiment on the different backbone networks and segmentation algorithms

The last part of the experiment is to test the different backbones of the deep CNN model.

Except for the mentioned VGG-16-BN, several state-of-art models for image classification are
22

implemented and tested which include: Inception-V3, TEDNet [20], ResNet-50, DenseNet-121

and ShuffleNet v2x0.5 [25]. The dataset used in these experiments is 30 images of the carrot

dataset which was also used in the experiment of single-class object counting and size estima-

tion. It is noteworthy that the generated density and size maps have different sizes for those

models (e.g., the size ratio between input and output is 1 for “TEDNet”, 4 for “Inception-V3”,

“ShuffleNet v2x0.5” and “VGG-16-BN”, 8 for “ResNet-50” and “DenseNet-121”).

Since our object size retrieval algorithm is based on the property of the patched Gaussian ker-

nel in the predicted size map, the algorithm is not valid in the following two cases: the weights

in the patched kernel are not Gaussian distributed; the patched Gaussian kernel is not in a regular

shape such as squares. In the first case, detecting the location of individual objects could be a

problem. For both cases, segmenting the edge of the detected objects if they touch each other or

cover the neighbours is difficult (i.e. difficult to identify the individual objects and get their size).

The Connected-component labelling (CCL) algorithm [36] and Watershed algorithm [27] could

segment the edge of the detected objects. However, they do not have the capability of matching

the segmented individual objects with the ground truth. By contrast, Algorithm 2 is applied in

our study to identify the TP, FP, and FN instances from the list of segmented individual objects.

Therefore, we design the experiment to prove the precision and feasibility of our proposed Algo-

rithm 1 and Algorithm 2 for the individual object size retrieval problem. Also, this experiment

aims to identify the feasible backbones of the deep CNN model for our problem. In this part

of the experiment, MCNN [51], TEDNet [20] and VGG-16-BN [38] are implemented with the

apple and carrot dataset. MCNN is a three-column CNN and TEDNet employs the basic In-

ception model. The experiment settings for VGG-16-BN remain the same as the experiment of

single-class object counting and size estimation. The learning rate in MCNN and TEDNet is set

to 1e-3 and reduced by a factor of 0.5 after every 50 epochs. The size ratio between input and

output is 1 for “TEDNet”, and 4 for “MCNN” respectively. The rest of the experiment settings

for MCNN and TEDNet are the same as the VGG-16-BN. To compare with the results of Algo-

rithm 1 for the individual object detection, CCL and Watershed algorithms are implemented to

process the size map obtained by MCNN, VGG-16-BN, and TEDNet. Algorithm 2 is applied to

identify the TP, FP, and FN instances from the results of these three methods. To evaluate the

object detection result of these methods, the object detection rate is used, which is the ratio of

the number of detected objects in the predicted size map and the ground truth of the number of

23

Table 3: Results of single-class object counting and size estimation.

Class
Counting ↓ Retrieval ↑ Size estimation ↓

MAEcount RMSEcount MAPEcount(%) Precision(%) Recall(%) F1(%) MAPEsize(%)

Tomato 0.67 ± 0.34 0.93 ± 0.47 0.96 ± 0.47 99.78 ± 0.11 98.03 ± 0.55 98.89 ± 0.24 5.16 ± 0.46

Orange 0.89 ± 0.12 1.12 ± 0.13 1.31 ± 0.12 99.06 ± 0.53 98.45 ± 0.46 98.74 ± 0.36 5.47 ± 0.14

Avocado 1.19 ± 0.14 1.71 ± 0.16 1.61 ± 0.20 98.17 ± 0.90 97.78 ± 0.50 97.94 ± 0.69 8.54 ± 1.17

Onion 1.36 ± 0.41 1.68 ± 0.46 2.01 ± 0.57 99.26 ± 0.53 97.78 ± 0.71 98.49 ± 0.52 9.72 ± 0.79

Pear 1.49 ± 0.29 1.86 ± 0.41 2.21 ± 0.26 98.69 ± 0.54 97.38 ± 0.22 98.02 ± 0.38 9.77 ± 0.29

Melon 1.61 ± 0.62 2.03 ± 0.81 2.40 ± 1.05 99.43 ± 0.34 97.71 ± 0.25 98.55 ± 0.15 5.87 ± 0.14

Shallot 1.62 ± 0.28 2.23 ± 0.38 2.16 ± 0.45 98.97 ± 0.22 96.62 ± 0.50 97.77 ± 0.23 8.79 ± 0.50

Artichoke 1.98 ± 0.34 2.40 ± 0.28 2.87 ± 0.42 95.50 ± 1.59 98.32 ± 0.26 96.81 ± 0.88 10.92 ± 0.33

Garlic 1.98 ± 0.41 2.45 ± 0.51 3.17 ± 0.67 98.82 ± 0.44 96.61 ± 0.16 97.68 ± 0.18 11.12 ± 0.25

Apple 2.18 ± 1.06 2.86 ± 1.51 3.29 ± 1.60 97.10 ± 0.78 98.72 ± 0.35 97.87 ± 0.58 8.88 ± 0.56

Banana 3.41 ± 0.48 4.55 ± 0.63 5.11 ± 0.93 86.36 ± 1.72 95.43 ± 1.14 90.18 ± 0.73 20.51 ± 3.64

Courgette 4.53 ± 0.63 5.87 ± 0.57 6.27 ± 0.81 84.28 ± 3.30 94.17 ± 0.51 88.37 ± 1.86 18.51 ± 0.92

Carrot 5.04 ± 0.71 6.11 ± 0.81 7.43 ± 0.88 85.14 ± 2.22 94.95 ± 0.44 89.28 ± 1.34 15.49 ± 1.30

objects in the original image. The experiment results of this part are stated in Section 6.4.

6. Results

In this section, we present and analyze the results of our designed experiments. Most of the

results are ordered lists in the table, from good performance to lower preference.

6.1. Results of single-class object counting and size estimation

The experiment results of single-class object counting and size estimation are listed in Table

3. From the table, we can see our model has the competitive preference on the class of tomato

and orange among all 13 classes, especially tomato has the best MAEcounting of 0.67 and the best

MAPEsize of 5.16. This means the instances which have the sphere shape are relatively easier

to train and predict in the counting and size estimation problem. Also, the colours of these two

classes are bright which could also affect the prediction performance. For the classes that have a

shape of the cylinder such as banana, courgette, and carrot, the prediction results are relatively

worse compared with other classes. The model achieves the highest MAPEsize of 20.51 on the

class of banana and the highest MAEcounting of 5.04 on the class of carrot. The performance

of the rest of the classes which have an approximate ellipse shape is intermediate. Compared

with other shapes, the class of objects with sphere shape has less chance of overlapping and
24

Table 4: Results of single-class (apple) counting and size estimation on size-divided datasets.

Dataset detail Counting ↓ Retrieval ↑ Size estimation ↓

Train Test MAEcount RMSEcount MAPEcount(%) Precision(%) Recall(%) F1(%) MAPEsize(%)

Medium & Large Small 0.89 ± 0.09 1.02 ± 0.09 1.42 ± 0.20 98.64 ± 0.73 97.80 ± 0.36 98.20 ± 0.45 9.90 ± 0.22

Small & Large Medium 1.85 ± 0.23 2.26 ± 0.27 2.71 ± 0.15 98.50 ± 0.65 98.12 ± 0.44 98.30 ± 0.55 9.87 ± 0.75

Small & Medium Large 2.02 ± 0.72 2.58 ± 0.91 3.06 ± 1.21 97.50 ± 0.62 98.53 ± 0.40 97.99 ± 0.36 8.40 ± 0.43

touching objects in the test image. This is the reason why the class of sphere objects such as

tomato and orange has a better performance in the experiment. Figure 6 shows the example

output results of tomato (best performance) and carrot (worst performance) for one of their test

images respectively.

We choose apple to generate the size-divided dataset since its counting and size estimation

results show an intermediate performance in the last experiment. This provides the space to

show the effect of the size-divided dataset on the prediction performance. The running results are

shown in Table 4. Using image sets of medium and large size instances for training and to image

sets of small size instances for testing achieves the best performance on counting, MAEcounting of

0.89; but obtains the highest MAPEsize of 9.90 on size estimation. On the contrary, using image

sets of medium and small size instances for training and image sets of large size instances for

testing achieves the best performance on size estimation, MAEcounting: 8.40. Also, this dataset

performs the highest MAEcounting of 2.02 on counting. The results show that the large instances

are slightly better to use for training on counting and small instances slightly better to use for

training on size estimation. The reason is obvious, that the larger object is easier to detect and

the smaller object will have the smaller prediction error on size estimation.

Previously mentioned experiments in this subsection prove that 1) our proposed approach

could solve the problems of single-class object counting and size estimation, 2) the created

dataset could be used to train and test for such problems.

6.2. Results of multi-class object counting and size estimation

In the experiments of multi-class object counting and size estimation, we create 4 datasets and

each dataset contains 3 classes of fruit or vegetable. The results of the 4 experiments are listed

in Table 5. From the table, we can see the results from the experiment of 3-class object counting

and size estimation close to the mean of each class’s results from the experiments of single-

class object counting and size estimation in Table 3. For example, the result MAEcounting and
25

Figure 6: The example output results of tomato (best performance) and carrot (worst performance) for one of their test

images respectively.

26

Table 5: Results of multi-class counting and size estimation.

Class
Counting ↓ Retrieval ↑ Size estimation ↓

MAEcount RMSEcount MAPEcount(%) Precision(%) Recall(%) F1(%) MAPEsize(%)

Banana, orange & apple 1.21 ± 0.12 1.00 ± 0.18 5.23 ± 0.36 67.25 ± 6.59 98.90 ± 0.25 79.54 ± 4.52 13.34 ± 0.11

Banana, avocado & apple 1.56 ± 0.19 1.18 ± 0.15 6.66 ± 0.82 70.21 ± 3.95 98.65 ± 0.50 81.37 ± 2.51 13.91 ± 0.40

Carrot, pear & melon 1.84 ± 0.34 1.69 ± 0.34 7.73 ± 1.38 67.76 ± 1.26 97.69 ± 0.11 79.41 ± 0.71 16.67 ± 1.06

Banana, avocado & artichoke 1.93 ± 0.11 1.41 ± 0.08 8.28 ± 0.39 64.14 ± 7.11 98.11 ± 0.17 76.90 ± 5.21 15.86 ± 1.46

Table 6: Results of single-class (banana) counting and size estimation on the different number of training images.

Pictures number Counting ↓ Retrieval ↑ Size estimation ↓

Train Test MAEcount RMSEcount MAPEcount(%) Precision(%) Recall(%) F1(%) MAPEsize(%)

6 6 15.29 ± 8.96 18.20 ± 10.31 23.09 ± 13.58 68.16 ± 3.76 94.82 ± 1.15 77.84 ± 2.97 36.33 ± 3.50

18 12 3.41 ± 0.48 4.55 ± 0.63 5.11 ± 0.93 86.36 ± 1.72 95.43 ± 1.14 90.18 ± 0.73 20.51 ± 3.64

30 18 3.15 ± 0.22 3.94 ± 0.32 4.35 ± 0.23 86.15 ± 0.84 96.78 ± 0.53 90.96 ± 0.52 12.04 ± 0.20

42 30 1.69 ± 0.14 2.13 ± 0.18 2.41 ± 0.22 85.09 ± 1.97 96.97 ± 0.06 90.35 ± 1.12 10.70 ± 0.63

60 30 1.91 ± 0.33 2.41 ± 0.36 2.60 ± 0.38 85.94 ± 2.40 97.32 ± 0.28 91.00 ± 1.45 9.72 ± 0.31

MAPEsize from the experiment “banana, orange & apple” in Table 5 are better than MAEcounting

and MAPEsize from the experiment “banana” but worse than the experiment “orange” in Table 3.

By replacing the avocado with orange in the dataset (orange has better performance in the single-

class experiment), both MAEcounting and MAPEsize are increased. By replacing the apple with

artichoke, both MAEcounting and MAPEsize are increased even artichoke has better performance

in the single-class experiment than the apple. This may be because of the colour effect that both

the avocado and artichoke are green which will affect the prediction result. Figure 7 shows the

example output results of experiment of banana, avocado & apple for one of the test images.

All these results prove our proposed deep model architecture-based approach can solve the

problems of multi-class object counting and size estimation.

6.3. On the number of training images

To investigate the effect of the number of training images on the prediction performance of

our approach, we generate 5 image datasets that have different numbers of training images. The

results of the 5 experiments are shown in Table 6. We can see that in general with the increase

in the number of training images used in the experiment, both MAEcounting and MAPEsize are

decreased which means the prediction performance of our approach becomes better with the

sufficient training dataset. However, keep including more training images does not necessarily

27

Figure 7: The example output results of experiment of banana, avocado & apple for one of the test images.

28

Table 7: Results of single-class (carrot) counting and size estimation on different backbone networks.

Method
Counting ↓ Retrieval ↑ Size estimation ↓

MAEcount RMSEcount MAPEcount(%) Precision(%) Recall(%) F1(%) MAPEsize(%)

TEDNet 1.31 ± 0.18 1.61 ± 0.16 2.06 ± 0.24 93.63 ± 1.49 97.38 ± 0.11 95.35 ± 0.77 11.09 ± 1.45

Inception-v3 4.42 ± 1.01 5.41 ± 1.32 7.34 ± 2.07 88.24 ± 4.33 92.66 ± 0.64 90.19 ± 2.12 13.93 ± 1.63

VGG-16-bn 5.04 ± 0.71 6.11 ± 0.81 7.43 ± 0.88 85.14 ± 2.22 94.95 ± 0.44 89.28 ± 1.34 15.49 ± 1.30

Resnet-50 8.51 ± 2.24 10.71 ± 2.90 11.99 ± 2.80 N.A N.A N.A N.A

Densenet-121 12.72 ± 3.63 15.67 ± 4.85 18.26 ± 3.18 N.A N.A N.A N.A

ShuffleNet v2x0.5 22.86 ± 1.51 25.40 ± 1.79 32.72 ± 2.02 N.A N.A N.A N.A

increase the performance of the prediction. This may be because the model quickly converges

close to its performance limit with the increasing number of training images. As shown in Table

6, MAEcounting is increased from 1.69 to 1.91 even when we add 18 additional images to the train-

ing dataset. For the counting problem, the prediction performance is acceptable even after we

only adopt a few images for training: MAEcounting of 15.29 for 6 training images and MAEcounting

of 3.41 for 18 training images. In comparison, there need at least 18 images for training to obtain

a high Precision rate of 86.36 and MAPEsize of 20.51. This is because the size is an added feature

for the size estimation problem where the counting problem does not consider.

The results of this experiment show that our proposed approach and dataset follow the gen-

eral principle of the deep model: an increase in the training data could improve the prediction

performance. This proves the feasibility of our proposed approach and the dataset.

6.4. On the backbone networks

Table 7 shows the experimental results of different backbone CNN models in our approach.

TEDNet and Inception-v3 achieve the best and second performance in both the counting and

size estimation problems respectively. The training time of TEDNet is around 21 minutes.

Inception-v3 and VGG-16-bn cost around 26 and 28 minutes for training respectively. Resnet-

50 is faster which only costs around 20 minutes for training but the counting results is not good

enough compared with Inception-v3 and VGG-16-bn. We know that the TEDNet employs the

Inception− style modules. The good performance of TEDNet and Inception-v3 shows that the

inception modules are beneficial to crowd counting. The reason is that the inception module was

designed to capture different scales of contextual information in each convolutional layer. From

the table, we can also observe that the size map predicted by Resnet -50, Densenet-121, and

ShuffleNet v2x0.5 cannot apply Algorithm 1 for the individual object size retrieval due to the
29

following reasons. On the one hand, that is because the weight of the patched kernel in their ob-

tained size map is not Gaussian distributed but uniformly distributed. For the counting problem,

the output result is straightforward to get - the sum of the density map. However, for the size es-

timation problem, retrieval of the individual objects from the size map predicted by these models

is difficult, especially without the ground truth information. On the other hand, the output size of

the predicted size map from Resnet-50 and Densenet-121 is 64*64 which is too small compared

with the patch size (4*4) to do the segmentation. The shrink ratio caused too many touching and

covering objects which is hard or impossible to do the segmentation. The performance of Shuf-

fleNet v2x0.5 is poor. Hence these three models are not suitable for the size estimation problem

in our approach. Therefore the size estimation results of these three models in Table 7 are shown

as “NA” not available. This experiment evaluates the feasibility and efficiency of the state-of-art

backbone CNNs in our approach, which proves our claim of solving multi-class object counting

and size estimation problems.

To prove the precision and feasibility of our proposed Algorithm 1 (IOSR) for the individual

object detection problem in our approach, we implement the MCNN, VGG-16-bn, and TEDNet

with the apple and carrot datasets. The reasons to select MCNN as comparison are the following:

it can output the appropriate size of the size map; the obtained size map cannot be applied

with Algorithm 1 because its size map also reflects the shape of objects from the original map.

Figure 8 shows an example of the size map obtained from MCNN. We could see that the objects

touching and covering are transferred from the original image to the predicted size map. CCL

and Watershed algorithms may solve this problem to segment the individual objects. As said

before, they do not have the capability of matching the segmented individual objects with the

ground truth, the Algorithm 2 (TM) is also applied to identify the TP, FP, and FN instances from

the list of segmented individual objects.

From Table 8, we can draw the following conclusions. The method which shows the best

performance in each experiment is highlighted in bold. Notice that, the Recall used to evaluate

the result of our method is the ratio of true positive of detected objects and the ground truth,

see Eq (11) for detail. By contrast, the Object detection rate used to evaluate the result of CCL

and Watershed algorithms is the ratio of all detected objects and the ground truth. Comparing

with CCL and Watershed algorithm, our method IOSR+TM returns the best result for both

the apple and carrot datasets in all experiments. We suppose the reason for these results is

30

Original image Size map obtained from MCNN

Figure 8: The example of a size map obtained by MCNN.

that CCL and Watershed algorithms are traditional segment algorithms that can not better deal

with covering and touching items. The covering or touching objects will be segmented as one

object. CCL and Watershed algorithms perform better for round objects. The Object detection

rates calculated by these two methods for the dataset apple are much better than carrot under all

models. For example, using the CCL method, we obtain 90.82% for the apple with the model

MCNN and 65.71 % for the carrot with the same model. This shows the limitation of the CCL

and Watershed algorithm and proves our assumption. The results of IOSR+TM do not show this

drawback. The result Recall of IOSR+TM has the better performance with the model TEDNet

compared with VGG-16-bn. This might be because the output size of TEDNet is 512*512

which could avoid more touching and covering patches. As shown in Table 7, TEDNet shows

the better performance for the size estimation. The model that outputs a size map like MCNN is

not appropriate to do the size estimation in our approach since the object touching and covering

are transferred from the original image to the predicted size map. CCL and Watershed algorithms

also do not show a good performance on segmenting such kind of size map.

In conclusion, the results from Table 8 show our proposed individual object size retrieval

method can output a better performance to identify the individual object and calculate its size

from the predicted size map of a text image compare with existing methods. This proves our

31

Table 8: Results of the different object detecting methods for size map obtained by different backbone CNN model.

Dataset Model Object detecting method Object detection rate (D,%) / Recall (R,%) ↑ Output size

Apple MCNN Watershed+TM 87.06 ± 1.86 (D) 128*128

Apple MCNN CCL+TM 90.82 ± 1.23 (D) 128*128

Apple VGG-16-bn CCL+TM 89.23 ± 2.16 (D) 128*128

Apple VGG-16-bn Watershed+TM 82.57 ± 5.07 (D) 128*128

Apple VGG-16-bn IOSR+TM 98.72 ± 0.35 (R) 128*128

Apple TEDNet CCL+TM 99.06 ± 1.16 (D) 512*512

Apple TEDNet Watershed+TM 97.68 ± 0.19 (D) 512*512

Apple TEDNet IOSR+TM 99.75 ± 0.05 (R) 512*512

Carrot MCNN Watershed+TM 64.00 ± 6.51 (D) 128*128

Carrot MCNN CC+TML 65.71 ± 15.94 (D) 128*128

Carrot VGG-16-bn CCL+TM 86.00 ± 2.11 (D) 128*128

Carrot VGG-16-bn Watershed+TM 76.34 ± 1.87 (D) 128*128

Carrot VGG-16-bn IOSR+TM 94.95 ± 0.44 (R) 128*128

Carrot TEDNet CCL+TM 86.02 ± 1.58 (D) 512*512

Carrot TEDNet Watershed+TM 85.91 ± 1.93 (D) 512*512

Carrot TEDNet IOSR+TM 97.38 ± 0.11 (R) 512*512

claim of overcoming the barrier in current research of multi-class object size estimation in Sec-

tion 1.

7. Conclusion

In this work, we formulate a practical problem of multi-class object counting and size estima-

tion. A unified framework based on deep convolutional neural networks is proposed. We create a

new dataset for evaluating the performance in multi-class object counting and size estimation by

synthetically generating images of multi-class objects using the Unity platform. Experimental

results demonstrate the effectiveness of the proposed solution and provide baseline performance

for the new problem. It is also discovered different deep CNN models are suitable for counting

objects of different shapes and appearances. In addition, the dataset could provide a suitable

testbed for few-shot learning and meta-learning beyond image classification tasks.

Our work can be extended in several aspects. First, our dataset is synthetically generated

from the Unity platform - a gaming engine. We have discussed our dataset could be used to train

32

the deep learning model and this model can be used in the real applications of object counting

and size estimation without further feature-text-specified training. Some work also proves the

use of data from the gaming environment can be transferred to real applications or other gaming

environments. Due to the lack of a dataset from the real world, we can not carry out such an

experiment to test our dataset and the proposed approach. To overcome this limitation, we plan

to collaborate with a supermarket company to get some real-world data, i.e., collect the images of

fruit and vegetable brought by the customer from the self-checkout machine. Second, different

background colours and light can be the environmental parameters that affect the performance

of our proposed approach. The further experiment needs to be carried out for testing these

environmental effects for the training and test performance. In Unity, the background can be

changed to any colour or image by replacing the material of the panel. Also, a well-designed

lighting model could simulate realistic light. Following the above, we could generate a new

dataset for the environmental effect experiment.

Although we used 13 classes of fruit or vegetable (and also can be extended by creating a

new model in Unity) to train the deep learning model, how to deal with the new images which

contain the new class of the object but do not provide the marking information? To deal with

such situations, in the future, we will focus on few-shot learning based on the created dataset.

How to improve the prediction performance under the limited number of training images is a

research problem worth further investigation. We plan to explore meta-learning in this direc-

tion of research. Current few-shot learning and meta-learning methods mostly focus on image

classification tasks. Instead, object counting and size estimation in our approach are regression

problems. Therefore, how to use meta-learning for the regression tasks under the input of the

images is another research direction in the future beyond this work.

References

[1] Aich, S. and Stavness, I. (2017). Leaf counting with deep convolutional and deconvolutional networks. In Proceed-

ings of the IEEE International Conference on Computer Vision Workshops, pages 2080–2089.

[2] Al-Thani, N., Albuainain, A., Alnaimi, F., and Zorba, N. (2020). Drones for sheep livestock monitoring. In 2020

IEEE 20th Mediterranean Electrotechnical Conference (MELECON), pages 672–676. IEEE.

[3] Apolo-Apolo, O., Martı́nez-Guanter, J., Egea, G., Raja, P., and Pérez-Ruiz, M. (2020). Deep learning techniques for

estimation of the yield and size of citrus fruits using a uav. European Journal of Agronomy, 115:126030.

[4] Cang, Y., He, H., and Qiao, Y. (2019). An intelligent pig weights estimate method based on deep learning in sow

stall environments. IEEE Access, 7:164867–164875.
33

[5] Cao, L., Xiao, Z., Liao, X., Yao, Y., Wu, K., Mu, J., Li, J., and Pu, H. (2021). Automated chicken counting in

surveillance camera environments based on the point supervision algorithm: Lc-densefcn. Agriculture, 11(6):493.

[6] Cook, D. J., Holder, L. B., and Youngblood, G. M. (2007). Graph-based analysis of human transfer learning using a

game testbed. IEEE Transactions on Knowledge and Data Engineering, 19(11):1465–1478.

[7] Ege, T., Ando, Y., Tanno, R., Shimoda, W., and Yanai, K. (2019). Image-based estimation of real food size for

accurate food calorie estimation. In 2019 IEEE Conference on Multimedia Information Processing and Retrieval

(MIPR), pages 274–279. IEEE.

[8] Enozone (2018). Supermarket with lod. https://assetstore.unity.com/packages/3d/environments/urban/

supermarket-with-lod-110050. Accessed: 2020-09-30.

[9] Gao, G., Liu, Q., and Wang, Y. (2020). Counting from sky: A large-scale data set for remote sensing object counting

and a benchmark method. IEEE Transactions on Geoscience and Remote Sensing, 59(5):3642–3655.

[10] Garcia Arnal Barbedo, J. (2012). A review on methods for automatic counting of objects in digital images. IEEE

Latin America Transactions, 10(5):2112–2124.

[11] Gené-Mola, J., Sanz-Cortiella, R., Rosell-Polo, J. R., Escolà, A., and Gregorio, E. (2021). In-field apple size

estimation using photogrammetry-derived 3d point clouds: Comparison of 4 different methods considering fruit oc-

clusions. Computers and Electronics in Agriculture, 188:106343.

[12] Go, H., Byun, J., Park, B., Choi, M.-A., Yoo, S., and Kim, C. (2021). Fine-grained multi-class object counting. In

2021 IEEE International Conference on Image Processing (ICIP), pages 509–513. IEEE.

[13] Gongal, A., Karkee, M., and Amatya, S. (2018). Apple fruit size estimation using a 3d machine vision system.

Information Processing in Agriculture, 5(4):498–503.

[14] Guo, D., Li, K., Zha, Z.-J., and Wang, M. (2019). Dadnet: Dilated-attention-deformable convnet for crowd count-

ing. In Proceedings of the 27th ACM International Conference on Multimedia, pages 1823–1832.

[15] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 770–778.

[16] Heinrich, K., Roth, A., and Zschech, P. (2019). Everything counts: a taxonomy of deep learning approaches for

object counting. In ECIS.

[17] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convolutional networks.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708.

[18] Idrees, H., Saleemi, I., Seibert, C., and Shah, M. (2013). Multi-source multi-scale counting in extremely dense

crowd images. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2547–2554.

[19] Idrees, H., Tayyab, M., Athrey, K., Zhang, D., Al-Maadeed, S., Rajpoot, N., and Shah, M. (2018). Composition loss

for counting, density map estimation and localization in dense crowds. In Proceedings of the European conference

on computer vision (ECCV), pages 532–546.

[20] Jiang, X., Xiao, Z., Zhang, B., Zhen, X., Cao, X., Doermann, D., and Shao, L. (2019). Crowd counting and density

estimation by trellis encoder-decoder networks. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 6133–6142.

[21] Jingying, W. (2021). A survey on crowd counting methods and datasets. In Advances in Computer, Communication

and Computational Sciences, pages 851–863. Springer.

[22] Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C., Gao, Y., Henry, H., Mattar, M., and

34

https://assetstore.unity.com/packages/3d/environments/urban/supermarket-with-lod-110050
https://assetstore.unity.com/packages/3d/environments/urban/supermarket-with-lod-110050

Lange, D. (2020). Unity: A general platform for intelligent agents.

[23] Lempitsky, V. and Zisserman, A. (2010). Learning to count objects in images. Advances in neural information

processing systems, 23.

[24] Liu, X., Chen, S. W., Aditya, S., Sivakumar, N., Dcunha, S., Qu, C., Taylor, C. J., Das, J., and Kumar, V. (2018).

Robust fruit counting: Combining deep learning, tracking, and structure from motion. In 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 1045–1052. IEEE.

[25] Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European conference on computer vision (ECCV), pages 116–131.

[26] Ma, T., Liu, S., and Wang, Q. (2022). On data annotation efficiency for image based crowd counting. In Interna-

tional Conference on Visual Communications and Image Processing (VCIP). IEEE.

[27] Najman, L. and Schmitt, M. (1994). Watershed of a continuous function. Signal Processing, 38(1):99–112.

[28] Okamoto, K. and Yanai, K. (2016). An automatic calorie estimation system of food images on a smartphone. In

Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management, pages 63–70.

[29] Oo, L. M. and Aung, N. Z. (2018). A simple and efficient method for automatic strawberry shape and size estima-

tion and classification. Biosystems engineering, 170:96–107.

[30] Pandit, A. and Rangole, J. (2014). Literature review on object counting using image processing techniques. Inter-

national Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(4):8509–8512.

[31] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and

Lerer, A. (2017). Automatic differentiation in pytorch. In Thirty-first Conference on Neural Information Processing

Systems.

[32] Ponce, J. M., Aquino, A., Millán, B., and Andújar, J. M. (2018). Olive-fruit mass and size estimation using image

analysis and feature modeling. Sensors, 18(9):2930.

[33] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region

proposal networks. Advances in neural information processing systems, 28:91–99.

[34] Sa, J., Choi, Y., Lee, H., Chung, Y., Park, D., and Cho, J. (2019). Fast pig detection with a top-view camera under

various illumination conditions. Symmetry, 11(2):266.

[35] Salamı́, E., Gallardo, A., Skorobogatov, G., and Barrado, C. (2019). On-the-fly olive tree counting using a uas and

cloud services. Remote Sensing, 11(3):316.

[36] Samet, H. and Tamminen, M. (1988). Efficient component labeling of images of arbitrary dimension represented

by linear bintrees. IEEE transactions on pattern analysis and machine intelligence, 10(4):579–586.

[37] Shaker, N. and Abou-Zleikha, M. (2016). Transfer learning for cross-game prediction of player experience. In

2016 IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8. IEEE.

[38] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556.

[39] Sindagi, V. A. and Patel, V. M. (2018). A survey of recent advances in cnn-based single image crowd counting and

density estimation. Pattern Recognition Letters, 107:3–16. Video Surveillance-oriented Biometrics.

[40] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception architecture for

computer vision. In CVPR, pages 2818–2826.

[41] Tong, P., Han, P., Li, S., Li, N., Bu, S., Li, Q., and Li, K. (2021). Counting trees with point-wise supervised

35

segmentation network. Engineering Applications of Artificial Intelligence, 100:104172.

[42] Wang, Q. and Breckon, T. P. (2022). Crowd counting via segmentation guided attention networks and curriculum

loss. IEEE Transactions on Intelligent Transportation Systems.

[43] Wang, Z., Walsh, K. B., and Verma, B. (2017). On-tree mango fruit size estimation using rgb-d images. Sensors,

17(12):2738.

[44] Wei, Y., Tran, S., Xu, S., Kang, B., and Springer, M. (2020). Deep learning for retail product recognition: Chal-

lenges and techniques. Computational intelligence and neuroscience, 2020.

[45] Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., and Zhang, L. (2018). Dota: A

large-scale dataset for object detection in aerial images. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3974–3983.

[46] Xu, W., Liang, D., Zheng, Y., Xie, J., and Ma, Z. (2021). Dilated-scale-aware category-attention convnet for

multi-class object counting. IEEE Signal Processing Letters.

[47] Yang, Y., Li, G., Wu, Z., Su, L., Huang, Q., and Sebe, N. (2020). Reverse perspective network for perspective-

aware object counting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 4374–4383.

[48] Zhang, A., Shen, J., Xiao, Z., Zhu, F., Zhen, X., Cao, X., and Shao, L. (2019). Relational attention network for

crowd counting. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6788–6797.

[49] Zhang, B., Wang, N., Zhao, Z., Abraham, A., and Liu, H. (2021). Crowd counting based on attention-guided

multi-scale fusion networks. Neurocomputing, 451:12–24.

[50] Zhang, G., Pan, Y., Zhang, L., and Tiong, R. L. K. (2020). Cross-scale generative adversarial network for crowd

density estimation from images. Engineering Applications of Artificial Intelligence, 94:103777.

[51] Zhang, Y., Zhou, D., Chen, S., Gao, S., and Ma, Y. (2016). Single-image crowd counting via multi-column

convolutional neural network. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 589–597.

[52] Zhu, P., Wen, L., Du, D., Bian, X., Ling, H., Hu, Q., Wu, H., Nie, Q., Cheng, H., Liu, C., et al. (2018). Visdrone-

vdt2018: The vision meets drone video detection and tracking challenge results. In Proceedings of the European

Conference on Computer Vision (ECCV) Workshops, pages 0–0.

36

	Introduction
	Challenges and Research Questions
	Methodology
	Contribution and paper structure

	Related Work
	Single-Class Object Counting
	Multi-Class Object Counting
	Object Size Estimation

	MOCSE13: A Synthetic Dataset
	Method
	Multi-Class Object Counting
	Object Size Estimation
	Object size map prediction
	Individual object size retrieval

	Experiments
	Evaluation Metrics
	Experimental settings
	Experiment of single-class object counting and size estimation
	Experiment of multi-class object counting and size estimation
	Experiment on the different number of training images
	Experiment on the different backbone networks and segmentation algorithms

	Results
	Results of single-class object counting and size estimation
	Results of multi-class object counting and size estimation
	On the number of training images
	On the backbone networks

	Conclusion

