

University of Southampton Research Repository
ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS

SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

AEROACOUSTIC COMPUTATION OF SOUND RADIATION FROM DUCTS

by Simon Richards

Modern high-bypass turbofan engines produce high levels of nuisance noise that has a significant impact on the environment near airports as well as the crew and passengers inside the aircraft.

Significant research is being undertaken to understand the aeroacoustic noise source mechanisms and to accurately predict engine noise levels. High-performance computers and advanced numerical techniques are now taking an active role in this research area. In this work, a numerical solver is developed to accurately and efficiently predict noise radiation from ducts. The solver is based upon a hybrid methodology whereby only the acoustic near-field is solved using the developed numerical solver, with the resultant far-field directivity determined from an integral solution of the Ffowcs Williams - Hawking equation. Particular emphasis has been placed on the radiation of duct modes from a realistic bypass engine intake geometry.

The performance of the numerical schemes employed in the solver is analysed, with particular attention to the dispersion and dissipation qualities. A study into the determination of a suitable non-reflecting boundary condition for duct acoustics is also undertaken. Using a novel formulation of the linearised Euler equations, the solver is applied to noise radiation from a realistic engine intake geometry with background mean flow. The accuracy of the scheme is validated by comparison with analytic solutions for the unflanged duct case. For the unflanged duct case the effect of an acoustic liner is modelled using a time-domain impedance boundary condition. The effect of a locally supersonic inflow on radiation from the engine intake is examined. Finally, the solver is extended to determine multimode radiation from generic engine intakes, with the possibility to incorporate swirling mean flows and asymmetric duct geometries.