The University of Southampton
University of Southampton Institutional Repository

Unsteady fluid dynamics around a hovering flat plate wing

Unsteady fluid dynamics around a hovering flat plate wing
Unsteady fluid dynamics around a hovering flat plate wing
Insect flight is characterised by complex time-dependent flows in response to the unsteady wing movements. Biological fliers exploit the unsteady flow fields to modulate aerodynamic forces, thereby displaying unmatched flight performance, especially in hover. Naturally, this has inspired the creation of engineering models to replicate the flight behaviour. An in- depth understanding of the flow fields generated during hover and their dependence on the kinematics is paramount to achieve this goal. The two main kinematic components of a hovering wing are the stroke, which refers to the back-and-forth motion, and wing rotation, which refers to the change in angle of attack. The phase relation between stroke and rotation is quantified in terms of phase-shift and is broadly classified into symmetric, advanced, and delayed rotation. The phase-shift and duration of rotation, together referred to as rotational timing, are investigated in this bio-inspired study. The objective is to characterise the effect of rotational timing on the aerodynamic forces and the flow fields generated by a hovering wing. The unsteady flow around a hovering flat plate wing that mimics hoverfly kinematics has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted at a Reynolds number of Re = 220 and a reduced frequency of k = 0.32 in order to dynamically match a hoverfly. The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV ), secondary vortices, and topological saddles, and their evolution within a flapping cycle. Firstly, the flow and force behaviour was characterised for a typical flapping cycle. The flow evolution in a symmetric, fast rotation is divided into four stages that are characterised by the LEV emergence, growth, lift-off, and breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off, which corresponds to the maximum stroke velocity. Secondly, the effect of phase-shift on the formation and evolution of lift-enhancing flow structures are discussed. Two advanced and delayed rotations are compared. The flow development stages and forces are similar for all rotations but the timing of stages varies. The evolution of forces and flow strongly depend on the stroke velocity. Thirdly, the dependence of the flow and force evolution on the stroke velocity was substan- tiated by doubling the rotational duration in the symmetric rotation. It was found that the timing of the flow stages altered, whereas the flow and forces mostly evolved similarly to that of a fast rotation. The fast rotation, however, produces higher maximum lift and drag compared to the slow rotation. Lastly, the effect of phase-shift on the aerodynamic characteristics of a slow rotation is further explored. The slow rotation cases exhibit distinct flow patterns for varying phase-shifts unlike the fast rotations, in terms of the formation, evolution and breakdown of the flow structures as well as the timing. The forces also show distinct trends for varying phase-shifts and strongly depend on the angle of attack along with the stroke velocity in the slow rotations.
Ecole Polytechnique Fédérale de Lausanne EPFL
Krishna, Swathi
b8d18885-c9af-4d17-8ddf-cec91e1663c9
Krishna, Swathi
b8d18885-c9af-4d17-8ddf-cec91e1663c9

Krishna, Swathi (2017) Unsteady fluid dynamics around a hovering flat plate wing. Ecole Polytechnique Fédérale de Lausanne EPFL, Doctoral Thesis, 147pp.

Record type: Thesis (Doctoral)

Abstract

Insect flight is characterised by complex time-dependent flows in response to the unsteady wing movements. Biological fliers exploit the unsteady flow fields to modulate aerodynamic forces, thereby displaying unmatched flight performance, especially in hover. Naturally, this has inspired the creation of engineering models to replicate the flight behaviour. An in- depth understanding of the flow fields generated during hover and their dependence on the kinematics is paramount to achieve this goal. The two main kinematic components of a hovering wing are the stroke, which refers to the back-and-forth motion, and wing rotation, which refers to the change in angle of attack. The phase relation between stroke and rotation is quantified in terms of phase-shift and is broadly classified into symmetric, advanced, and delayed rotation. The phase-shift and duration of rotation, together referred to as rotational timing, are investigated in this bio-inspired study. The objective is to characterise the effect of rotational timing on the aerodynamic forces and the flow fields generated by a hovering wing. The unsteady flow around a hovering flat plate wing that mimics hoverfly kinematics has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted at a Reynolds number of Re = 220 and a reduced frequency of k = 0.32 in order to dynamically match a hoverfly. The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV ), secondary vortices, and topological saddles, and their evolution within a flapping cycle. Firstly, the flow and force behaviour was characterised for a typical flapping cycle. The flow evolution in a symmetric, fast rotation is divided into four stages that are characterised by the LEV emergence, growth, lift-off, and breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off, which corresponds to the maximum stroke velocity. Secondly, the effect of phase-shift on the formation and evolution of lift-enhancing flow structures are discussed. Two advanced and delayed rotations are compared. The flow development stages and forces are similar for all rotations but the timing of stages varies. The evolution of forces and flow strongly depend on the stroke velocity. Thirdly, the dependence of the flow and force evolution on the stroke velocity was substan- tiated by doubling the rotational duration in the symmetric rotation. It was found that the timing of the flow stages altered, whereas the flow and forces mostly evolved similarly to that of a fast rotation. The fast rotation, however, produces higher maximum lift and drag compared to the slow rotation. Lastly, the effect of phase-shift on the aerodynamic characteristics of a slow rotation is further explored. The slow rotation cases exhibit distinct flow patterns for varying phase-shifts unlike the fast rotations, in terms of the formation, evolution and breakdown of the flow structures as well as the timing. The forces also show distinct trends for varying phase-shifts and strongly depend on the angle of attack along with the stroke velocity in the slow rotations.

This record has no associated files available for download.

More information

Published date: 20 October 2017

Identifiers

Local EPrints ID: 471021
URI: http://eprints.soton.ac.uk/id/eprint/471021
PURE UUID: 2bf0487a-83db-4a98-9b44-05042a3cadfa
ORCID for Swathi Krishna: ORCID iD orcid.org/0000-0003-4316-7428

Catalogue record

Date deposited: 24 Oct 2022 16:58
Last modified: 25 Oct 2022 01:59

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×