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4 Lay Summary

Optimisation problems are common throughout chemistry, for example optimising the yield of
a chemical reaction. Since chemical reactions can take hours or days to complete, it is infeasible
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to search through the entire set of possible conditions. Instead, a small subset of the search
space is tested, with Design of Experiments (DOE) [2] and Generalised Subset Design [3] being
two common techniques used to determine such a subset. Bayesian optimisation, an iterative
global optimisation algorithm, has found success in hyperparameter tuning for machine learning
models [4], where researchers face a similar issue of long model evaluation times. As a result, it
has been recently applied to problems in chemistry, including the development of the EDBO
(Experimental Design for Baysian Optimisation) optimiser [5], which was used throughout the
project. We aimed at verifying the results obtained from the EDBO paper, and then testing
the robustness of the optimiser by applying it to other datasets, including one outside the scope
of its original domain of reaction yield optimisation.

5 Aims and Objectives

Using the provided EDBO optimiser, we intended to:

• Verify the results obtained from the EDBO paper, by running the optimiser on the
provided datasets.

• Determine what effect altering the settings used for the optimiser, in particular acquisition
function and batch size, had on its performance.

• Determine the robustness of the optimiser on other reaction yield datasets found from the
literature.

• Test the optimiser on a problem different to reaction yield optimisation, in order to de-
termine its applicability across problem domains.

6 Background

6.1 Bayesian Optimisation

Once an initial reaction pathway is determined, chemists wish to find reaction conditions that
provide the best percentage yield, to minimise the amount of input material required to produce
the desired product. Bayesian optimisation is a technique that aims to find optimal conditions
while running only a small number of actual experiments.

Abstractly, we are given some black-box objective function f(x) that we wish to minimise,
which is expensive to evaluate. This could be in terms of time, resources or both. We wish to
optimise the objective function while minimising the number of evaluations needed.

To do this, after taking some initial observations, we build a statistical model of the data.
In the case of EDBO, this was done using a Gaussian Process Regression [6], which fits a mean
and covariance function to the data (in lieu of a multidimensional gaussian random variable).
This is termed the surrogate model.

After this, we need to choose the next point for evaluation, which is done using the acquisi-
tion function. This is an algorithm that takes in the surrogate model, and assigns a ’usefulness’
measure to each point in the domain. There are many ways to define such a function; two
examples are Expected Improvement (EI) [7] and Thompson Sampling (TS) [8].

As a brief summary of EI - Given the current best observed value x+, and our objective
function f(x), define the Improvement Utility as

I(x) =

{
f(x)− x+ if f(x) ≥ x+

0 if f(x) < x+
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Then, given the mean and variance at the point x, the Expected Improvement is simply
the average value of the Improvement Utility, according to the probability distribution defined
by x. In the case of a Gaussian Process Regression, an explicit symbolic expression can be
found, which is described in the Shields paper. Note that the EDBO optimiser includes an
exploration parameter δ that is subtracted from the Improvement Utility, and sets the Expected
Improvement to 0 if the standard deviation σ is less than δ.

The key benefit of the acquisition function is that it’s much easier to evaluate than the
objective function, and so is easier to optimise. In particular, since the project was focused on
discrete bayesian optimisation, due to only having access to tables of data, acquisition func-
tions acq(x) were optimised simply by evaluating them over the entire finite domain, and finding
argmaxx∈Xacq(x).

Then, we evaluate the objective function at the point selected by the acquisition function,
and update the surrogate model with the new data. This concludes a round of optimisation.

Finally, the process is iterated until a fixed experiment budget is reached, a sufficiently
high objective value is found, or it seems unlikely that further optimisation will provide useful
improvement. This concludes a full run of the optimiser.

The following figure provides an example of a round of optimisation:

Figure 1: An example of what a single round of bayesian optimisation might look like, for
optimising a one-dimensional function. The surrogate model assigns each point in the domain
a mean, and an uncertainty - note that the previous observations, represented by pink dots,

have zero uncertainty. From this, several different acquisition functions could be used -
maximal uncertainty (1), maximal predictive mean (2), or maximal predictive mean +

uncertainty (3). Depending on the choice of function, one of these points will end up being the
next observation. The model would then be recomputed at the end of the round.
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6.2 Batched Bayesian Optimisation

Conventionally, Bayesian Optimisation is done sequentially - the black-box function is evalu-
ated at the chosen point, the model is immediately updated with the new data, and then the
acquisition function is re-computed and maximised.

However, chemists have the ability to run multiple reactions in parallel, with techniques
such as High-Throughput Experimentation [9] allowing the evaluation of hundreds of different
conditions at a time. Thus, in order to maximise the information gained by the model in a
given amount of time, batched Bayesian optimisation is carried out, where multiple points are
chosen at each iteration to evaluate the objective function at.

Of course, this requires more guesswork on the part of the model at each iteration - the
second evaluation point must be chosen without knowledge of the objective value at the first
point. One common strategy, called Kriging Believer [10] is to estimate the value at the first
point as the mean of the predictive distribution. Then, update the model with the estimate
and determine the second point by re-computing and maximising the acquisition function. This
is repeated until every desired point has been selected - the true values are then evaluated
using the objective function, which replace the estimated values, and the round of optimisation
concludes.

One disadvantage of this method is that it’s computationally sequential, since computing
the k + 1th point requires estimates of the previous k points. While this is necessary for
a deterministic acquisition function like Expected Improvement, Thompson Sampling, which
samples the posterior distribution given by the model and takes the point with highest objective
value, can be parallelised easily by taking multiple samples of the distribution, and so has a
marked speed increase over EI for large batch sizes. For example, investigating the Harvard
dataset, a round of TS took approximately 4 times as long as a round of EI for a batch size of
10.

Note that while this does reduce the computational cost, which is useful for the purposes of
the project given that only simulations of the optimiser are run, in lab applications the limiting
factor is likely to be the evaluation of the objective function itself (e.g. running the chemical
reaction with the given conditions).

7 Methodology

7.1 Numerical Encoding

Before starting the optimisation algorithm, the search space must be numerically encoded.
In every dataset, this consisted exclusively of computing molecular descriptors for chemicals
given by SMILES strings. Three techniques were used for this - Density Functional Theory
(DFT) data (provided by authors of the EDBO paper); Mordred [11], an open-source molecular
descriptor calculator; 512-bit Morgan Fingerprint Encoding [12], built-in to the rdkit Python
module.

Once each chemical factor was encoded as a vector of descriptors, the encoding for the full
configuration is obtained by concatenating all vectors. By listing the configuration vectors as
the rows of a matrix, the search space is fully constructed. The EDBO optimiser then performs
some pre-processing of the data by removing columns that are highly correlated, to save on
memory.

7.2 Testing Optimiser performance

A full run of optimisation proceeds as follows

1. A dataset, acquisition function, batch size and experimental budget are provided.
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2. The optimiser numerically encodes the search space.

3. The optimiser selects initial domain points to evaluate, by taking a random sample of
the search space of size equal to the batch size. A seed can be supplied here to ensure
reproducibility.

4. The optimiser conducts rounds of optimisation until the experimental budget is reached.

5. The top n values obtained are output, where n was normally either 1 or 5.

In each case, the optimiser was tested by doing 50 full runs with different starting seeds, to
gauge performance across a range of initial domain points.

Due to a lack of access to physical labs during the project, the optimiser couldn’t be tested
in the lab with a given reaction and search space. Instead, simulations were run given a pre-
existing database of conditions and objective values.

7.3 Dataset-specific configuration

Mordred encoding was not used for the Harvard Clean Energy Project dataset [13] due to time
and memory constraints. For all other datasets, the size of the search space came from the
multidimensional nature of the problem, with possibilities for each factor multiplying together.
However, the Harvard dataset was uniquely one-dimensional due to the only factor being can-
didate organic photovoltaic chemical, meaning a sample size of 10,000 required computing
molecular descriptors for 10,000 molecules. Mordred encoding in this case was prohibitively
slow, so instead 512-bit Morgan Fingerprint encoding was used.

8 Results

8.1 EDBO Paper

This paper tested the optimiser on the Suzuki-Miyaura [14] and Buchwald-Hartwig Aryl Amin-
ation [15] datasets. Density Functional Theory (DFT) data provided in the EDBO Github
repository (https://github.com/b-shields/edbo) was used for encoding, based on results from
the paper that suggested this format minimised worst-case loss of the optimiser.

8.1.1 Batch Size

The authors of the EDBO paper remarked that Expected Improvement with a batch size of 5
performed equally well to sequential Expected Improvement with the same experiment budget
of 50. So, after verifying that the code provided from the EDBO paper functioned properly on
the provided Suzuki and Aryl Amination datasets, we wished to determine to what extent the
batch size used affected the optimiser performance, for a range of different sizes. In particular,
since a larger size meant fewer rounds of optimisation (with a similar total experimental budget)
and more guesswork each round, we hypothesised that performance would degrade as batch size
increased.

We opted to keep the experimental budget roughly constant, near 50. Of course, with a
batch size of 3, it wasn’t possible to give a budget of exactly 50, since 50 does not divide evenly
into 3, and the batch size couldn’t be altered during a simulation.

Therefore, we opted to give a budget as close as possible, of size 51. Similar strategies were
adopted for other batch sizes that didn’t divide exactly into 50:

• 3 had a budget of 51.

• 4 had a budget of 48.
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• 6 had a budget of 48.

• 7 had a budget of 49.

• 8 had a budget of 48.

• 9 had two separate runs, with budgets of 45 and 54, since these were much further from
50 than any other batch size. In the end, it was decided to only display the 54 run, since
performance didn’t seem to be largely affected by batch size in any case.

We decided to test three different acquisition functions - EI, Thompson Sampling, and
Random (which corresponded to ignoring the underlying surrogate model and instead picking
points at random), to serve as a control. The results are displayed below.

Figure 2: Graph of average optimiser performance (taken as the maximum observed yield
after a full run, averaged over 50 runs), with standard error in the mean for the error bars, for
the Suzuki reaction. Results indicate that there do not seem to be significant differences in

performance across batch sizes. As an example, using Welch’s t-test to compare sample means
with sequential EI, p > 0.05 for every other batch size when continuing to use EI. EI does
consistently outperform Thompson Sampling, but importantly both methods significantly

outperform the random control (p < 0.05 in all cases, using Welch’s t-test).
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Figure 3: Graph of average optimiser performance (taken as the maximum observed yield
after a full run, averaged over 50 runs), with standard error in the mean for the error bars, for

the Aryl Amination reaction. As before, results indicate no significant dependence of
performance on batch size, with both methods significantly outperforming the random

control. Interestingly, Thompson Sampling occasionally outperforms Expected Improvement
for certain sizes, which is likely an artifact of the search space of this particular reaction.

8.1.2 Altering set of initial experiments

After seeing optimiser performance was robust with respect to batch size, we moved on to
testing to what extent the initial set of experiments given to the optimiser was important. The
idea we explored was restricting this set to be chosen purely from the lowest 10% of experiments,
ordered by reaction yield. These results are shown in Figure 3.
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Figure 4: Box plots of optimiser performance for selecting from bottom 10% versus selecting
normally. These were taken for the Suzuki-Miyaura reaction, with a batch size of 5, and an

experimental budget of 50, and an acquisition function of Expected Improvement, with 50 full
runs conducted. While average performance is very similar, it is interesting to note that the
’bottom 10%’ method had identical lower and upper quartiles of 98.69%, suggesting the

optimiser consistently found the same local maximum with this method.

8.2 Further reaction yield datasets

We then decided to further test the optimiser on two unseen datasets, still within the domain of
reaction yield optimisation. In both cases, structures of relevant compounds were given visually
in the paper withouot the associated SMILEES - to obtain this, they were drawn using an online
tool (http://www.cheminfo.org/flavor/malaria/Utilities/SMILES generator checker/index.html)
that allowed output of the required SMILES. Once this was obtained, Mordred was used to cal-
culate molecular descriptors.

Firstly, we looked at a paper investigating the rate constants associated with different
Iridium Photocatalysts [16], consisting of 24 × 48 = 1152 combinations in total. We decided
to use an experiment budget of 50, with a batch size of 5, and again comparing Expected
Improvement, Thompson Sampling and the random control, with 50 full runs of each. In this
case, both Expected Improvement and Thompson Sampling found the global maximum quite
frequently, and often found the second-highest maximum in other runs. Thus, we report the
results in the following table:

Acquisition Function #Runs finding global maximum #Runs finding second-highest

Random 11 19

Expected Improvement 23 27

Thompson Sampling 19 28

Next, we looked at a paper that was investigating Palladium-catalysed cross-coupling reac-
tions [9], and this is where we ran into our first issues with the optimiser. Multiplying together
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the possible Electrophiles, Nucleophiles, Catalysts and Bases gave 6× 11× 6× 8 = 3, 168 con-
figurations in a full search space. However, the dataset provided by the paper contained only
1536 entries, indicating that some were excluded.

Again, we used an experimental budget of 50, with a batch size of 5, comparing Expected
Improvement, Thompson Sampling and the random control, with 50 full runs of each.

Initially, it was coded so that combinations that were ’missing’ were given an area count of
0, but this led to fairly poor performance by the optimiser. This could have been due to missing
combinations being labelled as 0 interfering with the model, especially if a missing combination
was close to an optimal one in the search space.

After this, the search space was modified to include only the 1536 combinations present in
the dataset, by manually providing the allowable configurations. As indicated by the figure, this
lead to markedly improved performance, which suggested that EDBO handled ’missing values’
poorly overall and needed to be told the allowed domain points in advance. These results are
shown below.

Figure 5: Box plots for the Palladium-catalysed cross-coupling dataset. The ”0 default” labels
indicate those runs where missing combinations were coded as 0. Note that for regular

Expected Improvement, the upper quartile of the dataset was equal to the median, so an
additional median line was not drawn.
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8.3 Harvard Clean Energy Project

8.3.1 Initial Results

Finally, after thoroughly testing the optimiser on multiple reaction yield datasets, we decided
to see how it would fare on a very different kind of optimisation problem - the Harvard Clean
Energy Project (CEP) Dataset [13].

The CEP was a computational screening of 2 million+ molecules, with quantum chemistry
calculations, in order to determine their theoretical power conversion efficiency (PCE) values
for use in organic photovoltaics. This was both qualitatively and quantitatively different to
what had been studied before, in that we were attempting to optimise a physical property of a
single molecule, as opposed to the reaction yield from a combination of several molecules. In
particular, the dataset was one-dimensional, since the only factor was which molecule was being
tested for its PCE, as opposed to the previous multidimensional sets.

The full dataset was too large to be loaded on a single computer, so we instead took a specific
random sample of the dataset of size 10,000 to investigate throughout. The numerical encoding
of the dataset produced a unique challenge, because the search space was one-dimensional, with
the only factor being the candidate organic photovoltaic chemical. This was in contrast to
the multidimensional reaction yield datasets we had investigated previously, whose size came
from multiplying together combinations of different factors and not from a single factor having
thousands of possibilities. Therefore, Mordred encoding was prohibitively slow, leading us to
use 512-bit Morgan Fingerprint encoding.

In this case, we used an experimental budget of 100, with a batch size of 10, comparing
Expected Improvement, Thompson Sampling and the random control, with 50 full runs of each.

Figure 6: In this case, Expected Improvement and Thompson Sampling were remarkably
similar, though both significantly outperformed random selection, which was surprising given

that this was an entirely different problem for the optimiser to tackle.

Since the optimiser performed so well on this initial subset, we wanted to see whether we
could find a different subset of the same size where it performed more poorly. Subsets were
determined by taking a random sample, which could be seeded, so we searched a few hundred
seeds - the worst seed we found had these results:
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Figure 7: To compare the subsets, 50 full runs of the optimiser were conducted, with a batch
size of 10, experiment budget of 100, and with Expected Improvement as the acquisition

function. While optimiser performance is slightly worse in the left subset, it wasn’t
significantly so, indicating performance was fairly stable across different subsets.

8.3.2 Investigating different Acquisition Functions

After confirming that the EDBO optimiser could be applied successfully to this problem, we
shifted to focusing on modifying the acquisition functions used in order to improve performance.
In particular, we decided to look at improving the top 5 values returned by the optimiser, as
opposed to merely the top value.

Our motivation for this was based on the calculated values being theoretical - therefore, it
would be useful to have a large selection of molecules each of which had a good PCE as opposed
to a single molecule with excellent PCE and the rest mediocre, to reduce the chances of relying
heavily on an artefact of the PCE model.

The modification to the EI algorithm we explored was changing what value was being
compared to for the sake of the Improvement Utility. Using the notation from earlier in the
report, we altered the x+ value used. Two modification strategies were evaluated:

• EI-k: Setting x+ to be the kth highest value observed, with EI-1 representing ordinary
Expected Improvement.

• E3I: Exploration Enhanced Expected Improvement [17]. In summary, it samples the sur-
rogate model distribution multiple times, each time calculating Expected Improvement by
setting x+ to be the sample maximum, and then averaging the results. This tends to en-
courage more exploration of the sample space early on, and approaches normal Expected
Improvement with more iterations.
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Figure 8: In each case, 50 full runs of the optimiser were conducted, with a batch size of 10,
experiment budget of 100. As is evident from the figures, each strategy performed fairly

similarly, and no alternative strategy consistently performed better than standard Expected
Improvement.

9 Conclusions & Future Work

The EDBO optimiser did not only perform well with its original settings and datasets, but
was robust to a wide variety of changes made. From the original paper, performance was
not severely impacted by either modifying the batch size, nor altering the initial experiments
selected by the optimiser. Furthermore, the algorithm continued to perform well on subsequent
reaction yield datasets, showing its applicability in its original problem domain. Moreover, the
algorithm performed well when used for a different class of problem - optimising a physical
property of a single molecule - evidenced by its performance on the CEP dataset. In general,
this suggests both EDBO and similar optimisers designed for one chemical problem domain may
find applicability in a large number of other domains, with minimal configuration, lessening the
need for problem-specific algorithms.

However, there are certainly limitations to the approach. In particular, as evidenced by
the Palladium-catalysed cross-coupling dataset, the algorithm poorly handles ’missing’ domain
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points, and instead requires a fixed search space determined before optimisation begins. Future
work aimed at allowing this to instead adapt to both missing values and new candidate config-
urations would be greatly useful. In addition, efforts could be made to improve the acquisition
function used to provide a selection of useful candidates, avoiding a sharp drop-off in quality
across the top values.

Finally, it would be enlightening to test the optimiser in a physical lab setting to provide
some hands-on data of its applicability to real-world reaction yield optimisation, especially if
yields surpassing the literature could be accomplished. This would also allow the optimiser
to be tested at a larger scale, with hundreds of thousands of potential conditions, since the
experiment budget itself would remain manageable, which might provide insights unobtainable
from the datasets shown here. Using a more powerful computer, or computing cluster, to
analyse a larger sample of the CEP dataset would be a further test of the robustness of the
algorithm in an unfamiliar problem domain, and could allow further room for experimentation
on the acquisition function used.

10 Outputs, Data & Software Links

All code and data used for the project, as well as an explanatory poster, are available at
https://github.com/Pseudonium/edbo.

This report has also been writen up as a journal paper which has been published in the
Journal of Cheminformatics: Robustness under parameter and problem domain alterations of
Bayesian optimization methods for chemical reactions [1].
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