
Khondaker et al.

RESEARCH

Robustness under parameter and problem domain
alterations of Bayesian optimization methods for
chemical reactions
Rubaiyat Mohammad Khondaker1, Stephen Gow2*, Samantha Kanza2, Jeremy G Frey2 and Mahesan

Niranjan3

*Correspondence:

s.r.gow@soton.ac.uk
2Department of Chemistry,

University of Southampton,

Southampton, UK

Full list of author information is

available at the end of the article

Abstract

The related problems of chemical reaction optimization and reaction scope search
concern the discovery of reaction pathways and conditions that provide the best
percentage yield of a target product. The space of possible reaction pathways or
conditions is too large to search in full, so identifying a globally optimal set of
conditions must instead draw on mathematical methods to identify areas of the
space that should be investigated. An intriguing contribution to this area of
research is the recent development of the Experimental Design for Bayesian
optimization (EDBO) optimizer [1]. Bayesian optimization works by building an
approximation to the true function to be optimized based on a small set of
simulations, and selecting the next point (or points) to be tested based on an
acquisition function reflecting the value of different points within the input space.
In this work, we evaluated the robustness of the EDBO optimizer under several
changes to its specification. We investigated the effect on the performance of the
optimizer of altering the acquisition function and batch size, applied the method
to other existing reaction yield data sets, and considered its performance in the
new problem domain of molecular power conversion efficiency in photovoltaic
cells. Our results indicated that the EDBO optimizer broadly performs well under
these changes; of particular note is the competitive performance of the
computationally cheaper acquisition function Thompson Sampling when
compared to the original Expected Improvement function, and some concerns
around the method’s performance for “incomplete” input domains.
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1 Introduction
Optimization problems are common throughout chemistry, for example optimiz-

ing the yield of a chemical reaction. Once an initial reaction pathway is determined,

chemists wish to find reaction conditions that provide the best percentage yield - for

example by varying the temperature or pressure at which the reaction takes place -

to minimise the amount of input material required to produce the desired product.

A closely related problem is that of reaction scope search, considering not just the

physical conditions affecting the reaction but also the chemical space of reactants

and catalysts used in the reaction itself.

Since chemical reactions can take hours or days to complete, it is infeasible to

search through the entire set of possible chemical and physical configurations. In-
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stead, a small subset of the search space is tested. Two common ways to determine

such a subset are Design of Experiments [2] and Generalised Subset Design [3]. These

methods identify important factors in the reaction yield and their optimal settings,

and can thus be used to guide future experiments towards potentially high-yield

configurations, but are not in themselves a complete solution for optimization.

An alternative approach which offers potential benefits over these methods is

Bayesian optimization, an iterative global optimization algorithm based on statis-

tical methods to identify potentially optimal settings of the inputs to an unknown

function. Bayesian optimization has found success in hyperparameter tuning for

machine learning models [4], where researchers face a similar issue of long model

evaluation times. As a result, it has been recently applied to problems in chemistry,

including the development of the Experimental Design for Bayesian optimization

(EDBO) optimizer [1].

Bayesian optimization works by building a statistical model to approximate the

function being optimized based on its knowledge of the function’s behaviour at

previously-seen input conditions. This is termed the surrogate model, and can be

built using a variety of statistical or neural network approximations. The surro-

gate model is based initially on a small set of test runs, but each new observation

improves the quality of the approximation. The EDBO algorithm constructs the

surrogate model using Gaussian Process regression [5], a method of smooth estima-

tion which returns a probability distribution for the true output at an unseen set of

conditions and thus takes account of uncertainty in its estimates. The distribution

of possible values for a set of inputs given the observations seen so far is termed the

posterior predictive distribution, and its variance depends on the distance between

the location of the prediction and the nearest point at which the true value of the

function is known from a previous run.

Selection of the next point to be tested is done using an acquisition function

reflecting the value of points in the input space. There are several possible choices

of acquisition function, which typically take account of a combination of both the

average predicted output of each point in the input space and the uncertainty of

the prediction. Bayesian optimization can be extended by selecting several sets of

conditions to test at once instead of selecting points one at a time, a process called

batched Bayesian optimization.

In this work, we aimed to investigate the robustness of the EDBO method to

changes to its environment and parameters. In particular, many of our investiga-

tions focused on reducing the computational cost of the EDBO algorithm. The

original paper used Expected Improvement (EI) as an acquisition function, which

is somewhat computationally intensive. We therefore decided to consider the com-

putationally cheaper Thompson Sampling (TS) method as an alternative. We also

considered changes to the batch size in batched Bayesian optimization; again, larger

batch sizes correspond to reduced computational overheads.
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One of the main sources of variation in Bayesian optimization is the set of initial

experiments conducted. In principle, given a set of initial experiments, the method is

entirely deterministic unless the acquisition function or parameters of the surrogate

model are changed. A poor selection of initial reaction conditions can affect the

information learned by the surrogate model, so it is important to determine if the

effect of this selection significantly hinders the ability of the EDBO optimizer to

find the optimal conditions. We investigated this by considering the performance of

the optimizer given extremely low-yield reaction conditions as its starting set.

In addition, we wished to consider the transferability of the EDBO optimizer

across data sets and problem domains. To do this, we extracted two further reaction

yield data sets from the literature and applied the method to these. We also applied

the method to a data set in an entirely different problem area: the Harvard Clean

Energy Project data set [6] of theoretical power conversion efficiency for millions of

molecules in photovoltaic cells. Each of these new data sets posed its own challenges

to the Bayesian optimization algorithm.

It is important to note that the work described in this paper was conducted

using computational methods and existing data sets only. No attempt was made to

exceed the best known reaction yields by using Bayesian optimization in conjunction

with physical laboratory experiments, the task which would ultimately prove the

truest test of the usefulness of these methods. Nonetheless, by investigating the

optimizer’s applicability to different tasks and robustness to parameter changes and

randomness, and by considering ways in which its computational overheads can be

reduced, we hoped to make its use in future practical research more streamlined

and efficient.

2 Methodology

Abstractly, we are given some black-box objective function f(x) that we wish

to minimise, which is expensive (time- and/or resource-intensive) to evaluate. We

wish to optimize the objective function while minimising the number of evaluations

needed. To do this, after taking some initial observations, we build a statistical

model of the data, in this case a Gaussian Process regression model.

To choose the next point for evaluation, we use an acquisition function. There

are many ways to define such a function; one examples is Expected Improvement

(EI) [7]. Given the current best observed value x+, and our objective function f(x),

define the Improvement Utility as

I(x) = f(x)− x+ if f(x) ≥ x+

0 if f(x) < x+
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Then, given the mean and variance at the point x, the Expected Improvement is

simply the average value of the Improvement Utility, according to the probability

distribution defined by x. However, commonly the improvement utility is reduced

by some empirical exploration parameter δ, which has the effect of discouraging

small incremental improvements in local maxima in favour of continuing to explore

the search space. This design choice is used in the EDBO optimizer [1].

An alternative acquisition function is Thompson Sampling (TS) [8], which sam-

ples the posterior predictive distribution given by the surrogate model and takes

the point with highest objective value. This is less certain to arrive at an optimal

value than Expected Improvement, but has the advantage of being computationally

cheaper.

The key benefit of the acquisition function is that it is much easier to evaluate

than the objective function, and so is easier to optimize. In particular, since our

work was focused on discrete Bayesian optimization over tables of data, acquisition

functions acq(x) were optimized simply by evaluating them over the entire finite

domain, and finding argmaxx∈Xacq(x).

Then, we evaluate the objective function at the point selected by the acquisition

function, and update the surrogate model with the new data. This concludes a round

of optimization. Finally, the process is iterated until a fixed experiment budget

is reached, a sufficiently high objective value is found, or it seems unlikely that

further optimization will provide useful improvement. This concludes a full run of

the optimizer.

Figure 1 provides an example of a round of optimization for the function f(x) =

x sin(x). The surrogate model assigns each point in the domain a mean, and an

uncertainty - note that the previous observations, represented by pink dots, have

zero uncertainty. From this, several different acquisition functions could be used -

maximal uncertainty (1), maximal predictive mean (2), or maximal predictive mean

+ uncertainty (3). Depending on the choice of function, one of these points will end

up being the next observation. The model would then be recomputed at the end of

the round.

2.1 Batched Bayesian optimization

Conventionally, Bayesian optimization is done sequentially - the black-box func-

tion is evaluated at the chosen point, the model is immediately updated with the

new data, and then the acquisition function is re-computed and maximised. How-

ever, chemists have the ability to run multiple reactions in parallel, with techniques

such as High-Throughput Experimentation [9] allowing the evaluation of hundreds

of different conditions at a time. Thus, in order to maximise the information gained

by the model in a given amount of time, batched Bayesian optimization is carried

out, where multiple points are chosen at each iteration to evaluate the objective

function at.
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Of course, this requires more guesswork on the part of the model at each iteration -

the second evaluation point must be chosen without knowledge of the objective value

at the first point. One common strategy, called Kriging Believer [10] is to estimate

the value at the first point as the mean of the predictive distribution. Then, update

the model with the estimate and determine the second point by re-computing and

maximising the acquisition function. This is repeated until every desired point has

been selected - the true values are then evaluated using the objective function, which

replace the estimated values, and the round of optimization concludes.

One disadvantage of this method is that it is computationally sequential, since

computing point k + 1 requires estimates of the previous k points. While this is

necessary for a deterministic acquisition function like EI, Thompson Sampling can

be parallelized easily by taking multiple samples of the posterior predictive distri-

bution, and so has a marked speed increase over EI for large batch sizes.

While this does reduce the computational cost, which is useful for the purposes of

the project given that only simulations of the optimizer are run, in lab applications

the limiting factor is likely to be the evaluation of the objective function itself (e.g.

running the chemical reaction with the given conditions). The benefits of moving

to TS with increased batch sizes in a real optimization environment are therefore

likely to be limited.

2.2 Optimization routine

A full run of the optimizer proceeds as follows.

1 A data set, acquisition function, batch size and experimental budget are pro-

vided.

2 The optimizer numerically encodes the search space.

3 The optimizer selects initial domain points to evaluate, by taking a random

sample of the search space of size equal to the batch size. A seed can be

supplied here to ensure reproducibility.

4 The optimizer conducts rounds of optimization until the experimental budget

is reached.

5 The top n values obtained are output, where n was normally either 1 or 5.

In each case, the optimizer was tested by doing 50 full runs with different starting

seeds, to gauge performance across a range of initial domain points.

2.3 Numerical encoding

Before starting the optimization algorithm, the search space must be numeri-

cally encoded. For the problems considered in our work, this consists of computing

molecular descriptors for chemicals given by SMILES strings. Three techniques

were used for this - Density Functional Theory (DFT) data; Mordred [11], an open-

source molecular descriptor calculator; and 512-bit Morgan Fingerprint Encoding

[12], built-in to the rdkit Python module.
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Once each chemical factor is encoded as a vector of descriptors, the encoding for

the full configuration is obtained by concatenating all vectors. The overall vectors

for each configuration are then listed as the rows of the matrix representing the

full search space. Then, the EDBO optimizer pre-processes the data by removing

columns that are highly correlated to save on memory.

3 Results
3.1 Suzuki-Miyaura and Aryl Amination data

The EDBO algorithm was originally developed [1] using data from two different

reactions. The existing data sets on these two reactions are used in our work to in-

vestigate changes to the acquisition function and batch size parameters. The Suzuki-

Miyaura reaction [13] is a cross-coupling reaction between a boronic acid such as

indazole and an organohalide such as 6-bromoquinoline, with a Palladium catalyst.

This reaction has important applications, being one of the most frequently used

in pharmaceutical synthesis and wider medicinal chemistry [14]. Notably, Suzuki-

Miyaura reactions have been the focus of recent work on optimization using machine

learning methods, provoking both positive [15] and more skeptical [16] commentary.

The data set studied consists of 5760 combinations of five variables: the pair of re-

actants, the ligand, the catalyst and the base present in the reaction. This is thus

a problem of reaction scope search, as the variables which are altered to affect the

reaction yield are fundamental to the chemistry of the reaction.

The second problem considered is the the Buchwald-Hartwig amination reaction

[17], also with a Palladium catalyst. This is a cross-coupling reaction of amines and

aryl halides for the synthesis of Carbon-Nitrogen bonds. It too has many impor-

tant applications in the synthesis of a wide variety of compounds of importance

to medicinal and materials chemistry [18]. This is again a reaction scope problem:

4608 conditions are available in the data set, consisting of different combinations of

the aryl or heteroaryl halide, Buchwald ligand, base and isoxazole additive used in

the reaction.

For the Suzuki-Miyaura and Buchwald-Hartwig Aryl Amination data sets, Den-

sity Functional Theory (DFT) data provided in the EDBO Github repository

(https://github.com/b-shields/edbo) was used for numerical encoding of the

search space, based on results from the paper that suggested this format minimised

worst-case loss of the optimizer.

3.1.1 Batch Size

The authors of the EDBO paper remarked that Expected Improvement with a

batch size of 5 performed equally well to sequential Expected Improvement with

the same experiment budget of 50. So, after verifying that the code provided from

the EDBO paper functioned properly on the provided Suzuki and Aryl Amination

data sets, we wished to determine to what extent the batch size used affected the

optimizer performance, for a range of different sizes. In particular, since a larger

size meant fewer rounds of optimization (with a similar total experimental budget)

and more guesswork each round, we hypothesised that performance would degrade

as batch size increased.
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We opted to keep the experimental budget roughly constant, near 50. This en-

tailed running the following experiments.

• Batch size 3: 17 rounds of optimization (budget 51).

• Batch size 4: 12 rounds of optimization (budget 48).

• Batch size 5: 10 rounds of optimization (budget 50).

• Batch size 6: 8 rounds of optimization (budget 48).

• Batch size 7: 7 rounds of optimization (budget 49).

• Batch size 8: 6 rounds of optimization (budget 48).

• Batch size 9: two separate experiments, with 5 and 6 rounds of optimization

(budgets 45 and 54 respectively). In the results below, we present only the

outcome of the runs with budget 54, since performance did not appear to

differ significantly between the two sets of experiments.

• Batch size 10: 5 rounds of optimization (budget 50).

We decided to test three different acquisition functions - EI, TS, and Random

(which corresponded to ignoring the surrogate model and instead picking points

at random), to serve as a control. Results for the Suzuki reaction are displayed

graphically in Figure 2. These indicate that there do not seem to be significant

differences in performance across batch sizes. As an example, using Welch’s t-test

to compare sample means with sequential EI, p > 0.05 for every other batch size

when continuing to use EI. EI does consistently outperform TS, but importantly

both methods significantly outperform the random control (p < 0.05 in all cases,

using Welch’s t-test).

Figure 3 displays the performance of the optimizer under different batch sizes and

acquisition functions for the Aryl Amination reaction. As before, results indicate no

significant dependence of performance on batch size, with both methods significantly

outperforming the random control. Interestingly, Thompson Sampling occasionally

outperforms Expected Improvement for certain sizes, which is likely an artefact of

the search space of this particular reaction.

3.1.2 Altering set of initial experiments

After seeing that the optimizer performance was robust with respect to batch size,

we moved on to testing to what extent the initial set of experiments given to the

optimizer was important. The idea we explored was restricting this set to be chosen

purely from the lowest 10% of experiments, ordered by reaction yield. These were

taken for the Suzuki-Miyaura reaction, with a batch size of 5, and an experimental

budget of 50, and an acquisition function of Expected Improvement, with 50 full

runs conducted. These results are shown in Figure 4. While average performance is

very similar, it is interesting to note that the ‘bottom 10%’ method had identical

lower and upper quartiles of 98.69%, suggesting the optimizer consistently found

the same local maximum with this method.

3.2 Iridium photocatalysts and palladium-catalysed cross-coupling reactions

We further tested the optimizer on two unseen data sets, still within the domain

of reaction yield optimization. Firstly, we looked at a paper investigating the rate
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constants associated with different Iridium photocatalysts when converting light

into chemical energy for organic synthesis or chemical manufacturing [19]. The

problem being investigated here is the relative catalytic activity of photocatalysts

composed of iridium and different combinations of CˆN and NˆN ligands. The

photocatalysts considered are built by combining one of 48 CˆN ligands with one

of 24 NˆN ligands, and thus consists of 1152 combinations in total.

Next, we looked at a paper investigating a different variant of Palladium-catalysed

Carbon-Nitrogen cross-coupling reactions, in this case ambient temperature reac-

tions in a DMSO solvent [9]. Four inputs to the reaction scope are varied in this data

set: the electrophile, nucleophile, catalyst and base. 6 electrophiles, 11 nucleophiles,

6 catalysts and 8 bases are considered in total, giving a complete search space of

3168 combinations of reactants and catalysts. However, the data set provided by

the paper contains 1536 combinations: only 32 of the 66 possible combinations of

electrophile and nucleophile were considered, each of which were then combined

with all 48 combinations of catalyst and base. This poses a new challenge to the

optimizer, as some configurations within the search space are “disallowed”.

For these two data sets, molecular structures of the relevant compounds were

given visually in the paper without the associated SMILES - to obtain this, they

were drawn using an online tool (http://www.cheminfo.org/flavor/malaria/

Utilities/SMILES\_generator\_\_\_checker/index.html) that allowed output

of the required SMILES. Once this was obtained, Mordred encoding was used to

calculate molecular descriptors.

To test the optimizer on the Iridium photocatalyst data, we used an experiment

budget of 50, with a batch size of 5, and again compare Expected Improvement,

Thompson Sampling and the random control with 50 full runs of each. We report the

results in Table 1. EI found the global maximum in 46% of the runs conducted and

the second-highest value in the remaining 54%. The performance of TS was slightly

lower, at 38% and 56% respectively, but this nonetheless compares extremely well

to the random acquisition function.

Investigations into the palladium-catalysed cross-coupling reactions data set were

complicated by the absence of some of the possible reaction configurations not in-

cluded in the data set. Initially, we chose to deal with this by giving the combinations

that were ‘missing’ an area count of 0. Again, we used an experimental budget of

50, with a batch size of 5, comparing Expected Improvement, Thompson Sampling

and the random control, with 50 full runs of each. This however led to fairly poor

performance by the optimizer. This could have been due to missing combinations

being labelled as 0 interfering with the model, especially if a missing combination

was close to an optimal one in the search space.

After this, the search space was modified to include only the 1536 combinations

present in the data set, by manually providing the allowable configurations. The

results of both approaches are shown in Figure 5. As indicated by the figure, the re-

vised approach led to markedly improved performance, which suggested that EDBO
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handled ‘missing values’ poorly overall and needed to be told the allowed domain

points in advance.

3.3 Harvard Clean Energy Project

Finally, after thoroughly testing the optimizer on multiple reaction yield data

sets, we decided to see how it would fare on a very different kind of optimization

problem. The Harvard Clean Energy Project (CEP) [6] was a computational screen-

ing of over two million molecules, with quantum chemistry calculations, in order

to determine their theoretical power conversion efficiency (PCE) values for use in

organic photovoltaics. This was both qualitatively and quantitatively different to

what had been studied before, in that we were attempting to optimize a physi-

cal property using a single degree of freedom (which molecule we were testing) as

opposed to varying multiple parameters for reaction yield optimization. The data

set also includes other physical properties such as the molecular mass, short-circuit

current density and open-circuit voltage, but these were not used in our work as

the EDBO method relies on larger sets of molecular descriptors extracted using the

methods described below. The full data set was too large to be loaded on a single

computer, so we instead took a specific random sample of the data set of size 10,000

to investigate throughout.

Numerical encoding of the CEP data set produced a unique challenge, because the

search space was one-dimensional, with the only factor being the candidate organic

photovoltaic chemical. This was in contrast to the multidimensional reaction yield

data sets we had investigated previously, whose size came from multiplying together

combinations of different factors and not from a single factor having thousands of

possibilities. Therefore, Mordred encoding was prohibitively slow as a sample size of

10,000 required computing molecular descriptors for 10,000 molecules. This led us

to use 512-bit Morgan Fingerprint encoding instead, which was less comprehensive

in detailing properties of molecules but significantly faster.

3.3.1 Initial Results

In this case, we used an experimental budget of 100, with a batch size of 10, com-

paring Expected Improvement, Thompson Sampling and the random control, with

50 full runs of each. The results are displayed in figure 6. Expected Improvement

and Thompson Sampling were remarkably similar, with no appreciable visual dif-

ference in the box plots of the results, and no significant difference (p > 0.05) when

Welch’s t-test is used to compare their sample means. Both methods significantly

outperformed random selection in terms of the mean PCE of the best molecule

found by the optimizer (p < 0.05 using Welch’s t-test), which is encouraging given

that this is an entirely different problem for the optimizer to tackle. In particular,

the relative success of Thompson Sampling is worthy of note, as this method re-

quires roughly one-quarter of the computational time of Expected Improvement for

the CEP data.

Since the optimizer performed so well on this initial subset, we wanted to see

whether we could find a different subset of the same size where it performed more
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poorly. Subsets were determined by taking a random sample, which could be seeded,

so we searched a few hundred seeds. To compare the subsets, 50 full runs of the

optimizer were conducted, with a batch size of 10, experiment budget of 100, and

with Expected Improvement as the acquisition function. Figure 7 shows the per-

formance of the optimizer on the worst seed found during the search alongside the

median seed. While optimizer performance is slightly poorer in the worst subset, the

difference is relatively insignificant, indicating performance was fairly stable across

different subsets.

3.3.2 Investigating different acquisition functions

After confirming that the EDBO optimizer could be applied successfully to this

problem, we shifted to focusing on modifying the acquisition functions used in order

to improve performance. In particular, we decided to look at improving the top 5

values returned by the optimizer, as opposed to merely the top value.

Our motivation for this was based on the calculated values being theoretical -

therefore, it would be useful to have a large selection of molecules each of which

had a good PCE as opposed to a single molecule with excellent PCE, to reduce the

chances of relying heavily on an artefact of the PCE model.

The modification to the EI algorithm we explored was changing what value was

being compared to for the sake of the Improvement Utility. Using the notation from

earlier in the report, we altered the x+ value used. Two modification strategies were

evaluated:

• EI-k: Setting x+ to be the kth highest value observed, with EI-1 representing

ordinary Expected Improvement.

• E3I: Exploration Enhanced Expected Improvement [20]. In summary, it sam-

ples the surrogate model distribution multiple times, each time calculating

Expected Improvement by setting x+ to be the sample maximum, and then

averaging the results. This tends to encourage more exploration of the sam-

ple space early on, and approaches normal Expected Improvement with more

iterations.

As is evident from the results in Figure 8, each strategy performed fairly similarly,

and no alternative strategy consistently performed better than standard Expected

Improvement. There is however some evidence that the distribution of PCE for

molecules at rank 3, 4 and 5 is more constrained when E3I is used, leading in

particular to higher values in the third quartile. This may be a result of increased

exploration of the sample space causing a range of high-performing molecules to be

found more frequently.

4 Conclusions And Future Work
The EDBO optimizer proved robust to a wide variety of changes made. Compared

the original paper, performance was not severely impacted by either modifying the

batch size, nor altering the initial experiments selected by the optimizer. Further-

more, the algorithm continued to perform well on subsequent reaction yield data
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sets, showing its applicability in its original problem domain. Moreover, the al-

gorithm performed well when used for a different class of problem - optimizing a

physical property of a single molecule - evidenced by its performance on the CEP

data set. In general, this suggests both EDBO and similar optimizers designed for

one chemical problem domain may find applicability in a large number of other

domains, with minimal configuration, lessening the need for problem-specific algo-

rithms.

Our results also demonstrate that a Thompson Sampling acquisition function

consistently delivers a relatively similar level of performance to Expected Improve-

ment. This is potentially important due to the speed advantages offered by Thomp-

son Sampling through easy parallelization. For example, when investigating the

Harvard data set with a batch size of 10, a round of TS took approximately one-

quarter of the time to run as a round of EI. For very large data sets in which many

rounds of optimization must be performed, it is therefore important to note that

the faster Thompson Sampling method is competitive.

However, there are certainly limitations to the EDBO approach. In particular, as

evidenced by the Palladium-catalysed cross-coupling data set, the algorithm handles

‘missing’ domain points poorly, and instead requires a fixed search space determined

before optimization begins. Future work to allow the optimizer to instead adapt to

both missing values and new candidate configurations may be useful. This may also

have implications for potential use in physical experiments, where certain combina-

tions of conditions may be infeasible to run in practice. In addition, efforts could

be made to improve the acquisition function used to provide a selection of useful

candidates, avoiding a sharp drop-off in quality across the top values.

Finally, it must be acknowledged that the experiments conducted in this research

were exclusively computational in nature. It would be enlightening to test the opti-

mizer in a physical lab setting to provide some hands-on data of its applicability to

real-world reaction yield optimization, especially if yields surpassing the literature

could be accomplished. This would also allow the optimizer to be tested at a larger

scale, with hundreds of thousands of potential conditions, since the experiment

budget itself would remain manageable, which might provide insights unobtainable

from the data sets shown here. Using a more powerful computer, or computing

cluster, to analyse a larger sample of the CEP data set would be a further test of

the robustness of the algorithm in an unfamiliar problem domain, and could allow

further room for experimentation on the acquisition function used.
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Figure 1: An example of a single round of Bayesian optimization for the function

f(x) = x sin(x) with three different acquisition functions.

Figure 2: Graph of average optimizer performance (taken as the maximum ob-

served yield after a full run, averaged over 50 runs), with standard error in the

mean for the error bars, for the Suzuki reaction.

Tables
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Figure 3: Graph of average optimizer performance (taken as the maximum ob-

served yield after a full run, averaged over 50 runs), with standard error in the

mean for the error bars, for the Aryl Amination reaction.

Figure 4: Box plots of optimizer performance for selecting from bottom 10%

versus selecting normally for the Suzuki-Miyaura reaction with batch size 5,

experimental budget 50, Expected Improvement acquisition function and 50 full

runs conducted.

Acquisition Function #Runs finding global maximum #Runs finding second-highest
Random 11 19
Expected Improvement 23 27
Thompson Sampling 19 28

Table 1: Performance of the optimizer with different acquisition functions on the

Iridium photocatalysis data set.
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Figure 5: Box plots for the Palladium-catalysed cross-coupling data set. The ”0

default” labels indicate those runs where missing combinations were coded as 0.

Note that for regular Expected Improvement, the upper quartile of the data set

was equal to the median, so an additional median line was not drawn.
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Figure 6: Performance of the optimizer with different acquisition functions on

the Harvard PCE data set.
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Figure 7: Performance of the optimizer with Expected Improvement acquisition

function on the Harvard PCE data set for the worst seed (left) and median seed

(right).
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Figure 8: Distribution of obtained PCE for the top five molecules under four

different acquisition functions in the Harvard data set.


