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Abstract 24 

Introduction: Substantial response heterogeneity is commonly seen in dietary intervention trials. In 25 
larger datasets, this variability can be exploited to identify predictors, for example genetic and/or 26 
phenotypic baseline characteristics, associated with response in an outcome of interest.   27 

Objective: Using data from a placebo-controlled crossover study (the FINGEN study), 28 
supplementing with two doses of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), the 29 
primary goal of this analysis was to develop models to predict change in concentrations of plasma 30 
triglycerides (TG), and in the plasma phosphatidylcholine (PC) LC n-3 PUFAs eicosapentaenoic acid 31 
(EPA) + docosahexaenoic acid (DHA), after fish oil (FO) supplementation. A secondary goal was to 32 



  Predicting response to fish oil 

 
2 

establish if clustering of data prior to FO supplementation would lead to identification of groups of 33 
participants who responded differentially.  34 

Methods: To generate models for the outcomes of interest, variable selection methods (forward and 35 
backward stepwise selection, LASSO and the Boruta algorithm) were applied to identify suitable 36 
predictors. The final model was chosen based on the lowest validation set root mean squared error 37 
(RMSE) after applying each method across multiple imputed datasets. Unsupervised clustering of 38 
data prior to FO supplementation was implemented using k-medoids and hierarchical clustering, with 39 
cluster membership compared with changes in plasma TG and plasma PC EPA+DHA.   40 

Results: Models for predicting response showed a greater TG-lowering after 1.8g/d EPA+DHA with 41 
lower pre-intervention levels of plasma insulin, LDL cholesterol, C20:3n-6 and saturated fat 42 
consumption, but higher pre-intervention levels of plasma TG, and serum IL-10 and VCAM-1. 43 
Models also showed greater increases in plasma PC EPA+DHA with age and female sex. There were 44 
no statistically significant differences in PC EPA+DHA and TG responses between baseline clusters. 45 

Conclusion: Our models established new predictors of response in TG (plasma insulin, LDL 46 
cholesterol, C20:3n-6, saturated fat consumption, TG, IL-10 and VCAM-1) and in PC EPA+DHA 47 
(age and sex) upon intervention with fish oil. We demonstrate how application of statistical methods 48 
can provide new insights for precision nutrition, by predicting participants who are most likely to 49 
respond beneficially to nutritional interventions. 50 

 51 

1 Introduction 52 

There is often a large degree of variability in physiological outcomes within nutritional intervention 53 
studies (1–3). This means that some participants respond beneficially to an intervention, while others 54 
may respond poorly or not at all (4). Precision nutrition aims to identify the drivers of these 55 
differences, and predict who may respond beneficially (5). While determining response at the level of 56 
a single individual requires multiple measurements over time, e.g. through an N-of-1 study (6), 57 
predictors of response to outcomes at a group level may be identified through appropriate application 58 
of statistical methods in well-powered studies (7). Understanding associations between phenotype, 59 
genotype and physiological response could lead to greater understanding of the mechanisms 60 
responsible for differential response to interventions, and provide a rational basis for the tailoring of 61 
dietary interventions to subgroups of the population (8–10).  62 

Response heterogeneity is seen for physiological markers that can have daily fluctuations, such as 63 
plasma triglyceride (TG) concentration (3), as well as those that can vary over longer time periods, 64 
such as plasma long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs, also called omega-3 fatty 65 
acids) (9,11). Plasma concentration of TG and LC n-3 PUFAs are common outcomes of interest in 66 
LC n-3 PUFA supplementation trials. Fish oil (FO) is a good source of LC n-3 PUFAs, including 67 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have been shown to lower TG 68 
concentrations in many intervention trials (12). An increase in the omega-3 index (EPA + DHA as a 69 
percentage of total fatty acids in erythrocyte membranes) has been linked to lower risk of 70 
cardiovascular disease (13,14).  71 

The FINGEN study was a double-blind, placebo-controlled crossover study investigating the effects 72 
of low (0.7 g EPA+DHA/d, 0.7FO) and medium (1.8 g EPA+DHA/d, 1.8FO) doses of fish oil for 8 73 
weeks on cardiovascular disease risk biomarkers, including plasma TG concentration (15). The 74 
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FINGEN study revealed greater body weight-adjusted increases in plasma phosphatidylcholine (PC) 75 
DHA in men compared with women, with lowering of TG concentration in response to 1.8FO being 76 
3 times greater in males, and a trend towards reductions seen in apolipoprotein E4 (APOE4) carriers 77 
(15). Significantly higher baseline TG concentrations were observed in APOE4 carriers compared 78 
with E2 and E3 carriers (16).  However, previous analyses only stratified by two factors (gender and 79 
APOE genotype) but did not exploit the whole dataset to identify which of the many available 80 
variables could best predict response to intervention, in terms of reductions in plasma TG and 81 
increases in PC EPA+DHA after supplementation.  82 

Using data from the FINGEN study, the primary goal of this analysis was to identify the predictors 83 
that best explain the response heterogeneity of plasma TG and plasma PC EPA+DHA to LC n-3 84 
PUFA supplementation, using variable selection methods and validation approaches. The second 85 
goal was to determine whether unsupervised analysis of pre-intervention and baseline data could help 86 
to identify groups that responded differentially to LC n-3 PUFA supplementation. 87 

2 Methods 88 

2.1 FINGEN study design and participants 89 

Characteristics of the participants recruited to the FINGEN study, and the methods used, have been 90 
reported in full elsewhere (15,16). The original study was approved by the ethics committee at each 91 
of the four universities involved in the study (15). Briefly, 312 healthy participants who consumed 92 
oily fish less than once a week, recruited at 4 centers in the UK, completed three 8-week intervention 93 
periods. They consumed a control oil (an 80:20 blend of palm oil and soybean oil) containing no 94 
EPA or DHA, 0.7FO and 1.8FO in a random order, separated by two 12-week washout periods. The 95 
participant flow chart can be found in Supplementary Figure 1. 96 

Before and after each intervention period, a fasting (12h-fast) blood sample was collected for the 97 
measurement of plasma lipids, apolipoproteins, glucose and insulin concentrations (15). Plasma was 98 
used for assessment of fatty acid proportions (15); PC is the most abundant phospholipid in plasma 99 
(17) and plasma PC EPA+DHA has been shown to be a suitable biomarker of LC n-3 PUFA intake in 100 
long-term studies (18). Plasma PC fatty acid composition was determined by gas chromatography.  101 

For genotyping, the buffy layer was collected from an ethylenediaminetetraacetic acid (EDTA) tube 102 
(BD Biosciences, San Diego, CA, USA) and genomic DNA was extracted using a DNA extraction 103 
kit (Qiagen, Hildenberg, Germany), following the manufacturer’s instructions. SNP Genotyping was 104 
conducting using a commercial SNP genotyping service, TaqMan™ SNP Genotyping Assay, human, 105 
Applied Biosystems. 106 

2.2 Data overview  107 

Data were received in Excel sheets and amalgamated to form a single dataset. The dataset included 108 
descriptive and physiological variables, dietary intake data, information on single nucleotide 109 
polymorphisms (SNPs) and plasma PC fatty acid data. All variables included in this analysis can be 110 
found in Supplementary Table 1. Due to lack of variability, SNPs with ≥99% genotype similarity 111 
between participants were removed. Data from two participants were removed due to >10% missing 112 
data. The complete dataset was imported into R (version 4.1.0), which was used for all statistical 113 
analyses. A copy of the (un-imputed) dataset was created, with numeric variables standardized for 114 
comparing coefficients in the final models. 115 
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Prior to multiple imputation, all SNPs and sex (M/F) were coded as factor variables. SNP data was 116 
coded 1-3, with 1 corresponding to two reference alleles and 2 and 3 corresponding to one and two 117 
non-reference alleles, respectively. All other numeric variables were mean-centered to improve 118 
interpretability of the final model coefficients (19). Using the mice package in R (20), collinear 119 
variables were removed prior to multiple imputation, which replaced missing values with estimates 120 
from the distribution of the remaining data (20). Missing data per variable was between 0-6%, with 121 
total missing data just under 1%. Multiple imputation generated 5 complete imputed (independent) 122 
datasets. 5 imputations were chosen and deemed acceptable due to the size of the dataset and low 123 
amount of total missing data, meaning the variation between the imputed datasets was expected to be 124 
low (20). To improve statistical power, SNPs were converted back to numeric variables after 125 
imputation, aside from codes designating APOE variant (2 = E2/E2 + E2/E3, 3 = E3/E3, 4 = E3/E4 + 126 
E4/E4; rs429358 and rs7412) and endothelial nitric oxide synthase (eNOS, rs1799983; 1 = GG, 2 = 127 
GT, 3 = TT) due to their inclusion as basic characteristics in the original dataset. Details of all SNPs 128 
and their reference IDs can be found in Supplementary Table 1. 129 

Each imputed dataset was divided into a dataset containing all baseline variables and data collected 130 
prior to the 0.7FO treatment arm (0.7FO dataset), and a dataset containing all baseline variables and 131 
data collected prior to the 1.8FO treatment arm (1.8FO dataset), to examine the predictors of 132 
response prior to each treatment arm separately. In total, each imputed dataset contained 98 variables 133 
(including volunteer identifier and outcome variables) and 310 participants. 134 

This study focused on two outcomes: change in plasma TG concentration, and change in plasma PC 135 
EPA+DHA calculated from the difference in EPA+DHA proportion, as a percentage of total fatty 136 
acids, pre- and post- fish oil supplementation. For the purpose of this report, these outcomes are 137 
referred to as change scores. Outcomes were used on a continuous scale rather than as a dichotomous 138 
classification (e.g. response/non-response) to maximize use of information and statistical power 139 
(21,22). To examine if there were significant differences in the outcomes of interest between 140 
treatment arms, ANOVA tests with Huynh-Feldt correction were conducted (23). To determine 141 
whether supervised analysis for both outcomes was appropriate after each FO intervention, the 142 
standard deviation (SD) of the change scores after 0.7FO or 1.8FO were compared with the change 143 
scores after control oil for each outcome. A greater change score SD after either 0.7FO or 1.8FO 144 
compared with control oil was indicative of response heterogeneity (24). However, if the control oil 145 
change score SD was larger than either of the FO change score SDs, no further supervised analysis 146 
was undertaken, as differences between participants after FO could be explained by random 147 
variability alone (24).  148 

2.3 Data analysis strategy 149 

2.3.1 Clustering of pre-intervention data.  150 

Figure 1 provides an overview of the procedures for data analysis. After imputation, unsupervised 151 
cluster analysis was conducted with all non-outcome variables, in the 0.7FO and 1.8FO datasets 152 
respectively. For each imputed dataset, a dissimilarity matrix was constructed using the “daisy” 153 
command within the R cluster package. Each value in the matrix referred to the distance between 154 
participants, with higher values corresponding to greater dissimilarity (25).  155 

Two different clustering methods were conducted, in order to determine which method led to clearest 156 
cluster segregation upon visual inspection. These methods were PAM (Partitioning Around Medoids) 157 
also known as k-medoids clustering, where k, the number of clusters, must be stipulated (26); and 158 
hierarchical clustering (27), calculating the distance between participants and merging them via 159 
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application of linkage methods (28). The highest average silhouette value was used to determine the 160 
optimal number of clusters after PAM clustering, while the cluster dendrogram informed the number 161 
of clusters after hierarchical clustering, with clusters separated using the cutree function. The optimal 162 
linkage method for computing the cluster dendrograms was selected by comparing the agglomerative 163 
coefficient of four methods (average, single and complete linkage, and Ward’s minimum variance), 164 
with the highest value determining the method chosen. These procedures were performed using the 165 
cluster and stats R packages. Final cluster membership was defined as the cluster most frequently 166 
assigned to each participant across the 0.7FO and 1.8FO imputed datasets, respectively (≥3/5 of the 167 
imputed datasets).  168 

Dimension reduction, via principal components analysis (PCA), was undertaken using the stats R 169 
package, with results visualized using the ggbiplot package. The variables with the greatest loadings 170 
on each component were examined.   171 

2.3.2 Supervised analysis methods 172 

Several variable selection techniques were chosen to generate models with relevant predictors for 173 
each outcome of interest. Results across the 5 imputed datasets were aggregated to form final models 174 
and to compare methods. Figure 1 presents a general overview of the analysis procedure.  175 

Using the leaps package in R, forward stepwise selection was used to add predictors sequentially that 176 
maximally improved the fit of the model to the given outcome. Then, backwards selection was used, 177 
starting with a model containing all predictors and sequentially removing predictors that added least 178 
to the fit. Both methods were appropriate for the FINGEN dataset since the number of participants 179 
was greater than the number of predictors (29).  180 

Next, the shrinkage method LASSO (Least Angle Selection and Shrinkage Operator) was applied 181 
using the glmnet package in R (30). Briefly, the method applies a parameter, lambda (λ), which 182 
shrinks the model coefficients to zero as it increases. Non-zero coefficients therefore represent the 183 
most useful predictors.  These can be any combination of variables, unlike stepwise selection where 184 
predictors are added or subtracted iteratively (29). Finally, a variable selection technique that makes 185 
use of a non-linear method, Random Forest regression, was applied – the Boruta algorithm, using the 186 
Boruta package in R. The algorithm works by comparing the importance of each variable in the 187 
dataset to a set of randomly shuffled values, known as shadow features. Variables are confirmed as 188 
important or rejected after a series of iterations (31). 189 

2.3.3 Model selection and method comparison  190 

For each analysis method, and for each imputed dataset, 10-fold cross-validation or separate training 191 
and validation sets were used to select and validate models. For the stepwise selection techniques, 192 
10-fold cross-validation was used to identify the optimal model size that led to the lowest validation 193 
set root mean squared error (RMSE) - the amount of error using the remainder of the data not used in 194 
model development. Participants were split into 10 random folds using the set.seed function in R. For 195 
each possible model size (from 1:n, constrained by the number of participants per fold), 9 folds were 196 
used as the training set, while 1 fold was used as a test of the model, providing the validation RMSE. 197 
This was repeated for each fold, with the average validation RMSE taken across all folds for each 198 
model size. To maximize power, the selected model size was run using all data to identify the 199 
relevant predictors. For example, if a model containing 3 predictors had the lowest validation RMSE 200 
after 10-fold cross-validation, the 3-variable model using the full dataset was examined to identify 201 
the resulting variables and coefficients. 202 
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The glmnet package for LASSO automatically performs 10-fold cross-validation and provides a 203 
range of plausible λ values. To determine the optimal λ value and resulting model, validation was 204 
performed using a random 2/3 of the data as the training set with the other 1/3 as the validation set. 205 
The λ value associated with the lowest validation set RMSE was used to select the corresponding full 206 
model. Similarly, for the Boruta algorithm, a random 2/3 of the data was retained in the training set, 207 
to maximize shuffling of the shadow features and to improve variable selection. Random Forest 208 
regression using the selected variables only was then run with the training data, and used to predict 209 
the outcome using the test data, with RMSE calculated.  210 

For stepwise methods, a variable was included in a final pooled linear model if it was included in at 211 
least 3 out of 5 of the imputed dataset models. The pooled regression was conducted on all imputed 212 
datasets simultaneously using the with function in R and pool function within the mice package (20). 213 
Non-zero coefficients that remained across ≥3/5 of the LASSO models were averaged and retained as 214 
important predictors. Variables identified as important across ≥3/5 Boruta models were considered 215 
the most relevant for the given outcome.  216 

The method that led to models with the lowest average validation set RMSE across the 5 imputed 217 
datasets was considered the best fit for a given outcome, i.e., the model gave the best predictions for 218 
change in plasma TG or plasma PC EPA+DHA after intervention. Final models, with the lowest 219 
validation set RMSE, are presented in two forms: with numeric coefficients mean-centered but 220 
unstandardized, for model interpretability; and with standardized numeric coefficients, for the 221 
relative importance of predictors to be compared. For stepwise selection methods, the adjusted R2 222 
value quantified the goodness of fit of the models.  223 

Due to anticipated high correlation between change score and pre-intervention value (e.g. TG change 224 
vs pre-intervention TG levels), Oldham’s transformation was performed to determine whether the 225 
relationship could be explained by regression to the mean (32).  The transformation compares the 226 
mean of baseline and final values of an outcome against the change score. If the relationship between 227 
change score and pre-intervention value was due to regression to the mean, no significant relationship 228 
would remain after the transformation. 229 

3 Results 230 

3.1 Outcome change scores 231 

Table 1 shows the average changes in plasma TG and PC EPA+DHA after each intervention arm of 232 
the study. A repeated measures ANOVA with Huynh-Feldt correction showed that mean plasma TG 233 
change differed significantly between intervention arms [F(1.936, 598.2) = 10.19, p<0.001], as has 234 
been previously reported (15). Pairwise comparisons using Bonferroni correction revealed that there 235 
was a significant reduction in TG concentrations after 0.7FO and 1.8FO compared with control oil, 236 
but the difference in TG change between 0.7FO and 1.8FO was not significant (Table 2). For plasma 237 
TG change, the change score SD was greater after 1.8FO than after the control oil, but was greater 238 
after control oil compared with 0.7FO. This meant that subsequent supervised analyses of TG change 239 
after 1.8FO only could be conducted.  240 

Repeated measures ANOVA with Huynh-Feldt correction showed that mean PC EPA+DHA change 241 
differed significantly between intervention arms [F(1.895, 585.5) = 636.1, p<0.001]. Pairwise 242 
comparisons with Bonferroni correction revealed that there were significant differences in PC 243 
EPA+DHA change between all intervention arms (Table 2), with mean plasma PC EPA+DHA as a 244 
proportion of total fatty acids increasing by 3.05% and 4.65% after 0.7FO and 1.8FO, respectively 245 
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(Table 1). The change score SD was greater after both 0.7FO and 1.8FO compared with control oil, 246 
meaning subsequent supervised analyses could be conducted after both fish oil interventions (Table 247 
1). 248 

3.2 Clustering analysis 249 

3.2.1 0.7FO dataset 250 

Hierarchical clustering using Ward’s method led to clearest discrimination of clusters, resulting in 251 
two clusters with 161 and 149 participants in clusters 1 and 2, respectively (Figure 2a). PCA revealed 252 
a degree of separation of the two clusters across the first two principal components (PCs) (Figure 2b). 253 
There was no significant difference in plasma TG change after 0.7FO between the two clusters. Mean 254 
change in plasma PC EPA+DHA for participants in cluster 1 (3.22%) was not significantly greater 255 
than EPA+DHA change for participants in cluster 2 (2.86%), p=0.058 (Figure 2c). 256 

3.2.2 1.8FO dataset 257 

Hierarchical clustering using Ward’s method was also found to lead to the clearest discrimination of 258 
clusters with the 1.8FO dataset, with four clusters found to be optimal (1, n = 82; 2, n = 51; 3, n = 259 
112; 4, n = 65) (Figure 3a). Clusters did not segregate clearly upon application of PCA. Due to 260 
differences in imputed values between datasets for plasma TG change, a significant difference in TG 261 
change between clusters was observed in one of the imputed datasets only [F(3,206)=2.67, p<0.05], 262 
with participants in cluster 3 having a mean reduction in plasma TG of -0.247 mmol/L, significantly 263 
greater than a mean reduction of -0.052 mmol/L for participants in cluster 1 (p<0.05, Bonferroni 264 
corrected) (Figure 3b). The difference in EPA+DHA change between clusters was not significantly 265 
different (p=0.073). 266 

3.3 Supervised analysis 267 

3.3.1 Predicting plasma TG change after 1.8FO  268 

Table 3 presents the average RMSEs from supervised analysis of the 5 imputed datasets. For 269 
predicting plasma TG change, the lowest average RMSE across all 5 imputed datasets corresponded 270 
to models generated by LASSO. Table 4 presents the mean-centered and standardized shrunk 271 
coefficients, averaged across all imputed datasets. In total, 18 predictors were selected across 3 or 272 
more imputed datasets. The highest positive coefficient corresponded to baseline plasma insulin 273 
concentration, while the highest negative coefficient corresponded to pre-intervention TG 274 
concentration. These two variables were also selected by the other supervised analysis methods. For 275 
the other numeric predictors, the standardized coefficients were all less than ±0.1, with the next 276 
largest coefficients corresponding to baseline LDL and the fatty acid C20:3n-6, both positively 277 
associated with TG change; and baseline IL-10 levels, negatively associated with TG change. For the 278 
categorical variables, carriers of the T allele for rs1800588, a polymorphism of the LIPC gene, was 279 
also positively associated with TG change. Figure 4a shows the relationship between predicted 280 
plasma TG change using the LASSO model, and actual plasma TG change, with an R2 upon 281 
application to the original (un-imputed) dataset of 0.47. Upon applying Oldham’s transformation, 282 
Figure 4b shows a significant negative correlation (R = -0.19, p<0.001) between the average of (log-283 
transformed) pre- and post-intervention TG values against observed TG change, indicating that 284 
participants with higher pre-intervention plasma TG show greater reduction after 1.8FO, after 285 
adjusting for regression to the mean. 286 
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3.3.2 Predicting plasma PC EPA+DHA change after 0.7FO 287 

The lowest average RMSE for predicting plasma PC EPA+DHA change after 0.7FO corresponded to 288 
models generated by forward stepwise selection (Table 3). Table 5 shows both the mean-centered 289 
coefficients, pooled from the 5 imputed datasets, and standardized coefficients calculated from 290 
running the model against the standardized non-imputed dataset, with an adjusted R2 value of 0.32. 291 
The final model contained 6 predictors with positive coefficients for age, sex, a SNP in the tumor 292 
necrosis factor alpha (TNFα) gene (rs1800629) and pre-intervention PC docosapentaenoic acid 293 
(DPA) proportion, and negative coefficients for pre-intervention proportions of EPA and DHA. 294 
Figure 5a shows the relationship between predicted and actual EPA+DHA change using the forward 295 
stepwise model, with an R2 of 0.33 after application to the un-imputed dataset. After application of 296 
Oldham’s transformation, Figure 5b shows no relationship between the average of pre- and post-297 
intervention EPA+DHA with observed EPA+DHA change, indicating that the relationship between 298 
pre-intervention EPA+DHA and subsequent EPA+DHA change after 0.7FO can be explained by 299 
regression to the mean. 300 

3.3.3 Predicting plasma PC EPA+DHA change after 1.8FO  301 

The lowest average RMSE for predicting plasma PC EPA+DHA change after 1.8FO corresponded to 302 
models generated by backward stepwise selection (Table 3). The final model contained 11 predictors 303 
with positive coefficients for age, sex and a SNP in the Fatty Acid Binding Protein 1 (FABP1) gene 304 
(rs2241883), and negative coefficients for body mass index (BMI) and a number of pre-intervention 305 
PC fatty acids, as shown in Table 6. Figure 6a shows the relationship between predicted and actual 306 
EPA+DHA change using the backward stepwise model, with an R2 of 0.38 after application to the 307 
un-imputed dataset. After application of Oldham’s transformation, Figure 6b shows a significant 308 
positive correlation (R = 0.23, p<0.001) between the average of pre- and post-intervention PC 309 
EPA+DHA and observed PC EPA+DHA change, meaning that after accounting for regression to the 310 
mean, there was a greater change in PC EPA+DHA for participants with higher pre- and post-311 
intervention average PC EPA+DHA proportions.   312 

To examine the different results after Oldham’s transformation with 0.7FO and 1.8FO more closely, 313 
the relationship between pre- and post-intervention PC EPA+DHA with PC EPA+DHA change were 314 
examined separately (supplementary Figure 2). For both fish oil doses, there was a negative 315 
association between pre-intervention plasma PC EPA+DHA and subsequent PC EPA+DHA change, 316 
of a similar magnitude for both fish oil doses (supplementary Figure 1a-1b). However, when 317 
comparing post-intervention PC EPA+DHA proportion with PC EPA+DHA change, there was a 318 
higher positive correlation after 1.8FO (R=0.68, supplementary Figure 1d) than after 0.7FO (R=0.46, 319 
supplementary Figure 1c), with PC EPA+DHA increase more uniform after 1.8FO than after 0.7FO.  320 

4 Discussion 321 

Nutrition studies typically reveal substantial heterogeneity in physiological response after an 322 
intervention. Studies that collect data on a large array of predictors of response, in a sufficient 323 
number of participants, can be utilized to identify potential predictors of this response variability. 324 
This is of interest in the growing fields of precision and personalized nutrition, where elucidation of 325 
predictors of response may help to identify the characteristics of people most and least likely to 326 
respond beneficially. The results of this analysis revealed that the application of variable selection 327 
techniques, in particular, can identify new and clinically important predictors that explain between a 328 
third to a half of the variability in change in plasma TG and PC EPA+DHA, after an intervention 329 
with fish oil. Our predictive models showed greater TG-lowering with lower pre-intervention levels 330 
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of plasma insulin, LDL cholesterol and C20:3n-6 levels, along with C carriers (compared with T 331 
carriers) of the SNP rs1800588; and greater TG-lowering in those with higher pre-intervention levels 332 
of plasma TG (additional to regression to the mean) and serum IL-10.  For predicting change in 333 
plasma PC EPA+DHA, greater increases were observed with higher age and female sex, along with 334 
lower levels of baseline plasma C20:5n¬-3 (EPA) and C22:6n-3 (DHA), for both doses of fish oil. 335 
However, the relationship between baseline EPA+DHA levels and degree of change differed between 336 
the 0.7FO and 1.8FO fish oil interventions, with the relationship for 0.7FO explained by regression to 337 
the mean, while increases in EPA+DHA after 1.8FO were more uniform. This means that greater 338 
increases in EPA+DHA than expected were observed in those with higher baseline EPA+DHA 339 
levels. 340 

Change in plasma TG and plasma PC EPA+DHA were the outcomes of interest in this study and 341 
were used on a continuous scale rather than being dichotomized into “responders” or “non-342 
responders” to the intervention to maximize statistical power (33,34). Findings from this study 343 
identify important physiological predictors of response heterogeneity at a group level for the given 344 
outcomes of interest. The final models were generated through application of different variable 345 
selection methods – with forward and backward stepwise selection, and LASSO, generating the 346 
models with the lowest RMSE for predicting change in plasma TG after 1.8FO and in PC EPA+DHA 347 
after 0.7FO and 1.8FO. Stepwise selection methods such as forward and backward stepwise selection 348 
have been criticized (35,36) as they are often overfit to training data and undergo lack of validation, 349 
or are used as the sole model-building approach. In this study, we mitigated these limitations by 350 
using cross-validation to select the final model size, repeating the process across 5 imputed datasets 351 
to determine the most appropriate predictors to retain in the final model, and comparing the 352 
validation set RMSEs with models generated by other variable selection methods. While cross-353 
validation helps to prevent model overfitting, it will be important to validate these models using 354 
external, independent datasets to ascertain whether findings from the FINGEN study are 355 
generalizable to other populations (37).  356 

The variables selected by LASSO for predicting plasma TG change after 1.8FO (Table 4) included 357 
baseline BMI, plasma insulin concentration and saturated fat intake, and pre-intervention LDL-358 
cholesterol concentration, all of which had positive (shrunk) coefficients, meaning that higher values 359 
of these predictors were associated with less TG-lowering. Each of these predictors is known to be 360 
associated with higher TG concentrations, with obesity and insulin resistance being features of the 361 
metabolic syndrome (38). Conversely, other predictors had negative coefficients, including APOE4 362 
carriers, meaning this variant was associated with greater plasma TG-lowering than other APOE 363 
genotypes. This supports the previous findings from the FINGEN cohort for a non-significant trend 364 
in greater TG reductions in APOE4 carriers, with the greatest TG reductions in men carrying APOE4 365 
(15). Baseline concentration of plasma interleukin 10 (IL-10) and self-reported fruit consumption 366 
were also among the predictors with negative coefficients; higher values of both are associated with 367 
better health status, and these participants were more likely to show falls in plasma TG in response to 368 
the intervention. Apart from the association of higher pre-intervention plasma TG concentration with 369 
greater TG-lowering, the variables selected by LASSO suggest that participants with a profile 370 
indicative of lower heart disease risk are more likely to have greater plasma TG-lowering after 1.8 371 
g/d EPA+DHA. 372 

Participants who were older and female tended to have the greatest increases in plasma PC 373 
EPA+DHA (Table 5, 6), confirming findings from a previous study (39). For change after 1.8FO 374 
only, higher BMI was associated with a lower increase in PC EPA+DHA, in line with previous 375 
findings (39). For predicting PC EPA+DHA change after 1.8FO, higher pre-intervention levels of the 376 
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saturated fatty acids palmitic (C16:0) and stearic acid (C18:0), the trans fatty acid vaccenic acid 377 
(C18:1n-7) and the unsaturated fatty acids linoleic acid (C18:2n-6) and arachidonic acid (C20:4n-6) 378 
were associated with a lesser increase in PC EPA+DHA (Table 6), which has, to the best of our 379 
knowledge, not been reported before. On the other hand, for the model predicting PC EPA+DHA 380 
change after 0.7FO, a higher proportion of DPA in plasma PC was associated with greater increases 381 
in PC EPA+DHA in response to supplementation. As desaturation of DPA leads to the formation of 382 
DHA, DHA levels are likely to increase if more DPA is available (40), and DPA supplementation has 383 
been shown to increase DHA levels in plasma TG (41). As plasma PC fatty acid proportions were 384 
included in this analysis, this suggests that lower levels of other fatty acids will enable EPA+DHA to 385 
form a greater proportion of total plasma PC fatty acids. Unsurprisingly, higher pre-intervention 386 
concentrations of EPA (C20:5n-3) and DHA (C22:6n-3) were associated with a smaller increase in 387 
PC EPA+DHA after both fish oil interventions, as has been observed previously (39). The 388 
standardized coefficients for pre-intervention EPA were approximately twice as large as the 389 
coefficients for DHA (Table 5, 6), suggesting that EPA status was a more important predictor of 390 
incorporation of EPA+DHA into PC. This makes sense given that DHA is a downstream metabolite 391 
of EPA (40). Interestingly, different results were observed upon applying Oldham’s transformation to 392 
EPA+DHA change after each fish oil intervention. As the relationship between the average of pre- 393 
and post-intervention EPA+DHA with EPA+DHA change was not significant for 0.7FO, this 394 
suggests the relationship can be explained by regression to the mean. However, the significant 395 
positive association that remained after 1.8FO suggests that a greater increase in EPA+DHA occurred 396 
than would be expected in those with higher pre-intervention EPA+DHA.  This finding supports a 397 
lack of a “ceiling effect”, meaning higher pre-intervention plasma PC EPA+DHA levels do not limit 398 
further increases in EPA+DHA in response to supplementation. The findings of the JELIS trial lend 399 
support to this claim, where Japanese participants had a reduction in coronary events after EPA 400 
supplementation, despite high habitual consumption of fish and thus high pre-intervention plasma LC 401 
n-3 PUFA status (42). 402 

A strength of this analysis approach was the use of a large dataset with many variables, with the 403 
potential to uncover new variables associated with change in plasma TG and PC EPA+DHA levels. 404 
Furthermore, the crossover design enabled analyses to be performed on the same volunteers, enabling 405 
better comparisons to be made between the results for EPA+DHA change after both 0.7FO and 406 
1.8FO. However, the analysis may have been limited by the statistical power of the dataset, with a 407 
large number of predictors considered in relation to the number of participants. Despite this, the 408 
supervised analysis methods applied in this paper were suitable for use on high-dimensional datasets, 409 
where the power is even smaller due to the number of predictors being greater than the number of 410 
volunteers (27). These types of dataset are increasingly common in an era of precision medicine, 411 
where information on an array of markers including genotype, metabolomics and microbiome are 412 
increasingly collected (1,43). While limiting the number of variables considered in this analysis 413 
would have improved statistical power, this would not have made full use of the dataset, nor enabled 414 
potential discovery of new predictors of response to the outcomes of interest. Using validation 415 
approaches such as cross-validation to determine the size of models selected, and performing 416 
analyses across 5 imputed datasets, also increased the likelihood that models contained relevant 417 
variables, as final models considered variables that were only in common across at least 3 of the 5 418 
imputed datasets. 419 

In conclusion, the application of supervised analysis approaches, particularly variable selection 420 
methods, led to the identification of new variables for predicting change in plasma TG and plasma 421 
PC EPA+DHA after fish oil supplementation. This means that females and those who are older are 422 
more likely to benefit from fish oil supplements in terms of increasing the omega-3 index. In 423 
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addition, those with higher levels of plasma TG and certain inflammatory markers, together with 424 
lower levels of plasma insulin, LDL cholesterol, C20:3n-6, and saturated fat consumption, are more 425 
likely to benefit from fish oil supplements in terms of TG lowering, based on the results of this study. 426 
A similar analysis approach applied to data from other large fish oil supplementation studies could 427 
provide an external validation of our models, or help to identify additional markers of response. Our 428 
study highlights how application of appropriate statistical methods to rich datasets can develop our 429 
knowledge of the factors underpinning physiological response heterogeneity to interventions, and 430 
hence provide a useful tool for precision nutrition and in the future tailoring of dietary 431 
recommendations.    432 

 433 

Abbreviations: 434 

0.7FO - 0.7 g/d EPA+DHA from fish oil 435 
1.8FO - 1.8 g/d EPA+DHA from fish oil 436 
APOE(4) - apolipoprotein E(4) 437 
DPA - docosapentaenoic acid 438 
FABP1 - Fatty Acid Binding Protein 1  439 
FO – fish oil 440 
LASSO - Least Angle Selection and Shrinkage Operator 441 
LC n-3 PUFAs - long-chain n-3 polyunsaturated fatty acids  442 
PC - plasma phosphatidylcholine 443 
PCA - principal components analysis 444 
RMSE - root mean squared error 445 
TG – triglycerides 446 
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figure) and a list of all SNPs included in the dataset (Supplementary table) can be found online at: 572 
https://www.frontiersin.org/articles/xxx 573 

 574 

Table 1. Mean change (SD) in plasma TG and plasma PC EPA+DHA in response to fish oil 575 
supplementation.  576 

Outcome Treatment arm Mean change (SD)  
Change in plasma TG (mmol/l) between 
start and end of 8-week intervention 

0.7 g/day EPA+DHA -0.083 (0.428) 
1.8 g/day EPA+DHA -0.152 (0.499) 
control oil 0.011 (0.460) 

Change in plasma PC EPA+DHA (% of 
total fatty acids) between start and end 
of 8-week intervention 

0.7 g/day EPA+DHA 3.05 (1.70) 
1.8 g/day EPA+DHA 4.65 (2.28) 
control oil -0.089 (1.40) 

 577 

Table 2. Bonferroni-adjusted pairwise comparisons after repeated measures ANOVA for differences 578 
in plasma TG change and plasma PC EPA+DHA change between intervention groups. 579 

Outcome/test Mean 
difference 

Test statistic Bonferroni-
adjusted p-value 

Change in plasma TG between start and end of 8-week intervention (mmol/L) 
0.7 g/d EPA+DHA – control oil -0.095 -2.594 0.0298 
1.8 g/d EPA+DHA – control oil -0.163 -4.162 0.0001 
1.8 g/d EPA+DHA - 0.7 g/d EPA+DHA -0.069 -2.082 0.1144 
Change in plasma PC EPA+DHA between start and end of 8-week intervention (% of total 
fatty acids) 
0.7 g/d EPA+DHA – control oil 3.139 25.44 <0.0001 
1.8 g/d EPA+DHA – control oil 4.740 31.45 <0.0001 
1.8 g/d EPA+DHA - 0.7 g/d EPA+DHA 1.601 12.32 <0.0001 

 580 

Table 3. Model RMSEs after application of supervised analysis methods to the outcomes plasma TG 581 
change after 1.8 g/d EPA+DHA, plasma PC EPA+DHA change after 0.7 g/d EPA+DHA, and plasma 582 
PC EPA+DHA change after 1.8 g/d EPA+DHA. Lowest RMSEs for each outcome are given in bold. 583 

Outcome Plasma TG change 
after 1.8 g/d 
EPA+DHA 

Plasma PC EPA+DHA 
change after 0.7 g/d 

EPA+DHA 

Plasma PC EPA+DHA 
change after 1.8 g/d 

EPA+DHA 
Method Mean RMSE (SD), 5 imputed datasets 
Forward stepwise 0.396 (0.006) 1.470 (0.024) 1.982 (0.032) 
Backward stepwise 0.400 (0.010) 1.488 (0.015) 1.966 (0.013) 
LASSO 0.353 (0.058) 1.521 (0.051) 2.059 (0.170) 
Boruta – test set 
RMSE 

0.452 (0.064) 1.610 (0.127) 2.177 (0.106) 

https://www.frontiersin.org/articles/xxx
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 584 

Table 4.  Shrunk coefficients after LASSO analysis for predicting plasma TG change after 1.8 g/d 585 
EPA+DHA.  586 

Variable name Mean-centered 
coefficient (SD) 

Standardized 
coefficient 

Intercept -0.330 (0.103) 0 
APOE – APOE4 variant -0.010 (0.006)  
Baseline BMI (kg/m2) 0.002 (0.001) 0.017 
Baseline CRP 0.005 (0.002) 0.030 
Baseline plasma insulin (mmol/L) 0.014 (0.003) 0.118 
Baseline IL-10 -0.007 (0.002) -0.045 
Baseline VCAM-1 <-0.001 -0.030 
Pre-intervention plasma TG (mmol/L) -0.442 (0.048) -0.577 
Pre-intervention LDL-cholesterol (mmol/L) 0.035 (0.006) 0.066 
Fruit consumption (g) <0.001 -0.011 
Saturated fat consumption (g) 0.001 (0.001) 0.040 
rs320 (G>T) -0.015 (0.004)  
rs2250656 (C>T) -0.017 (0.009)  
rs1800588 (T>C) 0.058 (0.031)  
rs1800795 (C>G)  0.024 (0.012)  
rs1800896 (C>T) 0.015 (0.009)  
rs5370 (T>G) 0.054 (0.030)  
C20:3n-6 0.027 (0.012) 0.049 
C20:4n-6 0.006 (0.002) 0.024 

Variables listed were selected by 3 or more of the 5 imputed datasets, and depict the mean (SD) of their shrunk 587 
coefficients across all imputed datasets for which they were selected. Both mean-centered (left) and standardized (right, 588 
variables on continuous numeric scale only) shrunk coefficients are presented. APOE/APOE4 - apolipoprotein E3/E4 or 589 
E4/E4, CRP – C-reactive protein, IL-10 – interleukin 10, LDL – low-density lipoprotein, TG – triglyceride, VCAM-1 – 590 
vascular cell adhesion protein 1591 



 

 

Table 5. Model output after performing forward stepwise regression for predicting plasma PC EPA+DHA change after 0.7 g/d EPA+DHA. 592 

Pooled mean centered regression coefficients Standardized regression coefficients, un-imputed dataset 
Term Estimate Std. error Test statistic p Term Estimate Std. error Test statistic p 
Intercept 2.536 0.129 19.61 <0.001 Intercept 2.686 0.119 22.49 <0.001 
Age 0.021 0.006 3.280 0.001 Age 0.281 0.085 3.300 0.001 
Sex – Female 0.681 0.165 4.139 <0.001 Sex – Female 0.694 0.170 4.094 <0.001 
rs1800629 – G/A 0.400 0.178 2.243 0.026 rs1800629 

(G>A) 
0.230                0.082                2.806               0.005 

rs1800629 – A/A 0.649 0.337 1.926 0.055 
C20:5n-3 -0.859 0.118 -7.285 <0.001 C20:5n-3 -0.727 0.102 -7.119 <0.001 
C22:5n-3 1.514 0.346 4.371 <0.001 C20:5n-3 0.376 0.091 4.124 <0.001 
C22:6n-3 -0.247 0.077 -3.206 0.001 C20:5n-3 -0.325 0.101 -3.218 0.001 

Data showing mean-centered regression coefficients pooled across all imputed datasets (left), and upon applying the model to the standardized un-imputed dataset (right, 593 
continuous numeric scale variables standardized only).  594 

 595 
Table 6 Model output after performing backward stepwise regression for predicting plasma PC EPA+DHA change after 1.8 g/d EPA+DHA.  596 

Pooled mean centered regression coefficients Standardized regression coefficients, un-imputed dataset 
Term Estimate Std. error Test statistic p Term Estimate Std. error Test statistic p 
Intercept 3.915 0.193 20.27 0 Intercept 4.235 0.157 26.95 <0.001 
Age 0.043 0.009 4.777 <0.001 Age 0.563 0.115 4.897 <0.001 
Sex – Female 0.799 0.224 3.572 <0.001 Sex – Female 0.774 0.224 3.451 0.001 
BMI -0.088 0.035 -2.537 0.012 BMI -0.320 0.118 -2.716 0.007 
rs2241883 – T/C 0.564 0.229 2.462 0.014 rs2241883  

(T>C) 
0.323              0.107               3.012                 0.003 

rs2241883 – C/C 0.806 0.343 2.350 0.019 
C16:0 -0.429 0.109 -3.922 <0.001 C16:0 -0.844 0.219 -3.852 <0.001 
C18:0 -0.281 0.109 -2.572 0.011 C18:0 -0.496 0.197 -2.515 0.012 
C18:1n-7 -0.350 0.120 -2.904 0.004 C18:1n-7 -0.488 0.173 -2.813 0.005 
C18:2n-6 -0.454 0.091 -5.009 <0.001 C18:2n-6 -1.304 0.263 -4.966 <0.001 
C20:4n-6 -0.491 0.111 -4.408 <0.001 C20:4n-6 -0.903 0.211 -4.287 <0.001 
C20:5n-3 -1.670 0.202 -8.275 <0.001 C20:5n-3 -1.337 0.163 -8.217 <0.001 
C22:6n-3 -0.548 0.112 -4.882 <0.001 C22:6n-3 -0.702 0.142 -4.935 <0.001 

Data showing mean-centered regression coefficients pooled across all imputed datasets (left), and upon applying the model to the standardized un-imputed dataset (right, 597 
continuous numeric scale variables standardized only). 598 



 

 

Figure legends 599 

Figure 1 Overview of analysis pipeline 600 

Figure 2 Cluster plots of datasets containing baseline variables and data collected prior to 601 
intervention with 0.7 g/d EPA+DHA. Each participant is displayed as one data point, by visualizing 602 
the clusters using the first of the imputed datasets. a visualization of hierarchical clusters, cluster 1 ○ 603 
(black, n = 161), cluster 2 Δ (gray, n = 149); b PCA plot of pre-0.7 g/d data visualizing clusters 604 
across the first two principal components (clusters as described in a); c clustering as shown in a with 605 
gradation of shading relating to change in plasma PC EPA+DHA (as % of total fatty acids) after 0.7 606 
g/d EPA+DHA intervention, with darker shading corresponding to greatest increases in EPA+DHA. 607 
Legend in top right shows range of EPA+DHA change. PC - plasma phosphatidylcholine; PCA – 608 
principal components analysis. 609 

Figure 3 Cluster plots of datasets containing baseline variables and data collected prior to 610 
intervention with 1.8 g/d EPA+DHA. Each participant is displayed as one data point a visualization 611 
of hierarchical clusters using the first imputed dataset, cluster 1 ○ (white, n = 82), cluster 2 Δ (black, 612 
n = 51), cluster 3  (light gray, n = 112); cluster 4 + (dark gray, n = 65); b visualization of 613 
hierarchical clusters using the fourth imputed dataset, with gradation of shading relating to change in 614 
plasma TG concentration (mmol/L) after 1.8 g/d EPA+DHA intervention, with lightest shading 615 
corresponding to greatest reductions in plasma TG concentration. Legend in top right shows range of 616 
plasma TG change. TG – triglyceride. 617 

Figure 4 Graphs depicting results from supervised analysis with plasma TG change after 1.8 g/d 618 
EPA+DHA as intervention. a scatter plot comparing actual TG change against predicted TG change 619 
using the LASSO model, averaged across all imputed datasets; b scatter plot depicting the correlation 620 
between the average of logged plasma TG values pre- and post-1.8g/d EPA+DHA intervention with 621 
observed TG change. Dashed line represents no change. LASSO - Least Angle Selection and 622 
Shrinkage Operator; TG – triglyceride. 623 

Figure 5 Graphs depicting results from supervised analysis with plasma PC EPA+DHA change after 624 
0.7 g/d EPA+DHA intervention. a scatter plot comparing actual PC EPA+DHA change against 625 
predicted change using the final forward stepwise model; b scatter plot depicting the correlation 626 
between the average of pre- and post-intervention plasma PC EPA+DHA proportion against observed 627 
change in EPA+DHA proportions. Dashed line represents no change. PC - plasma 628 
phosphatidylcholine. 629 

Figure 6 Graphs depicting results from supervised analysis with plasma PC EPA+DHA change after 630 
1.8 g/d EPA+DHA intervention. a scatter plot comparing actual PC EPA+DHA change against 631 
predicted change using the final backward stepwise model; b scatter plot depicting the correlation 632 
between the average of pre- and post-intervention plasma PC EPA+DHA proportion against observed 633 
change in EPA+DHA proportions. Dashed line represents no change. PC - plasma 634 
phosphatidylcholine. 635 
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