The University of Southampton
University of Southampton Institutional Repository

Tool for preliminary structural sizing, weight estimation, and aeroelastic optimization of lifting surfaces

Tool for preliminary structural sizing, weight estimation, and aeroelastic optimization of lifting surfaces
Tool for preliminary structural sizing, weight estimation, and aeroelastic optimization of lifting surfaces
This paper presents the development and implementation of a tool for wing structural sizing and aeroelastic optimization in early design steps, where the amount of available data about the wing structure is not enough to allow high-fidelity finite element analysis and optimization. The proposed tool consists of two levels. The first level is a quasi-analytical method for wing structural weight estimation and initially sizing of the wing box structure. The second level is an aeroelastic tool that uses a vortex lattice method and a finite beam element to compute the stress distribution in the wing box structure. The Newton method is used to solve the coupled system. The coupled adjoint sensitivity analysis method is used to compute the sensitivity of any function of interest with respect to the design variables. The tool was used for a series of wing aeroelastic optimizations to minimize the wing weight with a series of constraints on the wing structural failure modes and aileron effectiveness. Another series of optimizations is also used to find the wing jig shape for a predefined cruise shape. The outputs of the optimizations showed that the wing box weight varies quadratically with the required value for the aileron effectiveness.
2041-3025
280-295
Elham, A.
676043c6-547a-4081-8521-1567885ad41a
Van Tooren, M.J.L.
1be91e33-ee5a-47c2-891d-4dff1f454c27
Elham, A.
676043c6-547a-4081-8521-1567885ad41a
Van Tooren, M.J.L.
1be91e33-ee5a-47c2-891d-4dff1f454c27

Elham, A. and Van Tooren, M.J.L. (2016) Tool for preliminary structural sizing, weight estimation, and aeroelastic optimization of lifting surfaces. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230 (2), 280-295. (doi:10.1177/0954410015591045).

Record type: Article

Abstract

This paper presents the development and implementation of a tool for wing structural sizing and aeroelastic optimization in early design steps, where the amount of available data about the wing structure is not enough to allow high-fidelity finite element analysis and optimization. The proposed tool consists of two levels. The first level is a quasi-analytical method for wing structural weight estimation and initially sizing of the wing box structure. The second level is an aeroelastic tool that uses a vortex lattice method and a finite beam element to compute the stress distribution in the wing box structure. The Newton method is used to solve the coupled system. The coupled adjoint sensitivity analysis method is used to compute the sensitivity of any function of interest with respect to the design variables. The tool was used for a series of wing aeroelastic optimizations to minimize the wing weight with a series of constraints on the wing structural failure modes and aileron effectiveness. Another series of optimizations is also used to find the wing jig shape for a predefined cruise shape. The outputs of the optimizations showed that the wing box weight varies quadratically with the required value for the aileron effectiveness.

This record has no associated files available for download.

More information

e-pub ahead of print date: 18 June 2015
Published date: 1 February 2016

Identifiers

Local EPrints ID: 471099
URI: http://eprints.soton.ac.uk/id/eprint/471099
ISSN: 2041-3025
PURE UUID: 9027a758-05f0-43c7-bf7b-962f8be6c57d

Catalogue record

Date deposited: 26 Oct 2022 16:39
Last modified: 16 Mar 2024 21:27

Export record

Altmetrics

Contributors

Author: A. Elham
Author: M.J.L. Van Tooren

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×