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A B S T R A C T   

The use of a digital twin to update a feedback controller is considered, and this is illustrated using 
simulations of a position-controlled dynamical system with a time-varying nonlinear element. The 
feedback control system consists of a dc motor driving the displacement of a three degree of 
freedom structure through a lead screw that is subject to backlash, whose gap angle changes over 
time due to wear for example. The backlash is shown to destabilise the feedback loop when using 
a PID controller designed for the linear system. However, stability can then be re-established by 
including a dead zone within the controller. The design of the dead zone depends on the extent of 
the gap angle in the backlash and is a trade-off between stabilising the system and avoiding 
excessive steady-state errors and undesired transient behaviour. When the backlash gap angle 
changes significantly from the one used to design the dead zone, both performance and stability 
are affected. Therefore, a digital twin of the system is used to estimate the backlash gap angle as it 
changes with time and this estimate is used to re-design the dead zone, which is then commu-
nicated back to update the controller. The digital twin and controller-design process can be 
implemented offline and remotely from the physical twin and the real-time controller via an 
asynchronous link with variable time delays. As a result of combining the feedback loop and 
digital twin, good performance and stability are maintained at all times.   

1. Introduction 

If a mechanical system is controlled using feedback, but its characteristics change over time, the original design of a feedback 
controller may not perform well and may even become unstable [1]. It is thus important to be able to monitor the condition of the 
mechanical system so that the control strategy can be modified in response to these changes. In this paper, the use of a digital twin [2] 
is investigated to track the behaviour of the mechanical system under control, which comprises the physical twin. The digital twin is 
then used to re-design the feedback controller, as illustrated in Fig. 1. 

Although the feedback controller for the physical system must act in real-time, and so generally is implemented locally, the 
implementation of the digital twin and the re-design of the controller need not be performed so quickly and so could be implemented 
remotely, via an internet connection with an uncertain delay for example. This general idea is illustrated in this paper based on a 
servomechanism in which the difference between the measured position of a structure and a reference command signal is used to drive 
a feedback controller to reduce this difference, hence ensuring the position of the structure follows the reference signal. Servo-
mechanisms are widely used in the aviation industry to control the position of flight surfaces, for example [3], and in wind turbines to 
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control the pitch of the blades [4]. When the control settling time is close to the structure’s fundamental vibration period time, the 
structure under control can exhibit significant dynamic behaviour. The servomechanism is initially designed to control the position of a 
dynamic (flexible) structure when it is linear, but which then needs to be re-designed if the physical system becomes increasingly 
nonlinear over time, for example, due to wear. Although backlash, to some degree, is present in most mechanical position control 
systems [5], its effect on the linear feedback law is frequently neglected. However, even when the backlash is considered when 
formulating the identification and control problem [6,7], its characteristics are usually modelled as constant in time. This form of 
modelling may be applicable in some cases, but it is not suitable when wear and tear processes occur [6], in which case the char-
acteristics of the backlash can change over time [8]. A possible method to account for the time dependence of the backlash is by 
introducing an adaptive controller [7], which estimates the backlash as part of its loop. In [9], an inverse-backlash adaptive control 
algorithm is described that estimates the backlash parameters in real-time. However, this proposed solution is only valid when the 
backlash can be measured directly and instantaneously, meaning that there is no inertia between the command signal and the 
backlash. In the review [7], it is suggested that in cases where the backlash is sandwiched between two dynamical systems, it is better 
to use a linear controller without the inverse backlash compensation. Other solutions for the so-called backlash sandwich problem have 
been introduced in the literature, either by employing nonlinear adaptive control [10], model predictive control [11], sliding mode 
control [12], or neural networks [13]. 

The drawback of such methods is that the controllers’ structures are complex, and their implementation is not direct. Therefore, 
although the theory behind these methods may be well understood, they are not industry-friendly, and in practice, linear PID con-
trollers are still dominant [14]. 

At its core, the purpose of a digital twin is to create a fusion between physical and data-based models of a system. Each of these 
modelling techniques are separately well understood; see [15,16] for physical-based modelling and [17,18] and references therein for 
data-based models. The technology maturity in computing power and sensor embedding needed to realise a digital twin was only 
recently made possible [2]. The majority of the work in this area is concerned with digital twins use for decision-making and structural 
health monitoring, with only a few remarks on the use of digital twins in control, using classical ideas like controller scheduling [19]. 
Developments in digital signal processing have, however, given rise to a more profound understanding of advanced control meth-
odologies [20–22]. Therefore, the question of how best digital twins can be used for autonomous control is still open. This work focuses 
on how the digital twin can be employed in feedback position control. The full capabilities or scope of the digital twin framework is not 
discussed. Instead, reference [2] is suggested for additional details on digital twin and their multiple uses for engineering dynamical 
systems. 

A simulation of a servomechanism is being used in this work to demonstrate the use of the digital twin, based on the architecture of 
Fig. 1. The dynamical structure is modelled here using a simple three degree-of-freedom (DOF) system of the form previously studied in 
[23]. A dc motor is used to drive the structure via a lead screw, which is assumed to be subject to a time-varying backlash of unknown 
magnitude. The structure is being controlled using a linear PID controller, with the incorporation of a dead zone to overcome the limit 
cycles introduced by the backlash and keep the control effort minimal in the backlash gap [7]. The dead zone parameter is estimated 
asynchronously by using a remotely-based digital twin to monitor the changing backlash angle. The initial simulation study described 
here aims to demonstrate the capabilities of incorporating digital twins into system control by employing the digital twin as an 
asynchronous estimator, resulting in a simple structure of the digital controller. This idea is not, by any means, a demonstration of the 
full capabilities of digital twins but only acts as a stepping stone towards a fuller understanding of their potential use in feedback 
control. 

The structure of the paper is that Section 2 describes the model of the linear physical system and its control, Section 3 considers the 
effect of backlash on the feedback controller, and Section 4 illustrates the closed-loop identification of the backlash and its use in a 

Fig. 1. A reconfigurable motion feedback controller design based on a digital twin framework.  
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digital twin to re-design the feedback controller. 

2. Linear control of the physical twin 

In this paper, the servomechanism is designed for the position control of a three DOF structure, as shown in Fig. 2(a). The bottom 
mass of the structure is connected to a dc electromechanical motor via a lead screw. A simplified dynamic system model can be derived 
using lumped elements, as shown in Fig. 2(b). 

The dc motor electrical model parameters are its inductance, L, and resistance, R, it is modelled as a lumped inertia, J, the two 
motor’s coefficients, kT and kB are the torque and back-emf gains, and the motor angular velocity and position are denoted ωm and θm, 

Fig. 2. The model of the simulated three DOF system with a simple position feedback control system (a), and the electromechanical system’s 
lumped element model (b). 
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respectively. The three DOF structure is modelled as three equal lumped masses, each of mass m, connected in series via linear springs, 
k, and linear dampers, c. The lead screw is connected to the motor via a worm gear with a 1:1 gear ratio. Its angular position is denoted 
as θd and its elongation (from rest) is denoted as d such that d = pθd, where θd is in radians, and p is the pitch of the lead screw. The lead 
screw connection to the first platform can be modelled as a linear spring kd, although this is assumed to be very large in the simulations 
below. The absolute position of each of the structure’s platforms are denoted qi (i = 1,2,3). The worm gear is susceptible to developing 
backlash, however, and so the motor’s angle, θm, does not necessarily equal to the lead screw’s angle, θd. 

2.1. Linear model derivation 

In this section, the linear models are described based on the lumped model of Fig. 2(b) with no backlash. The feedback control block 
diagram is shown in Fig. 3, in which G1 and G2 denote the dynamic plant responses associated with the electric motor and the 3 DOF 
system, respectively, and CPIDF denotes a linear PID controller, as discussed below. The reference, or command signal, is denoted r, y is 
the output signal, which corresponds to the position of the top mass in this case, e the tracking error signal, and u the voltage control 
signal. 

In the derivation of the linear models, the following assumptions are used:  

• The inertial loading of the structure is negligible compared to the motor’s torque.  
• The lead screw is infinitely rigid, i.e., kd → ∞.  
• The worm gear does not have any backlash, i.e., θd = θm. 

The dc motor’s dynamical electromechanical relations can be written using the following ODEs: 

Lİm +RIm = Vin − εb (1)  

Jω̇m = Tm (2)  

where Im,Vm, and εb denote the motor’s electrical current, voltage, and back-emf, respectively. The mechanical torque, Tm, is obtained 
from the motor’s electrical current via the static relation: 

Tm = kT Im (3)  

and the electrical back-emf is obtained from the motor’s angular velocity via 

εb = kBωm (4) 

Substituting the torque and back-emf of Eqs. (3) and (4) into the motor’s dynamical equations (Eqs. (1) and (2)), and performing the 
Laplace transform with zero initial conditions yields: 

(Ls+R)Im(s) = Vin(s) − kBωm(s) (5)  

Jsωm(s) = kT Im(s) (6) 

From Eq. (6), Im can be written as Im(s) = Js
kT

ωm(s), after substitution of Im into Eq. (5), the relation between the motor’s input 
voltage, Vin, to its angular velocity, ωm, is obtained as: 

ωm(s) =
kT

JLs2 + JRs + kBkT
Vin(s) (7) 

Since the motor’s angular position, θm, is obtained by integrating its angular velocity, the transfer function from the motor’s input 
voltage to its angular position, G1(s), can be written as: 

G1(s) =
1
s

kT

JLs2 + JRs + kBkT
(8) 

Such that the following relation holds θm(s) = G1(s)Vin(s). 
Following the assumptions above, the free three DOF structure’s equations of motion (EOM) can be written using matrix notation 

Fig. 3. Linear feedback control block diagram.  
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as: 
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Since we assumed that the lead screw is infinitely rigid, it follows that q1 = d = pθd. After substituting q1 into the EOM of Eq. (9), 
and moving all terms concerned with θd to the equations’ right-hand side, the following set of equations is obtained: 

[
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0 m

]
⎡
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q̈2
q̈3
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[
2c − c
− c c
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][
q2
q3

]

=

[
c
0

]

pθ̇d +

[
k
0

]

pθd (10) 

The transfer function from θd to q3 can be obtained by taking the Laplace transform of Eq. (10) assuming zero initial condition, so 
that: 

[

ms2 + 2cs + 2k − cs − k
− cs − k ms2 + cs + k

][
q2(s)
q3(s)

]

=

[
1
0

]

(cs+ k)pθd(s) (11) 

Multiplying by the inverse of the left-hand-side matrix results in 

Fig. 4. Frequency response of the two linear parts of the plant.  

Table 1 
Physical properties and values used in the numerical simulation of the three DOF with the DC electrical motor.  

Symbol Description Value, units 

m The lumped platform’s mass 5.2, kg 
k The beam’s equivalent stiffness coefficient 1 ⋅ 104, N/m 
c The beam’s equivalent damping coefficient 36.9, N/(m ⋅ s) 
J The lumped motor’s inertia 5 ⋅ 10− 6, kg ⋅ m2 

p The lead screw pitch 10− 3/2π, m/rad 
L The electrical motor’s lumped inductance 1 ⋅ 10− 3, H 
R The electrical motor’s lumped resistance 12, ohm 
kT The electrical motor’s torque gain 0.8, (N ⋅ m)/A 
kB The electrical motor’s back-emf gain 0.1, V/(m/s)  
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[
q2(s)
q3(s)

]

=
cs + k

m2s4 + 3cms3 + (c2 + 3km)s2 + 2cks + k2

[

ms2 + cs + k
cs + k

]

pθd(s) (12) 

Denoting the transfer function from θd(s) to q3(s) as G2(s) such that q3(s) = G2(s)θd(s) it follows, based on Eq. (12), that G2(s) is 
equal to: 

G2(s) =
c2s2 + 2cks + k2

m2s4 + 3cms3 + (c2 + 3km)s2 + 2cks + k2 p (13) 

Fig. 4 shows the frequency response of the electrical motor (G1) and the 3 DOF system (G2) for the physical values used in the 
simulation, which are given in Table 1. 

2.2. Linear control formulation 

Since the open-loop transfer function (which at this stage is given by G1G2) contains an integrator. A feedback controller is needed 
to obtain the desired steady state response. Additional potential advantages of using a feedback-loop are the ability to generate a closed 
loop response that is relatively insensitive to changes in the dynamical behaviour of the open-loop system, and the ability to attenuate 
disturbances and noise measurements on the system response. 

A filtered PID (PIDF) controller is designed for the feedback system, using MATLAB’s pidtune() function. The PIDF has the following 
structure: 

CPIDF(s) = Kp +Ki
1
s
+Kd

s
Tf s + 1

(14)  

where Kp,Ki, and Kd are the proportional, integral, and differential gains, respectively, and Tf is the differential filter time constant. 
The requirements used in the controller’s design are zero steady-state error, a bandwidth frequency of 10 rad/sec, and a minimum 
phase margin of 10 deg. For these requirements, the controller constants given by pidtune() are: Kp = 1377.7,Ki = 18907.6,Kd =

− 135.1,and Tf = 0.1.
Although, in principle, a filtered PD controller can achieve the first requirement (due to the integrator in G1) it does not achieve the 

required bandwidth. In addition, a PD controller will be more sensitive to disturbances, and so an integrator was included in the 
controller. 

Fig. 5 shows the step and frequency responses of the linear closed-loop feedback system from the reference signal, r, to the position 
of the top mass, which is the output signal, y, given by: 

Gcl(s) = CPIDF(s)G1(s)G2(s)/(1+CPIDF(s)G1(s)G2(s) ) (15) 

There are two significant resonances in the closed-loop frequency response, and transients from both of these can be seen in the step 
response. This resonance frequency must be kept high to obtain the desired bandwidth. The resonances are also not highly damped, so 
that both overshoot and decaying residual vibrations are seen in the step response. However, the overshoot level and the settling time 

Fig. 5. The closed-loop top mass’s step response (a), and the closed-loop frequency response (b).  
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are acceptable based on the control requirement. 

3. Backlash and its effect on the control 

The worm gear’s backlash mechanism is modelled as a shifted dead zone. Each time the rotation direction changes, a new dead zone 
of a given backlash gap angle begins. The backlash can be modelled using the state diagram presented in Fig. 6. 

The backlash gap angle, or width, is defined as θb, its inputs are θm and ωm, and its output is θd. In the state-diagram θold represents 
the last value of θd for the backlash function before it enters the gap, sign denotes the Signum function, where σ = sign(ωm) denotes the 
direction of rotation after the backlash is transverse. When the backlash is closed, State 1 in the state diagram, the lead screw angle is 
equal to that of the motor minus the gap, i.e., 

θd = θm − σθb (16) 

Fig. 6. Backlash model state diagram.  

Fig. 7. The backlash model’s input and output for the excitation given in Eq., in terms of the individual waveforms of θm and θd (a), and the 
nonlinear characteristic of one against the other (b). 
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where θb is the backlash gap angle. When the motor direction of rotation is switched, which is given mathematically as: 

sign(ωm)σ < 0 (17) 

the lead screw has to transverse the backlash gap again, State 0 in the state diagram, and θd remains constant until the gap is closed, 
i.e., until the following is being satisfied: 

|θm − θd| ≥ θb (18) 

In Eq. (18) the larger than function is used to avoid numerical errors. However, in reality, once the equality criterion is obtained, 
the difference between the two angles will remain constant. 

If the backlash angle were constant, the backlash block could be used in a Simulink simulation. Since the backlash angle changes 
with time, however, a separate program for the state transitions had to be written, as below. To illustrate its response, Fig. 7 shows the 
output of the backlash mechanism for the case where θb = 20deg, and for the following input: 

θm(t) = (1+ t/10)sin(2πt) (19) 

The lost motion between θm and θd can be seen in Fig. 7(a), which shows their two waveforms, whereas the nonlinear characteristics 
of the backlash are more transparent in Fig. 7(b), which plot one against the other. 

3.1. Effect of the backlash on the feedback-controlled system 

To simulate the effect of backlash on the feedback control loop, the block diagram of Fig. 3 was modified by introducing the 
backlash between the two dynamic plants, G1 and G2, as shown in Fig. 8. 

The resulting step response of the feedback system, with the PID controller designed above, for different backlash angles is shown in 
Fig. 9(a), whereas Fig. 9(b) shows the electrical motor’s angle, θm, and the lead-screw’s angle,θd.

The simulation results presented in Fig. 9 show that when backlash is present, the steady-state response exhibits a limit cycle and so 

Fig. 8. The block diagram of the closed-loop system with the modelled lead screw’s backlash.  

Fig. 9. The top platform position for different backlash angles (a), the lead screw’s angle(solid line), and motor’s angle (dashed line) for the 
corresponding backlash angle (b). Both subplots share the legend. 
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is not asymptotically stable. Furthermore, the limit cycles’ amplitude increases with the backlash angle. Therefore, a nonlinear 
controller will be described in the following section that can be used to stabilise the feedback system when backlash is present. 

3.2. Dead zone anti-backlash controller 

The dead zone aims to avoid the limit cycle oscillations caused by the backlash by implementing feedback control only when the 
system’s output is significantly different from the required command signal and opening the feedback loop if the error between these 
two signals is smaller than a given tolerance. By doing so, the control effectively implements a minimal control effort in the backlash 
gap, which is the preferred strategy for dealing with backlash in feedback loops [7]. However, the system does not stop instantaneously 
when the feedback loop is opened, and inertial effects will still occur. As a result, if the dead zone’s tolerance is chosen to be too small 
compared with the backlash gap, the inertial effects will be dominant, and the limits cycles will remain (although with a different 
phase, amplitude, and even frequency). The three DOF system, G2, is asymptotically stable. Therefore, if the error enters the dead zone 
without enough inertia to get out, it will remain inside it, and the oscillation will decay away until a steady state value is reached. 
However, this steady state value is, most likely, biased compared to the reference value. Thus, it should be possible to restabilise the 
system in the presence of backlash with a dead zone anti-backlash controller (referred to herein as a DZ controller). The design of the 
dead zone is a trade-off between avoiding a limit cycle oscillation and generating too significant a difference between the output and 
the command signal and increasing the settling time. 

Fig. 10(a) shows the block diagram of the nonlinear DZ controller, as well as the nonlinear plant with backlash between the angle of 
the motor, θm, and the lead screw θd. The control signal, u is now either the current output of the CPIDF controller or zero, depending on 
whether the error is outside or inside the required tolerance. A dead zone error, which drives the controller, is also introduced to avoid 
changing the integrator part of the controller within the dead zone. The dead zone error is denoted as eDZ and follows the following 
switching rule: 

eDZ(t) =

{
e(t) |e(t) |>εDZ

0 |e(t) | ≤ εDZ
(20) 

Where εDZ denotes the dead zone tolerance. In the current work εDZ is associated with the estimated backlash angle, ̂θb, via the pitch 
p and the DZ gain kDZ, such that. 

εDZ = kDZpθ̂b (21) 

The DZ gain is assumed to be constant in these simulations, with a value of unity, but generally could be made a function of θ̂b. A 
direct result of this switching law is that the closed-loop feedback is only used when the top mass position is more than a certain 
distance from the required position, and the motor remains undriven when the output position is close to that required. Therefore, the 
system dynamics can be represented by a state-dependent switching law. When the error is large, the dynamics are described by the 
closed feedback loop Gcl, driven by the error signal. When the error is small, the dynamics are described by the initial condition (zero- 
input) behaviour of the open-loop systems: G1, the backlash, and G2. The system is now nonlinear due to both the backlash and the 
switching. Therefore, its stability and performance depend on several factors, such as the reference amplitude, backlash angle, and the 
dead zone tolerance. 

Fig. 11 shows the step response simulation results of the feedback system with a dead zone anti-backlash controller. Different values 

Fig. 10. The block diagram of the nonlinear plant and the proposed anti-backlash controller (a), and an example of the DZ controller signals and 
switching (b). 
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of backlash were considered, with a DZ controller having a fixed value of dead zone error, εDZ, to examine the mismodel effect between 
the estimated and the actual backlash angles. The estimated backlash angle was set to be ̂θb = 10 deg. The DZ gain was chosen as unity, 
kDZ = 1, and the effect of this parameter on stability and performance remains an open question for the moment. From the results 
shown in Fig. 11 it can be seen that the DZ controller restabilises the feedback system when the backlash angle is 0, 5, 10 or 15 degrees. 
If the backlash angle is an over-estimate, i.e., θ̂b > θb, the feedback system is stable in these simulations, but the steady state bias is 
changed. The dependency of the bias on the estimation error is not transparent, however. For an under-estimate of the backlash angle, 

Fig. 11. The top platform position for different backlash angles (a), the lead screw’s angle (solid line) and motor’s angle (dashed line) for the 
corresponding backlash angle (b). Both subplots share the legend. 

Fig. 12.. The top platform position, q3, the reference signal, r(a), and the actual and estimated backlash angles (b).  
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i.e., θ̂b < θb, the feedback system remains stable up to some limiting value. The identification of the backlash-angle thus does not need 
to be exact in order for the dead zone to stabilise the system. However, if the estimator is chosen “conservatively” to be somewhat 
larger than required, then the system will be open-loop for a large band of errors and so will be more sensitive to disturbances. 
Therefore, only an “accurate enough” estimation of the backlash angle is required in the controller. 

Fig. 12 shows simulation of the response with a square-wave command signal for the feedback system with a time-varying backlash 
angle and constant estimated backlash angle, with a DZ controller having a fixed value of εDZ. The simulation was carried out to 
illustrate the effect of changes in the backlash angle. The command signal used throughout the simulation, shown in Fig. 12(a) (Red 
solid line), is a square wave with a 1 mm amplitude. Based on the transient settling time of the linear system, the period of the square 
wave was set to 40 s so that the transient response had substantially decayed before the following change in the command signal. A 
time-varying backlash is now assumed, which changes according to an S-curve profile over 200 s, as shown in Fig. 12(b) (Blue solid 
line), representing a highly accelerated wearing process. A constant estimated backlash angle, θ̂b = 10 deg, was, however assumed in 
the simulation to set εDZ. The command and output signal of the simulation are shown in Fig. 12(a), and the actual and estimated 
backlash angles are shown in Fig. 12(b). Note that stability is lost when the actual backlash angle becomes significantly larger than the 
estimated one used to set the εDZ parameter in the dead zone, 17 degrees compared to 10 degrees in this case. 

Based on these simulations, the need to update the backlash estimator is apparent when the backlash changes over time. Therefore, 
in the following section, a use of a digital twin is discussed in order to update the estimation of the backlash angle. 

4. Digital twin with backlash identification and closed-loop simulations 

The simulation’s results presented in Section 3.2 illustrate the importance of having an “accurate enough” estimation of the current 
backlash angle. A digital twin is now employed to estimate the backlash angle and hence reconfiguration of the controller. The digital 
twin is assumed to be implemented remotely, as in Fig. 1, to avoid an over-complicated real-time controller design around the physical 
twin. The digital twin used in these simulations does not aim to mimic a fully operational one. Instead, only the digital twin’s systems’ 
models and communication capabilities are considered. This highlights how the digital twin can be used in real-time model estimation 
and controller reconfiguration without venturing into the discussion of what encompasses a digital twin. 

The detailed physical arrangement is shown in Fig. 13, in which the controller is implemented in real-time, while the updating 
processes that require extensive signal processing, including the implementation of the digital twin, take place on a remote machine. 
The left-hand side of the diagram of Fig. 13 represents the physical twin, and the right-hand side is the digital one. The physical twin 
comprises the dynamic plants, the DZ controller, and a data acquisition system operating in real-time. The right-hand side of the 
diagram shows the digital twin, which realises the various filters and the backlash angle nonlinear estimator and uses this estimation to 
update the DZ controller. The remote connection enables passing the measured data between the two at discrete well separated events 
and updating the dead zone parameter. The relevant system states of the real-time control loop, which are the measured motor angle, 
θm, and the top platform position, q3, are stored in temporary memory and sent to the digital twin using an asynchronous interface 
connection. In the current configuration, it is assumed that the digital twin runs once after each change of the reference signal (after the 
buffer is full). An unknown delay may be introduced due to the nature of this interface. The states are recorded in a local buffer, the 
contents of which are sent to the digital twin at each update time instance. The overall delay in the transmission is thus the sum of the 
buffer data acquisition time and the communication and data transfer times. While the latter, in general, is a non-deterministic 
quantity, the intersample delay between consecutive samples within the buffer is both constant and known. Based on the digital 
twin decision, the dead zone parameter in the real-time controller can be reconfigured to ensure the system’s stability. More so-
phisticated controller re-design methods could also be envisaged, which may involve running multiple digital twin simulations at a fast 
simulation rate compared to real-time and tuning the PID parameters as well, for example. 

If a microcontroller is used to implement the sampling and data storage functions on the left-hand side of Fig. 13, it may well have 
enough processing power also to implement a novelty detection system [24], instead of updating based on the reference signal. This 

Fig. 13. The block diagram of the physical-digital twin configuration used in Section 4 simulations.  
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can be used to ensure that the state variables are only transmitted to the digital twin once a significant change in the backlash is 
detected and reduce the overall time and communication resources. 

A simplified form of a digital twin is used here to demonstrate its use in the reconfiguration of the controller. The right-hand part of 
Fig. 13 shows the block diagram of the digital twin, which has dynamical models of sub-systems, G1 and G2, in the form of their transfer 
functions . It is assumed that G1 and G2 are modelled accurately, based on a preliminary linear identification procedure [16]. The 
current work also assumes that these linear systems parameters are constant in time, unlike the backlash angle. This assumption 
depends on the application and the different timescale of the wear responsible for changing the backlash angle and other processes that 
might change the system’s mass or stiffness. 

It is assumed that the motor’s angle, θm, and the top platform position, q3, are measured at a sampling rate of 5 kHz, and the buffer 
size is chosen to correspond to one second of measurement time, resulting in a total of 10,000 samples for both signals. It is also 
assumed that the local controller and the digital twin’s server are connected via a local router. Therefore, the end-to-end delay is the 
sum of the processing, queuing, transmission and propagation delays [25]. In modern routers configured to simple packet forwarding, 
processing delays are of the order of microseconds and can be neglected [25,26]. If the router is used only for the communication 
between the controller and server, and the packet’s transmission ends before the next one is received, the queuing delay is zero. 
Assuming a data transfer rate of 100 Mbits, and 16 bits data, the communication time delay between the physical to the digital twin has 
a delay of 1.6 ms. Finally, the propagation delay of a local network is also on the order of microseconds and is, therefore, negligible. 

To conclude, the end-to-end time delay in the current work is equal to the transmission delay and a small, positive-valued un-
certainty on the order of milliseconds. Therefore, a 1-second delay was added, in addition to the inherent buffer delay, for each 
communication channel in the current simulation. The added delay also ensures that the estimation algorithm will converge before 
sending the new estimation. 

The digital twin uses its knowledge of the different elements to estimate the motor’s and lead screw’s angles from the measured 
signals and consequently estimates the current backlash angle. The estimated backlash angle is then used to set the extent of the dead 
zone when updating the controller. The estimation method used for the lead screw’s angle is described first in Section 4.1. Then, the 
simulated physical and digital twin results are discussed for the time-varying backlash angle in Section 4.2. Finally, the case of noisy 
measurements is discussed in Section 4.3. 

4.1. Backlash angle estimation 

After each data transmission, the digital twin can be used to simulate the internal signals of the feedback system. However, since the 
communication is event-based, and only a partial time history is available for the digital twin, it is necessary to estimate internal signals 
without accurate knowledge of their initial conditions. The approach used here is based on a linear observer, which can overcome the 
uncertainty in the initial conditions and be combined with a nonlinear optimiser to estimate the backlash gap angle and the lead screw 
initial angle. 

An angular position sensor is used to measure θm directly, and so avoid the use of the estimated motor dynamics; however, if the 
motor’s position is not accessible, the initial conditions (angular position and velocity) can be added as additional parameters to the 
nonlinear optimiser. The output of the backlash, the lead screw’s angle, is estimated using the backlash model of Section 3, although, in 
the sampled version of the model, the sign of the motor’s angular velocity is estimated using a first-order finite-difference. 

The optimisation goal is formulated as follows: Given a model of the 3 DOF structure dynamics in terms of its transfer function, 
G2(s), a set of measurements, θm[k] = θm(t0 +kTs), q3[k] = q3(t0 +kTs), k = 0,⋯,N − 1, where Ts denotes the sampling time, and a 
discrete backlash model with input θm and output θd, given by. 

θd[k] = B(θb, θm[k], θm[k − 1], θd[k − 1] ), k = 1,⋯,N − 1 (22) 

Then by defining q̂3(t0 +kTs) as the estimator output, and ξ̂3(t0 +kTs) as the estimator residual, we would like to minimise the 
steady-state squared rms of the estimator residual (ξ̂3): 

Fig. 14. The nonlinear estimator block diagram.  
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min
b,w0

∑N− 1

k=ks
(ξ̂3(t0 + kTs) )

2
= min

b,w0

∑N− 1

k=ks
(q3(t0 + kTs) − q̂3(t0 + kTs) )

2 (23) 

The minimisation problem should be an unbiased estimator, meaning that when the backlash output and the backlash output initial 
condition are known accurately, b* and w*

0, the ξ̂3 rms is at a global minimum. However, in the current formulation, there are no 
additional constraints imposed on G2. Expressly, we do not assume the knowledge of its initial conditions, and the effect of these initial 
conditions in the steady state could lead to a biased estimation. 

To ensure that the minimiser is unbiased, a linear state estimator, whose structure is described in the Appendix, is put forward to 
eliminate the effect of the initial conditions. The weight vector of the linear estimator is chosen to attenuate the linear estimation error 
in less than ksTs seconds. 

The nonlinear estimator block diagram is presented in Fig. 14. The solution to the nonlinear minimisation problem could be ob-
tained by employing a variety of known minimisation algorithms on the digital twin, which can simulate the estimator much faster 
than real-time. In this work, the unconstraint BFGS Quasi-Newton method with cubic line search was chosen to solve the optimization 
problem. The initial conditions for the nonlinear minimiser were chosen to be the previous backlash angle and the first sample of the 
motor’s angle minus the prior backlash angle multiplied with a forward finite difference estimation of the motor’s direction. 

4.2. Simulation of a digital twin based reconfigurable controller 

A Simulink and MATLAB simulation was used to validate the proposed control scheme. The physical twin, sensors, buffers, and 
communication were realised in the Simulink environment, and the digital twin nonlinear optimisation was realised using a MATLAB 
function. In addition to the buffer delay, a 1-second delay was added to each communication between the digital and physical twin, 
representing an upper bound on the possible communication delay and the time the digital twin takes to solve the optimisation 
problem. The reference signal and the backlash angle profile used for the current simulation are the same as the previous simulation 
(Section 3.2). The controller parameters were kept the same with kDZ = 1. The parameters of the digital twin post-processing were 
chosen as: N = 2, εd = 0.1rad/s, and l = 1/10. The initial backlash estimator was set to zero (θ̂b(0) = 0), and the lead screw’s angle 
initial position was set to the middle of the backlash. 

Fig. 15 shows the simulation results of the digital twin based reconfigurable controller simulation with a time-varying backlash 
angle. Note that unlike the previous simulation results (Fig. 12), the reconfigurable controller now restabilises the nonlinear feedback 
system at all times. Compared with the result in Fig. 5(a), the settling time is increased by the communication and estimation delay. 
Since the backlash is assumed to change unrealistically fast in these simulations, the estimator needs to change constantly, but in more 
realistic scenarios, the estimator would only be required occasionally. Even though a bias in the final position of each step is present, 
the worst bias is under 5% of the required reference amplitude. The lead screw’s angle estimation procedure is seen to yield a suf-
ficiently accurate estimation for stable control. 

The introduction of a digital twin enables us to restabilise the system when it is subject to a nonlinear, nonstationary backlash 

Fig. 15. Top platform position, q3, the reference signal, r (a), and the actual and estimated backlash angles (b).  
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mechanism. This was achieved without changing the structure of the simple PID-based dead zone controller. 

4.3. Simulation of a digital twin based reconfigurable controller with measurement noise 

It is important in practice to also consider the case of non-ideal sensors and a noisy environment. Uncorrelated filtered Gaussian 
noise was added to the measured top platform’s position, which altered the tracking error used in the feedback controller. The noise 
power was set to represent a realistic measurement scenario, with a standard deviation of 0.22 mm, about a quarter of the size of steps 
in the reference signal or an SNR of 20 dB. Both the measured motor’s angle and top platform position were passed through a noncausal 
lowpass (with a zero-phase shift) filter in the digital twin. The filtered signals were then used as the inputs of the nonlinear optimi-
sation. The feedback loop was modified to include a first-order lowpass to filter the measured top-platform position. The lowpass cut- 
off frequency was chosen to minimize the added phase lag near the structure resonances to ensure the closed-loop’s stability. 

The noise was created by passing a white noise generator through an IIR highpass filter with a stopband frequency of 10 Hz, a 
passband frequency of 50 Hz, and a minimum stopband attenuation of 40 dB, thus mimicking the case where the noise spectrum is 
mainly concentrated at higher frequencies that the dynamical system spectrum. A 10th order Butterworth filter was used for the 
noncausal filter, and both the lowpass filters were designed with the same cut-off frequency of 20 Hz. 

Fig. 16 shows the simulation results of the digital twin based reconfigurable anti-backlash controller with an added 20 dB SNR 
Gaussian measurement noise. The top platform position and not the noisy measurement of it is shown in Fig. 16(a) since the noise and 
command signals’ amplitudes are the same order of magnitude, making it hard to see the control action when looking at the noisy 
measurement. Based on Fig. 16(b), it is noted that the backlash’s angle estimation is now slightly biased since the noise is not filtered 
entirely from the measured noise. However, as shown in Section 3.2, only an approximated backlash estimation is needed to ensure 
stability, and so this does not alter the system performance, which is further supported by the response of the top platform shown in 
Fig. 16(a). 

The effect of noise on the linear controller (Fig. 16(a) when time < 20 s) seems to be negligible, as expected. However, if a small 
dead zone is included in the controller, the noise in the feedback results in small amplitude steady state oscillations, as can be seen for 
the fourth and fifth steps (Fig. 16(a) when 60 s < time < 100 s). When the dead zone becomes larger, the effect of the noise diminishes. 
Therefore, another possibility is to introduce a larger dead zone even for a small backlash gap’s angle; this could be achieved by tuning 
the dead zone gain parameter, kDZ, which is currently equal to unity. 

Based on the result, it is seen that the proposed control scheme can cope with a realistically noisy environment and that the 
proposed estimation method, although slightly biased, is accurate enough to maintain control. If a very harsh environment with higher 
levels of noise, both the controller and the estimation methods would need to be modified to incorporate a noise model. 

5. Conclusions 

Feedback controllers are widely used to control the position of dynamic systems but can perform poorly or become unstable if there 

Fig. 16. The top platform position, q3, the reference signal, r(a), and the actual and estimated backlash angles (b).  
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are changes to the characteristics of the system under control. In this paper, a digital twin is used to track the changing behaviour of an 
example dynamic structure used in a position control system, for which the connection between the driving motor and the structure is 
subject to backlash, the extent of which changes over time. The dynamics of the example three degree of freedom structure and the 
motor are first modelled, and a PID controller is designed for this linear system. The controller’s performance is then examined when 
there is an increase in the width of the backlash gap in the lead screw converting the rotation of the motor into the translational motion 
driving the structure. It is shown that the system can easily develop a limit cycle oscillation as the backlash gap increases. One method 
of suppressing these oscillations is to incorporate a dead zone into the controller, to ignore minor differences between the displacement 
of the structure and the command signal. The design of such a dead zone, which depends on the extent of the backlash, involves a trade- 
off between suppressing the oscillations and not incurring too large a steady-state error and an undesired long settling time. 

A digital twin of the motor and structure is then used to estimate the extent of the changing backlash gap in the lead screw and 
hence alter the dead zone of the controller. More sophisticated implementations of the digital twin could also be envisaged, such as its 
use to also change the gain of the dead zone under different conditions, or the simultaneous identification of the motor and the dy-
namic system plants if they were to change, but these avenues have not been explored here. Unlike the feedback controller, which 
needs to be local to the structure under control and operate in real-time, the digital twin, which requires considerably more processing 
power, does not need to be operating continuously. Therefore, the digital twin can be implemented remotely and only communicate 
with the physical twin via an asynchronous link with uncertain latency. Moreover, the digital twin can operate at rates much faster 
than real time to speed up the controller design. It is shown that by using the digital twin to track the changing backlash using 
nonlinear optimisation and hence retune the extent of the dead zone in the local controller, stability can be maintained when the 
backlash varies over a range for which a fixed dead zone would not give satisfactory performance. In these simulations, it is assumed 
that the digital twin is used regularly to estimate the extent of the backlash. However, it would also be possible to incorporate a novelty 
detector into the local controller and so only use the remote digital twin to retune the feedback if there was a significant change in the 
system under control. 
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Appendix – Linear state observer 

A closed-loop state-observer [27] is used in the minimisation problem of Eq. , as shown in Figure 14. The state-observer inputs are 
the measured top platform’s position, q3, and the estimated lead screw’s angle, θ̂d, and its output is the estimated top platform’s 
position q̂3, assuming zero-initial conditions. 

The transfer function representation of the 3 DOF system, G2, given in Eq. can be written in a minimal observable canonical form 
state-space realisation as: 

G2(s) = Co(sI − Ao)
− 1Bo =

[
Ao Bo
Co 0

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− a3 1 0 0

− a2 0 1 0

− a1 0 0 1

− a0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

b2

b1

b0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[ 1 0 0 0 ] 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.1)  

where: 

a0 = k2/m2, a1 = 2ck
/

m2, a2 = c2/m2 + 3k
/

m, and a3 = 3c
/

m (A.2)  

and 

b0 = k2p
/

m2, b1 = 2ckp
/

m2, and b2 = c2p
/

m2 (A.3) 
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Using state-space notations and introducing the estimator gain vector L, the feedback state-estimator can be written as: 

˙̂x = Ao x̂ + Boθd + L(q3 − q̂3)

q̂3 = Co x̂
⇒

˙̂x = AL x̂ + Boθd + Lq3
q̂3 = Co x̂

(A.4)  

Where x̂ and q̂3 are the state vector and output estimators, and AL ≡ Ao − LCo. Assuming that no knowledge of the initial condition 
x(0) = x0 is available, the linear observer error dynamics êL = x − x̂ is dictated by the following homogeneous initial value problem 

˙̂eL = AL êL, êL(0) = x0 A.5) 

Since the realisation is minimal, the matrix pair (A0,Co) is observable, and the poles of AL can be assigned at will. By choosing the 
dominant mode settling time to be smaller than ksTs, the unknown initial condition dynamics no longer affect the nonlinear estimator. 

One possible choice is to place all ALeigenvalues at the same location, − α. Leading to the following binomial expansion for the 
closed-loop characteristic polynomial: 

χL(s) = det(sI − AL) = (s + α)4
=
∑4

i=0

(
4

4 − i

)

αis4− i,

(
4

4 − i

)

=
4!

(4 − i)!i!
A.6) 

By writing the estimator gain vector as L = [ l3 l2 l1 l0 ]T, it follows that the observer is also in the observable canonical form, 
and: 

AL =

⎡

⎢
⎢
⎢
⎢
⎣

− (a3 + l3) 1 0 0
− (a3 + l2) 0 1 0
− (a1 + l1) 0 0 1
− (a0 + l0) 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

A.7) 

Therefore, the observer characteristic polynomial is given by: 

χL(s) = s4 +(a3 + l3)s3 +(a2 + l2)s2 +(a1 + l1)s+(a0 + l0) A.8) 

Equating Eq. (A.6) and Eq. (A.8) results in the following choice of coefficients: 

li =

(
4

4 − i

)

αi − ai A.9)  

which ensures that the mode settling time is shorter than ksTs by tuning α. Thus, by combining this linear state-observer with the tuned 
α and the nonlinear optimisation method described in Section 4.1, results in an unbiased estimation of the backlash gap. 

For example, Fig. A.1 shows a simulation of the estimation based on measurements obtained from G2 assuming a backlash angle of 

30 degrees, initial states of 
[

y0, ẏ0, ÿ0, y
⃛
0

]

= [ − 1.5,5, 0.1,0] ⋅ 10− 3, and for different choices of the observer poles’ location, α. The 

Fig. A.1. The input motor’s and lead screw’s angle signals (a), and the electromechanical output for three different linear state-observers (b).  
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convergence time of the estimation depends on the selection of α. It can be noted based on Fig. A.1 that α = 40 results in a good 
estimation of the output after 0.25sec, and therefore, it is used in the design of the digital twin. 
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