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[bookmark: OLE_LINK26][bookmark: _Hlk114829599][bookmark: _Hlk91229193][bookmark: _Hlk91162674]Figure 1. Illustration of the principle of t-HPS (left), the sample tube for t-HPS in cylindrical coordinates (center), half-height annular section of the tube wall with the observation regions: inner, middle and outer (right). Two sets of coordinate systems are defined: the macroscopic sample coordinate system is expressed in cylindrical coordinates r-θ-z and the local Cartesian coordinate system in terms of a-b-c. At any local position, these two coordinate systems always keep r parallel to a, θ parallel to b, and z parallel to c.
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[bookmark: OLE_LINK3][bookmark: OLE_LINK4][bookmark: _Hlk114829653][bookmark: OLE_LINK27]Figure 2. The Inverse pole figure (IPF) map obtained by EBSD showing (a) the fully-annealed coarse grains of 5N Al before t-HPS and (b) the sub-grain boundaries (white nets) formed in these coarse grains when the sample is subjected to a hydrostatic pressure of ~3 GPa. The scale bar is the same in (a) and (b).
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[bookmark: _Hlk114829684][bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: OLE_LINK28]Figure 3. EBSD IPF maps from inner (a), middle (b) and outer (c) regions of the 5N Al processed by t-HPS to a rotation angle of π/6, and (d) the misorientation changes from grain A to C across B as shown in (a). The scale bar is the same in (a), (b) and (c).


[image: ]
[bookmark: OLE_LINK7][bookmark: OLE_LINK8]Figure 4. EBSD IPF maps from inner (top), middle (center) and outer (bottom) regions as indicated in Fig. 1 of the 5N Al processed by t-HPS to a rotation angle of π/4 (left), π/2 (center left), π (center right) and 2π (right). The scale bar is the same for all IPF maps.
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Figure 5. Evolution of grain boundary misorientation distributions upon increase of t-HPS rotation angle through (a) π/6, (b) π/4, (c) π/2, (d) π, (e) 2π and (f) 10π. It is important to note the different range of the vertical axis in (a).
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[bookmark: OLE_LINK14][bookmark: OLE_LINK13]Figure 6. (a) (100) pole figures of the as-received 5N Al sample bar and after t-HPS processingb) 45°rotated (001) standard projection of cubic crystal and (c) illustration of an ideal {}<110> lattice cell with its relation to the t-HPS tube sample.
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[bookmark: _Hlk91059849][bookmark: _Hlk110881892][bookmark: _Hlk95893473]Figure 7. Evolution of microstructure parameters: (a) average grain sizes and grain aspect ratios, (b) average grain boundary misorientation, HAGB fractions and intensity of {}<110> texture obtained from (111) pole figure upon increase of t-HPS equivalent strain: grain size data from the literature 36,51-58 are also included.
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[bookmark: _Hlk91229316]Figure 8. Illustration of the assumed C component 3D cubic cell in deformation state (left) and ideal {}<110> component 3D cubic cell in the recrystallized state (right); the sample local Cartesian coordinate system a-b-c and stress principal coordinate 1-2-3 are illustrated, and the local Cartesian coordinates a, b and c are parallel to the sample cylindrical coordinates r, θ and z, respectively.
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Figure 9. The (a) (100) and (b) (111) pole figures observed in 5N Al after t-HPS rotation to 2πbottomby comparison to those estimated (top) for the {}<110> texture pole figure with a spreading of 27°.


[bookmark: _Hlk91059375][bookmark: _Hlk91229277]



Table 1. The equivalent strain after t-HPS (rotation angle /6~10) at different observation regions
	Rotation angle
	Regions

	
	Inner
	Middle
	Outer
	Average

	[bookmark: _Hlk489019457]π/6
	5.5
	3.6
	2.5
	3.8

	[bookmark: _Hlk489019476]π/4
	8.2
	5.5
	3.7
	5.7

	[bookmark: _Hlk489019533]π/2
	16.5
	11
	7.4
	11.3

	[bookmark: _Hlk489019554]π
	33
	22
	15
	22.7

	[bookmark: _Hlk489019660]2π
	66
	45
	30
	45.3

	10π
	330
	227
	148
	227
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