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CATCHM: A novel network-based credit card fraud
detection method using node representation learning

Abstract

Advanced fraud detection systems leverage the digital traces from (credit-card)

transactions to detect fraudulent activity in future transactions. Recent research

in fraud detection has focused primarily on data analytics combined with man-

ual feature engineering, which is tedious, expensive and requires considerable

domain expertise. Furthermore, transactions are often examined in isolation,

disregarding the interconnection that exists between them.

In this paper, we propose CATCHM, a novel network-based credit card

fraud detection method based on representation learning (RL). Through in-

novative network design, an efficient inductive pooling operator, and careful

downstream classifier configuration, we show how network RL can benefit fraud

detection by avoiding manual feature engineering and explicitly considering the

relational structure of transactions. Extensive empirical evaluation on a real-life

credit card dataset shows that CATCHM outperforms state-of-the-art methods,

thereby illustrating the practical relevance of this approach for industry.

Keywords: Network Representation Learning, DeepWalk, Credit Card Fraud,

Fraud Detection

1. Introduction

The advent of e-commerce and digital payment solutions has profoundly

changed the way we pay for goods and services. The number of credit and debit

card transactions rose dramatically in recent decades and this has attracted

criminals [1, 2]. In response to this threat, financial institutions have tried to5

improve security measures to prevent fraud and, deploy systems to detect fraud
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[3]. Automated fraud detection originally relied on domain expert knowledge to

create a set of differentiating rules [4]. More recently, machine learning (ML)

has been applied to mine fraudulent patterns in transaction logs of financial

organizations [5, 6, 7]. To date, however, research in fraud detection has been10

confided to either domain expertise or extensive feature engineering, both of

which have important limitations in terms of classification performance, oper-

ational efficiency, maintainability, and cost. This is exactly what we aim to

address in this paper.

Concretely, this work contributes to the literature by proposing CATCHM,15

an entirely novel fraud detection algorithm that relies on customized network

representation learning. We demonstrate that accurate fraud detection can

be achieved without the aforementioned domain knowledge or manual feature

engineering. A successful fraud detection system (FDS) should be capable of

dealing with three crucial challenges. First, fraud is hidden. Only a fraction20

of transactions is fraudulent, which results in a severe class imbalance [3, 8].

Globally, 6.86 dollar cents per 100$ are lost due to fraud, while in the SEPA

zone, approximately 0.24% of all transactions turn out to be fraudulent [1].

This means that there are very few examples of fraudulent activity to learn

from, which, in turn, can cause a high number of false positives (legitimate25

transactions falsely tagged as fraud). Second, fraud is dynamic. Fraudsters

adapt quickly to new security measures and detection methods [9, 3]. Novel

modi operandi will emerge quickly and fraud detection systems should adapt

accordingly. Third, time is scarce. Increases in the volume of transactions1,

changing legislation and rising customer expectations have led to a dramatic30

decrease in payment processing times [10, 11]. Currently, a transaction can

be authorized in less than one hundred milliseconds [12, 13]. As a result, an

FDS has to scale and be fast. CATCHM addresses these challenges by means of

three crucial elements. First, we propose an innovative tripartite network design

including an artificial node to directly incorporate fraud information available35

1Visa network: 188B transactions in 2020, Mastercard network: 113B in 2020
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in training data, which strongly impacts the quality of the node embeddings

obtained from the representational learner. Second, we present an inductive

extension for random-walk based network representation learning. In this way,

a transaction can be processed quickly, and operational time requirements can be

met. Third, we propose an optimal downstream classifier optimization through40

careful hyperparameter tuning and model stacking.

In an extensive experimental evaluation, CATCHM is shown to outperform

relevant benchmarks on actual credit card fraud data, containing more than

three million transactions. More specifically, we demonstrate how our solu-

tion can be deployed satisfying the stringent operational time constraints while45

concurrently optimizing prediction quality metrics important to financial orga-

nizations.

The remainder of this article is structured as follows. After introducing

related work in Section 2, CATCHM is described in Section 3. Sections 4 and

5 describe the benchmarks and the experimental design respectively, before the50

results are presented in Section 6. The paper is concluded in Section 7.

2. Related Work

In this section, we provide an overview of related work in terms of (1) general

(supervised) machine learning techniques for fraud detection, (2) network-based

fraud detection, and (3) graph representation learning. To conclude this section,55

we clarify the research gap and our contribution.

2.1. Machine Learning for Fraud Detection

Thanks to the digitization of the payment process, more data are being

stored for each transaction. These data enable statistical learning techniques,

including ML, to discern genuine and fraudulent transactions. The most com-60

mon ML technique in the fraud detection literature is neural networks (NNs).

Initially, research was focused on data preprocessing and in particular, feature

engineering [6, 14, 15]. In the last decade, the focus shifted to the architecture,
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and novel NN designs for fraud detection were introduced [16, 17, 18, 19]. Deci-

sion tree (DT) algorithms have also been used for fraud detection [5, 9, 20, 21].65

An important advantage of DTs is that the models are relatively straightfor-

ward to explain and can easily be interpreted as a rule set. Hence, DTs can

augment existing rules from domain experts. To deal with challenges such as

concept drift and the volume of transactions, scholars have experimented with

novel DT algorithms that allow for online learning [21]. Researchers have also70

studied evolutionary computing techniques [22, 23], Bayesian networks [7, 24]

and support vector machines [25]. For a more in-depth overview and analysis

of ML-based fraud detection methods, we refer to [8].

2.2. Social Network-driven Fraud Detection

Fraudsters often cooperate and organize in gangs [26]. Moreover, a single75

fraud case can span multiple transactions, involving more than one cardholder

and/or merchant [27], resulting in a complex network of interactions underlying

each fraud case. While anomaly detection in graphs has been considered for

fraud detection [28], our work focuses on supervised learning. In this context, a

prime focus is on feature engineering via social network analysis (SNA). Social80

network analysis investigates social structures using graph theory and provides a

wide array of network metrics and algorithms that are used to derive a set of fea-

tures summarizing the network topology [29]. These features are subsequently

used to train a machine learning classifier for the task of fraud detection. For

example, in [30], egonet features and metrics from shortest paths and strongly85

connected components were used to create a fraud detection model. In [31],

a heterogeneous network consisting of vertices representing users, reviews and

products was characterized via metapath analysis for spam detection. With auc-

tion fraud, the authors of [32] found that fraudsters tended to have more intense

links with their neighbors. Hence, they used the weighted degree centrality as90

an indicator for fraudulent behavior.

Algorithms are often required to calculate more intricate measures charac-

terizing a network. For fraud detection, collective classification algorithms have

4



been used frequently, particularly propagation algorithms. Propagation algo-

rithms rely on the network topology to spread a fraud signal originating from95

confirmed fraud nodes across the network. The amount of signal received by

each node can then be used as a suspicion score. In [33], the authors used a

Markov random field to create a semi-supervised algorithm for fraud detection.

An adaptation of the belief propagation algorithm the incorportation of transac-

tion information and observed fraud labels into the optimization of the Markov100

random field. Personalized PageRank (PPR) is also a propagation algorithm

used frequently for fraud detection. PPR calculates a score for each node in-

dicating its proximity to a set of source nodes, in the case of fraud detection,

confirmed fraud transactions act as source nodes. In [34], the birank algorithm,

an adaptation of PageRank for bipartite graphs, was used to detect insurance105

fraud. In the same vein, the authors of [35] used PageRank to detect social

insurance fraud. In [36], Personalized PageRank was applied specifically for

credit card fraud detection. The technique in [36] has been improved with (1) a

regularized commute time kernel to enhance the treatment of hub nodes in the

network 2 [37], (2) a feedback loop to include the results from fraud investigators110

in the PageRank model [37] and (3) the free energy distance measure in [38].

2.3. Representation Learning in Graphs

Various studies illustrated how the network topology can be used for fraud

detection. The key challenge is to transform the transaction network into a for-

mat suitable for vector-based machine learning algorithms without being neg-115

atively affected by the challenges introduced in Section 1. Recently, this has

been addressed by scholars in new ways, which has led to the introduction of

novel techniques such as graph neural networks and matrix factorization algo-

rithms [39, 40, 41], collectively called network representation learning (NRL)

techniques [42]. NRL transforms network vertices into latent, low-dimensional120

vector representations, which are optimized to preserve the original network

2Nodes with substantial first-order neighborhoods.
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topology, node attributes and auxiliary information [42].

Given the breadth of the research field, this study will focus on a subfield

of NRL, namely, random walk-based network representation algorithms, such

as DeepWalk [43] and Node2Vec [44]. DeepWalk [43] is a technique inspired125

by the field of natural language processing (NLP). It uses the Word2Vec model

[45], which transforms words into vectors by analyzing the sentences in which

they appear. In DeepWalk, each node is considered a ‘word’ and ‘sentences’ are

generated by performing random walks in the network. Through optimization,

DeepWalk provides a latent, continuous, vector representation for each node in130

the original network.

Network representation learning has also proven useful for fraud detection in

insurance [27], mobile advertising [46], online fraud [47] and transaction fraud

[48]. Despite these studies showing promising results, no studies have addressed

the challenges associated with credit card fraud detection. In particular, exist-135

ing techniques are transductive, label information is not incorporated into the

network topology and concept drift is not treated adequately. In addition, clas-

sification performance is reported using default classification metrics, ignoring

the fact that fraud detection is a business process, for which performance is

often measured differently. These gaps are specifically addressed in this work.140

2.4. Our Contribution

Fraud detection faces three crucial challenges: fraud is hidden, fraud is dy-

namic, and detection time is scarce. These challenges give rise to a few im-

portant, industry-recognized, limitations of currently applied, state-of-the-art

methods in terms of classification performance, operational efficiency, maintain-145

ability, and costs.

Classification performance. First, the dynamic nature of fraud causes novel

fraud patterns (modi operandi) to emerge more frequently, reducing the detec-

tion accuracy of expert-based models over time [8, 28].

6



Operational efficiency. Efficiency is key in card transactions [13]. Machine150

learning models for fraud detection rely on extensive feature engineering that

scales poorly [28]. Likewise, traditional graph-based models rely on complex ag-

gregated network features that require offline calculation, hampering real-time

fraud detection [9].

Maintainability. Third, the dynamic nature of fraud demands frequent model155

updates. This is cumbersome for rule-based models with expansive rule bases,

as the impact of adding or altering rules becomes unclear [8].

Cost. Finally, contemporary fraud detection systems suffer from gradually de-

clining accuracy, inadequate operational efficiency, and poor maintainability.

This eventually results in increased costs for the system owner, despite cost160

being a major driver within the payments industry [3, 8]. In addition, both

expert-based rule creation and feature engineering are time-consuming and la-

bor intensive [8, 28].

In this work, we present CATCHM, a fraud detection algorithm that directly165

addresses the limitations listed above. First, CATCHM is rooted in graph-

based ML and can reveal hidden, previously unknown fraud patterns. Second,

CATCHM is equipped with a clever inductive pooling operator and allows for

near real-time application, avoiding expensive feature computation or even the

need to retrain models instantly, thus meeting operational constraints. Third,170

by relying on automated feature engineering, maintainability is drastically im-

proved, since the models can be retrained, redeployed, and managed with much

less effort compared to rule-based expert systems. Finally, CATCHM avoids

costly manual rule creation and feature engineering.

In Section 5.2, the challenges of classification performance and operational ef-175

ficiency are examined more thoroughly. In addition, relevant metrics to quantify

and compare the performance of CATCHM on both challenges are introduced

(see Section 6).
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CATCHM is part of a larger body of work in the area of network represen-

tation learning-based fraud detection [49, 50, 51]; however, it differs in various180

aspects from this previous work. In [49, 50], the first attempts at creating in-

ductive solutions, including a nearest-neighbor approach, were introduced. In

[51], we compared contemporary inductive graph neural networks, including

GraphSAGE.

3. Network Representation Learning for Fraud Detection185

In this section, we present CATCHM, our fraud detection algorithm based

on network representation learning in greater detail (see Figure 1). We discuss

(1) network design, (2) the inductive extension for predicting unseen nodes,

and (3) downstream classifier optimization. The implementation is available on

Github.3190

Inductive Step

Training stage

Artificial Node

Tripartite Network

Representation LearningTrain Data

Downstream ClassifierTest Data

RFM features

...

TX1:

TX2:

TXn:

TX1: 

F

Deepwalk TX2:

TXn:

...

Inductive Pooling
Extension

?
TXn+1:

Classifier

Recency

Frequency

Monetary

RF XGBoost

Stacking

Figure 1: Schematic overview of CATCHM. In the training stage, input transaction data are
transformed into a tripartite transaction network. Fraudulent transactions are connected to
an additional artificial fraud node. Next, a representation learning algorithm is applied to the
network to obtain a set of node embeddings. These embeddings are used to train an XGBoost
classification model. In the inductive step, each entry in the test data is parsed through the
inductive pooling extension, which generates a new embedding based on the tripartite network
and embeddings from the training data. Optionally, RFM features are used to train a separate
random forest classifier. Predictions for both classifiers are combined by stacking.

3URLHIDDENFORDOUBLEBLIND
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3.1. Network Design

3.1.1. Tripartite Network

Every (credit-card) transaction has two parties involved: a cardholder and

a merchant. Intuitively, both parties can be represented as a vertex (or node)

in a network. An edge between two parties indicates that a transaction took195

place between the cardholder and the merchant. This setup is known as a

bipartite graph (see Figure 2). The network has two distinct types of nodes

(cardholders and merchants), and edges can only exist between different types of

nodes. In general, network representation learning yields an embedding for each

vertex (node) in the network, leaving the transaction edges without embedding.200

While techniques exist to combine node embeddings into an edge embedding,

this would result in identical embeddings for all transactions sharing the same

cardholder and merchant, when not all those transactions have identical class

labels.

A different approach is to create a graph with a single node type. Then,205

nodes depict transactions, and two transactions are connected if they share

the same merchant and/or cardholder. This network design, however, leads to

an extremely connected or dense network, which increases the computational

burden of (certain) RL algorithms considerably.

We propose a tripartite network design in which cardholders, merchants and210

transactions are modeled as distinct node types. This design ensures that we ob-

tain embeddings for cardholders, merchants and transactions while keeping the

network sparsely connected. The edges in the tripartite network are undirected

and unweighted.

3.1.2. Artificial Node215

A second modification to the typical transaction network design is the ad-

dition of a single artificial node. The authors of [52] illustrated how artificial

nodes can be used to inject attribute information into the network and influence

the learned node representations. The representation learning algorithm used

in CATCHM, DeepWalk [43], is an unsupervised algorithm. For DeepWalk to220
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F

Figure 2: Left: bipartite graph with cardholders and merchants connected through edges
representing transactions. Middle: tripartite graph with transactions transformed into nodes
(dollar signs). Right: an artificial ‘fraud’ (F) node is added to the graph and connected with
all fraudulent transactions.

create embeddings that can better distinguish fraud from genuine transactions,

we thus propose introducing a single artificial ‘fraud node’ (see Figure 2)4 to

which all fraudulent transactions are connected before RL is applied.

The design of the network structure is important for the downstream clas-

sification task. In particular, the artificial node helps to combat the challenge225

of class imbalance by increasing the connectivity among fraudulent nodes in

the network, resulting in a more clustered set of embeddings and subsequently

improving the training of the classifier.

3.2. Inductive Pooling Extension

Random walk-based representation learning in general and DeepWalk [43]230

in particular are transductive algorithms. This implies that obtaining an em-

bedding for nodes not seen during training (i.e., a new transaction) requires

complete retraining of the DeepWalk model. This is particularly problematic

for DeepWalk, as subsequent runs of the model will not necessarily result in

similar embeddings. To avoid such expensive and time-intensive retraining, we235

devised an inductive extension that combines existing embeddings of nodes from

the training data by means of a pooling operator. This extension is detailed as

pseudo code in Algorithm 1.

The algorithm starts from a tripartite graph G with a set of vertices V

and edges E. This graph contains all information from the training data. The240

4Please note that only label information on training data can be used for this purpose
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algorithm receives a single incoming transaction x, which is part of the test data.

In theory, five distinct scenarios can be identified for an incoming transaction.

First, both the cardholder and merchant are known and have one or more mutual

transaction in the training data; Second, both parties are in the training data,

but they do not have any common transactions; Third, only the cardholder is245

found in the training data; Fourth, only the merchant is found in the training

data; Fifth, neither the cardholder nor the merchant of the new transaction are

seen during training.

In the first case (Algorithm 1, lines 5-7), both parties are known and have

interacted before in the training data. Here, the embedding from the most recent250

transaction between cardholder and merchant is used as the new embedding.

In the second case, both parties are found in the training data. Consequently,

information from both parties could be used. However, pooling embeddings from

both cardholder and merchant transactions leads to very poor predictive perfor-

mance. This is because the combination of embeddings from nodes in distinct255

regions in a network results in an embedding positioned somewhere in the mid-

dle of both regions, thus making no sense from a predictive perspective. As a

result, when both parties are in the training data, we rely on the information

from the historical transactions from the cardholder only. (Algorithm 1, lines

8-9) 5
260

In the third and fourth cases, (Algorithm 1, lines 8-11), either the cardholder

or the merchant are in the training data, but not both.

Finally, in the fifth case (Algorithm 1, lines 12-13) there is no useful informa-

tion in the training network. Therefore, an average of all existing embeddings

is calculated and used for the unseen transaction node. 6 Fortunately, this case265

is uncommon (with 4 days of training data, only 5% of all transactions).

5Using transactions in which only the merchant was involved would also make sense, but
in our case, using cardholder transactions systematically results in better performance.

6This might seem nonsensical at first, but it guarantees that the trained classifier will still
work on this incoming transaction not breaking the pipeline.
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Algorithm 1: Inductive Pooling Extension for DeepWalk Representa-
tion Learning

Data: Tripartite graph G = (V,E), transaction x with cardholder c
and merchant m

Result: embx for transaction x

1 Tm = {i|i ∈ V ∧ (i,m) ∈ E} // set of all transactions executed

by merchant m
2 Tc = {i|i ∈ V ∧ (i, c) ∈ E} // set of all transactions executed

by cardholder c
3 t : V → R; i 7→ t(i) // timestamp function

4 emb : V → Rd; i 7→ emb(i) // embedding lookup function

5 if m ∈ V ∧ c ∈ V ∧ (Tc ∩ Tm) ̸= ∅ then
6 i∗ = argmax

i∈(Tc∩Tm)

t(i) // most recent mutual transaction

7 emb(x)← emb(i∗)

8 else if c ∈ V then
9 embx ← 1

|Tc|
∑

i∈Tc
embi

10 else if m ∈ V then
11 embx ← 1

|Tm|
∑

i∈Tm
embi

12 else
13 embx ← 1

|V |
∑

i∈V embi

3.3. Downstream Classifier Optimization

Representation learning transforms a network or graph into a representation

suitable for classification. Concretely, every node is translated into an embed-

ding, positioning the node in a generated embedding space. Note that this270

representation procedure is unsupervised. Hence, the downstream classifier re-

quires careful hyperparameter tuning to learn from unsupervised embeddings

and their associated class labels.

3.3.1. Hyperparameter Tuning

Extreme gradient boosting (XGBoost) [53] is a machine learning algorithm275

that creates an ensemble of weak learners, typically decision trees. The weak

learners are trained sequentially with each successor attempting to correct the

errors of its predecessor. XGBoost is widely used by data scientists and has

achieved state-of-the-art performance in many applications across various fields
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[53].280

The choice for XGBoost is well considered. First, fraud detection is a chal-

lenging application (see Section 1) requiring a scalable machine learning algo-

rithm with a high capacity. Second, the feature space created by representation

learning is complex, resulting in an even stronger requirement for substantial

model capacity to successfully train a machine learning model. Third, the node285

embeddings have no supervised signal encapsulated. Hence, the downstream

classifier (i.e., XGBoost) bears even more importance to learn how node em-

beddings (input features) link to fraud.

Tuning an XGBoost model is crucial and a fortiori in a complex feature

space, such as node embeddings. First, the number of trees has an important290

impact on the model capacity. Higher values lead to a more complex model.

Hence, this parameter should have a sufficiently high value to learn the complex

embedding space. Second, feature sampling for training decision trees restricts

the feature set available to any individual tree in the XGBoost model (colsample

by tree). In addition, the feature set can be further restricted for each individual295

decision point in a tree (colsample by level). This forces the XGBoost algorithm

to consider different feature subsets in each step. It helps to exploit all relevant

dimensions of the feature space and helps to increase the robustness of the

model. Third, the learning rate or eta influences the model’s learning speed.

With a greater number of trees, the risk of overfitting increases; hence, it is300

recommended to lower the learning rate to avoid overfitting the training data

too quickly.

Our experiments showed that the combination of more trees, feature sam-

pling and slower learning increased performance considerably. Hyperparameters

act in concert, which renders it difficult to determine values upfront. As a result,305

we relied on a grid search to find an optimal combination of hyperparameter

values from the parameter grid (see Table 1) in terms of classification perfor-

mance.
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Values

Number of trees 100, 300
Learning rate 0.1, 0.05, 0.01
Colsample by tree 0.3, 0.6, 0.9
Colsample by level 0.6, 0.9
Subsample 0.5, 0.9

Table 1: Hyperparameter grid for XGBoost

3.3.2. Model Stacking

To demonstrate how CATCHM can be integrated with existing FDS, we310

mimiced a fraud detection model that uses recency, frequency and monetary

value features (RFM). These features were inspired by [35] and are closely re-

lated to the features currently in use at financial institutions. In CATCHM,

instead of combining all features (i.e., the RFM features and the embeddings

from the representation learner) in one model, two separate models are built. A315

random forest classifier [54] is trained on the RFM features, and an XGBoost

model [53] is trained for the node embeddings.

The predicted class probabilities of both models are combined by means of

model stacking. The outputs of multiple machine learning classifiers are aggre-

gated by means of a meta-learner. In this study, we opted for logistic regression320

as the meta-learner, given that the predictions of only two base learners are com-

bined. The choice for separate models and model stacking was deliberate. The

RFM-inspired features are the result of elaborate (manual) feature engineering,

often with the help of domain experts. Hence, their individual discriminatory

power is relatively high, which combined with a high capacity classifier could325

lead to overfitting the training data. In contrast, the discriminatory power of

unsupervised node embeddings is less obvious and thus requires a downstream

classifier with substantial capacity to avoid underfitting.

As a result, CATCHM stacks two different models. On the one hand, a

bagging classifier for the RFM features, which aids in lowering the variance and330

avoids overfitting, and, on the other hand, a high capacity boosting classifier

for the node embeddings, which helps to reduce bias and avoids underfitting.
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4. Benchmarks

To verify the performance of CATCHM, we compared it to a number of

benchmarks: DeepWalk [43], Node2Vec [44], PageRank [55] and GraphSAGE335

[40], which are described in more detail below.

4.1. Transductive and Inductive DeepWalk

In Section 3.2, we introduced a tailored pooling extension that enables gen-

erating embeddings inductively, without the need for retraining the model. To

measure the performance of our pooling extension, it is compared against the340

original DeepWalk algorithm [43], which learns node embeddings transductively.

Transductive network representation learning implies knowledge of the entire

transaction network before applying the RL algorithm. There are four impor-

tant hyperparameters: 1) number of walks per node (10), 2) length of a single

walk (80), 3) dimensionality of the node embeddings (128), and 4) window size345

(5). The choice of hyperparameter values is based on insights from [44, 43].

Given that CATCHM includes a network design with an artificial fraud node,

we include Inductive DeepWalk (with the inductive pooling extension but with-

out an artificial fraud node) as an alternative benchmark in the evaluation of

the experiment.350

4.2. Node2Vec + Inductive Pooling

Node2Vec [44] is a transductive algorithm and is almost identical to Deep-

Walk. The main difference is the random walk procedure; Node2Vec utilizes

a biased random walk, which improves its expressive power and influences the

node neighborhoods to explore [44]. This is achieved by introducing two ad-355

ditional parameters. Parameter p influences the likelihood of immediately re-

visiting a node in the walk. Parameter q differentiates between breadth-first

(q > 1) and depth-first (q < 1). Two parameter choices are evaluated in our

experiments: (q = 0.5, p = 1) and (q = 2, p = 1).7

7DeepWalk is a specific case of Node2Vec with p = 1 and q = 1.
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To make Node2Vec inductive, the same inductive pooling extension (see Sec-360

tion 3.2) is applied. Node2Vec generates embeddings for all nodes in the training

data, and subsequently, the inductive pooling extension creates embeddings for

new incoming transactions.

4.3. PageRank Inductive

The personalized PageRank algorithm has already been used successfully for365

fraud detection [35, 36, 37, 38]. PageRank [55] iteratively calculates a suspicion

score indicating the likelihood of fraudulent behavior; see Eq. 1.

−→εk = α ·Qnorm · −→ε k−1 + (1− α) · −→z norm (1)

Where −→εk is the vector containing the suspicion scores for each node after k

iterations, −→ε0 is a random start vector with values between [0, 1], (1− α) is the

restart probability (α = 0.85), Qnorm, is the column-normalized weight matrix370

and −→z norm is the normalized starting vector, containing nonzero weights for

confirmed fraud cases.

In this work, the approach introduced in [35] is applied for the experiments

involving PageRank. In particular, the PageRank algorithm is applied three

times with different recency-based edge weights in the transaction network.375

4.4. GraphSAGE

GraphSAGE [40] is an NRL technique that differs from DeepWalk and

Node2Vec in that it learns an embedding generating function based on sam-

pled and aggregated node features from a node’s local neighborhood rather

than training individual embeddings. This enables the algorithm to leverage380

node features to generate embeddings for unseen nodes, which makes it inher-

ently inductive without modifications. The authors of [40] introduced several

aggregator functions. In this study, we chose the mean pooling aggregator.

The GraphSAGE algorithm allows for supervised and unsupervised train-

ing, depending on the loss function [40]. Unsupervised training relies on a385

graph-based loss function, which encourages neighboring nodes to have similar
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embeddings. In contrast, supervised training uses a cross entropy loss empha-

sizing the prediction of class labels. Given the important class imbalance in

our dataset, the supervised variant is more appropriate. In fact, it resembles

the scenario where an artificial node is injected into the network (see Section390

3.1.2). However, instead of using the predictions of a supervised GraphSAGE

model directly, we chose to extract the embeddings and use them to train a

downstream classifier, as this results in a better classification performance.

To accommodate the tripartite network structure, we used the HinSAGE

algorithm (heterogeneous graphSAGE) [56]. GraphSAGE requires all nodes to395

have the same set of features, while HinSAGE handles different node types with

different sets of features. The cardholder and merchant node types have no

features; hence, a single dummy feature was added to both nodes. Important

hyperparameter values were depth (2), neighborhood sample size (2,32), and

dimension of the embeddings (128). Apart from the modifications introduced400

in HinSAGE, the implementation of the GraphSAGE algorithm is plain vanilla.

We are aware that further engineering of the GraphSAGE model for fraud de-

tection could improve its performance considerably. However, this is considered

out of the scope for this paper.

5. Experimental Design405

5.1. Data & Benchmarks

The dataset contained 3,240,339 credit card transactions, with a fraud rate

of 0.32%. The data labels were assigned by domain experts after suspicious

transactions were investigated and confirmed. A rolling window approach was

used to create consecutive splits of training, validation and test sets, which410

allowed us to repeat every experiment 10 times (see Figure 3). Three different

settings for the training set size were evaluated: 1, 2 or 4 days of training

data. Each day, approximately 100,000 transactions were processed. The size

of the test set was always a single day, and the validation set was 20% of

the training data. See Table 2 for a small excerpt of data. Fraud detection415
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systems could be limited in the amount and type of data they can utilize because

of data protection laws (e.g., GDPR). However, these only marginally impact

CATCHM, as it relies on anonymized IDs of the transacting parties. The RFM

features (see Section 3.3.2) are built on transaction details (see Table 2) and are

considered nonintrusive for data privacy considerations. For a detailed overview420

of data privacy in fraud detection, see [57]

Train timeframe 1

Train timeframe 2

Train timeframe 3

Inductive Step
timeframe 1

Inductive Step
timeframe 2

Inductive Step
timeframe 3

...

tt-1t-2t-3t-4 t+1 t+2

Figure 3: Rolling window of train-test split, with the test set used for the inductive step. For
each replication, either 1,2 or 4 days of transaction data were used for training and 1 day for
testing.

TX Cardholder Merchant Cat. Country Amount Timestamp Fraud

t0 AC83FD m000174 4816 USA 7.37 2013-10-01 01:00:06 False
t1 1CD10E m207001 5735 LUX 6.25 2013-10-01 01:00:08 False
t2 4ECA55 m003020 7523 CAN 7.18 2013-10-01 01:00:08 False
t3 74186F m800002 4812 USA 154.93 2013-10-01 01:00:09 True
t4 8777F3 m000102 7399 BEL 15.00 2013-10-01 01:00:10 False

Table 2: Excerpt from the credit card fraud dataset used in this paper. Each line represents
one transaction and contains identifiers of parties involved (Cardholder, Merchant) along with
timestamp information (Timestamp) and monetary amount of the transaction (Amount). In
addition, the country of the Merchant (Country) and Merchant category are reported (Cat.).

In addition to the benchmark techniques described in Section 3, and the novel

techniques presented in this work, we also included a baseline model exploiting

the original features from the dataset. A second collection of experiments com-

bined the aforementioned techniques with RFM features (recency, frequency425

and monetary value). These features mimic the traditional features found in

fraud detection [35]. The aim was to assess the complementarity of network

features with traditional RFM features.
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5.2. Evaluation Metrics

It is crucial for machine learning models to be evaluated properly. Especially430

for fraud detection, the extreme class imbalance poses a challenge for traditional

metrics (e.g., accuracy).

5.2.1. Classification Performance

The precision-recall curve shows the trade-off between precision (y-axis) and

recall (x-axis) for different values of the classification threshold. The Area Under

the Precision-Recall Curve (AUCPR) offers a summary statistic corresponding

to this curve (see Equation 2). For fraud detection, it provides an ideal metric

because 1) it is threshold independent, 2) it illustrates the trade-off between

catching more criminals and yielding more false alarms, and 3) it takes precision

into account (which the classical ROC curve does not).

AUCPR =

∫ 1

0

precision(recall) d(recall) (2)

Research in machine learning often settles for the receiver operating curve

(ROC) or area under the ROC curve. Despite its usefulness, it is a mediocre435

metric, particularly for fraud detection and, in general, for all applications with

extreme class imbalance [58].

A threshold-dependent metric suitable for fraud detection is the F1 score,

which is the harmonic mean of precision and recall (see Equation 3). Given the

influence of the threshold, it is optimized on the validation set to maximize the

F1 score.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(3)

5.2.2. Operational Efficiency

In practice, financial institutions are confronted with a variety of operational

constraints. Two of them are crucial for ML-based fraud detection models: (1)

fraud detection resources are limited, and (2) real-time fraud detection should

be time efficient. For the first constraint, the number of fraud cases that can be
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dealt with on a daily basis is limited. Hence, from a practitioner’s perspective,

it is relevant to know how many fraud cases (true positives) can be discovered

among the number of cases that can be investigated (TP@k). Let t∗ be the

classification threshold for which the total number of positive cases is less than

or equal to k: t∗ = min{t|TP(t) + FP(t) ≤ k ∧ t ∈ [0, 1]}; then, TP@k can be

defined as:

TP@k = TP(t∗) (4)

As for the second constraint, the computational burden of the FDS should

correspond to the stringent time constraints for transaction authorization. Al-440

though little is known about the actual constraints applied in industry, we do

know that the maximum authorization time interval has been reduced consid-

erably in recent years. In 2016, the authors of [35] reported six seconds per

transaction; currently, a credit card transaction can be processed and autho-

rized within less than one hundred milliseconds [12]. As such, in addition to445

TP@k, we also report on the average prediction processing time (PPTA). Let

n be the number of samples in the test set; then, PPTA can be defined as:

PPTA =
1

n

n∑
i=1

PPTi, (5)

Given current practices, we expect that the processing time of a single trans-

action in the test phase should not exceed one hundred milliseconds. Moreover,

throughout the experiments, we also applied a one-hour time limit on the total450

training time, which suffices for daily retraining of the model. The frequent

retraining of the model helps to manage the constant change in modi operandi.

5.2.3. Bayesian Model Comparison

While the aforementioned metrics are useful to gauge model performance,455

we computed averages over ten independent replications. Averages can hide

important differences between replications. To compare all approaches in a sta-

tistically sound manner, we utilized the Bayesian model comparison presented

20



in [59]. Specifically, a Bayesian version of signed-ranks [59] was applied to com-

pare our approach to all benchmarks (see Section 5.1). The Bayesian test has a460

region of practical equivalence (ROPE); this region contains differences in per-

formance that are considered too small to be practically relevant. In this study,

the ROPE was 5%, which implies that we only consider method A better than

method B when the performance metric is at least 5 percentage points better.

8
465

6. Results

This section presents the results from the experiments in which CATCHM is

compared against relevant benchmarks (see Section 5.1). First, general classifi-

cation performance is presented. Second, significance tests are executed through

Bayesian model comparison, and finally, the operational efficiency of CATCHM470

within capacity and time constraints is discussed.

6.1. Classification Performance

Transductive vs. Inductive. Table 3 presents the results in terms of AUCPR and

F1 scores. First, the beneficial impact of more training data on the classification

results was confirmed. Both the AUCPR and F1 scores improved considerably475

with an increased number of training days, for the majority of experiments.

Nonetheless, one must keep in mind the trade-off between classification perfor-

mance and the computational burden associated with larger networks.

Table 3 also reveals that the performance of the baseline was very poor, which

highlights the importance of feature engineering in the case of fraud detection.480

Merely applying a powerful (XGBoost) classifier does not yield a capable fraud

detection model.

DeepWalk Transductive outperformed the baseline by a considerable mar-

gin. However, this transductive technique was unable to generalize to incoming

8This ROPE is considerably larger than the ROPE suggested in [59], leading to a stricter
evaluation.
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transactions and hence cannot work in an online FDS. Transductive DeepWalk485

can be applied post hoc to search for fraud cases after the transactions are

executed.

For this reason, the results of inductive models are presented separately.

These models can be employed in an online FDS. In other words, feature engi-

neering generalizes to new transactions, and hence, features for incoming trans-490

actions can be generated without noticeable delay. In general, the performance

of the inductive techniques was still considerably better than that of the baseline

but worse than that of the transductive variant. This is to be expected, as the

transductive models have access to all transactions during training, in contrast

to the inductive methods.495

CATCHM was the best-performing inductive method. To recognize the

benefit of the artificial node, we compared it with the DeepWalk + Inductive

Pooling technique. With 4 days of training data, CATCHM improved AUCPR

by 35% and F1 by 20%. The artificial class label information injected into the

network helped to distinguish embeddings from fraudulent and nonfraudulent500

transactions.

Three more algorithms were evaluated, namely, PageRank Inductive, Node2Vec

and GraphSAGE. The performance of PageRank Inductive was similar to that

of DeepWalk + Inductive Pooling. This illustrates how network representation

learning is a reasonable alternative for network feature engineering.505

For Node2Vec, the results were in line with DeepWalk + Inductive Pooling.

Hence, the p and q hyperparameters did not offer much benefit in the transac-

tion network. In theory, Node2Vec has a similar complexity as DeepWalk, in

practice, the algorithm does not scale well and requires substantially more com-

puting power than DeepWalk. Therefore, no results were available for ‘4 days’510

of training data, as no model could be trained within the predetermined max-

imum training time of one hour. Given their similar performance, it is highly

recommended to use DeepWalk rather than Node2Vec for this application.

There was insufficient data available for GraphSAGE to train properly with

only 1 or 2 days of training data. Performance in terms of both AUCPR and515
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F1 for 4 days of training data was low compared with the other inductive mod-

els. Note, however, that we used a plain vanilla GraphSAGE model with no

modifications.

Classification Score AUCPR F1

1 day 2 days 4 days 1 day 2 days 4 days

Baseline 0.06 (0.04) 0.10 (0.04) 0.15 (0.07) 0.14 (0.06) 0.19 (0.06) 0.23 (0.07)

DeepWalk Transductive 0.34 (0.12) 0.40 (0.10) 0.46 (0.07) 0.31 (0.07) 0.36 (0.08) 0.39 (0.11)

In
d
u
ct
iv
e

PageRank Inductive 0.25 (0.08) 0.30 (0.07) 0.31 (0.10) 0.43 (0.10) 0.47 (0.08) 0.53 (0.05)

DeepWalk + Inductive Pooling 0.24 (0.10) 0.31 (0.10) 0.31 (0.11) 0.39 (0.10) 0.46 (0.08) 0.46 (0.10)

Node2Vec (0.5) + Inductive
Pooling

0.24 (0.10) 0.30 (0.09) - 0.39 (0.09) 0.47 (0.09) -

Node2Vec (2) + Inductive
Pooling

0.23 (0.09) 0.29 (0.09) - 0.38 (0.09) 0.45 (0.09) -

GraphSAGE - - 0.22 (0.08) - - 0.29 (0.08)

CATCHM 0.28 (0.08) 0.37 (0.07) 0.42 (0.09) 0.43 (0.08) 0.51 (0.08) 0.55 (0.09)

R
F
M

RFM Baseline 0.29 (0.13) 0.32 (0.16) 0.35 (0.12) 0.36 (0.11) 0.38 (0.13) 0.40 (0.09)

PageRank Inductive 0.34 (0.07) 0.43 (0.08) 0.42 (0.11) 0.40 (0.07) 0.46 (0.15) 0.49 (0.09)

DeepWalk + Inductive Pooling 0.41 (0.11) 0.49 (0.10) 0.50 (0.10) 0.48 0.08) 0.55 (0.08) 0.56 (0.08)

Node2Vec (0.5) + Inductive
Pooling

0.43 (0.11) 0.48 (0.11) - 0.49 (0.09) 0.54 (0.08) -

Node2Vec (2) + Inductive
Pooling

0.41 (0.11) 0.47 (0.11) - 0.47 (0.09) 0.54 (0.08) -

GraphSAGE - - 0.40 (0.13) - - 0.44 (0.11)

CATCHM 0.45 (0.10) 0.53 (0.08) 0.57 (0.09) 0.52 (0.07) 0.59 (0.06) 0.63 (0.06)

Table 3: AUCPR and F1 results with each column representing a different number of training
days. Cells contain the 10-fold average with standard deviation between parentheses. The
best performing technique per group is denoted in bold.

RFM. The results from experiments with additional RFM features are pre-

sented in the lower half of Table 3. To evaluate the improvement in classification520

performance, an RFM baseline containing only recency, frequency and monetary

features is introduced. As conventional FDS often rely on RFM features, these

experiments investigate to what extent RFM features and network features are

complementary.

As seen in Table 3, the RFM + DeepWalk + Inductive Pooling experiment,525

which combines RFM features with network features from DeepWalk, showed

an important improvement in AUCPR and F1 compared to the RFM baseline.
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What stands out is the combination of RFM features with CATCHM yielding

the best results overall. These results illustrate how network features carry

information not present in the conventional RFM features.530

In contrast with the important PageRank Inductive benchmark, which has

been used frequently in recent fraud research (see Section 2), CATCHM is sub-

stantially more complementary to the RFM features, outperforming the PageR-

ank benchmark by a considerable margin both in terms of AUCPR (+62%) and

F1 (+58%).535

Together, these experiments show that CATCHM was successful for credit

card fraud detection, achieving excellent classification performance and outper-

forming all relevant benchmarks.

Bayesian Model Selection. Table 4 contains the results from the pairwise Bayesian

signed-rank tests. Each cell contains a probability Pi,j measuring the likelihood540

that method i outperforms method j by more than 5 percentage points on

AUCPR performance (see Section 5.2). As seen on the left side of Table 4,

all methods except GraphSAGE outperformed the baseline with a probability

higher than or equal to 95%. CATCHM outperformed all other techniques

almost with certainty. The right-side of Table 4 provides the probabilities for545

experiments with RFM features. Again, all experiments outperformed the base-

line, except GraphSAGE, with a probability of 95% or more. CATCHM com-

bined with RFM features performed significantly better than PageRank Induc-

tive and GraphSAGE with RFM features.

6.2. Operational Efficiency550

Investigation Capacity. In reality, the total number of flagged cases per day

is limited due to constraints in time, budget and staff. As a result, the main

objective of a fraud detection system is to have a high percentage of actual fraud

cases in the total number of transactions flagged by the FDS.

To this end, we introduced TP@k in Section 5.2. Table 5 shows the num-555

ber of fraudulent transactions discovered among 300 flagged transactions. The
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Baseline -

PageRank Inductive 1 - 0.91

GraphSAGE 0.8 0.01 -

CATCHM 1 0.99 1 -

RFM Baseline - 0.01

RFM + PageRank Inductive 0.96 - 0.46

RFM + GraphSAGE 0.61 0.1 -

RFM + CATCHM 1 1 1 -

Table 4: Probabilities Pi,j from pairwise Bayesian signed rank tests [59] comparing AUCPR
results with 4 days of training data. Pi,j indicates the likelihood of method i outperforming
method j with at least five percentage points difference in AUCPR (ROPE = 5%). Only
non-zero values are reported.

higher the number of actual fraud cases, the better. All techniques outperform

the baseline considerably, with at least twice the number of fraudulent transac-

tions discovered. CATCHM returns the highest number of caught fraudsters:

with 4 days of training data, almost 200 criminals are caught. The combination560

with RFM features leads to even better results (see Table 5. CATCHM yields

on average 213 true positives, which is a 40% increase compared to the baseline

and almost 20% better than PageRank Inductive.

Revenue. When criminals successfully execute a fraudulent transaction, the loss

is either incurred by the cardholder or the financial institution handling the565

payment. Hence, the performance of the FDS can be measured in terms of

avoided losses. In the 10-fold test data, a total of €720K of funds was lost over

a period of ten days. Figure 4 shows the revenues (300 flagged transactions/day)

for each technique without (w/o) and with (w/) RFM features. All techniques

outperformed the baseline both with and without RFM features. Not only did570

CATCHM detect the highest number of fraud cases, CATCHM also yielded the

highest revenue overall (42.9% of €720K). Note that the revenue of CATCHM

was similar to the stacked version with RFM features, which was due to the fact
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True Positives @ 300
1 day 2 days 4 days

avg (std) avg (std) avg (std)

Baseline 39.90 (24.98) 66.40 (36.12) 86.40 (41.27)

DeepWalk Transductive 131.40 (58.32) 164.60 (58.72) 167.50 (56.46)

In
d
u
ct
iv
e

PageRank Inductive 156.50 (49.41) 167.00 (42.54) 189.60 (39.55)

DeepWalk + Inductive Pooling 146.30 (56.59) 173.60 (50.96) 168.60 (46.50)

Node2Vec (0.5) + Inductive Pool-
ing

148.80 (57.92) 172.40 (51.03) -

Node2Vec (2) + Inductive Pooling 147.00 (57.43) 173.50 (56.19) -

GraphSAGE - - 108.50 (41.27)

CATCHM 157.10 (44.57) 197.90 (61.53) 198.80 (42.55)

R
F
M

RFM Baseline 130.00 (54.23) 140.50 (69.71) 151.20 (61.62)

PageRank Inductive 152.80 (54.06) 186.10 (47.02) 180.40 (61.30)

DeepWalk + Inductive Pooling 174.00 (49.19) 196.20 (49.08) 198.50 (44.70)

Node2Vec (0.5) + Inductive Pool-
ing

172.80 (49.06) 194.70 (53.80) -

Node2Vec (2) + Inductive Pooling 170.80 (53.80) 191.90 (48.47) -

GraphSAGE - - 164.10 (62.68)

CATCHM 182.30 (44.97) 204.70 (41.34) 213.00 (38.90)

Table 5: True Positives @ 300 for transductive and inductive experiments. Each column
shows the results for a different number of training days. Cells contain the 10-fold average
with standard deviation between parentheses.

that the additional fraud cases had low transaction amounts.

Processing Time. Finally, Figure 5 shows the processing time for incoming, un-575

seen transactions. All techniques remained well below 100 milliseconds, which

is acceptable for use in production. What stands out in the figure is the ex-

tremely low processing time for GraphSAGE. The CATCHM technique took an

average of 10 milliseconds to process a transaction (with 4 days of training data).

580

In conclusion, combining the operational efficiency of CATCHM with the results

in Table 3, we can confidently state that our algorithm overall outperformed the

benchmarked techniques.
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Node2Vec (2) + Ind. P.

Node2Vec (0.5) + Ind. P.

Deepwalk + Ind. P.

Pagerank Inductive

Baseline

1 day
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Figure 4: Total revenue considering 300 flagged transactions per day, with (w/) and without
(w/o) RFM features. The different colors represent a different number of training days. A
fraudulent transaction blocked by a detection model (TP) prevents the funds from being
stolen. These funds are considered ‘revenues’ of the model. The results are summed over
10-fold. Between parentheses, the recovered funds are expressed as a percentage of the total
value of all fraudulent transactions (€720K)

7. Conclusion

In this work, we proposed CATCHM, a novel network-based credit card585

fraud detection approach using node representation learning. CATCHM was

designed to tackle the challenges of fraud detection and overcome the limitations

of current detection techniques. First, important adaptations were introduced

to improve representation learning for fraud detection:

1) Network design: By means of a tripartite network rather than the clas-590

sical bipartite graph the network is kept sparse, while each transaction obtains

an individual embedding. In addition, inspired by [52], an artificial node was

injected into the network. The results indicated that the augmented transaction

network improved classification performance considerably.

2) Inductive Pooling Extension: An efficient Inductive Pooling extension for595

the transductive algorithm DeepWalk was introduced. The inductive extension

avoids costly retraining and potential rotation of the embedding space, which

in turn improves the maintainability of CATCHM.

3) Downstream classifier optimization: Node embeddings require careful hy-

perparameter tuning of the classifier to unlock their full potential. In addition,600
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Figure 5: Average prediction processing time (PPTA) in milliseconds for a single incoming
transaction. Processing time was measured at the batch level and divided by the number of
transactions in the batch.

model stacking was suggested to combine CATCHM with existing FDS.

The aforementioned adaptations tackle the inherent challenges of fraud de-

tection, namely: class imbalance, concept drift and time constraints. Further-

more, combining representation learning with these adaptations overcomes the

limitations of classification performance, maintainability and costs experienced605

by contemporary fraud detection systems.

Second, the classification performance was assessed by means of an exten-

sive empirical evaluation. CATCHM was shown to outperform state-of-the-art

methods from both the fraud detection and network representation learning

literature.610

Third, we expanded upon the practical relevance of our research. Both time

and capacity constraints were explicitly considered to evaluate the operational

efficiency of CATCHM. In addition to conventional performance measures, the

TP@k metric was put forward to demonstrate the performance while taking op-

erational constraints into account, including a complementary analysis in terms615

of realized revenue. Finally, given that scalability is crucial in industry, the

inductive extension was designed for parallel execution.

The value of artificial nodes for representation learning is intriguing and its
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usefulness could be further explored in future research. In this work, only class

label information was carried by an artificial node, but other features could also620

be represented as an artificial node in the network, expanding the information

available to the RL algorithm. A future study could also investigate different

choices for the inductive extension. We relied exclusively on a mean pooling

operator, although a wide range of alternatives is feasible. We believe optimizing

the aggregator could further improve the final predictive performance.625
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[59] A. Benavoli, G. Corani, J. Demšar, M. Zaffalon, Time for a change: a

tutorial for comparing multiple classifiers through bayesian analysis, The

Journal of Machine Learning Research 18 (1) (2017) 2653–2688.800

34

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

