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By generalizing different recent works to the context of higher curvature gravity, we provide
a unifying framework for three related results: (i) If an asymptotically AdS spacetime computes
the entanglement entropies of ball-shaped regions in a CFT using a generalized Ryu-Takayanagi
formula up to second order in state deformations around the vacuum, then the spacetime satisfies
the correct gravitational equations of motion up to second order around AdS; (ii) The holographic
dual of entanglement entropy in higher curvature theories of gravity is given by Wald entropy
plus a particular correction term involving extrinsic curvatures; (iii) CFT relative entropy is dual
to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the
second point, our novel derivation of this previously known statement does not involve the Euclidean
replica trick.

I. INTRODUCTION

It has been known for some time that the emergence
of a connected spacetime with local dynamics in holo-
graphic conformal field theories is intimately related to
quantum entanglement [1, 2]. It has been understood
that state dependence of relative entropy can be used to
derive linearized [3] and non-linear [4] Einstein equations.
In this context, the gravitational quantity dual to relative
entropy has been identified as canonical energy in Ein-
stein gravity [5]. At the non-linear level, these statements
have been established under the assumption of equal c-
and a-type central charges, which is consistent with a de-
scription in terms of Einstein gravity. In this paper we
aim to provide a generalization to higher curvature the-
ories of gravity and thus for completely generic CFTs.
This brings about a further interesting subtlety: while
in Einstein gravity the holographic computation of CFT
entanglement entropy involves evaluating the area of an
appropriate extremal surface [6, 7], the entanglement en-
tropy functional to be evaluated in higher curvature the-
ories of gravity is more complicated [8, 9]. Determining
this functional correctly, therefore belongs to the same
circle of ideas. By systematically studying higher cur-
vature theories of gravity, we aim to provide a unifying
framework for these issues. To achieve this conceptual
goal, we need to overcome a technical challenge which
consists of generalizing the recent CFT calculation of rel-
ative entropy [4] to higher curvature theories of gravity.

II. SETUP

We consider CFT states |ψλ(ε)〉 that are created by
sourcing the stress tensor in the Euclidean path integral

over the half plane:

〈ϕ(0)|ψλ(ε)〉 =

ˆ ϕ(0)

Dϕe−
´ 0
−∞ ddx

E
(LCFT+ελµνT

µν)

(1)
where ϕ collectively denotes elementary fields in the CFT
with the boundary condition ϕ(0,x) = ϕ(0)(x) at Eu-

clidean time x0
E = 0. For small ε this leads to a per-

turbation theory in the deformation of the vacuum state.
The reduced density matrix of the regioin A takes the

form ρA = ρ
(0)
A +ε δρA+O(ε2), where ρ

(0)
A is the reduced

density matrix in the vacuum. Note that we could simi-
larly turn on sources for other primary operators Oα in
the path-integral. For notational simplicity we won’t do
so here, but all our calculations work the same way for
other primary operators.1

In holographic theories, this state deformation is dual
to coherent excitations of the bulk gravitons. The state
perturbations in the CFT then translate to a gravita-
tional perturbation theory of the form

g = g
(0)
AdS + ε δg(1) + ε2 δg(2) + . . . (2)

The Einstein equations, Eab− 1
2T

ab = 0, can be expanded

in a similar way; δ(2)T ab will be quadratic in δg(1) and
therefore allows us to study gravitational backreaction.

Our calculations will only be sensitive to two charac-
teristics of the CFT: its a- and c-type central charges.
We define these in general as the normalization of the
universal part of ball entanglement entropy in vacuum,
and the normalization of the universal stress tensor two-
point function, respectively. In four-dimensional CFTs,
these can be recognized as the coefficients in the confor-
mal anomaly. The a-type central charge sets the AdS

scale for g
(0)
AdS above in the usual way.

1 In fact for scalar operators, calculations are simpler since there
is no bulk gauge redundancy [4].
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III. WALD FORMALISM AND BEYOND

Consider a covariant theory of gravity governed by the
Lagrangian (d+ 1)-form

L ≡ Lvol, L =
1

16πGN

(
R+

d(d− 1)

`2
+ f(Riem)

)
(3)

where f(Riem) is a function of Riemann tensors, con-
tracted with the metric. We can define the equation of
motion form E

L
, the presymplectic potential θ

L
, and the

symplectic current ω
L

as

δL = −E
L
· δg − dθ

L
(δg) ,

ω
L
(δ1g, δ2g) ≡ δ1θL

(δ2g)− δ2θL
(δ1g) .

(4)

Nother’s theorem can be expressed as an off-shell iden-
tity:

ω
L
(δg,£Xg)− G

L
(δg,X) = dχ

L
(δg,X) , (5)

where X is an arbitrary vector field and G
L

is propor-
tional to the equation of motion for δg. Finally, χ

L

can be defined in terms of the Noether charge, but we
only require the property that its integral defines notions
of modular energy and entropy. Specifically, integrating
dχ

L
over a spacelike slice ΣA of the AdS-Rinder wedge

as illustrated in Fig. 1, one finds the following boundary
terms:
ˆ
A

χ
L
(δg, ξA) =

ˆ
A

dΣµ δT gravµν ζνA ≡ δE
grav
Aˆ

Ã

χ
L
(δg, ξA) = 8π δ

ˆ
Ã

√
ḡ

∂L
∂Rabcd

nabncd ≡ δSWald
A

(6)

where ξA is the Killing vector that generates Rindler
boosts, nab is the binormal of the horizon and δT gravµν

is the holographic stress tensor, which coincides with
δ〈TCFTµν 〉 (see [3]). At this linear order in perturbation
theory, both quantities are proportional to the ones in
Einstein gravity (the proportionality constant computes
the c-type central charge [10]). Their sum can be inter-
preted as the Hamiltonian associated with ξA-evolution
[11].

A. Second order perturbations

For Einstein gravity (i.e., f(Riem) = 0) Hollands and
Wald [12] have shown that there exists a gauge where the
off-shell identity (5) holds at any order in ε. Working
in Gaussian null coordinates where the future- and past-
directed null normal vectors to the unperturbed extremal
surface are ∂`+ and ∂`− , this gauge conditions amounts to
imposing: (i) the Killing vector ξA = 2π

(
`+∂`+ − `−∂`−

)
remains Killing near the surface, and (ii) the coordinate
location of the surface, defined by extremization of the

Ã
A

ΣA

FIG. 1. Associated with the ball-shaped region A is a bound-
ary domain of dependence and a Rindler wedge in the bulk
with a Killing boost generator ξA indicated in red.

entanglement entropy functional (which is Wald entropy
at this order), is fixed:

(i) 0 = £ξAg
∣∣
`+=`−=0

(ii) 0 = K±αβ
δSWald

A

δḡαβ

∣∣∣
`+=`−=0

(7)

For a perturbation δg(1) = γ in this gauge, we have the
following generalization of the second order identity of
[12]:

δ(2)
[
EgravA − SWald

A

]
=

ˆ
ΣA

ω
L
(γ,£ξAγ)−

ˆ
ΣA

δ(2)G
L

(8)
where δ(2)G

L
vanishes if and only if δg(2) satisfies the

gravitational equations of motion associated with L at
O(ε2). In the higher curvature gravity context, a gauge
of the form (7) (such that (8) holds) exists in general. We
explicitly demonstrate this for curvature squared theories
by solving the corresponding inhomogeneous differential
equation. The condition involving the Killing vector ξA
does not change, while the location of the surface should
be defined by extremization of the promoted entangle-
ment entropy functional [8, 13]. Eq. (8) is the central
gravitational identity that we use.

B. Entanglement entropy functional

The functional SWald
A of (6) is a good definition of

entropy for stationary Killing horizons, where various
ambiguities in the definition of the Noether charge are
irrelevant [14]. However, in a higher curvature theory
of gravity and at second order in perturbation theory
around AdS, it is not the correct functional for comput-
ing entanglement entropy, SEEA , as we will discuss now.

The Noether charge ambiguity in the definition of Wald
entropy can be described according to Jacobson-Kang-
Myers [15, 16]. This JKM ambiguity can be written as
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a (d − 1)-form Y , which shifts the quantities entering
Noether’s theorem as follows [15]:

ω
L
(δ1g, δ2g) → ω

L
+ d
(
δ1Y (δ2g)− δ2Y (δ1g)

)
χ

L
(δg, ξA) → χ

L
+ δY (£ξAg)− ξA · dY (δg)

(9)

Note that this redefinition leaves (5) and (8) invariant.

The two extrinsic curvatures K±αβ of Ã have boost

weights ∓1 (i.e., £ξAK
±
αβ = ∓K±αβ). Since our second

order approach is only sensitive to expressions quadratic
in the extrinsic curvatures, we can thus constrain the
second order JKM ambiguity of the general form

SEE, ansatz
A = SWald

A +

ˆ
Ã

√
ḡ
(
Bγδ
αβK

+αβK−γδ

)
(10)

where Bγδ
αβ is some boost-invariant tensor built out of

the metric (and its derivatives). This ansatz corre-
sponds to fixing the ambiguity as Y (δg) = Y

(EE)
≡

1
2 ε δ

(
Bγδ
αβK

+αβK−γδ
)
. Figuring out the correct entan-

glement entropy functional in higher derivative theories
of gravity to O(K2), is equivalent to determining the

coefficient tensor Bγδ
αβ in terms of the gravitational La-

grangian.
Once the ambiguity has been fixed, SWald

A appearing
in (6), (7) and (8) should be replaced with SEEA .

C. Fixing the JKM ambiguity

We wish to highlight two recent approaches to fixing
this ambiguity:

• A formula for Bγδ
αβ in terms of the Lagrangian can

be derived using Euclidean methods and the bulk
replica trick [17] and demanding that entanglement
entropy be computed correctly [8, 9]. One finds
(after analytic continuation):

SEEA = SWald
A + 4π

ˆ
Ã

√
ḡ

∂2L
∂R+α+β ∂R−γ−δ

K+
αβK

−
γδ

(11)

• At second order in extrinsic curvatures, the same
functional is obtained by demanding that it satisfies
a linearized second law for compact horizons [18].

In this paper we will derive the solution (11) using a
third, and completely Lorentzian method. We will not

use the replica trick, but instead employ a direct calcula-
tion of CFT entanglement entropy which can be matched
against (10) and is a generalization of the methods re-
cently developed in [4] (see also [19–21]).

Note that we only work with states which are second
order in perturbation theory around AdS. Furthermore,
the region A for us will be ball-shaped. These are small
drawbacks from the general situation (in particular, we
will not encounter the “splitting problem” [22, 23] that
renders the method of [8] ambiguous at higher order in
extrinsic curvatures), we also gain something new com-
pared to [8, 9], in addition to not relying on the Euclidean
replica trick: we do not need to assume large central
charge or any other aspects of holography. Our results
constrain a subsector of holography which is completely
universal and applies to all CFTs: we will construct an
entanglement entropy functional, which computes second
order entanglement entropy from an auxiliary geometry
for any CFT.

D. Canonical energy

We define the canonical energy in f(Riem) theories of
gravity the same way as in Einstein gravity (as an integral
over the form ω

L
), but with a fixed choice of ambiguity

Y in terms of extrinsic curvatures, thus generalizing [12]:

WΣA(γ,£ξAγ) ≡ δ(2)
[
EgravA − SEEA

]
(12)

This is analogous to (8) after fixing the ambiguity Y
in a non-trivial way as in (10). We will show that the
canonical energy WΣA is the quantity dual to relative
entropy in the CFT.

IV. RELATIVE ENTROPY: FROM CFT TO ADS

The third ingredient for our argument is an explicit
calculation of relative entropy at second order in the state
perturbation (1):

δ(2)S(ρA||ρ(0)
A ) ≡ d2

dε2
Tr
(
ρA log ρA − ρA log ρ

(0)
A

) ∣∣∣
ε=0
(13)

This quantity can only depend on the two-point function
of the stress tensor used to create the state. Indeed,
from (1) it is straightforward to show that the first order
perturbation of the density matrix takes the form δρA =

ρ
(0)
A

´
λµνT

µν , and δ(2)S(ρA||ρ(0)
A ) is quadratic in δρA. A

more careful integral expansion of the logarithm shows:

δ(2)S(ρA||ρ(0)
A ) = −

ˆ
dτadYa λ̃µν(τa, Ya)

ˆ
dτbdYb λ̃ρσ(τb, Yb)

ˆ ∞
−∞

ds

16 sinh2
(
s+iε sgn(τab)

2

) 〈Tµν(τa, Ya)T ρσ(τb+is, Yb)〉

(14)
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where the first two integrals are over the Euclidean
space S1 × Hd−1 with τab ≡ τa − τb being the dif-

ference of Euclidean times. The sources λ̃µν(τ, Y ) ≡
λµν(τ, Y )Ω−2(τ, Y ) involve a suitable conformal factor.
The parameter s can be thought of as (real) modu-
lar time for evolution with the modular Hamiltonian

HA = − log ρ
(0)
A .

Importantly, the two-point function in (14) can be rep-
resented as the asymptotic symplectic flux in an auxiliary
AdS geometry. This was pointed out in [4] for Einstein
gravity. In the case of a more general gravitational La-
grangian L a systematic procedure can be followed, which
is outlined in Appendix B. The result takes the same form
as for Einstein gravity,

〈T ρσ(τa, Ya)Tµν(τb + is, Yb)〉 = − CT
CgravT

ˆ
rB→∞

dsB dYB ωL

(
KE,L

ρσ
cd (isB , rB , YB |τab, Ya), KR,L

µν
ab (sB , rB , YB |s, Yb)

)
(15)

where now L is a gravitational Lagrangian of our choice.
The gravitational computation reproduces the stress ten-
sor correlator with a normalisation CgravT fixed by the
chosen gravitational Lagrangian (see Appendix A 3 for
an explicit expression in terms of curvature squared cou-
plings). Since the form of two-point functions of the
stress tensor is universal, the correct CFT correlation
function can be reproduced by any gravitational La-
grangian as long as we rescale the final answer as in (15)
so as to fix the normalisation.

In order to match the CFT result for relative entropy
onto the gravitational identity, the Lagrangian should be
chosen such that, on the one hand, CgravT = CT . Due
to the universality of the two-point function of the stress

tensor, δ(2)S(ρA||ρ(0)
A ) is only sensitive to the gravita-

tional Lagrangian through this parameter. Of course, if
we have a valid holographic dual we could use its bulk
Lagrangian, but we wish to consider the more general
possibility of constructing an auxiliary bulk theory for
any CFT.

On the other hand, the entanglement entropy for ball
shaped regions in the vacuum is universal up to a normal-
isation a∗ [24–27]. In order that the background geome-

try g
(0)
AdS correctly reproduce this normalisation we must

require that agrav∗ = a∗ (this fixes the parameter `AdS
of our auxiliary geometry). See again Appendix A 3 for
explicit expressions.

In [4] it was used that for Einstein gravity,

a
grav (Einstein)
∗ =

(d− 1)πd

Γ(d+ 2)
C
grav (Einstein)
T , (16)

so that the two matching conditions above imposed a
CFT constraint between CT and a∗. For general theories
of gravity, constraint (16) does not hold, so we can relax
our assumptions. Instead, suitable choices of the param-
eters can always be found to match the CT and a∗ given
by the CFT.

A. Modular integral

We now substitute eq. (15) in eq. (14) for the relative
entropy, and perform the integral over modular time s.
In [4] this integral was performed carefully for Einstein
gravity. In fact, the details of this integral are the same
in the present case, and so we merely state the result:

δ(2)S(ρ||ρ(0)
A ) =

ˆ
ΣA

ω
L

(h,LξAh)

−
ˆ
H+

ω
L

(
h, I(+)

)
−
ˆ
H−
ω

L

(
h, I(−)

)
.

(17)

where H± are the future and past horizons of the AdS-
rindler wedge, and

hmn(`+, `−, YB) =
1

2

ˆ
dτdY λµν(τ, Y )Ω−2(τ, Y )

×Kµν
E;mn(`+, `−, YB |τ, Y )

(18)

is the bulk graviton sourced by the (Euclidean) boundary
source. Further, I(+) can be conveniently expressed in
terms of the contour-integral

I(+)
mn = i lim

`−→0

˛
|w|=1−ε

dw
e−s

+
∗

(w − e−s+∗ )2
JpmJ

q
n

× hpq
(

`+

wes
+
∗
, `−wes

+
∗ , YB

)
,

(19)

where Jab is the Jacobian matrix corresponding to the

boost `± →
(
wes

+
∗
)∓1

`±, and similarly for I
(−)
mn . By ex-

panding hpq around the extremal surface `± = 0, we can

easily perform the above contour integral and obtain I
(±)
mn

in an expansion around the extremal surface (see [4] for
details). It is of utmost importance to note that the met-
ric perturbation hmn is in a particular gauge, namely the
generalized de-Donder gauge (and not the Hollands-Wald
gauge which was discussed previously). It is the nice an-
alytic structure of the propagator in this gauge which
allows us to perform the modular s-integral straightfor-
wardly.
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bulk eqs. of motion:
δ(2)(Eab − 1

2
T ab) = 0

relative entropy is canonical energy:

δ(2)S(ρA||ρ(0)
A ) = WΣA(γ,£ξAγ)

entanglement functional:
δ(2)SEEA = δ(2)(SWald

A + Sextr.A )

FIG. 2. Three concepts of interest here. We generalize all of
them for higher curvature theories of gravity and show that
assuming any two of them implies the third.

The final step in the calculation then, is to re-express
the result (17) in the Hollands-Wald gauge. This is con-
ceptually again similar to the Einstein gravity case, but
in practice it is significantly more complicated. This cal-
culation is the main new technical result of this letter,
and can be found in Appendix A. The final answer is:

δ(2)S(ρ||ρ(0)
A ) =

ˆ
ΣA

ω
L
(g, γ,LξAγ)

+ 4π

ˆ
Ã

√
ḡ

∂2L
∂R+α+β ∂R−γ−δ

δK+
αβ δK

−
γδ

(20)

where γ = h + £V g is the gauge transformed perturba-
tion such that γ satisfies the Hollands-Wald gauge con-
ditions (7), and the second line gives extrinsic curvature
contributions which were not present in Einstein gravity.
Note that (20) is an entirely field theoretic equation – the
right hand side looks like gravity, but the bulk geometry
is a priori auxiliary.

V. RESULTS

Having established the central eqs. (8), (12), and (20),
we are now ready to draw some conclusions. We can
solve this set of equations either for the entanglement
entropy functional, or for the equations of motion, or
for the canonical energy, in each case generalizing pre-
vious results, using new (Lorentzian) techniques. Taken
together, these results provide a unifying framework for
various ideas discussed hitherto. We now describe these
three points of view. Figure 2 provides a summary of
these ideas.

a. Solving for the entropy functional. We can red-
erive the results of [8, 9] without any reference to Eu-
clidean methods such as the replica trick, by solving
our basic equations for the entanglement entropy func-
tional δ(2)SEEA . Assuming (i) the equality of canonical
energy (12) and boundary relative entropy (20), and (ii)
the second order gravitational equations of motion (i.e.,

δ(2)G
L

= 0), we find

δ(2)SEEA = δ(2)SWald
A

− 4π

ˆ
Ã

√
ḡ

∂2L
∂R+α+β ∂R−γ−δ

δK+
αβ δK

−
γδ

(21)

This is consistent with previous results on the holo-
graphic entanglement entropy.
b. Solving for the equations of motion. Assuming

that (i) we already knew the correct entanglement en-
tropy functional (for instance, from [8, 9]), and (ii) that
again the relative entropies (12) and (20) match, we could
similarly solve for the integrated equations of motion:

ˆ
ΣA

δ(2)G
L

= 0 (22)

Since this holds for all ball-shaped regions (including
boosted ones), one concludes G

L
= 0 and the equations

of motion to second order in perturbation theory hold
locally. This is a generalization of [4] to the case of
CFTs without any assumption about equality of a- and
c-type central charges. Indeed, for any value of the cen-
tral charges (such that a−c

c is small), we can find many
different bulk Lagrangians reproducing these values, and
derive the associated second order equations of motion.
c. Solving for canonical energy. Finally, we note

that assuming (i) the correct entanglement entropy func-
tional, and (ii) the second order equations of motion, the
results (8), (12), and (20) give a generalization of [5]: we
find explicitly that

WΣA(γ,£ξAγ) = δ(2)S(ρA||ρ(0)
A ) (23)

i.e., the equality of bulk canonical energy and bound-
ary relative entropies defined in (12) and (13). The new
aspect with higher curvature couplings are the extrinsic
curvature contributions to canonical energy, i.e., a par-
ticular fixing of the Y-ambiguity in the Noether charge
formalism. We have thus identified the appropriate no-
tion of gravitational canonical energy in this scenario.

VI. CONCLUSION

By studying higher curvature theories of gravity, we
were able to lift some ambiguities and drop some as-
sumptions in the context of various discussions revolv-
ing around notions of energy and entropy in gravity and
CFTs. This allowed us to provide a unifying framework
for understanding the intimate relations between CFT
relative entropy, gravitational equations of motion, and
the fixing of ambiguities in the definition of canonical
energy and entanglement entropy functionals appropri-
ate for general theories of gravity.

Our analysis is perturbative in nature, dealing with
second order deformations of the CFT vacuum state (or
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field excitations on empty AdS). It would be very inter-
esting to see if the circle of ideas presented here extends
to higher orders in perturbation theory. One expects that
already at third order in perturbation theory, the CFT
calculation will involve three-point functions. By sourc-
ing arbitrary primary operators in the Euclidean path in-
tegral this would allow us to access the operator product
expansion, and hence provide more detailed constraints
based on the requirement of a geometric entropy formula.
We leave this interesting question for the future.
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Appendix A: Derivation of the CFT result eq. (20)

In this appendix, we establish the central CFT result (20). Let us consider the various objects derived from the
Lagrangian, which are relevant for our analysis. We will first reduce the general f(Riem) problem to the case of
curvature squared theories of gravity, and then investigate the latter problem in detail.

1. Reduction to curvature squared theories

In this subsection, we make frequent use of formulae collected in [28], which the reader is invited to consult for
more details.

The symplectic current derived from the f(Riem) part of the Lagrangian (3) can be written in terms of two metric
perturbations {δ1g, δ2g} as follows:

ω(f)(δ1g, δ2g) =
1

16πGN
εc

{(
Scabdefδ1gef + 2ggmghnCcabdefgh δ1R

ef
mn

)
∇dδ2gab

−
(
2δ1∇dP cabd + gef δ1gef ∇dP cabd

)
δ2gab

}
− [δ1 ↔ δ2] ,

(A1)

with the following tensors defined in terms of the Lagrangian:

P abcd ≡ ∂L
∂Rabdc

= ga[cgd]b +
∂f

∂Rabdc
,

Ccabdefgh ≡ gekgflggmghn
∂P cabd

∂Rklmn
= gekgflggmghn

∂2f

∂Rklmn∂Rcadb
,

Scabdef ≡ −2P d(ab)(egf)c + 2P cd(e|(agb)|f) + P c(e|d(agb)|f) + P c(ab)(egf)d + P c(ab)dgef .

(A2)

where derivatives with respect to Riemann tensor are always such that we treat the metric gef and the Riemann
tensor Rabcd as independent fields and hold fixed gef for purpose of the variation. For the variation of P cabd in the
above expression, one finds

δP cabd = 2gf [cP a]ebd δgef + gkmgln Ccabdefkl δR
ef
mn . (A3)

Now note that our computations are only sensitive to second order variations on the AdSd+1 background. After taking
the two variations, we can evaluate ω(f) on the maximally symmetric AdS geometry. We thus find for the symplectic
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current:

ω(f)
∣∣∣
AdS

=
1

16πGN
εc

{(
Scabdef(0) δ1gef + 2ggm(0) g

hn
(0)C

cabd
(0) efgh δ1R

ef
mn

)
∇dδ2gab −

(
2δ1∇dP cabd

)
δ2gab

}
− [δ1 ↔ δ2]

=
1

16πGN
εc

{(
Scabdef(0) + 4g

b[c
(0)P

e]afd
(0)

)
δ1gef∇dδ2gab

+
(

4g
b[c
(0)P

e](ad)f
(0) + gab(0)P

ecdf
(0) − 2g

d[c
(0) P

e]abf
(0)

)
δ1gef∇dδ2gab

+ 2ggm(0) g
hn
(0)C

cabd
(0) efgh

(
δ1R

ef
mn∇dδ2gab − (∇dδ1Refmn) δ2gab

)}
− [δ1 ↔ δ2] ,

(A4)

where subscripts (0) denote evaluation on the AdS background.
Clearly, the background tensor structures can only depend on the AdS metric. One finds that only the following

background structures are possible (i.e., compatible with the Riemann symmetries):

P abcd(0) = a0 g
a[c
(0) g

d]b
(0) ,

1

`2
C cabd

(0) efgh = 2a1 g
(0)

e[gg
(0)

h]f g
c[b
(0)g

d]a
(0) + 2a2 δ

[c
(mg

a][b
(0) δ

d]
n)δ

m
[e g

(0)

f ][gδ
n
h] + a3

(
δ[c
e δ

a]
f δ

[b
g δ

d]
h + δ[b

e δ
d]
f δ

[c
g δ

a]
h

) (A5)

and Scabdef(0) is determined in terms of P abcd(0) via (A2). Further, ai=0,1,2,3 are some parameters that depend on the

Lagrangian, i.e., they can be expressed in terms of f(Rabcd → − 2
`2AdS

g(0)

a[cg
(0)

d]b) and its derivatives. The general functional

f(Riem) is therefore reduced to merely a choice of four parameters.
For a curvature-squared Lagrangian f(2)(Riem) = `2

(
α1R

2 + α2RabR
ab + α3RabcdR

abcd
)
, the parameters are

a0 = 1− 2
(
d(d+ 1)α1 + dα2 + 2α3

) `2

`2AdS
and ai = αi (i = 1, 2, 3) . (A6)

It is therefore clear that curvature squared Lagrangians already contain all the parametric freedom that our second
order analysis allows for: any f(Riem) theory is equivalent to a particular curvature squared theory for our purposes.

Using these forms of the background tensors, we can now further simplify (A4):

ω(f)
∣∣∣
AdS

=
1

16πGN
εc

{
a0 S

cabdef
(0,Einstein) δ1gef∇dδ2gab

+ 2ggm(0) g
hn
(0)C

cabd
(0) efgh

(
δ1R

ef
mn∇dδ2gab − (∇dδ1Refmn) δ2gab

)}
− [δ1 ↔ δ2] ,

(A7)

where Scabdef(0,Einstein) is the tensor that one obtains in Einstein gravity,

Scabdef(0,Einstein) = g
c(e
(0) g

f)(a
(0) g

b)d
(0) −

1

2
gab(0)g

c(e
(0) g

f)d
(0) −

1

2
g
c(a
(0) g

b)d
(0) g

ef
(0) −

1

2
gcd(0)g

e(a
(0) g

b)f
(0) +

1

2
gab(0)g

cd
(0)g

ef
(0) (A8)

If desired, one can further simplify analytically by using the identity [8]

δRefmn = −Repmn gfq δgpq + 2
[
gel∇f∇mδgln

]
sym(Riem) (A9)

where sym(Riem) means that the object should be symmetrized according to the symmetries of a Riemann tensor
(or be contracted with an object that exhibits these symmetries, as is the case in (A7)). Eventually we find it more
convenient to implement (A7) in Mathematica. The calculations in the following subsection are otherwise tedious to
perform by hand.

From (A7) it is now amply clear that a calculation for curvature-squared theories of gravity completely solves our
problem of general f(Riem) theories: the expression for ω(f)

∣∣
AdS

decomposes into four separate terms, each of which
is associated with one of the coefficients ai=0,...,3. Each of these terms leads to a calculation that is isomorphic to
either Einstein gravity or one of the three curvature squared theories of gravity up to an overall factor. If one wishes
to derive the second order bulk physics of some given f(Riem) theory, one simply needs to compute the coefficients
ai for this theory and equivalently realize it through a curvature-squared theory via (A6). Let us therefore now focus
on curvature squared theories.
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2. Derivation of eq. (20) for curvature squared theories

Having shown that it is sufficient to consider curvature squared theories, we will now work with the gravitational
Lagrangian described by

L =
1

16πGN

(
R+

d(d− 1)

`2
+ f(2)(Riem)

)
, f(2)(Riem) = `2

(
α1R

2 + α2RabR
ab + α3RabcdR

abcd
)

(A10)

For this theory, we will now essentially repeat the calculation of [4] with the required modifications to see the emergence
of a bulk theory with higher curvature couplings. First note that the treatment of scalar fields is exactly the same as
without higher derivative interactions. Let us therefore focus on the gravitational sector (i.e., states created by stress
tensor deformations of the Euclidean path integral).

We will not assume the knowledge of the correct JKM ambiguity such that our entropy functional computes
entanglement entropy. That is, we will perform the calculation from a purely CFT point of view, with no prior
knowledge of how to compute entanglement entropy in the bulk, but we expect to find an entanglement functional of

the form SEE, ansatz
A established in (10). We can further simplify this problem by writing the ansatz as

SEE, ansatz
A = SWald

A − 1

GN

ˆ
Ã

√
ḡ
(
b1 ḡαβ ḡ

γδ + b2 ḡ
γ
α ḡ

δ
β

)
δK+αβ δK−γδ (A11)

where the coefficients b1,2 shall be determined in terms of the couplings αi.
We will now explain the strategy for deriving (20) from (17), i.e., how to go from the generalized de-Donder gauge

to the Hollands Wald gauge. We start by constructing the vector field V a(±) which generates this gauge transformation

(henceforth called the “Hollands-Wald vector field”):

V a = V a(+) + V a(−) , V a(±) = V a(±,E) +

3∑
i=1

αi V
a
(±,αi) . (A12)

The labels “+” and “−” refer to the null normal coordinates `±B transverse to the extremal surface Ã. The extremal
surface itself is nothing but (d − 1)-dimensional hyperbolic space, whose coordinates we write as xα = (u, ~x)α. The
full AdS metric therefore takes the form:

g
(0)
AdS =

1

4(1 + `+`−)

(
−`2−d`2+ − `2+d`2−

)
+

(
1

4
+

1

4(1 + `+`−)

)
2d`+d`− +

1 + `+`−
u2

(
du2 + d~x2

)
. (A13)

The vectors V a(±,E) correspond to the Hollands-Wald vector field in Einstein gravity with the following components

being determined by the gauge condition (7) at O(α0
i ):

V ±(±,E) = v
(0)
(±,E)(`

∓, xα) + `± v
(1)
(±,E)(`

∓, xα) ,

V ∓(±,E) = 0 ,

V α(±,E) = vα(±,E)(`
∓, xα) .

(A14)

Further, V(±,αi) denote the corrections necessitated by higher derivative interactions such that the extremality condi-

tion associated with the entropy functional (A11) is satisfied by the perturbation γ = h+ LV g at `± = 0. Explicitly,
the extremality condition in the second line of (7) for the functional ansatz (A11) reads

0 = δγK
± + 2`2

{
− d(d+ 1)α1 δγK

±

+
(
b1∇2δγK

± − [(d− 1)b1 + dα2] δγK
±)+

(
b2∇α∇βδγK±αβ − [b2 + 2α3] δγK

±)}∣∣∣
`±=0

.

(A15)

It turns out that this extremality condition at O(α1
i ) involves only one component of the vector, which we shall dub

V a(±,αi) = δa± v
(0)
(±,αi)(`

∓, xα) . (A16)

The calculation in this appendix does not require the O(α1
i ) part of the extremality condition A15. As we will see

below, this is a direct consequence of working to linear order in αi. However, the O(α0
i ) part of the extremality

condition will be important, and simply reads

0 = δh+LVE gK
±
∣∣∣
`±=0

. (A17)
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We do note, however, that our calculation below will fix the coefficients b1,2 in precisely the right way such that (A15)
corresponds to extremizing the correct entanglement functional appropriate for higher curvature theories.

Having established the structure of the vector field V , we proceed to rewrite (17) in terms of γ and V :

δ(2)S(ρ||ρ(0)
A ) =

ˆ
ΣA

ω
L

(γ,LξAγ) +

ˆ
H+

ω
L

(LξAγ,LV g)

−
ˆ
H+

ω
L

(
h, I(C+)− L[ξA,V(+)]g

)
−
ˆ
H−
ω

L

(
h, I(C−)− L[ξA,V(−)]g

)
.

(A18)

The first term in this expression corresponds to the expected canonical energy term appearing in equation (20). The

second term can be recast as a boundary term localized at Ã. This is a consequence of applying equation (5) together
with the linearized equations of motion obeyed by the metric fluctuation h, which also implies that LξAγ is linearly

on-shell. Explicitly, the second term in (A18) is the sum of two terms, which, after integrating by parts along Ã and
disregarding total boundary terms, takes the form

ˆ
H+

ω
L

(
LξAγ,LV(±)

g
)

=

ˆ
Ã

χ
L

(
LξAγ, V(±)

)
=

1

8GN

ˆ
Ã

√
ḡ

{
v

(0)
(±,E)X(∓,E) +

∑
i

αi

(
v

(0)
(±,E)X(∓,αi) + 2 v

(0)
(±,αi)X(∓,E) + C(∓,αi) ∓ 4hᾱβ̄h

ᾱβ̄
)}

,

(A19)

where we have defined the following structures that are linear in h,

X(±,E) =
∓2√

2
δhK

± , X(±,α1) = X(±,α2) = 0 , X(±,α3) =
±8√

2
δh
(
K± +∇α∇βK±αβ −∇α∇αK±

)
, (A20)

and the quadratic structures

C(±,α1) = 0 , C(±,α2) = 0 , C(±,α3) =
±8√

2

(
h α
± δh∇αK± − h±αδh∇βK±αβ

)
. (A21)

We singled out the very last term in (A19) since it obviously cancels when we add the contributions of V(+) and V(−).
To write these expressions, we have made use of the linearized Einstein equations of motion (and normal derivatives
thereof), viz.,

Gµν(h) = ∇ρ∇ρhµν −∇µ∇ρhρν −∇ν∇ρhρµ − 2gµνh+∇µ∇νh+ 2hµν . (A22)

In expressions which are themselves of order O(α1
i ), the two-derivative Einstein equations are sufficient and we do

not keep track of corrections at higher orders in αi. The concrete components of the Einstein equations needed in
this calculation are ∇±G±±(h) and ∇µGµ±(h).

The last two terms in equation (A18) can also be written as boundary terms at Ã. This can be seen explicitly by
integrating by parts the symplectic flux of I(C±)−L[ξA,V(±)] such as to isolate all dependence on `±. This computation

turns out to isolate terms proportional to h±± (`±, xα) |`∓=0 as follows

−
ˆ
H±
ω

L

(
h, I(C±)− L[ξA,V(±)]g

)
=

1

8GN

ˆ
Ã

√
ḡ

ˆ
d`±

{
∓
√

2 δh+LV(±,E)
gK
±

∓
[

48α1√
2
δh+V(±,E)

gK
± +

2α2 + 8α3√
2

(∇α∇α − 2) δh+V(±,E)
gK
±
]}

h±±
(
`±, 0, xα

)
+ Boundary terms at Ã

(A23)

The terms proportional to δh+LVE gK
± vanish by virtue of the Hollands Wald condition (A17). In writing (A23) we

have again used the equations of motion as described above. The resulting boundary terms localized at Ã read

−
ˆ
H±
ω

L

(
h, I(C±)− L[ξA,V(±)]g

)
=

1

8GN

∑
i

αi

ˆ
Ã(xα)

√
ḡ
{
v

(0)
(±,E)Y(∓,αi) − v

(0)
(±,αi)X(∓,E)

}
− 1

8GN

ˆ
Ã(xα)

√
ḡ

{
2α2δhK

+δhK
− + 8α3δhK

+αβδhK
−
αβ +

∑
i

αi C(±,αi) + 16α3 h
α
[±∇∓]∇[αh

β
β]

}
,

(A24)
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where we have introduced additional structures Y(∓,αi) whose explicit expressions read

Y(±,α1) = 0 Y(±,α2) =
±2√

2
δh
(
2K± −∇α∇αK±

)
, Y(±,α3) =

±8√
2
δh
(
K± −∇α∇βK±αβ

)
. (A25)

The very last term in (A24) trivially cancels once we add up the contributions from H+ and H−. Note that equation
(A24) contains the familiar structures C(±,αi) that have already appeared in formula (A19). We now replace equations
(A19) and (A24) in (A18) and obtain

δ(2)S(ρ||ρ(0)
A ) =

ˆ
ΣA

ω
L

(γ,LξAγ) +
1

8GN

∑
i,±

αi

ˆ
Ã(xα)

√
ḡ v

(0)
(±,E)

(
X(∓,αi) + Y(∓,αi)

)
− 1

8GN

ˆ
Ã(xα)

√
ḡ
{

4α2 δhK
+δhK

− + 16α3 δhK
+αβδhK

−
αβ

}
.

(A26)

Note that all dependence on the O(α1
i ) part of the vector V has canceled out. We can further simplify this expression

by using the explicit expressions of X(±,αi) and Y(±,αi), together with the extremality condition of equation (A17).
The final result is

δ(2)S(ρ||ρ(0)
A ) =

ˆ
ΣA

ω
L

(γ,LξAγ)− 1

GN

ˆ
Ã(xα)

√
ḡ
{α2

2
δγK

+δγK
− + 2α3 δγK

+αβδγK
−
αβ

}
. (A27)

Note that the extrinsic curvature contributions are precisely the expected ones required to upgrade the Wald entropy
functional to the higher curvature entanglement entropy functional. In terms of the parameters bi in the ansatz (A11)
we have

b1 =
α2

2
, b2 = 2α3 . (A28)

We conclude

δ(2)S(ρ||ρ(0)
A ) =

ˆ
ΣA

ω
L
(g, γ,LξAγ)− δ(2)Sextr.A (A29)

One can easily check that δ(2)Sextr.A coincides with the extrinsic curvature terms in (20) for the curvature squared
Lagrangians. This completes our derivation of the CFT identity (20).

3. a- and c-type central charges in curvature squared theories

Using the parametrisation of the general curvature squared gravitational Lagrangian from Appendix A 2, one finds
[29]

CgravT =
Γ(d+ 2)

(d− 1)π
d
2 Γ(d2 )

`d−1
AdS

8πGN

[
1− 2

(
d(d+ 1)α1 + dα2 − 2(d− 3)α3

) `2

`2AdS

]
, (A30)

agrav∗ =
π
d
2

Γ(d2 )

`d−1
AdS

8πGN

[
1− 2

(
d(d+ 1)α1 + dα2 + 2α3

) `2

`2AdS

]
. (A31)

If agrav∗ = a∗ is used to fix the only free parameter in the auxiliary background spacetime g(0) (viz., the scale `AdS),
then the requirement that CgravT = CT fixes the combination of the higher curvature couplings appearing in (A30) in
terms of CT and a∗.

Appendix B: Two-point functions as symplectic flux

In [3], it was shown that the standard holographic dictionary for the one-point function of the stress tensor in an
arbitrary state follows from the formula for holographic entanglement entropy in general f(Riem) theories.2 The

2 Higher curvature theories of gravity generically introduce new
degrees of freedom. [3] contains some discussion of this matching.
We will focus on the modes of the bulk metric which are dual

to the stress tensor. The additional degrees of freedom will be
treated as matter whose linearised equations of motion we will
simply assume are satisfied.
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usual statement of this dictionary is that the expectation value of an operator is given by the variation of the on-shell
action by the boundary value of the dual field:

〈Tµν(x)〉ψλ(ε) = δ
KR,L

µν
ab

S0,L , (B1)

where KR,L
µν
ab is the variation of the bulk metric at a point X in the bulk under a change of the boundary metric

at a point x on the boundary. This is given by a causal bulk to boundary propagator in the background spacetime
specified by the state ψλ(ε):3

KR,L
µν
ab (X|x) =

∂gab(X)

∂g∂µν(x)
. (B2)

On-shell, the variation of the action is a boundary term:4

δ
KR,L

µν
ab

S0,L = −
ˆ
∂

θ
L

(KR,L
µν
ab ) . (B3)

Taking a variation by the state on both sides and setting the reference state to the vacuum, we find

−〈T ρσ(τab, Ya)Tµν(is, Yb)〉 =

ˆ
rB→∞

dsBdYB δ
KE,L

ρσ
cd

(isB,rB,YB |τab,Ya)

[
θ

L
(KR,L

µν
ab (sB , rB , YB |s, Yb))

]
. (B4)

We would like to write the right hand side in terms of ω
L
, but this involves a second term involving θ

L
with the

order of the variations reversed. Since the on-shell action is a boundary term and the sources used to prepare the
state must be chosen such that they do not affect the boundary conditions on the fields – so that the prepared state
is a state in the original theory we wished to consider rather than in some deformed theory – this second term must
vanish. This is the statement that

ˆ
X→∂

dX θ
L

(ˆ
dxKE,L

ρσ
cd (X|x)λρσ(x)

)
= 0 , (B5)

in an arbitrary background state, since KE,L(X|x) itself must vanish when X is taken to the boundary.
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