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Abstract: Autonomous underwater vehicles (AUVs) are advanced platforms for detecting 14 

and mapping oil spills in deep water. However, their applications in complex spill 15 

environments have been hindered by the risk of vehicle loss. Path planning for AUVs is an 16 

effective technique for mitigating such risks and ensuring safer routing. Yet previous studies 17 

did not address path searching problems for AUVs based on probabilistic risk reasoning. This 18 

study aims to propose an offboard risk-based path planning approach for AUVs operating in 19 

an oil spill environment. A risk model based on the Bayesian network was developed for 20 

probabilistic reasoning of risk states given varied environmental observations. This risk model 21 

further assisted in generating a spatially-distributed risk map covering a potential mission area. 22 

An A*-based searching algorithm was then employed to plan an optimal-risk path through the 23 

constructed risk map. The proposed planner was applied in a case study with a Slocum G1 24 

Glider in a real-world spill environment around Baffin Bay. Simulation results proved that the 25 

optimal-risk planner outperforms in risk mitigation while achieving competitive path lengths 26 
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and mission efficiency. The proposed method is not constrained to AUVs but can be adapted 27 

to other marine robotic systems. 28 

Keywords: Autonomous underwater vehicles (AUVs); probabilistic risk model; global path 29 

planning; A* algorithm; oil spill environment. 30 

1 Introduction 31 

An oil spill is one of the major accidents in the ocean that can damage the marine 32 

ecosystem, social economy, and human health (Hwang et al., 2020; Zhu et al., 2021). Due to 33 

hazardous effects of oil spills, it is essential to detect and track the oil during or after a spill for 34 

environmental impact assessment and response decision-making (White et al., 2016). Although 35 

surface oil slicks can be detected and mapped by traditional survey methods (i.e., satellite 36 

imagery and ship-based sampling), subsurface oil detection could be more challenging due to 37 

the deep presence of oil and its spatial-temporal changes over time (Ji et al., 2020). 38 

Autonomous underwater vehicles (AUVs) are advanced marine robots that can be used for 39 

detecting, tracking, and assessing subsurface oil in deep water (Kinsey et al., 2011; Sahoo et 40 

al., 2019). Compared with traditional survey methods, AUVs coupled with multiple sensors 41 

are superior in providing high-resolution sampling data of submerged oil plumes, achieving 42 

communication of spill information in near real-time, as well as preventing personnel exposure 43 

to hazardous oil spill environments (Pereira et al., 2013; Vinoth Kumar et al., 2020). Therefore, 44 

it is beneficial to deploy AUVs for searching and delineating subsurface oil plumes, capturing 45 

oil behaviors, and improving the efficiency of oil spill response. 46 

Due to their ability to obtain in-situ data, some scientists have implemented AUVs for oil 47 

spill detection. During the Deepwater Horizon spill in the Gulf of Mexico, which was one of 48 

the largest oil spill accidents in history, a Sentry AUV was employed with underwater mass 49 

spectrometers to localize and track submerged oil plumes at approximately 1100 m depth 50 

(Camilli et al., 2010; Kinsey et al., 2011). A REMUS-600 AUV was deployed with a 51 

fluorometer at a natural oil seep off the coast of Santa Barbara, California, with a mission depth 52 

up to 35 m (DiPinto, 2019). A glider AUV coupled with a fluorometer was used to detect oils 53 
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in Tallinn Bay in the Gulf of Finland, which proved that the glider is suitable to monitor the oil 54 

distribution over a larger sea area due to its long-endurance capability (Pärt et al., 2017). A 55 

Jaguar AUV was effectively used in the ice-mapping missions to detect the under-ice oil spills 56 

in the Northern Alaska coast (Maksym et al., 2014).  57 

Yet none of the missions above have considered the risk of vehicle loss as part of their 58 

mission planning. However, operating in an oil spill environment could expose AUVs to the 59 

risk of loss due to the comprehensive effects of ocean currents, surface waves, potential 60 

underwater obstacles, and oil contamination on sensors. Therefore, it is essential to minimize 61 

such risks and enhance their safety navigation during spill response missions. Risk-based path 62 

planning is one of the critical techniques for mitigating risks and ensuring AUVs’ safe 63 

deployment before a mission. It refers to planning an optimal path for the vehicle from its initial 64 

state to the goal state of a mission considering the risk involved, which is under certain criteria 65 

(e.g., shortest path length, minimal cruise time, minimal risk profile), and as the same time, 66 

avoiding obstacles along a path (Zeng et al., 2015; Lefebvre et al., 2016; Guo et al., 2021). 67 

A number of studies have investigated risk-based path planning methods for AUVs to 68 

realize safer operations. Pereira et al. (Pereira et al., 2011) proposed a minimum risk planner 69 

that minimized the cumulative surfacing risk for a glider AUV. Based on this work, an 70 

expanded study (Pereira et al., 2013) considered the effects of ocean currents on the vehicle for 71 

planning AUV paths and predicted ocean currents using a probabilistic model. The proposed 72 

planner effectively reduced the collision risk with ships and land. Hegde et al. (Hegde et al., 73 

2016) presented a method for developing collision risk indicators for AROVs. The proposed 74 

indicators (i.e., time to collision, mean time to collision, and mean impact energy) were used 75 

to identify risk prone waypoints for a given AROV path, which could further assist in mission 76 

path planning/replanning and providing risk reduction measures. Lefebvre et al. (Lefebvre et 77 

al., 2016) addressed the collision risk for AUV path planning using a hierarchical A* approach. 78 

To enhance the autonomy capability of the vehicle, the authors highlighted the integration of 79 

path planning in the AUV control architecture. However, this study only considered the 80 

underwater obstacles while ignoring other environmental information. Yan et al. (Yan et al., 81 
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2022) applied a whale optimization algorithm to tackle a three-dimensional planning problem 82 

for AUVs. The proposed planner can effectively avoid risky regions and achieve the shortest 83 

and safest path with minimal energy consumption. Zhang et al. (Zhang et al., 2022) addressed 84 

the AUV path tracking with real-time obstacle avoidance via a reinforcement learning 85 

technique. The risk constraints were adopted in reward functions to realize collision avoidance 86 

and ensure safety control. 87 

While previous studies have explored different risk-based path planning methods for 88 

mitigating AUV risks, limitations are observed from them. Firstly, most of the former research 89 

only addressed risks in a general marine environment with impacts of a single environmental 90 

variable, for example, the underwater currents. However, limited studies have considered the 91 

scenario of AUVs navigating in complex oil spill environments with interactions of multiple 92 

risk variables, and accordingly provided the mission planning strategy from the safety 93 

perspective. Secondly, limited past works have applied a probabilistic model for quantifying 94 

the risk state of AUVs given varied environmental observations. While probabilistic reasoning 95 

could enhance the accuracy of risk prediction and further improve the efficiency of decision 96 

making, therefore, a rigorous method that integrates a probabilistic risk model into the path 97 

planning problem for AUVs is needed. 98 

The objective of this study is to propose a risk-based path planner for AUVs to improve 99 

its safety performance and enhance autonomous capabilities in oil spill environments. 100 

Specifically, hazardous impacts of potential risk variables in oil spill regions were analyzed. A 101 

risk analysis model based on the Bayesian network (BN) was then developed for probabilistic 102 

reasoning over current risk states of vehicle loss, which considered various environmental 103 

conditions and potential underwater obstacles. This risk model was extended to assist in 104 

generating a risk map of a gridded mission area. In order to avoid high-risky regions while 105 

achieving a relatively shorter path length, the A* algorithm was employed to search for an 106 

optimal-risk solution. The performance of the proposed planner was demonstrated in a 107 

simulated case study with a spill area in Baffin Bay.  108 
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The contribution of this study is twofold. Firstly, the proposed BN-based risk model can 109 

quantify the risk states of AUVs while assisting in intuitively presenting spatial risk 110 

distributions in the complex oil spill environment. The probabilistic reasoning can enhance the 111 

effectiveness and accuracy of further risk-based decision making. Secondly, the developed 112 

optimal-risk planner can avoid potential risky regions and obstacles, and meanwhile, it 113 

achieves a trade-off between risk mitigation and mission efficiency. It is expected that the 114 

proposed strategy can serve as a worthwhile precomputing policy to prevent AUV loss at the 115 

path planning stage, and therefore enhance the safety decision-making capability of AUVs for 116 

safer navigation. The proposed method is not constrained to AUVs but can be adapted to other 117 

marine robotic systems. 118 

The structure of this article is organized as follows. Section 2 defines the risk-based path 119 

planning problem and the solution of this study. Section 3 elaborates a BN-based model used 120 

for risk map generation and describes the A* algorithm used for path searching. Results of a 121 

simulated case study are discussed in Section 4, and Section 5 concludes this study. 122 

2 Risk-Based Path Planning: Problem Definition and Solution 123 

The proposed risk-based path planner in this study aims to find an optimal-risk path based 124 

on a probabilistic risk map. In this section, the general problem formulation was defined and 125 

the solved algorithm was described. 126 

2.1 Problem Definition 127 

Generally, methods for AUV path planning can be broadly divided into two categories: 128 

global path planning and local path planning. Global path planning searches for a globally 129 

optimal path with known environmental information beforehand with an AUV mission, 130 

whereas local path planning finds a locally optimal strategy under unknown and dynamic 131 

environments (Cheng et al., 2021). This study mainly focused on the global path planning for 132 

AUVs, especially for a glider AUV, to plan an optimal risk path. The reason lies in that a local 133 

path planning algorithm would require an onboard implementation and consume more energy, 134 
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while gliders consume low energy to secure high longevity of their missions. Therefore, real-135 

time implementation of local path planning could be difficult considering energy consumption. 136 

In addition, environmental information for AUV missions, such as locations of large static 137 

obstacles (e.g., islands or rocks), could be obtained beforehand. In this case, it is worthwhile to 138 

conduct the offline global path planning prior to AUV missions as precomputing policies to 139 

ensure safe deployment.  140 

In general, a global path planning problem can be formulated as an optimization problem, 141 

which can be defined as Eq. (1): 142 

𝑃∗ = argmin
𝑝𝑘∈𝑃

𝑔( 𝑝𝑘) (1) 

where 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} is a set of feasible paths, 𝑝𝑘 is the kth path amongst the set 𝑃, and 𝑃∗ 143 

denotes the optimal path that minimizes the cost function 𝑔. Through various cost functions, 144 

different optimal objectives can be realized, such as achieving the minimal involved risks, the 145 

minimal routing length, the minimal travel time, and so on. 146 

The objective of this study is to search for an optimal-risk path for AUVs travelling from 147 

a given initial position to a goal position, whilst achieving a competitive path length. The risk 148 

state of an AUV can be specified by a risk index, which refers to the probability of vehicle loss. 149 

Hence, the objective function of this study can be modified as Eq. (2), and the cost functions 150 

of both the risk of vehicle loss and the path length are defined in Eq. (3) and Eq. (4), separately: 151 

𝑃∗ = argmin
𝑝𝑘∈𝑃

[𝑔𝑟(𝑝𝑘) + 𝑔𝑙(𝑝𝑘)]          

(2) 

𝑔𝑟(𝑝𝑘) = ∑ 𝑟(𝑤𝑖)

𝑖

 
         

(3) 

𝑔𝑙(𝑝𝑘) = ∑ 𝑑(𝑤𝑖 , 𝑤𝑖+1)

𝑖−1

 
         

(4) 

where 𝑤𝑖 is the ith waypoint to be reached along the path 𝑝𝑘, 𝑟(𝑤𝑖) ∈ [0, 1] denotes the risk 152 

index of the waypoint 𝑤𝑖 , which is calculated using the Bayes theorem as Eq. (7) that is 153 

elaborated in Section 3.1; 𝑔𝑟(𝑝𝑘) represents the accumulative risk cost along the path 𝑝𝑘 , 154 

which is under the constraint of the risk threshold that is defined in Eq. (5); 𝑔𝑙(𝑝𝑘) represents 155 
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the accumulative length cost along the path, and 𝑑(𝑤𝑖, 𝑤𝑖+1) denotes the Euclidean distance 156 

between the two adjacent waypoints. 157 

𝑟(𝑤𝑖) < 𝑟𝑡 (5) 

where 𝑟𝑡 is a predefined risk threshold that specifies the maximum acceptable risk index for a 158 

waypoint. 159 

2.2 Problem Solution 160 

To find a globally optimal-risk path, the A* algorithm was applied in this study. The A* 161 

algorithm, which is oriented from the Dijkstra’s algorithm, is an effective solution for searching 162 

the globally minimum-cost path in a static network, and it is widely applied to address low-163 

dimensional path planning problems (Dijkstra, 1959; Hart et al., 1968). The evaluation function 164 

of this algorithm is defined in Eq. (6): 165 

𝑓(𝑤𝑖) = 𝑔(𝑤𝑖) + ℎ(𝑤𝑖) (6) 

where 𝑔(𝑤𝑖) is the actual cost from the start state 𝑤𝑠 to the current waypoint 𝑤𝑖 in the search 166 

network, ℎ(𝑤𝑖) represents the estimated cost called a heuristic from the current waypoint 𝑤𝑖 to 167 

the goal state 𝑤𝑔, and 𝑓(𝑤𝑖) is the total cost from the start state through the waypoint 𝑤𝑖 to the 168 

goal state. 169 

Therefore, A* calculates the total cost 𝑓(𝑤𝑖) of candidate nodes in the searching network, 170 

and it selects a node with the minimal value of 𝑓(𝑤𝑖) as the next traversal node until reaching 171 

the goal node. Meanwhile, A* relies on a heuristic ℎ(𝑤𝑖) to fast drive the network exploration 172 

to the desired areas by exploring the fewest number of nodes. This exhibits its advantage in 173 

reducing the computational time and improving the path searching efficiency (Cheng et al., 174 

2021). Another advantage of the A* algorithm is its flexibility to be adapted by modifying the 175 

heuristic and cost functions given various optimization objectives, which is particularly 176 

beneficial to AUV path planning considering different mission requirements in complex marine 177 

environments (Singh et al., 2018). Hence, the A* algorithm has been commonly used for 178 

planning global paths of AUVs with various optimization criteria, including the shortest path 179 

length (Wang et al., 2017; Wang and Pang, 2019), the minimal collision risk (Pereira et al., 180 
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2011; Lefebvre et al., 2016), the minimal energy consumption (Li et al., 2017; Yao et al., 2018), 181 

and the shortest searching time (Szczerba et al., 2000; Li and Zhang, 2020). Given its 182 

superiority in fast searching and flexible adaptation from the risk perspective, the A* algorithm 183 

was chosen as the path planning solution in this study. 184 

3 Methodology 185 

The flowchart of the proposed methodology is presented in Fig. 1. It can be broadly 186 

divided into three steps. A risk analysis model based on the BN was firstly established for 187 

probabilistic reasoning of waypoint risk indices. A risk map was then created based on the BN 188 

inference results. Through the generated risk map, an A*-based algorithm was employed to 189 

search for an optimal-risk path in the potential mission area. Details of the proposed approach 190 

were elaborated in the following subsections. 191 

 192 

Fig. 1. Flowchart of the proposed method. 193 

3.1 Development of a BN-based risk model 194 

Risk variable identification is a premise to establish a BN-based risk model. Risk variables, 195 

which can potentially lead to AUV loss in an oil spill environment, should be firstly captured 196 

in this study. To facilitate further BN inference, identified risk variables can be discretized into 197 

Risk variable identification

BN network development

Environmental observation

BN inference

Risk Analysis Model

Risk map generation

Mission profile determination

Cost function analysis

A* algorithm employment

Optimal path generation

Path Planning Model

Effectiveness validation
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three states according to their observed values, representing low, medium, and high severity, 198 

respectively.  199 

BN is a probabilistic graphical model composed of vertices (nodes) and edges (arrows), 200 

where each node denotes a random variable and arrows represent causal relationships among 201 

nodes (Afenyo et al., 2017). Their dependency degrees can be captured mathematically using 202 

conditional probabilities with the Bayesian theorem. For each BN, there is a unique probability 203 

model. Assuming that 𝑋  is a set of random variables: 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) , where 𝑛  is the 204 

number of variables in the network. The joint probability 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) can be calculated 205 

according to the chain rule of the Bayes theorem using Eq. (7): 206 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) = ∏ 𝑃(𝑥𝑖|𝑃𝑎(𝑥𝑖))

𝑛

𝑖=1

 (7) 

where 𝑃𝑎(𝑥𝑖) represents the set of parent nodes of 𝑥𝑖 , and 𝑃(𝑥𝑖|𝑃𝑎(𝑥𝑖)) is the conditional 207 

probability distribution. 208 

Bayesian networks have been well applied for risk analyses in the AUV domain. Griffiths 209 

and Brito (Griffiths and Brito, 2008) firstly used a BN model for predicting the risk of AUV 210 

loss in a sea ice environment. An extended study based on it applied a BN model for AUV risk 211 

management in Polar regions (Brito and Griffiths, 2016). The proposed BN structure coped 212 

well with the uncertainties by eliciting expert judgement. Meanwhile, it captured the risk 213 

variables from both environmental factors (i.e., ice concentration, ice thickness) and the vehicle 214 

platform to produce an updated probability of vehicle loss. Hegde et al. (Hegde et al., 2018) 215 

presented a BN model for monitoring the mission abort during AUV operations of inspection, 216 

maintenance, and repair (IMR). This application of the BN model identified risk factors from 217 

technical, organizational, and operational perspectives, and it quantified the probability of the 218 

IMR mission failure. More recently, Bremnes et al. (Bremnes et al., 2019; Bremnes et al., 2020) 219 

proposed a Bayesian approach towards supervisory risk control of AUVs for under-ice 220 

operations. The BN reasoning was employed to predict the risk state for online risk modelling. 221 

The constructed risk model further assisted in decision-making for waypoint selections of the 222 

vehicle. Yang et al. (Yang et al., 2020) provided an approach for dynamic risk analyses of a 223 
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long-range AUV based on a dynamic BN model. The risk state can be updated online when the 224 

vehicle experiences different operating environments, which automatically guides the AUV to 225 

avoid hazardous environmental conditions. 226 

There are clear advantages of using the BN for AUV risk modelling. Firstly, due to 227 

complex operational environments of AUVs, multiple risk factors could interact and cause 228 

vehicle loss. While BN contains a clear topological structure to present causal relationships 229 

among complex risk variables, which facilities risk identification especially for a multi-variable 230 

system (Obeng et al., 2022). Secondly, BN is a probabilistic risk assessment tool, and using the 231 

conditional probability theory could enhance the accuracy of risk prediction. In addition, based 232 

on its predictive reasoning, BN can update the current risk state of the vehicle given new 233 

environmental observations (Yazdi et al., 2021). This feature is particularly beneficial for an 234 

AUV platform which exposes to various operating environments during a mission, and thereby 235 

its spatial-temporal evolution of risk states can be predicted timely. Lastly, BN can be easily 236 

employed by combining expertise even when the historical data are limited (Brito et al., 2022). 237 

To our knowledge, the BN model has not been used for AUV path planning. Given its 238 

superiority, this study extended the application of the BN model to the domain of AUV decision 239 

making. 240 

3.2 Risk Map Generation 241 

A risk map of a potential mission area can be generated based on BN reasoning results. 242 

The created risk map is represented in the form of probabilistic occupancy grids. Each grid 243 

evaluates the risk index 𝑟(𝑤𝑖) ∈ [0, 1], which is specified by the probability of the AUV loss 244 

given contained environmental conditions. As described in Section 2.1, the risk index 𝑟(𝑤𝑖) is 245 

calculated using the Bayes theorem as Eq. (7). Therefore, the risk map serves as a probabilistic 246 

measure of spatial risk states in the desired mission area. A trade-off should be considered 247 

when determining the grid resolution, as a relatively lower resolution could speed up the search 248 

progress but meanwhile sacrifice the accuracy of the planned vehicle’s positions. 249 
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3.3 Development of the Path Planning Model 250 

Based on the constructed risk map, an A*-based path planning model can be then applied 251 

to obtain an optimal solution from the safety perspective. It firstly analyzes the cost functions 252 

of both risk indices and path lengths. Then, the objective function can be determined according 253 

to involved costs, and the A* algorithm is finally used to search for an optimal-risk path. 254 

3.3.1 Cost function analysis 255 

When considering the risk cost along a path, an actual risk cost 𝑔𝑟(𝑤𝑖) of the current 256 

waypoint 𝑤𝑖, which was originally defined in Eq. (3), can be adapted to Eq. (8). Moreover, an 257 

admissible heuristic ℎ𝑟(𝑤𝑖) (i.e., an estimated risk cost) used for A* searching can be defined 258 

in Eq. (9), which was adapted from former research (Pereira et al., 2011; Pereira et al., 2013; 259 

Lefebvre et al., 2016). 260 

𝑔𝑟(𝑤𝑖) = 𝑟(𝑤𝑖) (8) 

ℎ𝑟(𝑤𝑖) = 𝑁 ∗ 𝑟𝑚𝑖𝑛 (9) 

where 𝑟(𝑤𝑖) denotes the risk index of the waypoint 𝑤𝑖, which was elaborated in Section 2.1. 261 

𝑟𝑚𝑖𝑛 is the globally minimum risk index among all grids in the risk map, and 𝑁 is the minimal 262 

number of transitions from the current waypoint 𝑤𝑖 to the goal 𝑤𝑔, which can be defined in Eq. 263 

(10): 264 

𝑁 = ⌊
𝑑(𝑤𝑖, 𝑤𝑔)

𝑑𝑚𝑎𝑥
⌋ (10) 

where 𝑑(𝑤𝑖, 𝑤𝑔) denotes the Euclidean distance between the current waypoint 𝑤𝑖 and the goal 265 

𝑤𝑔, and 𝑑𝑚𝑎𝑥 is the maximum Euclidean distance between two adjacent waypoints. 266 

When considering the length cost along a path, an actual length cost of the current 267 

waypoint 𝑔𝑙(𝑤𝑖), which was based on Eq. (4), can be adapted to Eq. (11). This actual length 268 

cost calculates the Euclidean distance 𝑑(𝑤𝑠, 𝑤𝑖) from the start point 𝑤𝑠 to the current point 𝑤𝑖. 269 

We adopted an admissible heuristic ℎ𝑙(𝑤𝑖) defined in Eq. (12), which estimates the Euclidean 270 

distance 𝑑(𝑤𝑖, 𝑤𝑔) from the current waypoint 𝑤𝑖 to the destination 𝑤𝑔. 271 

𝑔𝑙(𝑤𝑖) = 𝑑(𝑤𝑠, 𝑤𝑖) (11) 
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ℎ𝑙(𝑤𝑖) = 𝑑(𝑤𝑖, 𝑤𝑔) (12) 

3.3.2 Objective function analysis 272 

Based on Section 2.2, the objective function of this study combines the accumulative costs 273 

of both involved risks 𝑓𝑟(𝑤𝑖) and path lengths 𝑓𝑙(𝑤𝑖) along a path. Specifically, the risk cost 274 

𝑓𝑟(𝑤𝑖) sums up the actual risk cost 𝑔𝑟(𝑤𝑖) and the heuristic risk cost ℎ𝑟(𝑤𝑖). While the length 275 

cost 𝑓𝑙(𝑤𝑖) combines the actual length cost 𝑔𝑙(𝑤𝑖) and the heuristic length cost ℎ𝑙(𝑤𝑖) . 276 

Therefore, the objective function of the proposed optimal-risk planner can be specified in Eq. 277 

(13): 278 

𝑃∗ =  argmin ∑[𝑓𝑟(𝑤𝑖)

𝑖

+ 𝑓𝑙(𝑤𝑖)] 

= argmin ∑{[𝑔𝑟(𝑤𝑖) + ℎ𝑟(𝑤𝑖)] + [𝑔𝑙(𝑤𝑖) + ℎ𝑙(𝑤𝑖)]}

𝑖

 

(13) 

4 Case Study 279 

In this section, a simulated case study using a Slocum G1 Glider was performed in a real-280 

world oil spill environment near Baffin Bay to validate the effectiveness of the proposed path 281 

planner. Firstly, the BN model was developed by incorporating various risk variables of a spill 282 

environment. A probabilistic risk map for vehicle loss was generated, presenting the spatial 283 

risk distributions in a selected mission area. Then, the searching A* algorithm was 284 

implemented to find an optimal-risk path based on the risk map. Comparative analyses with 285 

the other two classic planners were conducted to demonstrate the superiority of the proposed 286 

optimal-risk planner. 287 

The employed AUV type in this study is Slocum G1 Glider. Its basic specification is 288 

summarized in Table 1. Although the actual motion of a glider AUV is in three dimensions, 289 

this case study only considered a two-dimensional trajectory of the vehicle in the horizontal 290 

plane for global path planning, which is particularly relevant in missions detecting an oil spill 291 

released by vessels without consideration of significant depth changes. However, this study 292 

can be expanded to a higher dimension by considering various mission depths, and the 293 



13 

application scenario could be monitoring oil spills from reservoirs where the vehicle is required 294 

to dive much more deeply.  295 

Table 1. The specification of a Slocum G1 Glider (Wang et al., 2021). 296 

Parameter Value 

Weight in Air ~52 Kg 

Hull Diameter 0.213 m 

Width including Wings 1.003 m 

Vehicle Length 1.5 m 

Minimum Turning Radius ~17 m 

Displacement 52 L 

Depth Range 4-200 m 

Speed 0.4 m/s horizontal 

Range 1500 km 

4.1 Mission Profile Description 297 

The mission area in this case study was selected as an open water area around Scott Inlet 298 

(71.10941 N, -71.10576 W), which is on the east coast of Baffin Island where oil seeps are 299 

naturally present. The satellite radar imagery has confirmed that large oil slicks over this region 300 

exceed 250 km2, each representing over 50,000 barrels of surface oil (Oakey et al., 2012). 301 

Hence, with sufficient oil in the water, this region was chosen as a potential mission area. 302 

However, due to limited data for this area, we used information of oil concentrations in the 303 

region from a study following a hypothetical spill from an anthropogenic source. The size of 304 

the selected mission area was relatively small and set as 500 m × 500 m. The whole search 305 

space was discretized into grids and the resolution for each grid was 10 m × 10 m, namely, the 306 

minimum distance between two adjacent waypoints was 10 m. Fig. 2 illustrated the gridded 307 

mission area, where the start position and goal position were defined as (50 m, 20 m) and (450 308 

m, 480 m) respectively in coordinates. 309 
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 310 

Fig. 2. Illustration of the selected mission area, where (a) shows the mission location near 311 

Scott Inlet, Baffin Bay, and (b) shows an example of a gridded spill area with the start and 312 

goal positions. 313 

4.2 Risk Variable Identification 314 

As a precondition for the development of the BN model, in this study, we mainly identified 315 

two types of risk variables that can lead to vehicle loss: environmental variables and mission 316 

complexity factors. In particular, we considered environmental variables including the current 317 

speed, wave height, ship density, and oil concentration. While mission complexity factors 318 

contain the mission depth and obstacle numbers. The description of identified BN variables is 319 

summarized in Table 2. 320 

Table 2. Description and value ranges of the BN variables. 321 

BN Variables Description 
Value Range 

Low Medium High 

E1 Current speed (m/s) <0.05 0.05-0.15 >0.15 

E2 Wave height (m) <0.25 0.25-0.5 >0.5 

E3 Oil concentration (ppb) <50 50-100 >100 

E4 
Ship density 

(routes/0.08km²/year) 
<20 20-50 >50 

M1 Mission depth (m) <50 50-100 >100 

M2 Obstacles / / / 

T AUV loss / / / 

Scott Inlet

a.
Baffin Bay

Start Point

b.
Goal Point
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4.2.1 Environmental variables 322 

A current speed can influence the motion of an AUV by deviating it from its planned path 323 

(Griffiths and Trembanis, 2007; Petillo and Schmidt, 2012). Such impacts could be more 324 

prominent for slow-moving AUVs, such as underwater gliders. In this case, the vehicle may 325 

not reach its target position, and as a result, it could collide with other vehicles or even get lost. 326 

Surface waves could cause the vehicle out of sight, and this may lead to difficulties especially 327 

for the recovery phase of an AUV mission. In addition, the wave-induced force can also drag 328 

the vehicle from its desired path. Oil in high concentration could cause contamination of optical 329 

sensors, and substantially degrade the sensor’s ability to detect obstacles (Chen et al., 1987). 330 

In addition, if the oil coats the inside of a CTD sensor, it can possibly affect the sensor’s 331 

calibration and thus cause false measurement. Ship density is another key factor and the 332 

probability of collision between ships and AUVs is proportional to the shipping density in a 333 

mission area (Merckelbach, 2013). 334 

4.2.2 Mission complexity factors 335 

The number of underwater obstacles and the mission depth can influence the mission 336 

complexity. A large number of obstacles could cause higher requirements for the AUV’s ability 337 

of obstacle avoidance, and they could also raise the possibility of collisions. The mission depth 338 

can affect both the vehicle’s integrity, buoyancy control, and energy consumption (Chen et al., 339 

2021). 340 

4.2.3 Data sources of risk variables 341 

In this study, environmental data in the mission area were collected based on the website of 342 

National Oceanic and Atmospheric Administration (https://www.ncei.noaa.gov/) and Marine 343 

Traffic (https://www.marinetraffic.com/). The oil concentration data used in the case study was 344 

randomly generated and referred from former research (Reich et al., 2016). Based on the above 345 

information, the collected environmental information can be visualized in Fig. 3, which 346 

https://www.marinetraffic.com/
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presents the spatial distributions of the value of various risk variables. It should be noted that 347 

all the risk variables, except underwater obstacles, were assigned three discrete levels: low, 348 

medium, and high states, representing their severity. The expert elicitation method is a useful 349 

method to deal with limited historical data. In this study, we invited six domain experts to 350 

constitute the expert panel. The panel has sufficient experience in both the fields of AUV 351 

operations and risk assessment. The panel provided analyses and reviews including the 352 

identification of the risk variables, division of value ranges of the risk variables, assignment of 353 

prior probabilities and construction of the conditional probability tables (CPTs) for the 354 

proposed BN model. The elaborate descriptions for the expert elicitation method can be found 355 

in previous studies (Brito and Griffiths, 2016; Huang et al., 2020; Wang et al., 2022), while the 356 

detailed process of applying this method is outside the scope of the current study. The value 357 

ranges were divided in Table 2 based on the judgements of domain experts, considering the 358 

specification of the Slocum G1 Glider. The mission depth in this study was assumed as 50 m, 359 

which is at the low level according to its severity division. According to Fig. 3 (d), the severity 360 

of ship density in the selected mission area was also indicated as a low level. Fig. 3 (e) presented 361 

200 obstacles in the mapped area which were plotted in black. The obstacles inside the mission 362 

area were randomly generated to test the capability of obstacle avoidance of the proposed 363 

planner. For simplicity, only stationary obstacles (e.g., islands, buoys, rocks, and so on) were 364 

considered. Hence, the spatial distributions of severity states for the remaining three risk 365 

variables, namely, the current speed, wave height, and oil concentration, can be simplified 366 

according to the discretized value ranges in Table 2, which can be plotted in Fig. 4. 367 
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 368 

Fig. 3. Spatial data distributions of different risk variables in the selected mission area. 369 

 370 

Fig. 4. Spatial distributions of severity states for the (a) current speed, (b) wave height, and 371 

(c) oil concentration. 372 

4.3 BN Development and Risk Map Generation 373 

Based on the above identification of potential risk variables and their causal relationships 374 

with vehicle loss, a BN model can be developed as shown in Fig. 5. The prior probability of 375 

each state of the risk variable and conditional probabilities among risk variables were 376 

determined according to domain experts’ judgements. 377 

a. Current Speed b. Wave Height c. Oil Concentration

d. Ship Density e. Obstacles Map

a. Current Speed b. Wave Height c. Oil Concentration
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 378 

Fig. 5. Developed BN model. 379 

On the basis of obtained environmental information and BN reasoning results, a risk map 380 

in terms of the probability of vehicle loss in the mission area can be generated and illustrated 381 

in Fig. 6. This risk map intuitively presents high-risky regions where the AUV should avoid, 382 

where the numbers on the scale represent risk indices. For instance, locations with obstacles 383 

have the highest risk index, which can always prevent the vehicle from selecting an obstacle 384 

as a waypoint. Other locations, for example, with large wave heights or with high oil 385 

concentration, also show relatively high risky in the risk map. 386 

 387 

Fig. 6. Generated risk map in the mission area, where the numbers on the scale represent risk 388 

indices. 389 

E1

E2

E3 E4

M2

M1

Environmental variables

Mission complexity factors

T
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4.4 Simulation Results and Discussion 390 

Based on the obtained risk map, an A* algorithm was employed for path planning. 391 

Effectiveness of the proposed optimal-risk planner was demonstrated by comparing it with the 392 

other two classic path planners: the minimal-length planner and the minimal-risk planner. 393 

Furthermore, influences of different risk thresholds on the optimal-risk planner were 394 

investigated. In realistic AUV operations, an acceptable risk threshold should be defined by 395 

stakeholders beforehand to a mission. While in this study, the risk threshold was defined by 396 

the expert panel to forbid the vehicle from selecting a waypoint with an unacceptable risk index. 397 

According to Fig. 6, the maximum risk index (i.e., the probability of vehicle loss) in the mission 398 

area is 0.14. A relatively low threshold of 0.05, which is around 36% of the maximum risk 399 

index, was used to rigorously test the vehicle’s ability of avoiding risky regions. It is noted that 400 

the predefined risk threshold can be tuned according to the willingness of risk tolerance. While 401 

the specific method for determining the risk threshed is not within the scope of this study. 402 

4.4.1 Comparative analyses of the three path planners 403 

We conducted simulations using the three path planners (i.e., minimal-length planner, 404 

minimal-risk planner, and the proposed optimal-risk planner) in the same risk map. The 405 

obtained paths were presented in Fig. 7 (left column), while their waypoint risk indices and 406 

accumulative risk indices along the path were compared in Fig. 7 (right column). The start and 407 

goal positions were arbitrarily set and depicted with red and blue dots, respectively. Searched 408 

paths of the three planners show obvious differences while only the minimal-risk planner and 409 

optimal-risk planner can successfully avoid obstacles. In Fig. 7 (a), the minimal-length planner 410 

finds the shortest path from the start position to the destination without considering the cost of 411 

waypoint risks. Hence, its obtained path is approximately straight and directly toward the target. 412 

But with this said, a number of waypoints’ risk indices along this path far exceed the predefined 413 

risk threshold of 0.05. For instance, the peak value (0.1) of the waypoint risk index occurs at 414 

the mission distance of 140 m, where the vehicle is directly passing through a high-risky area 415 

as shown in the risk map. On the contrary, Fig. 7 (b) shows that the minimal-risk path selects 416 
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a set of waypoints with the lowest risk index, no matter how much path lengths cost. The 417 

resulted path is long and winding, which loiters to avoid any potential risky regions rather than 418 

making progress toward the goal. While the proposed optimal-risk planner, as shown in Fig. 7 419 

(c), considers the costs of both the path length and waypoint risks. It searches a path with a 420 

moderate risk level and relatively shorter mission distance, and meanwhile, it satisfies the 421 

constraint of the risk threshold at each waypoint. 422 

 423 

Fig. 7. Obtained paths, waypoint risk indices, and accumulative risk indices of the three path 424 

planners: (a) minimal-length planner; (b) minimal-risk planner; and (c) optimal-risk planner. 425 

To provide additional comparisons, Fig. 8 compares the path length, max risk index (i.e., 426 

the maximum of waypoint risk indices), accumulative risk index, and computational time of 427 
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three planners, respectively. The computational time of the three planners was normalized for 428 

comparison. The reference time, which was defined as 100%, was chosen as the computational 429 

time of the minimal-risk planner. Although this study mainly explored an offline global path 430 

planning approach for AUVs prior to a mission, computational time is still a key parameter to 431 

be considered. It impacts the efficiency of mission planning, which is important especially in 432 

dealing with large-scale planning problems with complex environmental conditions and long 433 

mission endurance. It can be seen from Fig. 8 (a) and (b) that the minimal-path length achieves 434 

the shortest path length of 627 m, however, its max risk index far exceeds the predefined risk 435 

threshold of 0.05, which is not acceptable for the safety requirement. On the contrary, the 436 

minimal-risk planner has the minimal max risk index among the three planners, which is only 437 

0.009. In return, it has the largest path length, which is 12.6% higher compared with the 438 

minimal-length planner. As for the optimal-risk planner, its max risk index is 20% lower than 439 

the risk threshold (0.05), which means risk states along the whole path remain tolerable. In 440 

addition, its path length is 10.2% longer than the minimal-length planner. As it aims to mitigate 441 

risks associated with the path to ensure safe deployment, although it could sacrifice certain 442 

mission lengths. 443 

In comparing the accumulated risk index in Fig. 8 (c), it is noteworthy that the minimal-444 

length planner attains the largest value of 1.04, which is nearly triple that of the minimal-risk 445 

planner (0.37). However, the minimal-risk planner achieves the minimum accumulative risks 446 

at the expense of routing length, and in turn, the searching time could substantially increase 447 

along with an increasing number of waypoints. In this case, the computational time of the 448 

minimal-risk planner in finding a solution could also grow correspondingly, which reaches the 449 

maximum amongst these three planners, as shown in Fig. 8 (d). In contrast, the proposed 450 

optimal-risk planner performs moderately well, namely, its accumulative risk index is 451 

decreased by 20.2% compared with the minimal-length planner, whilst its computational time 452 

is 9.5% shorter than the minimal-risk planner. 453 
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 454 

Fig. 8. Comparisons of the three planners including (a) path length, (b) max waypoint risk 455 

index, (c) accumulative risk index, and (d) normalized computational time. 456 

Based on the above analyses, it can be concluded that: (1) The minimal-length planner 457 

outperforms in both the routing length and computational time. However, it overlooks the risk 458 

associated with the path, and as a result, the waypoint risk index exceeds a predefined risk 459 

threshold, which is unacceptable in terms of the vehicle’s safety requirement in real 460 

implementation. (2) The minimal-risk path is clearly over-conservative. Although it has the 461 

lowest waypoint risk index, it comes at a cost of the path distance, which further leads to the 462 

increasing computational time. Such a path could be infeasible in practice as it might fail to 463 

meet the criteria of available energy consumption for the vehicle. (3) The optimal-risk planner 464 

is a safer bet that exhibits good performance in avoiding risky regions along a path. It also 465 

achieves a balance between the involved risks, the path length, and computational efficiency. 466 

At the same time, it satisfies the precondition of operating below a risk tolerance threshold to 467 

ensure safe navigation. 468 

a. b. 

c. d. 
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4.4.2 Influences of different risk thresholds on the optimal-risk planner 469 

Determination of a risk threshold is also an important issue for planning an AUV route. 470 

Impacts of various risk thresholds on the proposed optimal-risk planner were investigated. Fig. 471 

9 plots the resulting paths under four different risk thresholds in the same environment. When 472 

the tolerable risk threshold gradually decreases, which refers to a higher safety requirement for 473 

the vehicle that demands more rigorous risk tolerance, the resulting path gets longer and the 474 

AUV moves further away from potential high-risky regions to attain the acceptable risk level, 475 

which consequently wastes additional route lengths. 476 
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 477 

Fig. 9. Obtained paths, waypoint risk indices, and accumulative risk indices under different 478 

risk thresholds. 479 

Particularly, Fig. 10 compares the path length, max risk index, accumulative risk index, 480 

and the normalized computational time under four risk thresholds. As shown in Fig. 10 (a), 481 
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with decreasing risk threshold from 0.07 to 0.04, the path length increases from 650 m to 706 482 

m with a changing rate of 8.6%. This implies that it is possible to achieve a higher safety level 483 

with a reduced risk threshold while only slightly degrading its length optimality. Similarly, the 484 

computational time in Fig. 10 (d) shows the same trend, which consumes 7.6% longer time 485 

when the risk threshold reduces from 0.07 to 0.04. In Fig. 10 (b), the max waypoint risk index 486 

drops gradually with the decreasing risk thresholds. It is noteworthy in Fig. 10 (c) that the 487 

accumulative risk index under the risk threshold of 0.05 is higher than that under the risk 488 

threshold of 0.06. This manifests a particular situation that should be considered in realistic 489 

mission planning, as a path with a lower risk tolerance could require more path lengths to avoid 490 

risky regions, and in turn, the accumulative risks could substantially increase along with the 491 

increasing traversed waypoints. 492 

Therefore, the safest path does not indicate an optimal solution in practice, because it may 493 

sacrifice the mission length and deteriorate the computational efficiency at the same time. This 494 

prompts an insight to adjust the risk threshold for achieving a trade-off between an acceptable 495 

risk tolerance and the mission efficiency. 496 

 497 

a. b. 

c. d. 
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Fig. 10. Comparisons under different risk thresholds including (a) path length, (b) max 498 

waypoint risk index, (c) accumulative risk index, and (d) normalized computational time. 499 

4.5 Limitations and Future Work 500 

Limitations of this study were discussed below. This work only considered static 501 

environmental conditions and obstacles for global path planning of AUVs. It is desirable to 502 

conduct such offline mission planning beforehand given known environmental information. 503 

However, static global path planning requires accurate environmental predictions prior to a 504 

mission, which is difficult to achieve in reality, and it is possible that only limited 505 

environmental information can be obtained for a target mission area. In addition, ambient 506 

environmental conditions, such as ocean currents and oil spills themselves, can change 507 

dynamically, which subsequently causes the risk of vehicle loss to varying accordingly. The 508 

possibility of colliding with moving obstacles also exists. In such cases, global path planning 509 

designed for static environments cannot handle the unpredictable situations that may emerge, 510 

and re-planned solutions will be required to account for dynamic environmental observations. 511 

Hence, future research should explore a hybrid risk-based architecture for AUVs’ autonomous 512 

mission planning to combine static global planning and dynamic local re-planning, which is 513 

essential for the real-life decision making of AUV missions. Furthermore, former research 514 

provided robust methods for model validation to bridge the gap between pure computer-based 515 

simulations and real experiment validation (Albarakati et al., 2021; Liu et al., 2022). For field 516 

trial validation, other key parameters beside the path length should be considered, such as the 517 

vehicle velocity, turning maneuvers, travel time, and energy consumption, which can be 518 

affected by ambient environmental conditions. An accurate estimation of AUVs navigational 519 

data is also crucial for safe path planning. The use of multiple sensors’ data could be beneficial 520 

for high-fidelity validation in practical environments. 521 
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5 Conclusion 522 

In this study, a systematic risk-based path planning approach for AUVs operating in an 523 

oil spill environment was proposed. The risk of vehicle loss was incorporated into a classic 524 

global planning problem of AUVs. A BN-based risk model was developed for probabilistic 525 

prediction of risk states given various environmental observations. The established risk model 526 

was then employed to generate a spatially-distributed risk map covering a potential mission 527 

area. Subsequently, an A* algorithm was applied to plan an optimal-risk path through the risk 528 

map by combining costs of mission lengths and risk indices. The proposed path planner aims 529 

to avoid high-risky regions to ensure safer operations, whilst achieving a relatively shorter path 530 

length. A case study using a Slocum G1 Glider in an oil spill environment around Baffin Bay 531 

was conducted to demonstrate the effectiveness of the proposed planner. Key findings from the 532 

case study results were highlighted below:  533 

(1) The proposed BN-based risk model can forecast risk states of vehicle loss given 534 

comprehensive spill environments. Its probabilistic reasoning enhances the accuracy for further 535 

path searching and risk-based decision making. The generated risk map based on BN reasoning 536 

intuitively presents the spatial distributions of high-risky regions in a gridded mission area, 537 

which provides insights of risk mitigation through obstacle avoidance and waypoint selections. 538 

(2) Comparisons between the optimal-risk planner with two classic path planners (i.e., 539 

minimal-length planner and minimal-risk planner) have indicated that a trade-off exists 540 

between the routing length, associated risks, and computational efficiency along a path. The 541 

proposed optimal-risk planner outperforms in risk mitigation by avoiding potential risky 542 

regions and obstacles, whilst it is highly competitive in terms of path distance and 543 

computational time. 544 

(3) Different risk thresholds can affect the performance of optimal-risk path planning. A 545 

lower tolerable risk threshold, which refers to a higher safety requirement, can increase the 546 

mission length and consume more computational time. In this case, considering a particular 547 

scenario during an oil detection mission, a lower risk threshold can drag the vehicle away from 548 

the most highly-concentrated oil regions, which causes the vehicle to miss nearby plumes with 549 
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rich information and thereby degrading its detection efficiency. Hence, the risk threshold 550 

should be modulated to achieve a trade-off between safety performance and mission efficiency. 551 

(4) The developed risk-based planner can be practical in realistic AUV implementation. 552 

Although this study only investigated the off-line global path planning for AUVs with static 553 

environmental conditions, it is a potential precomputing policy to save the computational 554 

memory for a vehicle, and it is a worthwhile investigation for preventing AUV loss at the path 555 

planning stage prior to a mission. In addition, this study considered a two-dimensional 556 

trajectory of AUVs, which is particularly useful for missions in detecting oil spills released by 557 

vessels without significant depth changes. The approach could also be applied for AUV path 558 

planning in tracking oil spills from reservoirs. For this scenario, the vehicle would have to dive 559 

to higher depths. To capture this scenario, both the risk model and the path searching algorithm 560 

should be updated to take a 3D problem into consideration. A modification would be required 561 

to our methodology to include the 3D body dynamics property of the AUV. 562 

Future work based on this study should incorporate dynamic risks into the path planning 563 

framework for AUVs. To this end, a hybrid risk-based path planner combining both static 564 

global planning and dynamic local re-planning for AUVs should be investigated.565 
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