
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

Faculty of Social Sciences
School of Mathematical Sciences

Robust Optimisation in Network Revenue
Management

by

Simos Zachariades
MSc, BSc

ORCiD: 0000-0002-1916-0018

A thesis for the degree of
Doctor of Philosophy

July 2022

http://www.southampton.ac.uk
http://orcid.org/0000-0002-1916-0018

University of Southampton

Abstract

Faculty of Social Sciences
School of Mathematical Sciences

Doctor of Philosophy

Robust Optimisation in Network Revenue Management

by Simos Zachariades

Network revenue management is used extensively, particularly within the airline in-
dustry, to allocate dependent resources between different products. This work focuses
on the situation where demand is uncertain and the aim is to determine booking lim-
its that are robust to fluctuations in demand. Expanding on the work of Perakis and
Roels (2010), we developed a genetic algorithm that finds booking limits that either
minimize the maximum regret or maximize the minimum revenue for a number of dif-
ferent booking control policies: partitioned booking limits, nested booking limits and
bid prices. We present results that demonstrate how these booking limits outperform
those obtained via local descent methods and other traditional network models. Fur-
thermore, we consider the uncertainty set for demand to be ellipsoidal further to the
polyhedral as originally proposed. Finally, we introduce the formulation on network
cruise revenue management application. We present the robust formulation for the
cruise network setting and present numerical results that show that the robust control
measures outperform standard approximation methods.

http://www.southampton.ac.uk

v

Contents

List of Figures ix

List of Tables xi

Nomenclature xvi

Declaration of Authorship xvi

Acknowledgements xvii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Aims and Contributions . 6
1.3 Outline . 7

2 Literature Review 9
2.1 Introduction . 9
2.2 Types of Control . 11

2.2.1 Booking Limits and Protection Levels 11
2.2.2 Nested Controls . 12
2.2.3 Bid-Price Controls . 14

2.3 Single-Resource Revenue Management 15
2.3.1 Quantity Based . 15
2.3.2 Price Based . 17
2.3.3 Customer Choice Modelling . 17

2.4 Network Revenue Management . 17
2.4.1 Price Based . 18

2.4.1.1 The Dynamic Program 18
2.4.2 Quantity Based . 19
2.4.3 Customer Choice Modelling . 23

2.5 Robust and Risk-Averse Revenue Management 23
2.5.1 Robust Decision Framework . 24

2.5.1.1 Maximin Revenue Principle 24
2.5.1.2 Minimax Regret Principle 25

2.5.2 Single-Resource . 26
2.5.3 Network . 26

2.6 Gradient Descent Algorithms . 27
2.7 Conclusion . 28

vi CONTENTS

3 Robust Capacity Control 29
3.1 Introduction . 29

3.1.1 Problem Statement . 30
3.2 Mathematical Formulation . 31

3.2.1 Robust MIP formulation . 32
3.2.2 Constructing Uncertainty sets . 33
3.2.3 Constructing the Constraint Matrix 35

3.3 Genetic Algorithm . 37
3.3.1 Motivation . 38
3.3.2 Overview . 38
3.3.3 Implementation of genetic operators 41

3.3.3.1 Initialisation . 42
3.3.3.2 The Evaluation operator 43
3.3.3.3 The Selection operator: Survival and Mating pool choices . 44
3.3.3.4 The Crossover operator 47
3.3.3.5 The Mutation operator 49
3.3.3.6 Termination conditions 51

3.3.4 Hyper-optimisation of the genetic algorithm’s parameters 52
3.3.4.1 Population Size . 53
3.3.4.2 Crossover Fraction . 54
3.3.4.3 Crossover Operator . 54

3.3.5 Convergence . 55
3.4 Conclusion . 57

4 Numerical Results 59
4.1 Simulating The Booking Period . 59
4.2 Booking Acceptance Process Algorithms 62

4.2.1 Partitioned Booking Limits . 62
4.2.2 Nested Booking Limits . 63
4.2.3 Bid Prices Control . 64

4.3 Airline network example . 65
4.4 Partitioned Booking Limits . 66

4.4.1 DLP: Low, Mean and High Demand 66
4.4.2 Comparison of Previous Approximation Models 69
4.4.3 Robust Controls . 70

4.5 Nested Booking Limits . 73
4.5.1 Deterministic Linear Programming 74
4.5.2 Maximin Revenue . 74
4.5.3 Minimax Regret . 75
4.5.4 Comparison of Nested control policies 75
4.5.5 Comparison with Perakis and Roels (2010) simulated results . . . 77

4.6 Bid Prices . 77
4.7 Conclusion . 79

4.7.1 Future Work . 79

5 Cruise Line Application 81
5.1 Introduction . 81

CONTENTS vii

5.1.1 Contributions . 81
5.1.2 Motivation . 82

5.2 Problem Statement . 86
5.2.1 Capacity control formulation . 88
5.2.2 Robust Formulation . 89
5.2.3 Derivation of optimisation parameter values 90

5.3 Simulating the booking horizon . 94
5.4 Numerical Results . 95

5.4.1 DLP . 95
5.4.2 Robust Measures . 97
5.4.3 Simulation Comparison . 98

5.5 Conclusion . 99
5.5.1 Future Work . 100

6 Conclusions and Future Work 101
6.1 Research outcomes . 101
6.2 Limitations and Future Work . 103

Appendix A Airline Distributions Parametrisation 105

Appendix B Mathematical Background 107
Appendix B.1 Introduction to Robust Optimisation 107
Appendix B.2 Robust Counterpart Optimisation 108
Appendix B.3 Uncertainty Sets . 108

Appendix C Booking control Constraint Matrices 113
Appendix C.1 Partitioned booking limits . 113
Appendix C.2 Nested booking limits . 113

References 115

ix

List of Figures

2.1 The Field of Revenue Management . 10
2.2 Control Policies . 13
2.3 Relationship between booking limits bj and protection levels yj 13

3.1 An Exact Method within a Heuristic . 32
3.2 Graphical representation of Roulette Wheel parent selection for crossover

operation . 46
3.3 Representation of the crossover operation 50
3.4 Example of swapping in a candidate solution 51
3.5 Performance comparison of population size 53
3.6 Performance comparison of alternative crossover fractions 54
3.7 Performance comparison of crossover operators 55
3.8 GA convergence of the minimax regret criterion under ellipsoidal uncer-

tainty using the GUROBI solver . 56
3.9 GA convergence of the maximin revenue criterion under ellipsoidal un-

certainty using the GUROBI solver . 56

4.1 Modelling Booking requests . 61
4.2 Comparison of Mean Arrival Rates, lambda parameters 62
4.3 Small Serial Network . 65
4.4 Expected Revenues per ODF product with Partitioned booking limits as

produced by the DLP method . 67

5.1 The rise of the cruise industry . 82
5.2 Cruise networks as tracked by the MarineVesselTravel website 83
5.3 Representation of standard cruise itinerary 85
5.4 Representation of Type A cruise network 85
5.5 Representation of Type B cruise network 86
5.6 Histograms of the estimates of µ̂ obtained from 10000 bootstrap samples

for all four different occupancies of product AB - Suite - Full fare 92
5.7 Inferred beta distribution for the shape of arrivals of booking requests

per cabin type . 94
5.8 Type A cruise network example . 95

Appendix B.1 Illustations of box uncertainty set 109
Appendix B.2 Illustations of ellipsoidal uncertainty set 109
Appendix B.3 Illustations of polyhedral uncertainty set 110

xi

List of Tables

1.1 Research project aims and contributions 7

2.1 Small Partitioned Vs Nested Booking Limits Example 14

3.1 Parameters for constructing ellipsoidal and interval uncertainty sets of
different sizes . 36

3.2 Genetic Algorithm terminology . 39
3.3 Genetic algorithm basic terminology . 41
3.4 Investigate parameter values for the GA 52

4.1 Origin-Destination-Fare combinations for linear network example 66
4.2 Partitioned booking limits (DLP) for Low, Mean and High Demand . . . 67
4.3 Comparison of Expected and Simulated Revenues for Low, Medium and

High Demand scenarios . 68
4.4 Booking Limits, Sold Seats and Total Requests for the High demand sce-

nario . 68
4.5 Comparison of Partitioned booking limits from MP Models 69
4.6 Comparison of Partitioned booking limits of traditional approximation

models . 70
4.7 10 runs of the Maximin Revenue partitioned booking control policy . . . 71
4.8 Minimax Regret Partitioned booking control policy for 10 simulations . 71
4.9 Minimax Regret partitioned booking limits instances using ellipsoidal

uncertainty sets . 72
4.10 Comparison of Expected and Simulated Revenues for Robust controls . 72
4.11 Maximin revenue partitioned booking limits using ellipsoidal uncertainty

set . 73
4.12 Comparison of Expected and Simulated Revenues for all controls 73
4.13 Nested booking limits (DLP) for Low, Mean and High Demand 74
4.14 Maximin Revenue Nested booking control policy for 10 simulations . . . 75
4.15 Minimax Regret Nested booking control policy for 10 simulations 76
4.16 Nested booking limits from the DLP, Minimax Regret and Maximin Rev-

enue controls . 76
4.17 Comparison of Expected and Simulated Revenues for all Nested controls 77
4.18 Comparison with Perakis and Roels (2010) Simulated Revenues 77
4.19 Bid Prices for the different itineraries . 78
4.20 Comparison of Expected and Simulated Revenues for all Nested controls 78

5.1 Revenue generated per product on offer for a two-leg cruise network . . 90
5.2 Bootstrap estimated values for cruise demand distribution parameters . 93

xii LIST OF TABLES

5.3 Booking limits derived using the DLP under mean demand 96
5.4 Booking limits derived using the maximin revenue criterion and polyhe-

dral uncertainty set . 97
5.5 Booking limits derived using the minimax regret criterion and polyhe-

dral uncertainty set . 98
5.6 Simulated Revenues for Cruise network example 99

Appendix A.1 Initial Demand Parametrisation for B(α, β), Γ(p, y), and N(µ, σ)
distributions . 105

Appendix A.2 Increased Variance of demand Parametrisation of B(α, β), Γ(p, y),
and N(µ, σ) distributions for Fare Classes 2 and 3 105

Appendix A.3 Smaller fare value spread . 105

xiii

Nomenclature

Indices

i A network resource i such that i = 1, ..., m

j A product j such that j = 1, ..., n

t A time period such that t = 1, ..., T

Functions

r(v, w) A real valued function defined on V ×W specifying the payoffs associated with
the decisions V and states W under consideration

R(v, w) A real valued function defined on V ×W specifying the regret associated with
decision v and state w

Vt(c) The maximum expected revenue to go, given remaining capacity c in period t

VM
t (c) An approximation method M that yields an estimate to Vt(c)

Vectors

f Revenue coefficients vector for each product j such that f = [f j | j = 1, ..., n]

qπ Accepted booking requests vector when policy π is in use such that qπ = [qπ
j |

j = 1, ..., n]

x Booking limits decision vector such that x = [xj | j = 1, ..., n]

c Capacity vector for resources i such that c = [ci | i = 1, ..., m]

d Total observed demand vector such that d = [dj | j = 1, ..., n]

p Vector of partitioned protection levels for products such that p = [pj | j =

1, ..., n]

b Vector of nested booking limits for products such that b = [bs | s = j, ..., n

y Vector of dual prices such that y = [yj | j = 1, ..., n]

xiv NOMENCLATURE

P(t) Vector of request for products j = 1, ..., n at time t. If Pj(t) > 0 then a request for
product j at time t has occurred and Pj(t) = 0 otherwise

Matrices

A Incidence matrix, [aij], denoting the network resources a product requires such
that aij = 1 when product j requires resource i and aij = 0 otherwise

B Occupancy matrix, [bij], denoting the number of lifeboat seats a product j re-
quires such that bij = oj where oj is the occupancy under product j that utilises
resource i of the network and 0 otherwise

Sets

B The set of all booking limits b, such that b ∈ B

D The set of all demand realisations d, such that d ∈ D

J The set of all products j such that j ∈ J

K The set containing all the different cabin types on a cruise itinerary such that
k ∈ K

L The set containing all the possible legs l in a cruise route where a leg starts at a
port of embarkation and ends in a port of debarkation such that l ∈ L

O The set of different occupancy levels o available in a cruise cabin such that o ∈ O

S The set of all buckets of products s, such that s ∈ S

U An uncertainty set

X The set containing all the possible itineraries in a cruise network where an itinerary
can span a single to multiple legs of the network such that χ ∈ X

Z The set of different fare price tiers available for a cruise product such that ζ ∈ Z

Π The set of non-anticipating booking policies π such that π ∈ Π

V The set containing all the possible alternative decisions available to the decision
maker, the decision space.

W The set containing all the possible states under consideration, the state space.

Genetic Algorithm

t An iteration of the algorithm

g A gene, an element of a chromosome

c A column vector representing a chromosome such that c = [gj | j = 1, ..., n]

NOMENCLATURE xv

Gt The set of of chromosomes such that Gt = {ci | i = 1, ..., N}

f (ci) A real valued function specifying the fitness score associated with the chromo-
some ci

pc The proportion of new chromosome to be created by the new crossover operator

mc The proportion of new chromosome to be created by the new crossover operator

Declaration of Authorship

I, Simos Zachariades, declare that this thesis and the work presented in it is my own
and has been generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly at-
tributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. None of this work has been published before submission

Signed:.. Date:..................

xvii

Acknowledgements

With tremendous gratitude, I would like to express my gratefulness to all the people
who have supported me in any capacity over all these years to make this thesis possible.

First and foremost, I owe deep gratitude to my supervisors, Joerg and especially Chris-
tine. You were responsible for my first encounter with operational research back in
my bachelor degree days and then inspired me to continue down a research path dur-
ing my Master. Your continuous and unwavering support and guidance have been of
paramount importance throughout these years. Your endless patience and encourage-
ment drove me forward and have been the solid pillar of this project, which would not
have been possible without you!

I also want to thank my research colleagues for the great environment in the office,
which made my workdays fun these past years! Ruthy, Martina and Alex, it was a
pleasure sharing this journey with you. I could not have hoped to embark on this
journey with a better company! Your drive, energy and passion inspired me so many
times, and I will always cherish our time together! I have been to a few offices since, but
none compares to La Famiglia. A big thank you to Marton, Walton, Karl, and Laura for
the countless tea breaks with crossword puzzles, random discussions about anything
and everything, the fun NBA fantasy competitions that still go on, and every other fun
activity we’ve shared! And, of course, my Cypriot friends, colleagues and roommates!
Andria, I deeply appreciate your friendship during the whole PhD journey, Damiane,
thank you for being a great roommate and a person to discuss anything with, including
research. Fani and Sofocle, thank you for making my days in Southampton remind me
more of home. And Stephanie, thank you for helping me push through at the very end.
Our study sessions were of paramount importance to finishing this thesis!

And, of course, to my family, my parents and brothers, I am forever grateful for all
of your sacrifices and your unwavering belief in me. I couldn’t have completed this
journey without your support. Thank you!

Last but not least, I want to wholeheartedly thank Tania, who is the ever calm presence
by my side. Your love and patience pushed me forward every step of the way. You kept
up with me being abroad for so many years, and you were my solid rock when things
did not go my way. You are more than I have ever hoped for. Thank you for making
me better.

xix

To my friends and family

1

Chapter 1

Introduction

1.1 Background and Motivation

Revenue management originates in the post-deregulation era of the US airline indus-
try when a handful of competing airlines aimed to maximise their revenue by altering
the seat allocation or prices of the different products they offered. Parallel to the in-
nate capacity of the aviation industry for revenue management, academia embraced
the field and helped to advance the methodologies and practices implemented con-
siderably. Academics across operational research, statistics, economics, and computer
science are actively engaged in revenue management research. Today, the field has
risen to a mainstream business methodology practised by a growing list of industries,
ranging from transportation and hospitality to sport and music. Its effect on business
is highlighted by Talluri and Van Ryzin (2005) who report that “the economic impact of
revenue management is significant, with increases in revenue of 5% or more reported
in several industry applications”. The most common characteristics of revenue man-
agement were summarised by Kimes (1989) as follows:

1. Fixed capacity

2. Perishable inventory

3. Market/Customer segmentation

4. Advanced sales/reservations

5. Time-variable demand

6. Low marginal costs

2 Chapter 1. Introduction

In this thesis, we focus our investigation on the quantity-based revenue management
for multiple resources problem, commonly referred to as network revenue manage-
ment (NRM). The aim is to optimally allocate the capacities of multiple resources to the
different classes of demand.

The reason this problem is of interest is threefold. First, networks arise naturally in
some of the world’s most profitable industries. The airline, railway and cruise indus-
tries, hotel long stays, and car rentals are a few applications that can be modelled as
network revenue management problems. Optimising these networks based on mathe-
matical models and data science can lead to a significant increase in revenue.

Secondly, the problem presents a mathematical and logistical challenge of its own ac-
cord. The curse of dimensionality, the complexity of the network and the difficulty in
accurately forecasting demand for the numerous products on offer deem the problem
extremely challenging. Talluri and Van Ryzin (2004) even stated that “In the network
case, exact optimisation is for all practical purposes impossible”. Hence the use of
heuristics or approximation models is necessary to solve the problem in a reasonable
time.

Thirdly, the emergence of research into robust optimisation and its applications to rev-
enue management result in some interesting research questions. For example, deter-
mining the trade-off between expected revenue and risk in a network setting, quantify-
ing and optimising risk in networks, and determining the appropriate performance
measures for robust network revenue management models to determine how they
compare with each other and traditional risk-neutral approaches.

Mathematically, the solution to the problem is to find a booking policy, π ∈ Π where Π
is the set of non-anticipating booking policies, that will maximise the expected revenue.
the policy π is assumed to be non-anticipating; that is, any decisions under policy π are
taken only using information gained up to the time t when the decision is taken. Let
f ∈ Rn be the revenue coefficients vector where n is the number of products in offer
while qπ ∈ Rn is the vector of accepted booking requests when policy π is in use. Let
A be the matrix that indicates how each of the products uses the resources’ capacities,
c, in the network. That is Aqπ ≤ c while the number of accepted requests must be
positive and less than the total observed demand, d, that is 0 ≤ qπ ≤ d. Putting this
together, we can formulate the problem as,

sup
π∈Π

f ′E[qπ]

s.t Aqπ ≤ c

0 ≤ qπ ≤ d

(1.1)

1.1. Background and Motivation 3

The data used to construct the collection (f , A, c, d) are often uncertain. Data might
not be known exactly. They can be given a nominal figure that drifts around their true
value or follow a random process. Data uncertainty results from several reasons, most
commonly:

1. Forecast entries (e.g. future demands, returns, etc.) are subject to prediction er-
rors.

2. Data are subject to measurement errors.

3. Decision variables that cannot be exactly implemented as computed are subject
to implementation errors.

These sources of uncertainty are particularly apparent in the context of revenue man-
agement. There are two main sources of uncertainty in revenue management systems.
Firstly, it is the inherent uncertainty due to the arrival of customers into the system
being a random process. Future demand for products is uncertain, and it is usually
treated in one of two distinct ways; Dynamic models assume a stochastic process for
the arrival of customers, and Static models assign a probability distribution to the ag-
gregate number of future customers. Both methods heavily rely on historical data and
forecasting for their effectiveness.

This leads to the second source of uncertainty. Errors in the data entries and measure-
ments, systematic changes in behaviour, bias in reporting and poor forecast models
yield the risk of data uncertainty. In applications where rich historical data exist, more
sophisticated quantitative forecasting methods can be employed, and their results can
be relied on with increased confidence but are still uncertain. On the other hand, new or
non-stationary applications often apply simple forecasting techniques that are, by their
nature, associated with large error margins. Since accurate forecasting is vital to RM
models, there is a need to protect such models against their inherent data uncertainty.

While in traditional Linear Optimisation (LO) methodology, it is often assumed that
small data uncertainties do not significantly affect the feasibility or optimality of the
solution, Ben-Tal and Nemirovski (2000) challenged and proved this notion wrong.
Using examples, they show that even small data uncertainties can significantly distort
the optimal solution from its nominal value. At the same time, Bertsimas et al. (2011)
arrive at a conclusion that “In applications of LO, there exists a need of a technique
capable of detecting cases when data uncertainty can heavily affect the quality of the
nominal solution, and in these cases to generate a ‘reliable’ solution, one that is im-
munised against uncertainty.” To that end the Robust Optimisation (RO) methodology
has been developed where the data collection (f , A, c, d) is considered uncertain and
belongs to an uncertainty set U and thus the uncertain mathematical program solved

4 Chapter 1. Introduction

is:
maximise f ′qπ

subject to Aqπ ≤ c

0 ≤ qπ ≤ d

(f , A, c, d) ∈ U

(1.2)

In this thesis, we are only concerned with the uncertainty in vector d, the right-hand
side of problem 1.2, as we can not know the demand to be realised for products in the
future, but we can only estimate it. On the other hand, we do not consider A, c as
uncertain as in the settings we investigate, airline and cruise networks, changes in the
number of resources a product consumes and the capacity of the vessels are fixed and
predetermined. Thus we can safely assume that both A and c are certain. Lastly, the
treatment of vector f is of higher interest as we only assume to be certain in our setting.
In reality, the fares of products can and are often changed during the booking horizon,
a practice known as dynamic pricing. Hence the problem we are concerned with is:

maximise f ′qπ

subject to Aqπ ≤ c

0 ≤ qπ ≤ d

d ∈ U

(1.3)

Of course as an extension to our treatment, one can model vector f as uncertain and
construct its associated U from the historical data of prices set to products. Such treat-
ment would also introduce uncertainty in the objective function of the problem rather
than only to the right-hand side. In such a case, one could rewrite problem 1.2 using
the epigraph form to migrate the objective function uncertainty to the left-hand side of
the problem but also introducing an extra variable, ϵ ∈ R, to optimise over:

maximise ϵ

subject to f ′qπ − ϵ ≥ 0

Aqπ ≤ c

0 ≤ qπ ≤ d

(f , d) ∈ U

(1.4)

It is clear that (qπ, t) is optimal for 1.4 if and only if qπ is optimal for 1.3 and ϵ = f ′qπ.

Nonetheless, the new problem 1.3 under discussion, is about deciding on a reasonable
course of action on the basis of incomplete information. An action for a decision maker
is choosing the qπ. Any action the decision maker takes has an associated consequence,
in this case the revenue to be generated from the choice of under qπ the uncertainty of
d. We refer to the unknown revenue to be generated as a state.

1.1. Background and Motivation 5

In the Robust decision framework there are two main approaches to dealing with this
uncertainty. The maximin revenue and the minimax regret principles. These are ex-
plained in finer detail in sections 2.5.1.1 and 2.5.1.2 respectively. The maximin revenue
principle selects the booking policy limits that maximise the minimum revenue gener-
ated by the worst demand realisation under consideration,

ϕ∗ = max
b∈B

min
d∈D(b)

f (b, d) (1.5)

The rationale of the model is to guarantee a minimum revenue over all future de-
mand realisations. This approach only considers the worst-case scenarios and thus
is extremely risk averse and may not perform well on average. Hence it often leads
to conservative decisions where the trade off of robustness against revenue is heavily
skewed towards robustness.

To overcome the overly conservative results of the maximin revenue principle, Sav-
age (1951) introduced the minimax regret principle. Under this principle the decision
maker chooses the decision x that minimises the maximum regret function over all pos-
sible states. The regret, R(b, d), is defined as the difference between the payoff of the
best booking limits we could have chosen for demand realisation d and the actual book-
ing limits we have chosen for the demand realisation d. Hence the maximum regret is
the additional revenue that could have been obtained with perfect information over all
demand processes under consideration and mathematically is given as,

ρ = max
d∈D

R(b, d) (1.6)

The aim of the decision maker is to minimise the regret associated with demand reali-
sation d,

ρ∗ = min
b∈B

max
d∈D

R(b, d)

= min
b∈B

max
d∈D

{max
b∗

r(b∗, d)− r(b, d)}
(1.7)

Both of these equations have an inner and outer optimisation problem to solve. What
we refer to as the inner optimisation, is the quantification of the minimum revenue ϕ

and maximum regret ρ. We quantify these robust measures by employing the MILP
formulation of Perakis and Roels (2010) which is presented in section 3.2.1. What we
refer to as the outer optimisation problem is altering the booking limits repeatedly to
find the booking limits that yield the best robust measure value. The outer problem is
usually solved by a heuristic method. Perakis and Roels (2010) use a gradient descent
algorithm, a brief overview is given in section 2.6, while we employ a genetic algorithm
for the task.

6 Chapter 1. Introduction

1.2 Aims and Contributions

This research project develops and tests algorithms that find robust solutions to net-
work revenue management problems. Initially we extend the algorithms developed by
Perakis and Roels (2010) for an airline network, before going on to develop robust opti-
misation algorithms for cruise networks. While working towards achieving our objec-
tives, we make the following contributions, which we present in the different chapters
of this document.

In our Literature Review chapter, we collect a significant body of work in revenue man-
agement and identify the recent trend of research shifting away from traditional risk-
neutral methodologies towards risk-averse and robust modelling formulations. We
identify two areas of future research: a) robust customer-choice and b) robust/risk-averse
network revenue management. The latter forms the focus of the remainder of the thesis.

In Chapter 3 we introduce a comprehensive and universal mathematical notation for
all the booking control policies, seat-allocation models, booking acceptance algorithms
and demand simulation models. We expand the methodology in the literature by pro-
viding a more thorough explanation of the robust seat allocation models formulation
and introducing ellipsoidal uncertainty sets. Using an ellipsoidal uncertainty set intro-
duces non-linearity to the problem formulation and consequently increases the compu-
tation time. Furthermore, we suggest a genetic algorithm to optimise the outer prob-
lem.

In Chapter 4 we present numerical results and compare them to Perakis and Roels
(2010) work which initially introduced the robust seat allocation models we built upon.
We show that our genetic algorithm performs better in simulated revenue than their
local gradient algorithm. Furthermore, in a similar fashion to de Boer et al. (2002) who
compared two traditional seat-allocation models, we built a comparison of five seat-
allocation models, of which two are the robust optimisation algorithms we develop
in Chapter 3. We implement three different booking control policies and simulate the
booking horizon to evaluate the performance of each model under these policies. We
also report our models’ summary statistics on the simulated revenue. To conclude the
chapter, we compare our results and discuss the limitations of our study.

In Chapter 5 we make a twofold contribution. First, we introduce a compact cruise
network capacity control formulation. Our approach is novel because, in the available
cruise literature, authors present multi-resource capacity control formulations where
the constraints considered are built on lifeboat seats and available cabins of each type
and the number of passengers per individual cabin. In our treatment, we further con-
sider multiple ports of embarkation and debarkation, a cruise network built on multiple
legs of travel. As far as we are aware, our treatment is a novel formulation because of
this extra consideration. Secondly, we robustify the introduced network formulation

1.3. Outline 7

by introducing polyhedral uncertainty sets, solve the resulting problems by modifying
our genetic algorithm to treat both the cabin and lifeboat constraints, and present a
simulation study of the revenues for the different models developed.

Table 1.1 summarises the aims and contributions of this research project up to this time.

Chapter Description

Literature
Review

Aim Acquire a comprehensive knowledge regarding the
theory, methodology and models

Contribution Identify gaps in literature

Robust
Capacity
Control

Aim Apply practically the acquired knowledge of
methodologies and models

Contribution Improve the exposition of model formulations.

Contribution Introduce ellipsoidal uncertainty to robust formula-
tions

Contribution
Implement a genetic algorithm tailored to the ro-
bust formulations that outperforms previous heuris-
tics results

Numerical
Results

Aim Evaluate current methodologies

Contribution Present an extended simulation study of revenues
for the several booking policies investigated

Contribution Identify limitations of deployed methodologies and
propose future work

Cruise
Capacity
Control

Aim Apply practically the acquired knowledge of
methodologies and models

Contribution Present a compact mathematical description of the
network problem.

Contribution Present a mathematical formulation of the robust net-
work problem.

TABLE 1.1: Research project aims and contributions

1.3 Outline

Chapter 2 reviews relevant literature within the revenue management field. We be-
gin with a short introduction on revenue management and its history, describe what
booking control policies are, and then present the important published works on price
and quantity-based models. We review the classical mathematical programming ap-
proximation models, the Deterministic Linear Programming (DLP), Expected Marginal
Revenue (EMR) and Randomised Linear Programming (RLP), and the more recent area
of research, customer choice modelling. In the final sections of the chapter, we explore
risk-averse and robust capacity control literature and review the robust decision frame-
work (section 2.5.1) that we use in our formulations.

8 Chapter 1. Introduction

In Chapter 3 we state the robust formulation for the network revenue management
problem as presented by Perakis and Roels (2010), and introduce ellipsoidal uncer-
tainty sets to the formulation. Finally, we provide a brief overview of genetic algo-
rithms and then detail the design choices made and implementation procedure fol-
lowed to tailor the algorithm to the problems under investigation in this thesis.

Chapter 4, describes the simulation model and the booking acceptance algorithms en-
forcing the booking limits derived by the network approximation models. We test re-
sulting booking limits by emulating the booking horizon and present the results of our
numerical experiments, which show an improved performance of the robust controls
via the genetic algorithm compared to the heuristics employed in the original imple-
mentation.

Chapter 5 details the application of robust controls to the cruise network formulation
also presented in the chapter. We also discuss the alterations made to the genetic algo-
rithm to facilitate the added complexity of the cruise network compared to the airline
network. Subsequently, we present a simulation study of the revenue generated via the
different booking controls.

Finally, Chapter 6 is a critical discussion of the work presented in this thesis and the
future work that can be carried out on this stream of work.

9

Chapter 2

Literature Review

In all cases, the objective of Revenue Management is selling the right product to
the right customer at the right time [for the right price]

— ROBERT CROSS

This literature review is structured as follows: In Section 2.1 a brief introduction to
the history of revenue management is given, introducing the classical risk-neutral ap-
proach of maximising expected revenue and presenting the classification of models into
price or quantity based as well as single or multiple resources. Section 2.2 introduces
the various booking controls, i.e. the mechanisms used to control the availability of
resources. Such mechanisms are used across the field, both in price and quantity based
models and single or network applications. Section 2.3 includes formulations tackling
single resource problems. Both price and quantity based models are presented, and we
also give an overview of customer choice models. Section 2.4 follows the same format
as the previous section but focuses on models that utilise multiple resources. Section
2.5 discusses two more recent research streams: risk-averse and robust revenue man-
agement.

2.1 Introduction

Revenue Management (RM) is a field in which academics and practitioners are actively
engaged, resulting in several formulated definitions. Perhaps the most well-known
purpose of the field is the one given by Cross (1997) “In all cases, the objective of Revenue
Management is selling the right product to the right customer at the right time [for the right
price]”. This statement accurately describes the main objectives of the field but fails
to encompass the methodology behind it. To this end, the definition by Talluri and
Van Ryzin (2006) is more explicit, “RM is the collection of techniques, strategies and tactics
employed by firms to manage demand for their products and services scientifically”.

10 Chapter 2. Literature Review

Classical Revenue Management

Quantity-Based

Single-Resource
Capacity Control

Static Models

Littlewood’s
Two-class model n-class model

Dynamic Models

Network
Capacity Control

General Network
Model

Deterministic
Linear MP

Probabilistic
Non-Linear MP

Probabilistic
Deterministic

Linear MP

Randomised
Linear MP

Customer
Choice

Behaviour

Price-Based

Dynamic Pricing

Single Product

With
Replenishment

Deterministic
Models

Stochastic
Models

Without
Replenishment

Deterministic
Models

Stochastic
Models

Multiproduct,
Multiresource Pricing

Stochastic
Models

Deterministic
Models

Auctions

FIGURE 2.1: The Field of Revenue Management

In general, the revenue management field can be separated into two broad categories,
Quantity and Price-based models. Quantity-based models describe situations where the
decision-maker manages the demand by varying the quantity of the product on offer.
In contrast, Price-based models describe the process where the decision-maker alters
the products’ price to manage the demand. Another major classification of models
differentiates products that utilise single or multiple resources.

In the first 30 years of research in the field, the ‘classical’ revenue management tech-
niques and methods were developed. The first mathematical models were introduced
by Rothstein (1971) who proposed a simple overbooking model for airline companies
and Littlewood (2005) with his seminal work on the single-leg, two-fare capacity alloca-
tion problem. In the last 20 years, research has shifted from myopic policies focused on
the vendor’s actions to modelling customers’ behaviour, incorporating risk measures
and robustifying optimisation models. McGill and Van Ryzin (1999) give an overview
of the field at the time, Bitran and Caldentey (2003) focus their review on dynamic pric-
ing models, while Talluri and Van Ryzin (2006) and Chiang et al. (2006) give compre-
hensive overviews of classical revenue management in their respective books. More
recent efforts focus on specific areas of the field such as Gonsch (2017) who concen-
trates on the rise of risk-averse and robust revenue management, Strauss et al. (2018)
describe recent developments in customer choice modelling while Klein et al. (2019)
demonstrate the broad use of revenue management on industry applications.

In our review of the literature, we aim to encompass both the classical and risk-averse
RM streams of work. Thus we divide the RM overview into four subsections: First,
in section 2.2 we discuss the various types of booking controls that control the avail-
ability of resources. Section 2.3 introduces works on single-resource RM and similarly

2.2. Types of Control 11

in section 2.4 the multiple-resource models are discussed. Section 2.5 overviews the
risk-averse RM that introduces risk measures and robust optimisation. This leads to
the final section of the chapter where gaps in literature are identified.

2.2 Types of Control

There are various ways to control the availability of resources subject to capacity and
demand constraints. The objective is to find an effective and easy to implement policy
or, as it is often referred to in this context, ‘control’, to allocate the available resources
to booking requests for the different products, j ∈ J . In order to choose the con-
trol, several criteria must be considered, such as technological constraints imposed by
distribution and reservation systems, how profitable the method is, and the overall ro-
bustness of the control. The following subsections describe the most commonly used
controls, namely booking limits, protection levels, and bid prices.

2.2.1 Booking Limits and Protection Levels

Booking limits are controls that limit the amount of capacity that can be sold to any
particular booking class at a given point in time. Protection levels specify an amount of
capacity to reserve (protect) for a particular booking class. Both Booking Limits and
Protection Levels can be either partitioned or nested.

A partitioned booking limit is equivalent to a partitioned protection level and it essentially
divides the available capacity in each leg of the network into a number of distinct buck-
ets, one for each booking class. Demand for each product j can only access the allocated
capacity to its booking class and none other. Let s be a set of products, or a bucket as it
is often called, such that s ∈ S . Then for the partitioned booking limits, the number of
buckets is equal to the number of products and we have that,

S =
n⋃

j=1

{j} (2.1)

This control often leads to an undesirable situation. Consider the case where a high
revenue yielding booking class has utilised all of its allocated capacity and there is still
demand for this booking class. If any lower booking class still has unsold capacity it
would have been desirable to sell the unsold capacity to the higher revenue yielding
customers. However under the partitioned booking limits control this is not possible.
Furthermore, in the network setting dividing the available capacity to each product
results into a very large number of small allocations. This is especially undesirable
when demand has a high variability because it often leads to products being allocated

12 Chapter 2. Literature Review

a very small number or even fractions of seats. Hence, for these reasons partitioned
booking limits are not usually used in practice, even though they are often used for
theoretical results such as providing bounds or in approximate models. Furthermore,
there are situations where the structure of the system dictates that partitioned booking
limits are needed, for example if the seat type changes.

2.2.2 Nested Controls

A nested booking limit overcomes the limitations of its partitioned counterpart by al-
lowing booking classes access to capacity in a hierarchical manner. Booking classes
are ranked according to some measure (usually fare value) with the highest-ranked
booking class having access to all capacity and the lowest-ranked booking class having
access only to its allocated capacity.

Let f represent fare value and considered an ordered list of the products based on their
fare value, such that f1 ≤ f2 ≤ ... ≤ fn. Then a nesting policy on a bucket s containing
products {j, ..., n} limits the number of accepted requests for any product in the bucket,
s = {j, ..., n}. Hence we have,

S =
n⋃

j=1

{j, j + 1, ..., n} (2.2)

Nesting Heuristics were developed to address the problem presented when applying
partitioned booking limits calculated by optimization models to networks. Generally
speaking the higher the number of legs and fares in the network the more complex
the problem becomes. The issue presented is twofold. Firstly, the number of seats
allocated to each product by Mathematical Programming formulations becomes very
small, often less than 1 for hub and spoke networks, and secondly, the demand for
those seats is characterised by large uncertainty. To overcome this issue, a number of
different nesting methods were proposed. Four of them are presented here. Nesting by
fare class, fare value, shadow prices and bid prices. The main idea behind all of these
methods is to never refuse a higher-valued passenger when seats originally allocated
to a lower-valued passenger are still available. These methods are well explained in
Williamson (1992), while Talluri and Van Ryzin (2006) give explicit background and
mathematical formulations for these controls.

Consider a product j. Let a partitioned protection level for the product be denoted by
pj and a nested booking limit by bj. If the capacity is c then the relationship between
these two controls is given by,

bj = c − pj−1, j = 2, ..., n (2.3)

2.2. Types of Control 13

0 40 80 120
Capacity

160 200

Fare Class 1

Fare Class 2

Fare Class 3

(A) Partitioned Booking Control

0 40 80 120
Capacity

160 200

Fare Class 1

Fare Class 2

Fare Class 3

(B) Nested Booking control

FIGURE 2.2: Control Policies

That is given that the booking classes are ranked hierarchically, the booking limit for
class j is the capacity minus the protection levels of lower classes. Figure 2.3 resembles
this relationship with a simple example. Consider three booking classes ranked by fare
value, where Fare Class 1 ≥ Fare Class 2 ≥ Fare Class 3. The partitioned booking limits
for each class are given in brackets. The protection level for Fare Class 1, p1, is 12 seats
that is only Fare Class 1 has access to these seats. Furthermore, the booking limit of
Fare Class 1, b1, is equal to 30, that is Fare Class 1 customers can access all the capacity.
Similarly, the protection level for Fare Class 1 and 2, p2, equals 22 seats. That is only
customers of Fare Classes 1 and 2 can access these seats while b2 equals 18, that is Fare
Class 2 customers can access the seats allocated to Fare Class 2 and 3 customers.

0

Capacity

£100 £75 £50

200

Fare Class 2 (10)Fare Class 1 (12) Fare Class 3 (8)

p3 = 30

p2 = 22

p1 = 12

b1 = 30

b2 = 18

b3 = 8

FIGURE 2.3: Relationship between booking limits bj and protection levels yj

Nesting by Fare Class

This is the simplest method proposed. The number of seats allocated to each fare class
by the network optimisation model are summed together in one bucket. Hence these

14 Chapter 2. Literature Review

buckets are then used as protection levels. Booking limits can then be easily calcu-
lated by subtracting the aggregated protection levels of the higher classes from the leg
capacity.

Class Fare No. Partitioned Seats
Value Booked Allocation Available

1 250 50 50 0
2 125 44 50 6
3 75 77 100 23

(A) Discrete Fare Allocation

Class Fare No. Nested Seats
Value Booked Allocation Available

1 250 50 200 29
2 125 44 150 29
3 75 77 100 23

(B) Nested Fare Booking Limits

TABLE 2.1: Small Partitioned Vs Nested Booking Limits Example

Nesting by Fare Nominal Value

This method is also simple. It ranks the different products by fare value. The product
with the highest fare value is ranked at the top and the product with the lowest fare
value is ranked at the bottom of the hierarchy. Different products can be can be grouped
together into inventory buckets by specifying a range of fare prices. Then the individual
seat allocations calculated by the network optimisation model are aggregated together
and are used as the protection level for the bucket. Hence booking limits can then be
calculated as in the case of nesting by fare class.

Nesting by Shadow Prices

This nesting method was first introduced by Williamson (1988) and aimed at capturing
the value that each product added to the network. Shadow prices are defined as the
additional revenue that would be generated if an additional seat was allocated to a
given product, all else held constant. They are calculated as the dual prices of the
network optimisation model solution.

2.2.3 Bid-Price Controls

Another simple method to perform capacity control is bid prices. Suggested initially by
Simpson (1989) bid prices can be estimated as shadow prices of the capacity constraints
and are concerned with the marginal value of a seat for a leg of travel. The bid price is
a threshold price calculated for each product. It equals the sum of the shadow prices of
the resources combined in that product. The customer’s booking request is accepted if
the fare he is willing to pay exceeds this threshold price. The central assumption is that
the relationship between revenue and the remaining capacity is linear.

2.3. Single-Resource Revenue Management 15

This control considers each product individually hence

S =
n⋃

j=1

{j}

but there is no booking limit, bj = ∞, if the the fare value of the product is greater than
the displacement cost of the resources it consumes, f j ≥ y′A, where y is the vector of
dual prices, otherwise the booking class is closed bj = 0.

While this method is easy to understand and implement, Talluri and Van Ryzin (1998)
proved that bid prices are not generally optimal and do not guarantee correct accep-
tance or denial decisions. Particularly they note that selling one unit of capacity might
result in a significant change in the capacity of multiple resources simultaneously. Thus,
the interpretation of the bid prices as the marginal value of one unit of additional capac-
ity may not be correct. Secondly, they challenge the assumption that revenue depends
on the remaining capacity in a linear fashion. However, they prove that bid-price con-
trols are asymptotically optimal when leg capacities and sales volumes are sufficiently
large.

2.3 Single-Resource Revenue Management

2.3.1 Quantity Based

Littlewood’s two-class, single-leg model received considerable attention in the litera-
ture due to its intuitive ease and wide applicability. Littlewood proposed the simple
rule that an airline should accept a request for a discounted seat on the plane as long as
its fare value exceeds the expected value of a full fare seat. Mathematically this is given
as,

f2 ≥ f1Pr[d1 > p1], (2.4)

where fi is the fare value or aggregate revenue for the ith fare class d1 is the demand
for the higher fare class and p1 is the protection level for the higher fare class.

Belobaba (1987a,b, 1989) extended Littlewood’s model to incorporate multiple fare classes
by proposing two sub-optimal but widely used heuristics. EMSR-a and EMSR-b, both
use the notion of the Expected Marginal Seat Revenue and are simple to understand
and implement. EMSR-a calculates protection levels for pairs of classes using Little-
wood’s rule assuming that only the classes in a pair exist. That is considering classes j
and j + 1, EMSR-a sets the protection level for class j to

f j+1 = f jPr[dj > pj]. (2.5)

16 Chapter 2. Literature Review

When all the pair-wise protection levels are calculated, the protection level for each
class is calculated as the summation of the protection levels of all lower level classes.
Mathematically, this is given as,

pj =
j

∑
k=1

pj+1
k (2.6)

where pj+1
k is the protection level for class k assuming only classes k and j + 1 exist.

Of course this approach has the limitation that it ignores the effect on average demand
by lumping together multiple classes, especially when these classes have similar fares.
This leads to over-conservatism.

To overcome this problem EMSR-b again considers pairs of classes j + 1 and j where
j is an artificial class combining all fare classes 1, 2, ..., j. The demand for this artificial
class is equal to the aggregate demand of all fare classes included inside the artificial
class and its fare value is equal to their weighted-average fare values. Hence, the fare
value is given by,

f̄ j =
∑

j
k=1 pkE[dk]

∑
j
k=1 E[dk]

(2.7)

and demand is given by

Sj =
j

∑
k=1

dk (2.8)

where Dk is the mean demand for each fare class j. Then the EMSR-b heuristic sets
protection level pj equal to,

f j+1 = f jPr[Sj > pj], (2.9)

Further work on single-leg capacity control was done with the introduction of nesting
allocation policies. Nesting heuristics allow higher class customers to have access to
unsold seats initially allocated to lower class customers. They are discussed in greater
detail in sections 2.2.2.

Important works on single-leg nested seat allocations were developed by Curry (1990),
Robinson (1995), Wollmer (1992) and Brumelle and McGill (1993) who find the optimal
nested allocation employing different methods. A very important assumption made
by all these authors is the sequential arrival of booking requests where lower class
customers always arrive first. This is a strong assumption that is still adopted today.

Ball and Queyranne (2009) propose an online algorithm for the single-leg problem us-
ing the competitive ratio notion. That is they compare the performance of the online
algorithm against the optimal of the offline policy. Lan et al. (2008) consider the clas-
sical multi-fare, single-resource problem with the added complication that demand in-
formation is limited. They introduce a competitive analysis approach as well, which
guarantees a certain performance level under all possible demand scenarios.

2.4. Network Revenue Management 17

2.3.2 Price Based

Lee and Hersh (1993) develop a discrete-time dynamic programme (DP) model for find-
ing optimal booking policies that does not depend on assumptions regarding customer
arrival process. Gallego and Van Ryzin (1997) construct an upper bound for the optimal
expected revenue by analysing a deterministic version of the DP problem. Furthermore
they propose two heuristics for the stochastic formulation of the problem and show that
they are asymptotically optimal as the expected sales volume tends to infinity.

Other academics tried approximation methods such as approximating the revenue-to-
go function. Bertsimas and Popescu (2003) and Adelman (2007) propose such dynamic
programming formulations.

2.3.3 Customer Choice Modelling

Another very important modelling aspect of RM problems is the behaviour of cus-
tomers. Its intuitive importance to RM is obvious while it also provides a better de-
scription of a real life system where a vendor tries to maximise revenue and customers
choose products according to their preferences. Such models are often characterised
by increased mathematical complexity that makes the use of approximation methods
necessary to solve them.

Talluri and Van Ryzin (2004) proposed a general discrete customer choice model for
single-leg capacity problem introducing the notion of “efficiency” that can be solved
exactly. The problem formulation could easily be adapted to a range of applications.
Gallego et al. (2004) extended the Deteministic linear programming formulation to the
customer choice setting indtroducing the choice-based linear program.

2.4 Network Revenue Management

Network revenue management refers to the quantity-based allocation of multiple re-
sources. This class of problems relates to situations where customers buy a bundle
of resources in combination under various terms and conditions. Typical applications
include airline, cruise and train networks or sequential reservations for a hotel or car
rental service. Network revenue management poses significant implementation and
methodological challenges because it vastly increases the complexity and volume of
data collected, stored and managed. It also requires demand forecasts for every net-
work product at each point in the booking process. Lack of detailed data can cause
severe numerical and estimation problems.

18 Chapter 2. Literature Review

2.4.1 Price Based

Although our focus in this project is on quantity-based revenue management, multi-
period models from the price-based branch of the revenue management tree are also
of interest because of their close resemblance of the network capacity problem. For
example the single-leg revenue management problem with two-fare classes is essen-
tially equivalent to the much studied single-period or newsvendor problem, while the
multi-product, multi-resource problem is equivalent to the network capacity problem.

Dynamic Pricing is of interest because when a discrete customer arrival process is as-
sumed, a network revenue management problem can be formulated as a DP problem.
We present the classic DP network revenue management problem as described by Tal-
luri and Van Ryzin (2006).

2.4.1.1 The Dynamic Program

Talluri and Van Ryzin (2006) formulate the dynamic program for specifying the optimal
booking control. Given the current time t, the current remaining capacity c, and the
current request vector for products, P(t) where products are denoted by j = 1, ..., n,
the vendor must decide whether to accept or deny requests. Let the n − vector qπ

denote the vendor’s decision. If the vendor accepts a request for product j in period
t then qπ

j (t) = 1 and qπ
j (t) = 0 otherwise. The decision to accept, is a function of the

remaining capacity vector c and the price f j of product j, that is qπ
j (t) = (t, c, f j), and

hence qπ(t) = (t, c, f). Since the vendor can accept at most one request at any period t
and resources cannot be oversold, if the current capacity is c, then qπ(t) is restricted to
the set Qπ(c) = {qπ ∈ {0, 1}n : Aqπ ≤ c}.

Let qπ∗(t, c, f) denote the optimal control and let Vt(c) be the value function of the
maximum revenue expected to go given the remaining capacity c and the time t. Then
Vt(c) must satisfy the Bellman equation,

Vt(c) = E

[
max

qπ∈Qπ(c)

{
P(t)′qπ(t, c, f) + Vt+1(c − Aqπ)

}]
(2.10)

with the boundary condition,
VT+1(c) = 0, ∀ c. (2.11)

Therefore an optimal control qπ∗(·) satisfies,

qπ∗
j (t, c, f j) =

1, i f f j ≥ Vt+1(c)− Vt+1(x − Aj) and Aj ≤ c

0, otherwise
(2.12)

2.4. Network Revenue Management 19

Equation 2.12 represents the notion that an optimal control will accept a booking re-
quest for product j at price f j if and only if there exists efficient remaining capacity and
its price exceeds the opportunity cost of the resource capacities the request utilises.

While the structure of an optimal control is given by the above dynamic program, com-
puting the value function Vt(c) exactly for any network of realistic size is not possible
because of the curse of dimensionality. Consider a network with 10 resources and ca-
pacities of Ck = 200 for each resource k. Then the state space of the program will have
20010 states. Instead simpler approximations of networks are often used to acquire an
estimate of its value function. The two main approaches are: a) decomposing the net-
work into a collection of single-resource problems and b) reformulating the problem as
a static mathematical program.

We are concerned with the latter case and present three classical mathematical pro-
gramming models used to optimise networks to acquire booking limits and displace-
ment costs, namely the Deterministic Linear Programming (DLP) model, the Expected
Marginal Revenue (EMR) model, and the Randomised Linear Programming (RLP) model.
These models are discussed in section 2.4.2.

2.4.2 Quantity Based

The primary aim of any network approximation model is to produce an accurate esti-
mation of the value function VM

t (C) of the network. This is important not only because
the solutions of such mathematical programs can be applied directly as partitioned
capacity allocations to the different products but more importantly because good esti-
mations of the displacement costs can also be produced.

Further to accuracy, the speed of computation of the model is equally important. In
practice decisions are often made in small time spans and the static approximation
models need to be recomputed frequently given new capacities and time inputs. There-
fore a particularly accurate model with high computation time is not appealing to prac-
titioners. Thus both the accuracy and speed of the approximation models are essential
factors in evaluating their performance.

Mathematical Programming (MP) was one of the first approaches to be used to tackle
the problem. Again due to typical network size, optimisation usually only occurs once.
Such models are known as static. Glover et al. (1982) were the first to propose such a
model. They introduced a network flow formulation where demand was deterministic
instead of stochastic.

20 Chapter 2. Literature Review

The Deterministic Linear Programming model (DLP)

The Deterministic Linear Programming method (DLP) was originally suggested by
Williamson (1992) and can be considered as a simplification of the above. Williamson
maximised revenue over the expected value of future demand, E[dj], for each prod-
uct j = 1, ..., n on sale. Her model produces partitioned booking limits but the dual
prices can be used for bid price control. The model is easy to understand and fast to
implement but it only yields an upper bound for the expected revenue (using Jensen
inequality) that has been proven to be infeasible in practice (Cooper (2002)).

The DLP is a deterministic mathematical programming problem that consists of finding
the ‘optimal’ product allocation, x = [xj | j = 1, ..., n], such that the capacity and
demand constraints are satisfied. Mathematically the problem is formulated as follows,

VDLP
t (c) = maximize

n

∑
j=1

f jxj

subject to ∑
j ∈ Ai

xj ≤ ci ∀ i = 1, ..., m

xj ≤ E[dj] ∀ j = 1, ..., n

0 ≤ xj ∀ j = 1, ..., n

(2.13)

de Boer et al. (2002) argue that the linear relaxation of the DMP (DLP) is tight; i.e. it
yields an integer solution without the need to include an integrality constraint in the
formulation. Due to the faster speed of computation, solving the DLP formulation is
preferred in practice. The solution found by the DLP gives rise to partitioned booking
limits for every j while the displacement costs can be calculated as the shadow prices
of the capacity constraints. The DLP is easy to implement in a MATLAB environment
and solve using a commercial solver like CPLEX or GUROBI.

Even though the DLP is easy to understand and implement it yields partitioned book-
ing limits that are a sub-optimal policy. To demonstrate this, consider the case where
demand for product j is lower than the allocated seats calculated by the DLP. Then by
the definition of the partitioned booking policy, the remaining unsold seats cannot be
bought by any other customer, and thus empty seats remain in the flight, therefore,
losing revenue. To overcome this problem, booking control heuristics are used as de-
scribed in Section 2.2. Further to the limitation of partitioned booking limits, DLP also
disregards uncertainty in demand and assigns a deterministic value of demand to each
product; thus, it is not robust.

2.4. Network Revenue Management 21

The Probabilistic Mathematical Programming model (PMP)

In a static mathematical program the goal is to maximise the expected revenue of the
network. Revenue is generated by customers willing to buy the products on offer. Let xj

be the number of seats to be allocated on a plane for product j. Then the revenue will be
maximised only if all of the allocated seats xj are sold. In cases where demand for any
product j is less than the allocated seats, i.e dj < xj, then the seats sold are only equal to
the demand dj that has materialised. Hence the value of the general network capacity
control seat allocation problem can be approximated by the following mathematical
formulation,

VPMP
t (c) = maximise E

[n

∑
j=1

f j min{xj, dj}
]

subject to ∑
j ∈ Ai

xj ≤ ci ∀ i = 1, ..., m

0 ≤ xj ≤ dj ∀ j = 1, ..., n

(2.14)

This formulation is a Non-linear program where the objective function is concave and
separable. To overcome this the Deterministic Mathematical Program is introduced.

The Expected Marginal Revenue model (EMR)

DLP’s disregard for the uncertainty in demand, is a very strong simplification assump-
tion. Several attempts were made to incorporate the stochasticity of demand in the
mathematical optimisation models. Wollmer (1986) proposed a model where demand
was probabilistic and optimised the Expected Marginal Revenue (EMR) of the network.
EMR is a notion introduced in the paper where each seat in the network is associated
with a potential revenue if sold to a specific Origin-Destination-Fare (ODF) combina-
tion. His model is still widely used because of the probabilistic nature of the demand.
Mathematically it is expressed as follows,

VEMR
t (C) = maximize

n

∑
j=1

Mj

∑
k=1

f j P(dj ≥ k) xj(k)

subject to ∑
j∈Ai

∑
i

xj(i) ≤ ci ∀ i = 1, ..., m

xj(k) ∈ {0, 1} ∀ j = 1, ..., n

(2.15)

where xj(k) is a binary variable representing whether k = 1, ..., Mj seats are allocated
to the product and Mj = max

i
{ ci

j ∈ Ai}. Again the LP relaxation of the above formu-

lation is tight. While the model is intuitively attractive, the large number of decision
variables limits its practical applicability. The EMR is implemented in MATLAB en-
vironment and solved using the CPLEX 17.1 solver. The probabilities P(dj ≥ k) are

22 Chapter 2. Literature Review

calculated assuming demand follows a normal distribution and uses the mean and
standard deviation values as reported in de Boer et al. (2002).

The Randomised Linear Programming model (RLP)

The RLP was first introduced by Talluri and Van Ryzin (1999) as an extension to the DLP
method. It aimed to compute better bid prices by incorporating the stochastic informa-
tion about demand into the procedure of calculating bid prices. The method consists of
simulating a variety of future realizations of the itinerary demand and solving deter-
ministic linear programs to allocate capacities to each realization. The dual prices are
then averaged to form a bid price approximation. In essence the method replaces the
expected value of future demand E[d] as seen in equation 2.13 with the random vari-
able dj itself, i.e. the random variable characterising future demand. Mathematically
this is given by,

VRLP
t (c) = maximize ∑

j
f j xj

subject to ∑
j∈Ai

xj ≤ ci ∀ i = 1, ..., m

xj ≤ dj ∀ j = 1, ..., n

0 ≤ xj ∀ j = 1, ..., n

(2.16)

Then we can simulate N independent samples of the demand vector dj = [dj1, ..., djn]

and solve problem 2.13 for each realisation. We can then estimate the gradient by taking
the average,

1
N

N

∑
k=1

µ(xj, djk) (2.17)

where the vector µ(xj, djk) is either the partitioned booking limits calculated for each
product or the bid price vector.

Talluri and Van Ryzin conclude their paper by suggesting that the method is a sim-
ple extension to the DLP method that provides an admittedly small but important im-
provement to the expected revenue. Furthermore, they suggest that revenue perfor-
mance might be improved further by using variance reduction technique in the simu-
lation steps of the method and comment on the future research that might be conducted
on simulation-based optimisation. The RLP method is easily implemented in MATLAB
environment and solved using the CPLEX 17.1 solver. As in the case for the EMR model
the random variable Dj is assumed to follow a normal distribution and the mean and
standard deviation values are as reported in de Boer et al. (2002).

2.5. Robust and Risk-Averse Revenue Management 23

2.4.3 Customer Choice Modelling

Liu and Van Ryzin (2008) extended the “efficiency” notion from single-leg to a net-
work setting and applied it to the choiced-based linear program of Gallego et al. (2004).
Using the same notation as in section 2.4.1.1, their deterministic approximation to the
dynamic programme is given by,

VCDLP
t (c) = maximise

T

∑
S⊆N

f (t, d(t))

subject to
T

∑
t=1

Ad(t) ≤ c

d(t) ≥ 0, t = 1, ..., T

(2.18)

In a network setting, Van Ryzin and Vulcano (2008) develop a customer choice model
and propose a stochastic approximation in conjunction with virtual nesting to solve it.
Zhang and Adelman (2009) extend the work of Liu and Van Ryzin (2008) on the choice-
based linear programming that solves the multinomial logit customer choice problem
by introducing an extension to the approximate dynamic programming formulation of
Adelman (2007) to the customer choice setting.

Rusmevichientong and Topaloglu (2012) consider Robust formulations of assortment
optimization problems under the multinomial logit choice model for both the static
and dynamic settings. They assume that the true parameters of the logit model are
completely unknown and are represented by a compact uncertainty set. The innova-
tion to their approach is the structure of the proposed uncertainty set that is charac-
terized by a radius parameter ϵ that enables the decision maker to control the trade-off
between increasing the average revenue and protecting against the worst-case scenario.
Kunnumkal and Talluri (2016) present a comparison of the approximation techniques
proposed by other authors to calculate upper bounds to the value function of the net-
work customer choice management dynamic program.

2.5 Robust and Risk-Averse Revenue Management

In this section articles where the risk-neutrality of the decision maker assumption is
challenged but demand is still modeled via known probabilities are presented. Such
treatments fall under the umbrella of risk-averse revenue management. We further
review models where no or only limited demand distribution information is available.
In such cases, formulations aim to optimise revenue for some worst-case scenario. A
second objective is to minimise the variability in revenue. Such models consist the
robust revenue management stream.

24 Chapter 2. Literature Review

As mentioned in Section 2.1, revenue management can be divided into Quantity-based
and Price-based models. This classification is also valid in robust settings. An inter-
esting outcome of this distinction was noted by Gabrel et al. (2014) who stated that
“Quantity-based problems often lead to LP formulations while Price-based models lead
to Nonlinear problems”. Gonsch (2017) provide an extensive review of this research
stream.

2.5.1 Robust Decision Framework

In this section we introduce the general maximin revenue and minimax regret princi-
ples and show how they can be utilised in network revenue management problems.
The maximin and minimax principles were introduced by the works of Wald (1945,
1950) and Savage (1951) respectively and are used specifically for the treatment of non-
probabilistic uncertainty. They are also well established models in the fields of decision
theory and are special versions of the maximin paradigm of game theory (Von Neu-
mann and Morgenstern, 1944) where nature is assigned the role of one of the players.
In a Wald maximin model nature must represent uncertainty.

The general maximin setting is characterised by a decision space V, a set that contains
all the possible alternative decisions available to the decision maker and a state space
W, a set consisting of all possible states under consideration. A real-valued function r
defined on V × W specifies the payoffs associated with the decisions and states under
consideration and is given by r(v, w).

2.5.1.1 Maximin Revenue Principle

The generic Wald’s model seeks the best alternative whose performance under the
worst-case scenario is at least as good as the worst-case performance of all other al-
ternatives. Mathematically, using the notation given above, it is expressed as,

v∗ := max
v∈V

min
w∈W

r(v, w) (2.19)

In revenue management terms, the decision maker chooses her booking policy limits,
b, and when demand realisation d occurs revenue is generated, given by the payoff
function, f (b, d). The aim of the decision maker is to maximise the minimum revenue
associated with booking limits b over all demand realisations d ∈ D. The minimum
revenue is given by,

ϕ = min
d∈D(b)

f (b, d) (2.20)

2.5. Robust and Risk-Averse Revenue Management 25

Hence the maximin principle selects the booking policy limits that maximise the mini-
mum revenue generated by the worst demand realisation under consideration,

ϕ∗ = max
b∈B

min
d∈D(b)

f (b, d) (2.21)

The rationale of the model is to guarantee a minimum revenue over all future de-
mand realisations. This approach only considers the worst-case scenarios and thus
is extremely risk averse and may not perform well on average. Hence it often leads
to conservative decisions where the trade off of robustness against revenue is heavily
skewed towards robustness.

2.5.1.2 Minimax Regret Principle

To overcome the problem of overly conservative decisions the minimax regret principle
was introduced by Savage (1951) with the aim of improving the control decisions on
average given the uncertainty in demand. This is achieved by introducing the notion
of regret, or loss as Savage called it. Let R(v, w) to denote the regret associated with
decision v ans state w. The regret is the difference between the payoff that the optimal
decision v∗ could have generated at state w and the payoff that the taken decision v has
generated at state w. Hence,

R(v, w) = max
v∗

r(v∗, w)− r(v, w) (2.22)

The minimax regret principle chooses the decision x that minimises the maximum re-
gret function over all possible states, that is,

v∗ : = min
v∈V

max
w∈W

R(v, w)

= min
v∈V

max
w∈W

{max
v∗

r(v∗, w)− r(v, w)}
(2.23)

In revenue management terms, the decision maker again chooses his booking policy
limits, b. The payoff function gives the revenue that is associated with booking limits b
and demand realisation d denoted by r(b, d). The regret, R(b, d), is defined as the dif-
ference between the payoff of the best booking limits we could have chosen for demand
realisation d and the actual booking limits we have chosen for the demand realisation
d.

R(b, d) = max
b∗

r(b∗, d)− r(b, d) (2.24)

Hence the maximum regret is the additional revenue that could have been obtained
with perfect information over all demand processes under consideration and mathe-
matically is given as,

ρ = max
d∈D

R(b, d) (2.25)

26 Chapter 2. Literature Review

The aim of the decision maker is to minimise the regret associated with demand reali-
sation d,

ρ∗ = min
b∈B

max
d∈D

R(b, d)

= min
b∈B

max
d∈D

{max
b∗

r(b∗, d)− r(b, d)}
(2.26)

2.5.2 Single-Resource

Birbil et al. (2009) propose robust formulations for both the static and dynamic setting
of the single-leg seat allocation problem. By conducting simulation experiments they
come to the conclusion that their robust formulations considerably reduce variability
compared to the classical formulations, while the decrease in average revenue is negli-
gible.

2.5.3 Network

Perakis and Roels (2010) propose robust formulations for the capacity allocation prob-
lem in RM. More specifically they use the minimax and maximin regret criteria, while
assuming general polyhedral uncertainty sets. They also consider a number of booking
control policies like partitioned booking limits, nested booking limits, displacement-
adjusted virtual nesting and bid prices. Using numerical analysis they show that min-
imax regret control can outperform the classical heuristics for settings where future
demand is censored or correlated. We draw heavily from this work in Chapter 3.

Thiele (2004) in her PhD thesis also applies data-driven robust formulations for both
the single-leg and network settings. She considers an approach, which builds directly
on the historical realizations of uncertainty, without requiring any estimation. In her
model, a fraction of the best cases are removed to ensure robustness, and the system
is optimized over the sample average of the remaining data. This leads to tractable
mathematical programming problems.

As an extension to Thiele’s PhD work (Thiele, 2004), Bertsimas and Thiele (2006) pro-
pose an approach that takes into account the uncertainty of the demand in the sup-
ply chain setting without assuming a specific distribution. Their approach is highly
tractable while it also allows a trade-off between solution robustness and protection
against uncertainty. Another important feature of the proposed approach is that the ro-
bust problem is of the same difficulty as the nominal problem computationally. Perakis
and Sood (2006) propose a robust formulation for a dynamic pricing under uncertainty
setting. Adida and Perakis (2010) present a computational study that compares robust
against stochastic optimisation approaches for dynamic pricing and inventory control.

2.6. Gradient Descent Algorithms 27

2.6 Gradient Descent Algorithms

In this section we give an overview of the gradient descent algorithm. Any textbook
on nonlinear optimization mentions that the gradient method is due to Cauchy et al.
(1847). We are interested in these algorithms since they have been employed to solve
equations 2.21 and 2.26 in the current literature. A more recent overview of gradient
descent algorithms is given by Ruder (2016).

Gradient descent is an iterative first-order optimisation algorithm used to find a local
minimum or maximum of a given function. Gradient descent is one of the most pop-
ular algorithms to perform optimization, especially deployed in machine learning and
deep learning fields. It is often used to to minimise the cost function of the chosen
machine learning model. They are however used as black-box optimizers, as practical
explanations of their strengths and weaknesses are hard to come by.

In general for a gradient descent algorithm to work, the objective function, F, needs
to be convex and differentiable. The algorithm iteratively calculates the next point xn+1.
In each iteration the step direction and size must be determined. The direction is de-
termined by the gradient at the current position, ∇F(xn), scaled by the step size (or
learning rate) γn. If the aim is to minimize (or maximise) the objective function, F(xn),
a step is made by subtracting (or adding) the obtained value from the current position
xn respectively. This is mathematically expressed as:

xn+1 = xn − γn∇F(xn), n ≥ 0. (2.27)

The sequence is terminated when conditions are met such as reaching the maximum
number of iterations N or the step size being smaller than the tolerance T. This results
to a monotonic sequence F(x0) ≥ F(x1) ≥ F(x2) ≥ · · · , that in turn, yields the sequence
(xn) that converges to a local minimum.

The learning rate γn is an important parameter because it scales the gradient and thus
controls the step size. The step size in turn has a strong influence on the performance of
the algorithm since the lower the learning rate, the longer it takes to converge meaning
that it may reach the maximum number of iterations before finding the optimum. On
the other hand, if the learning rate is too big the algorithm may not converge to the
optimum (jump around) or even diverge completely. A further limitation of the first-
order gradient descent algorithm is the challenge it faces when there exists a saddle
point in the objective function. When this is the case, obtaining a global minimum is
not guaranteed.

There are many variants of gradient descent that aim to improve upon the limitations
the algorithm faces. Nesterov (2003) proposed modifications to the method that en-
ables faster convergence for convex problems while Second-order algorithms such as

28 Chapter 2. Literature Review

the Newton-Raphson method, deal with situations concerning saddle points better.

Algorithm 1 provides a simple outlook of the gradient descend method

Algorithm 1: Pseudo-code for a simple gradient descend algorithm
Inputs : Initialisation Point xn, Gradient Function F(xn), Step Size γn, Maximum

iterations N, Tolerance T
Outputs:

1 Choose xn
2 while n ≤ N or γn < T do
3 Calculate ∇F(xn)
4 Choose γn
5 Calculate xn + 1 = xn −∇F(xn)
6 end

2.7 Conclusion

We have looked at classical revenue management, both on single and multiple-resource
settings and quantity and price based models. A considerable amount of research has
been conducted on such risk-neutral models for the past 30 years.

More recent works focus on challenging the assumption of risk-neutrality of the decision-
maker leading to robust and risk-averse model formulations. Section 2.5 introduces
some of the works in the area but such approaches are almost exclusively focused on
the single-leg example. As Gonsch (2017) suggests, the volume of research in this area is
still scarce, while the potential impact of such models on RM practitioners is extremely
high.

The second stream of recent RM developments is customer choice modelling. As the
name suggests, the aim is to model customers’ behaviour and their choice of products
over a set of products available to each type of customer. While the field is not particu-
larly new, it has gained considerable attention over the past ten years as businesses are
drifting towards more customer-centric policies and aiming to deliver ‘personalised’
experiences to customers. This has led to an increased interest in the area leading to
new formulations for assortment optimisation problems as Strauss et al. (2018) suggest.
Customer choice models developed so far for the network setting are based on the DLP
model to create the set of offered products to customers while there is no published
work on robust customer choice network revenue management.

Hence we identify two areas of future research: a) robust/risk-averse network revenue man-
agement and b) robust customer-choice modelling. In this thesis we restrict our attention to
robust/risk-averse network revenue management methodologies.

29

Chapter 3

Robust Capacity Control

In this chapter, we state the formulation of the network revenue management problem
and reconsider the robust formulation introduced by Perakis and Roels (2010). The
novelty of our treatment is twofold; first, we use ellipsoidal uncertainty sets to charac-
terise demand, in addition to the polyhedral uncertainty sets proposed initially. Ellip-
soidal sets lead to increased revenue but at the expense of computation times. Second,
we design and implement a genetic algorithm to optimise the robust controls booking
limits. The genetic algorithm results surpass the revenue gained by the local gradient
descent initially suggested Perakis and Roels (2010), but it also significantly increases
computation time.

The chapter is organised into three sections. First, a brief introduction to the network
revenue management problem is provided. Then the mathematical formulation by Per-
akis and Roels (2010) and the extension of using ellipsoidal uncertainty sets is stated. In
the third section, we describe the genetic algorithm we utilise to solve this problem. We
split this part into two subsections. First, we explain our rationale for using a genetic
algorithm and provide a detailed description of the design and implementation of the
genetic algorithm operators we employ. In the second, we describe the procedure we
carried out to hyper-optimise the algorithm’s parameters and provide diagnostic plots
showing how the algorithm converges. A complete set of results from the methodology
presented here is given in Chapter 4.

3.1 Introduction

As mentioned in Chapter 2 network revenue management problems arise when cus-
tomers request to buy a bundle of resources in combination under various terms and
conditions. The classical paradigm of network revenue management is the airline in-
dustry. It was the first industry to adopt revenue management techniques and it is easy

30 Chapter 3. Robust Capacity Control

to conceptualize the examples. Nevertheless, the models described in this chapter can
be applied to other industries such as the railway and hospitality.

Airlines typically offer hundreds of products as Origin, Destination and Fare combi-
nations (ODF). Products might span multiple legs (resources) of the airline’s network.
Booking requests for such ODFs arrive simultaneously over the booking horizon. The
objective is to find a booking control policy that will optimally allocate the capacity
of the resources to the various product requests. This allocation has to be done dy-
namically as demand materializes. Modelling demand is another important aspect of
network revenue management problems since future demand is often assumed to be
stochastic and independent among the different products, a strong assumption that has
been challenged lately in literature.

3.1.1 Problem Statement

Consider a network with m resources indexed by i (e.g. flights, night stays) and n
products indexed by j, where each product is a bundle of resources sold under various
terms and conditions. Heterogeneous customers stochastically arrive over a finite time
interval (0, T] and request to buy products. There are c = [ci | i = 1, ..., m] available
units of resources. Let aij = 1 if resource i is used by product j and aij = 0 otherwise.
Then, the incidence matrix A = [aij]m×n denotes the resources that a product requires.
Let f = [f j | j = 1, ..., n] be the column vector denoting the fare revenue generated by
selling product j and d = [dj | j = 1, ..., n] denote the random total aggregate demand
associated with each product j. A booking policy is a rule for accepting or rejecting
booking requests and is denoted by π ∈ Π where Π is the set of all non-anticipating
policies, that is policies that take into consideration the information available up to time
t where t ∈ (0, T].

The objective is to find a policy π that maximizes the expected revenue, f ′E[qπ], where
qπ is the vector of total number of accepted requests per product on sale when policy
π is in use. The policy needs to satisfy the capacity constraints, Aqπ ≤ c, while the
accepted requests must be non-negative and no greater than the total demand, i.e.,
0 ≤ qπ ≤ d. The problem can then be formulated as follows:

supremum
π∈Π

f ′E[qπ]

subject to Aqπ ≤ c

0 ≤ qπ ≤ d

(3.1)

The control policies described in section 2.4.2 try to maximise revenue, f ′E[qπ], by as-
suming that the decision maker possess enough information to model and confidently
predict future demand and therefore a risk neutral approach towards risk is justified.

3.2. Mathematical Formulation 31

The resulting solutions can be used directly as booking limits or their dual values can
be used to compute bid prices.

However the assumption that the decision maker is risk-neutral is not always true.
Consider a newly established business that launches a new product, or events that
happen only a few times in a year, where there is not enough information or data to
accurately forecast future demand. Then the decision maker is more likely to adopt a
risk-averse approach and be more interested in ensuring that at least a minimum rev-
enue is achieved. It is in these cases, a robust formulation has the potential to generate
useful results.

3.2 Mathematical Formulation

In this section we discuss further the two robust models as introduced by Perakis and
Roels (2010) that use the maximin revenue, ϕ∗ and minimax regret, ρ∗, measures described
in section 2.5.1.

The framework specifies that the maximum regret ρ or the minimum revenue ϕ gener-
ated by a decision d ∈ D that results in a state-space s ∈ S are calculated for a given
solution to the problem. The mixed-integer programme described in section 3.2.1 yields
these values. The central assumption of this formulation is that only partial information
about demand is known. Our first contribution in this chapter is utilising an ellipsoidal
uncertainty set to describe demand uncertainty.

The second step in the robust decision framework is to compute the optimal value for
the measure at hand, i.e. to maximise minimum revenue, ϕ∗, or to minimise maximum
regret ρ∗. This is achieved via a heuristic method such as a gradient descent algorithm
by Perakis and Roels (2010). Our second contribution in this chapter is our proposed
use of a genetic algorithm for the optimisation of the outer problem.

Hence, the overall hybrid optimisation procedure we employ to calculate the final
booking limits utilising these robust controls is as follows:

1. Compute initial booking limits using any suitable method (section 2.4.2)

2. Compute the robust measure value, ϕ or ρ, using the exact MIP method (Inner
Problem)

3. Compute the optimal robust measure value, ϕ∗ or ρ∗, using an approximation
method (Outer Problem)

In the first step a policy maker can choose any method to compute the initial booking
limits. Step 2 refers to the inner optimisation, where we quantify the robust measures

32 Chapter 3. Robust Capacity Control

OUTER PROBLEM

Minimization
GA heuristic

INNER PROBLEM
Maximum Regret

MILP

(A) Minimizing the Maximum Regret

OUTER PROBLEM

Maximization
GA heuristic

INNER PROBLEM
Minimum revenue

MILP

(B) Maximising the minimum revenue

FIGURE 3.1: An Exact Method within a Heuristic

by employing the MILP formulation of Perakis and Roels (2010) which is presented in
the following section. Finally, step 3 refers to the outer optimisation where the booking
limits are altered repeatedly by a heuristic method to find the booking limits that yield
the best robust measure value.

Our second contribution to the formulation is the design and implementation of a ge-
netic algorithm to perform the outer optimisation part. We discuss in detail the design
elements and hyper-optimisation of the heuristic’s parameters in section 3.3. In chapter
4 we showcase our simulation results that suggest that our heuristic outperforms the
local gradient descent algorithm employed by Perakis and Roels (2010).

3.2.1 Robust MIP formulation

Let x be the decision vector for sales while z be the perfect information hindsight sales.
Let d ∈ U be the vector of realised demand for each product j that belongs in some
uncertainty set U . Π is the feasible decision set of booking control policies, assumed to
be compact and π is a booking control policy. We denote a booking limit for a bucket s
as bs such that b = [bs | s ∈ S] and R(b, d) is the revenue associated with the booking
limits b derived under booking policy π ∈ Π when the demand process d is realised.

The objective is to find the maximum difference in revenue between the perfect hind-
sight information f ′z and the realised sales f ′x as shown in 3.2a. To find this value, the
sales must be feasible. There are three conditions that must be satisfied to achieve this.
First, the decision vector for sales, x, or the hindsight perfect information sales z must
not exceed capacity. This is shown by constraints 3.2b and 3.2c for x and z respectively.
Secondly, demand must be characterised. The demand to be realised must belong to
an uncertainty set U as shown by constraint 3.2f. Furthermore, the realised sales for a
product j cannot exceed the demand for that product while also be non-negative. This
must be true for both x and z as shown by constraints 3.2d and 3.2e. Thirdly, the book-
ing limits, bs, must not be exceeded. Constraint 3.2g enforces that realised sales satisfy

3.2. Mathematical Formulation 33

the booking limits passed. From these three conditions only one can be in effect at any
given time. The sales for product j must equal the demand for the product dj unless
the booking limits are exceeded, or the capacity is exceeded. To enforce this the binary
variables α, β and γ are introduced in constraints 3.2h - 3.2j. Constraint 3.2k ensures
that only one of the three scenarios can occur at once.

To calculate the robust controls ϕ or ρ, the following mixed integer linear programming
formulation must be solved. For any uncertainty set U and any booking control policy
π, the maximum regret ρ(π) is equal to the optimal value of the following MILP:

maximise
z,x,d,α,β,γ

f ′z − f ′x (3.2a)

subject to Ax ≤ c ∀ M (3.2b)

Az ≤ c ∀ M (3.2c)

0 ≤ x ≤ d (3.2d)

0 ≤ z ≤ d (3.2e)

d ∈ U (3.2f)

∑
j ∈ s

xj ≤ bs s ∈ S (3.2g)

d ≤ x + M(1 − α) (3.2h)

∑
j ∈ s

xj ≥ βsbs s ∈ S (3.2i)

Akxj ≥ ckγk k = 1, ..., m (3.2j)
m

∑
k=1: akj>0

γk + αj + ∑
s:j ∈ s

βs ≥ 1 j = 1, ..., n (3.2k)

α ∈ {0, 1}n (3.2l)

β ∈ {0, 1}|S| (3.2m)

γ ∈ {0, 1}m (3.2n)

where M ≥ {max
j

dj : d ∈ U}. Similarly, for any uncertainty set U and any booking

policy π, the minimum revenue ϕ(π) is equal to the negative of the optimal value of
Equation (3.2a) when z = 0.

3.2.2 Constructing Uncertainty sets

The first documented attempt to protect the solution of a linear optimisation problem
was developed by Soyster (1973), who proposed an optimisation formulation where
the constraints elements are strictly members of a convex set. The resulting solution

34 Chapter 3. Robust Capacity Control

was deemed too conservative as too much optimality from the nominal problem was
sacrificed to achieve robustness.

Almost a quarter of a century later the independent efforts of Ben-Tal and Nemirovski
(Ben-Tal and Nemirovski, 1998, 1999, 2000), El-Ghaoui and Lebret (El Ghaoui and Le-
bret, 1997) and El-Ghaoui et al. (El Ghaoui et al., 1998) expanded the work of Soyster to
include more general conic problems with robust formulations that were computation-
ally tractable yielding results that were not as conservative. This was achieved mainly
by the introduction of the ellipsoidal uncertainty sets.

Uncertainty sets are an integral part of the robust optimisation theory. A number of
authors have suggested ways to form different uncertainty sets. Standard uncertainty
sets are the so called box, ellipsoidal, polyhedral, cone and convex. The choice of structure
for the uncertainty set is dependent on the problem being solved, but a number of
possible structures exist that have been proven computationally tractable. Some such
sets are:

1. Discrete sets U = {x̂i | i = 0, ..., n}.

2. Interval sets U = {x | x ≤ x ≤ x}.

3. Ellipsoid sets U = {x | ∥Ax∥2 ≤ δ}.

Bertsimas and Brown (2009), Bertsimas and Sim (2004, 2003) and Ben-Tal et al. (2002)
construct more complex uncertainty sets such as intersections of ellipsoidal sets, poly-
hedral uncertainty sets and sets with budgets of uncertainty. They explore their proper-
ties and formulate problems that yield computationally tractable robust counterparts.
A brief mathematical overview of the most important uncertainty sets is given in Ap-
pendix B.3.

In our treatment, we are interested in two different kinds of uncertainty sets, polyhe-
dral, denoted by UP and ellipsoidal, denoted by UE . These are the most commonly used
sets because they form robust counterparts that can be treated in reasonable computa-
tional times by standard commercial software as well as the fact that ellipsoidal uncer-
tainty sets are linked with risk-averse measures as shown by Natarajan et al. (2009).

The general polyhedral uncertainty is described using the 1-norm of the uncertain data
vector,

UP = {ξ | ∥ξ∥1 ≤ Γ} =

{
ξ | ∑

j ∈ Ji

|ξ j| ≤ Γ

}
(3.3)

where Γ is the adjustable parameter controlling the size of the uncertainty set. In our
treatment we use the polyhedral uncertainty set UP , defined by

d ∈ UP = {dj | lj ≤ dj ≤ uj, j = 1, ..., n} (3.4)

3.2. Mathematical Formulation 35

which is the interval of lower and upper bounds for the demand of any product. When
the lower and upper bounds are equal then we assume that our certain parameters
have no perturbations and hence the uncertain optimisation problem reduces to its
Deterministic Linear Programming relaxation (see equation 2.13).

In the Ellipsoidal UE case the demand for all products is characterised by the following
equation,

d ∈ UE := (d − µ)
′
Σ−1(d − µ) ≤ λ (3.5)

where Σ−1 is the covariance matrix and µ is equal to the mean value of demand for each
product d̄j. The scalar λ determines the size of the uncertainty set. More specifically,
this set considers all possible realisation of demand within a radius of λ from the mean
demand vector, where the ellipsoid is tilted and stretched by the covariance. When
λ = 0, this set is just the singleton µ.

Using an ellipsoidal uncertainty set is different to using a polyhedral set because of
the fact that we are adding a non-linear term to the formulation instead of a linear
constraint. Specifically we introduce a second-order cone constraint which prevents x
from being large in directions with considerable uncertainty in demand d. The impact
of this constraint is the added complexity to the formulation that leads the increased
computational cost. It also adds flexibility to the shape of uncertainty by changing it
from a cylinder to a cone and also allowing altering its size via the scalar λ. These
alterations aim to provide a better return on the risk vs revenue tradeoff. Results in
Chapter 4 show the impact of these changes.

By varying the size of the U we can get a frontier on the behaviour of the two measures.
To construct the uncertainty sets we assume that demand for each product follows a
Normal distribution, d ∼ N(µ, σ). For the polyhedral uncertainty set, the lower and
upper bounds of demand for each product can be calculated as quantiles from sample
generations of demand. The percentile of the lower and upper bound, ql and qu, are
given on the third and fourth columns of Table 3.1 respectively.

For the ellipsoidal uncertainty set, the assumption that demand follows a normal dis-
tribution means that the value of λ for each level of uncertainty can be determined from
the χ2

p probability tables. The second column of Table 3.1 presents these values.

3.2.3 Constructing the Constraint Matrix

In this subsection we provide details on constructing the constraint matrix for problem
3.2a. More specifically we focus on constraints,

36 Chapter 3. Robust Capacity Control

% λ ql qu

100.00 64.00 0.000 100.000
99.95 44.43 0.025 99.975
99.90 42.31 0.050 99.950
99.50 37.16 0.250 99.750
99.00 34.81 0.500 99.500
97.50 31.53 1.250 98.750
95.00 28.87 2.500 97.500
92.50 27.22 3.750 96.250
90.00 25.99 5.000 95.000
87.50 25.00 6.250 93.750
85.00 24.20 7.500 92.500
82.50 23.42 8.750 91.250
80.00 22.76 10.000 90.000
77.50 22.16 11.250 88.750
75.00 21.60 12.500 87.500
70.00 20.60 15.000 85.000
65.00 19.70 17.500 82.500
60.00 18.87 20.000 80.000

% λ ql qu

55.00 18.10 22.500 77.500
50.00 17.34 25.000 75.000
45.00 16.60 27.500 72.500
40.00 15.89 30.000 70.000
35.00 15.20 32.500 67.500
30.00 14.44 35.000 65.000
25.00 13.70 37.500 62.500
20.00 12.86 40.000 60.000
15.00 12.00 42.500 57.500
10.00 10.86 45.000 55.000
7.50 10.21 46.250 51.250
5.00 9.39 47.500 52.500
2.50 8.23 48.750 51.250
1.00 7.02 49.500 50.500
0.50 6.27 49.750 50.250
0.10 4.91 49.950 50.050
0.05 4.44 49.975 50.025
0.00 0.50 50.000 50.000

TABLE 3.1: Parameters for constructing ellipsoidal and interval uncertainty sets of
different sizes

Ax ≤ C (3.6)

0 ≤ x ≤ d (3.7)

∑
j ∈ s

xj ≤ bs s ∈ S (3.8)

Inequality 3.6 represents the capacity constraint, inequality 3.7 the demand constraint,
and 3.8 the booking limits constraints for realised sales x. We first describe the simple
case of partitioned booking limits and then detail the construction of the matrix for the
nested booking limits control policy.

Partitioned booking limits

As seen in section 2.2 the partitioned booking limits control policy creates a booking
bucket for each products thus each booking request concerns only the booking bucket
of the product in request. As seen in section 3.2.1, the capacity constraint A is defined
by akj = 1 when product j uses resource k and 0 otherwise. The capacity constraint
matrix for the example seen in Figure 4.3 is presented in Appendix C.1. The demand
constraint matrix is a simple n × n diagonal matrix with 1 along the diagonal and 0
everywhere else. The simplicity of partitioned booking limits is in the booking limit
constraint matrix which has the exact same structure as the demand constraint matrix,
since each product is a booking bucket on its own.

3.3. Genetic Algorithm 37

Nested booking limits

For the nested booking limits the matter is more complicated. Specifically, products j
are grouped together according to their itinerary I and are ranked according to their
fare value. Let j ∈ sI denote the set of products j in the booking bucket s for itinerary
I . For each bucket s we rank products j = 1, ..., n ∈ sI according to their fare value
such as the product with the highest fare value, denoted by j1, is ranked on the top and
the product with the lowest fare value, jn is ranked on the bottom. Their respective
booking limits bj are then characterised by ,

bj1 ≥ bj2

bj2 ≥ bj3

...

bjn ≥ 0

(3.9)

The matrix characterising the above relationship is found in Appendix C.2.

Given the above equations the relationship between the booking limits of all the prod-
ucts in offer in a booking bucket is characterised. More specifically we always have Fare
Class 1 products on the top rank of the booking buckets. We then concern ourselves
with the capacity constraints of these booking buckets. It is sufficient to characterise
what resources k of the network Fare Class 1 products are utilising, since booking limits
of products that ranked lower and use the same itinerary I will be smaller by equations
3.9. This incidence matrix is found in Appendix C.2.

Hence we only now need to specify the nested booking limits, Nj are less than or equal
to the capacity of the network resources they utilise. To achieve this we utilise the above
relationship between booking limits of products and the matrix identifying what legs
k of the network, Fare Class 1 products are utilising. Let Ik k = 1, ..., m denote the
itineraries of the products that only use a resource k of the network. It is sufficient to
specify the capacity constraints only for Fare Class 1 products j1 ∈ Ik,

Nj1 ≤ Ck − ∑
j ∈ sI : j≤j1

bj ∀ k = 1, ..., m (3.10)

3.3 Genetic Algorithm

This section gives is an overview of the genetic algorithm that was designed and im-
plemented to perform the outer optimisation to the robust formulations described in
section 3.2.1 in this chapter and Chapter 5 which forms the basis of the optimisation
for the cruise application, as described in section 5.2.2. First, we present an overview

38 Chapter 3. Robust Capacity Control

of the genetic algorithm procedure, and then we detail the design features and mod-
elling choices we have made and implemented on the genetic operators to tailor the
algorithm to the problems we are investigating. In the final part, we present the hyper-
optimisation of the parameters we have conducted to fine-tune the algorithm’s perfor-
mance.

3.3.1 Motivation

Genetic Algorithms (GA) are search-based meta-heuristics for solving both constrained
and unconstrained optimisation problems, classified under the broader class of Evolu-
tionary Algorithms. They were introduced and developed by Holland et al. (1992) and
his students in the 1960s and 70s. As the name suggests, these algorithms are inspired
by biological evolution and are designed to mimic the natural selection process. They
are unique among heuristics because of their defining characteristic of using a group,
called a generation or a population, of candidate solutions, called individuals or chro-
mosomes, instead of a single point, as is the case with other heuristics.

Our motivation for using a genetic algorithm arises from the method’s ability to deliver
a ‘good enough’ solution ‘fast enough’. It can perform better than random local search
as it exploits historical information while it provides a list of possible solutions instead
of a single answer as seen in our results in table 4.18. In general, it is a faster and more
efficient method than traditional search algorithms as it does not require any derivative
information and can handle complex real-life problems with a vast search space and a
high number of parameters. Furthermore, it can optimise both continuous and discrete
functions while also multi-objective problems.

On the other hand, we note some of the genetic algorithm’s drawbacks. First, it is
not suited for all kinds of problems. Other methods more efficiently solve straightfor-
ward problems or when derivative information is available. A second theoretical issue
the genetic algorithm exhibits is that there are no guarantees on the optimality or the
quality of the solution because it is a stochastic heuristic. Further to the theoretical
hindrances, the genetic algorithm also poses problems if not implemented correctly,
as the algorithm may not converge to the optimal solution. Even in cases where it is
implemented meticulously, the fitness value is calculated repeatedly, which might be
computationally expensive.

3.3.2 Overview

Evolutionary algorithms have been thoroughly researched since their introduction, and
several articles and books have been written on genetic algorithms. In this section,
we do not aim to present an overview of the field but merely outline the algorithm’s

3.3. Genetic Algorithm 39

Term Description

Fitness function The objective function to optimise.
Individual, Genome, Chromosome Any point to which you can apply the fitness function.
Fitscore The value of the fitness function for an individual is its score.
Genes The vector entries of an individual.
Allele The value a gene takes for a particular chromosome.
Population, Generation An array of individuals. An individual can appear multiple times in

a population.
Parents Certain selected individuals in the current population used to create

individuals in the next generation.
Offspring, Children Individuals created from parents.

TABLE 3.2: Genetic Algorithm terminology

implementation to the problems we are investigating. The interested reader can find
some excellent overviews of the field by Mitchell (1998), Sivanandam and Deepa (2008)
and Kramer (2017).

In general, genetic algorithms must make use of three ‘genetic’ operators; selection,
crossover and mutation. At each iteration, these operators are employed to create the
next generation of candidate solutions from the previous population. The selection
operator selects the individuals to act as parents, the crossover operator then dictates
how these parents combine to form children, and the mutation operator applies ran-
dom changes to any individual crossover offspring to form the children of the new
generation. Table 3.2 presents the most commonly used terms and their respective ex-
planation.

Algorithm 2 presents the conceptual idea of our genetic algorithm. The algorithm pro-
duces a pool of candidate solutions by repeatedly modifying the current population of
individuals. At each iteration, individual solutions are selected from the current popu-
lation to be parents and are used to produce the next generation’s children. These new
solutions are evaluated, and the selection, creation and evaluation cycle is repeated.
Over successive generations, the population ’evolves’ towards an optimal solution.

The genetic algorithm has five main stages. In the Initialisation stage, the algorithm
creates the initial generation of chromosomes. This generation is randomly sampled or
evaluated using a good approximation technique such as a constructive heuristic or the
network approximation methods discussed in section 2.4.2. The goal is to construct an
initial well-distributed generation in the solution space. A well-distributed initial pop-
ulation means that the algorithm receives information from the whole solution space
and is more likely to avoid local optima.

Then we evaluate the fitness of each candidate solution in the initial population. Each
chromosome in the current generation is assessed in this stage of the algorithm. The
evaluation of solutions is carried out via a fitness function f that always depends on
the application modelled. This stage is of extreme importance for two reasons; firstly,
it links the genetic algorithm to the original problem that it is attempting to solve, and

40 Chapter 3. Robust Capacity Control

Algorithm 2: Outline of our simple genetic algorithm
1 Initialization;
2 Create random initial population;
3 while Termination conditions are not met do
4 for Evaluation do
5 Score each individual of the current population by computing its fitness score;
6 end
7 Generation;
8 for Selection do
9 Scale the raw fitscores;

10 Select elite individuals to be passed to the next population;
11 Select individuals to enter the mating pool;
12 end
13 for Crossover do
14 Select parents from mating pool via the roulette wheel method,

Pr(X = x) = f (x)
∑n

i=1 f (xi)
;

15 Create offspring from parents;
16 end
17 for Mutation do
18 Mutate offspring genes to create children;
19 Mutate parents genes to create children;
20 end
21 New Generation = [elite individuals; mutated crossover offspring; mutated parents];
22 end

secondly, it is the algorithm’s operator that usually consumes the most computational
time. This is also true in our investigation. The fitness functions that we employ are
the minimax regret and maximin revenue as seen in formulations 3.2a and 5.2. As
discussed, these are functions of high complexity and are considered NP-hard.

Once the chromosomes of the current generation are evaluated, we are ready to proceed
to the creation of the next generation. The new generation is created at the Generation
stage. This happens via the three genetic operators; selection, crossover and mutation.

First, the associated fitness values of each individual are used to determine the mating
pool. The mating pool is a subset of the current population of individuals chosen by
the selection operator. Members of the mating pool can be used in two ways; they can
pass intact directly to the new generation or be chosen as parents to be transformed
by the crossover operator. To choose the candidate solutions to be the parents of the new
generation, one can simply choose the solutions with the highest fitness scores, referred
to as the ‘elitist’ approach, or choose stochastically by assigning a higher probability of
being chosen to the solutions with higher fitness scores, the ‘roulette wheel’ approach.
These methods are discussed in further detail in section 3.3.3.3.

Once we have the selected solutions that will act as parents to the new generation, we
move to the Crossover operator. Here we cross subsets of parents to create new off-
spring. The crossover operator combines schemata of different chromosomes to create

3.3. Genetic Algorithm 41

Term Symbol Description

Bit/Gene g An element of a chromosome c

Candidate solution/
c = {gj | j = 1, ..., n} A column vector with n genes representing a

candidate solution to the problemChromosome/
Individual

Generation/ Gt = {ci | i = 1, ..., N} A set of c at iteration tPopulation

Fitness score f (ci) Fitness score of the ith c

Parent pi

A c selected by the selection function to
pass intact in Gt+1 and can also be used as a
parent of new chromosomes

Offspring oi
A c produced by the crossover function

but not evaluated by the mutation function

Child cnew
i

A c produced for Gt+1 that has undergone
both crossover and mutation

Crossover Rate pc The proportion of new c to be created by the
crossover operator

Mutation Rate pm The probabibilty that a gj ∈ ci is randomly
adjusted

TABLE 3.3: Genetic algorithm basic terminology

new chromosomes with better fitness scores, a process inspired by the natural repro-
duction phenomenon. There are several options as to carry out the crossing of the
parents, and these are discussed in more detail in section 3.3.3.4.

Once this step is completed, we perform the Mutation stage where genes of offspring are
randomly altered. The mutation operator serves many purposes, including ensuring
the feasibility of potential solutions. The design of the mutation function can be as free
as the developer’s choosing, but it will always aim to mutate offspring genes in some
probabilistic way. We discuss our mutation function implementation in section 3.3.3.5.

Once the mutation operations are complete, we have a new generation of candidate
solutions. The fitness function then evaluates these in the Evaluation stage, and the
termination conditions are checked. Multiple conditions can terminate the algorithm,
often referred to as stopping criteria. Common criteria are a maximum number of it-
erations to be reached, the fitness value improvement rate is lower than the accepted
tolerance, and the run time exceeds the allocated limit. The Termination stage checks if
these conditions are satisfied. If any of the stopping criteria is true, then the algorithm
terminates. Otherwise, the evaluation and generation of new individuals are repeated
until any of the termination conditions are met.

3.3.3 Implementation of genetic operators

In this section we present a more detailed description of the genetic operators. To fur-
ther aid the narrative, we introduce the notation in Table 3.3. The table maps key nota-
tion to terminology.

42 Chapter 3. Robust Capacity Control

Algorithm 3: Pseudo-code for creating initial population
Inputs : options
Outputs: initialPopulation, initialPopulationScores

1 if options.initialPop is empty then
2 initialPopulation = zeros(options.populationSize, options.genomeLength);
3 end
4 for i = 1:options.populationSize do
5 for j = 1:options.genomeLength do
6 sampleDemand(:, j) = normrnd(options.mean(j), options.std(j), 1, 1000);
7 demandPoint(:, i) = quantile(sampleDemand(:, j), randi([25,75])/100);
8 end
9 end

10 for j = 1:size(sampleDemand, 1) do
11 d = demandPoint(j, :);
12 Solve DLP with demand d;
13 initialPopulation = DLPsolutions;
14 initialPopulationScores = DLPobjfun;
15 end

3.3.3.1 Initialisation

The problem we are employing the genetic algorithm to solve is a seat inventory control
problem. Therefore the initial generation is constructed from column vectors represent-
ing booking limits for products on offer. Each gene, gj ∈ ci, represents the booking limit
for product j where a product is an Origin-Destination-Fare combination. Let ci denote
a chromosome in the generation, G = {ci | i = 1, .., N} where N is the generation size.
The initial booking limits population can be created using any of the approximations
to the network models we described in section 2.4.2.

To initialise the genetic algorithm, we need to pass an initial population matrix where
each member of the population is a candidate solution. It is generally recommended
that the initialisation procedure randomly covers the whole solution space or models
and incorporates expert knowledge. Our treatment considers the measure of robust-
ness being optimised (maximum regret or minimum revenue) and constructs a differ-
ent initial population accordingly.

The minimax regret principle is a measure of robustness that concerns itself with the
average performance of the booking limits. Therefore we adopt an approach where we
construct a randomly generated initial matrix intending to cover as much of the solu-
tion space as possible. We produce booking limits by solving the Randomised Linear
Programming (RLP) model (see section 2.4.2), given the generated random demand
realisations from the associated distributions to each product on sale. The demand
distribution parameters for our airline network example are given in Appendix A.

On the other hand, the maximin revenue evaluates the performance of booking limits
at the worst possible scenarios, i.e. the lowest demand points. Hence, an initial matrix

3.3. Genetic Algorithm 43

with booking limits generated from optimistic demand realisations provides no helpful
information to the algorithm and might direct the search towards local optima away
from the true global optimum. Therefore, the initial matrix is generated using the DLP
solutions to random demand realisations that are within the lower 50%. We allow
demand for each product to vary up to the 50th percentile of its associated distribution.

Thus the initial population matrix is generated by the following steps; for each allele
(product on sale) of each chromosome (candidate solution), we draw a random sample
of 1000 demand points. The random sample is drawn from the normal distribution us-
ing the product’s mean and standard deviation. To create an instance to solve, we need
to assign a demand point value to each product. This value is calculated as a random
quantile from the uncertainty interval chosen by the modeller; in our case, we chose the
interval [0.25, 0.75] for the minimax Regret and [0, 0.5] for the maximin Revenue. Once
a demand point estimate has been assigned to every product, we truncate any possible
negative values to 0. The final step is to solve a deterministic DLP for each demand
realisation drawn. Algorithm 3 shows how the initialisation procedure was coded.

Our default options set the generation size, N, to 170. This value was chosen after
performing the hyper-optimisation of the genetic algorithm’s parameters. Detailed de-
scription of the procedure followed, are given in section 3.3.4.1. Therefore 170 booking
limits are produced using algorithm 3 for each case and considered candidate solutions.

3.3.3.2 The Evaluation operator

The evaluation operator utilises the fitness function to assess the quality of the solu-
tions, ci, the genetic algorithm has generated. There are three main ways to evaluate
chromosomes. The simplest one assigns the fitness score the value calculated by the fit-
ness function employed. This strategy underperforms when the chromosomes’ fitness
values are close together as the best and worst candidate solutions are likely to pro-
duce the same number of offspring. Two standard techniques used are windowing and
linear normalisation to avoid this situation. In our design, we opt for normalisation of
the scores as it is a well-understood and straightforward procedure that works well in
practice.

Algorithm 4: Pseudo-code for a population evaluation
Inputs : Evaluation formula, Current/Last population, Last fitscores
Outputs: Current fitscores

1 Separate new and past seen individuals;
2 Identify unique newly seen individuals;
3 Evaluate fitness of unique newly seen individuals;
4 Assign the scores of newly and past seen individuals to the fitscores array;

Several treatments of infeasible solutions are available,

44 Chapter 3. Robust Capacity Control

1. Penalty functions - penalise the fitness score of infeasible solutions. This allows
an infeasible solution that is close to optimal to still be considered for selection,
albeit with a reduced score and therefore reduced probability of being selected as
a parent.

2. Death penalty - If a solution is infeasible, assign the minimum score so that it has
no chance of being reproduced or carried over to the next generation.

3. Repair Function - a third option for the treatment of infeasible solutions is to re-
pair them. While strictly speaking, this is not done in the evaluation function;
it is worth mentioning here. Introducing a repair operator that will enforce con-
straints is another option to eliminate infeasible solutions.

Minimising the number of fitness function calls is very important, especially if each call
to the function is expensive, as is the case when solving a robust exact formulation. In
our treatment we use both the death penalty and the repair function. If an offspring is
strictly infeasible then it is assigned a minimum score so that it is eliminated from future
generations. However, if the offspring violates a constraint partially, that is capacity is
exceeded in one resource of the network and there is still room in another resource then
we repair it with the aid of the mutation function. A more detailed description is given
in section 3.3.3.5

3.3.3.3 The Selection operator: Survival and Mating pool choices

The best offspring solutions are selected to be parents in the new parental population
to allow convergence towards optimal solutions. A surplus of offspring can be created,
and the best of them can be chosen as members of the new generation. The selection
can be performed based on a variety of rules:

1. Elitist - Selects the best solutions of the offspring solutions as parents.

2. Comma - Selects the µ best solutions from λ offspring solutions. This method has
the limitation that good parents can be forgotten.

3. Plus - Selects the µ best solutions from λ offspring solutions and the µ old parents
that led to their creation.

4. Roulette Wheel - Also known as fitness proportional selection selects parental
solutions randomly. The probability of being selected depends on the fitness of
a solution; the relative fitness is normalised with the sum of all fitness values in
the population. This means that every solution has a chance of being selected
while stronger solutions are more likely to move on, but good solutions can be
forgotten.

3.3. Genetic Algorithm 45

5. Tournament Selection - A subset of solutions is selected randomly, and within this
competition subset, the best solutions are selected as new parents. The second
step can be implemented with proportional fitness selection as well.

It is worth mentioning that methods that allow good solutions to be forgotten are not
necessarily wrong. The reason for this apparent contradiction is that forgetting some
good solutions may allow the algorithm to escape from local optima.

Furthermore is important to distinguish between the two uses of the selection opera-
tors. When using the selection as a mechanism to choose the parents of the new gener-
ation, it is called survival selection. The selection operator determines which solutions
survive and which solutions die. This perspective directly implements Darwin’s prin-
ciple of survival of the fittest. The second use of selection operators is to determine
the specific parents from the mating pool used to produce offspring in the crossover
operator. This operator is referred to as mating selection. It makes sense to consider
different mating selection criteria compared to survival selection criteria.

Algorithm 5: Pseudo-code for Elitist selection operator
1 Function gaSurvivalSelection()

Inputs: children, fitScores, fitEvalTime, options
Outputs: parents, parentScores, childless, worstScores

2 nParents = round((1 - options.crossoverFraction) *

options.populationSize);

3 [sortedIndex] = sort(fitscores(:), ’descend’);

4 bestIndividuals = children(sortedIndex(1:nParents), :);
5 bestScores = fitscores(sortedIndex(1:nParents));

6 worstIndividuals =

children(sortedIndex(nParents+1:options.populationSize), :);
7 worstScores = tempScores(sortedIndex(nParents+1:options.populationSize));

8 parents = bestIndividuals;
9 childless = worstIndividuals;

10 parentScores = bestScores;
11 end

We assume that the initial population passed is a good guess for the optimal solution;
therefore, we aim to exploit the initial population as much as possible. Hence, in our
treatment, we opted for the elitist method for the survival selection and the roulette
wheel method for the mating selection. Algorithms 5 and 6 describe how those meth-
ods were implemented.

The number of individuals, ci, selected to pass intact to the next generation is implicitly
determined by the crossover rate, pc. Let Osel denote the set of such ci. The set has size
equal to the proportion of the current generation not affected by crossover, |Osel | =

(1− pc) ∗ N. Further to that pc determines the number of offspring to be created by the

46 Chapter 3. Robust Capacity Control

crossover function. Let Ocross denote the set of ci that are created by crossover, then
|Ocross| = pcN.

The set Osel is created via a simple elitist approach based on the individuals’ fitness
value as seen in algorithm 5. Given the current generation Gt, each chromosome, ci, in
the generation is evaluated and assigned a fitness value, f (ci). Then the chromosomes
are sorted in descending order so that the chromosome with the highest score, f 1

ci
is

placed first and the individual with the lowest score, f N
ci

, is placed last. The first |Osel |
chromosomes are selected to pass into the next generation, Gt+1, intact.

Given that the elitist approach has created the set Osel , the chromosomes in the set Ocross

must now be created. To create ci ∈ Ocross the crossover function described in section
3.3.3.4 is used. The crossover operator requires parent chromosomes pi to be selected
from the mating pool so that crossover between those parents can be carried out. The
crossover parent selection is made via the roulette wheel strategy.

26 %

f 1(ci)

20 %

f 2(ci)

14 %
f 3(ci)

11 %

f 4(ci)

10 %

f 5(ci)

8 %

f 6(ci)

6 %

f 7(ci)

5 %
f 8(ci)

FIGURE 3.2: Graphical representation of Roulette Wheel parent selection for crossover
operation

Roulette Wheel is a random parent selection procedure that favours ci with high fitness
score, f (ci). The chance of a ci to be selected as parent is directly proportional to its
f (ci). The procedure first calculates the total fitness of the potential parents, ftot =

∑|Osel |
i=1 f (ci). Then fitness bins, bk, are created such that the first bin covers the range

between zero and the fitness score of the first chromosome in Osel , the second covers the
range between the first and second chromosome in Osel and so on. ci, [0, f (ci)]. Then
a random number, r, between [0, ftot] is generated. The first chromosome ci that has
bin value greater than the random generated number, bk > r, is selected as parent. The
procedure is repeated until the necessary number of parents are selected. The chance
of a chromosome to be selected is equal to the ratio of its fitness score over the total

3.3. Genetic Algorithm 47

fitness, f (ci)
ftot

hence chromosomes with higher fitness scores, have higher probability of
being selected as parents. Algorithm 6 presents this procedure.

Algorithm 6: Pseudo-code for Parent Selection strategy: Roulette Wheel

1: Calculate total fitness ftot = ∑
|Osel |
i=1 fci

2: Create fitness bins bk = ∑k
i=1 fci where k = 1, ..., |Osel |

3: repeat
4: Generate a random integer r ∈ [0, ftot]
5: Select the first individual ci that has bk > r as parent pi
6: until Required number of parents are selected

3.3.3.4 The Crossover operator

The crossover operator allows the combination of the genetic material of two or more
candidate solutions. There exist a number of ways to perform recombination of the
parents. The options include:

1. N-point - the classic approach where each parent is split at n-points, and the parts
are then swapped to form offspring.

2. Arithmetic - the mean value of the parents is taken for each gene.

3. Uniform - 0.5 ratio to randomly choose a gene from each parent.

4. Dominant - successively chooses each component from one of the parents based
on a dominance rule.

We have implemented methods 1,2, and 3 and compared their performance after 25
runs of 100 generations each. In our setting, the Uniform crossover seems to perform
best. The algorithms below present pseudo-code on how we have implemented each
method.

The first method we present is the traditional N-point method. We set N to equal the
number of fare classes as intuition dictates that the segments of the candidate solution
that represent a different type of product should be grouped together. It is important
to note that this method is particularly effective when using bit representation. In our
setting, we are using a vector representation where elements are positive integers, and
thus the performance of the method might not be as successful.

The second method we implemented, algorithm 8, is the Arithmetic crossover or in-
termediate crossover as it is also known. Here we take the component-wise arithmetic
mean of the parents. The method allows for more than two parents to be used. Two
variants were implemented: first, only two parents were chosen from the mating pool,

48 Chapter 3. Robust Capacity Control

Algorithm 7: Pseudo-code for Uniform crossover
1 Function gaUniformCrossover()

Inputs: parents, fitScores, options
Outputs: offspring

// Calculate # offspring to create and preallocate matrices for computational speed
2 offspringToCreate = (options.populationSize - size(parents, 1));
3 offspring = zeros(options.populationSize, options.genomeLength);
4 offspring(1:size(parents, 1), :) = parents;

// Create fitness bins
5 scores = abs(scores);
6 TotalFitness = floor(sum(scores));
7 FitnessBins = [0; cumsum(scores)];

// Initialise offspring creation index
8 iNewGeneration = size(parents, 1) + 1;

9 while offspringToCreate >= 1 do
// Choose parents from mating pool using Roulette Wheel

10 r = randi([1, TotalFitness], 2, 1);
11 NextBin = interp1(FitnessBins, FitnessBins, r, ’next’);
12 index1 = find(FitnessBins==NextBin(1))-1;
13 index2 = find(FitnessBins==NextBin(2))-1;
14 Parent1 = parents(index1, :);
15 Parent2 = parents(index2, :);

// Create new offspring by calculating the component wise mean of the parents
16 for genome = 1:options.genomeLength do
17 prob = randi([0, 1], 1);
18 if prob == 1 then
19 offspring(iNewGeneration, genome) = Parent1(genome);
20 else
21 offspring(iNewGeneration, genome) = Parent2(genome);
22 end
23 end

// Update offpsring counter and index
24 offspringToCreate = offspringToCreate - 1;
25 iNewGeneration = iNewGeneration + 1;
26 end
27 end

and second, four parents were chosen. We opted for four parents in the second vari-
ant as this would allow more input and avoid the problem of averaging out between
solutions with significant variance.

A two-point crossover function is used to create new chromosomes, cnew
i ∈ Ocross,

from selected chromosomes with high fitness scores, ci ∈ Osel , in the hopes of creating
even better solutions. To create these new chromosomes we first choose the parent
chromosomes using algorithm 6 as described in section 3.3.3.3.

A two-point crossover splits the parent chromosomes at two points, creating three sec-
tions. We choose a two-point crossover because we can determine cross-sections equiv-
alent to the fare classes of the seat inventory problem. This is desirable because we are

3.3. Genetic Algorithm 49

Algorithm 8: Pseudo-code for two parent arithmetic crossover
1 Function gaArithmeticCrossover()

Inputs: parents, fitScores, options
Outputs: offspring

// Calculate # offspring to create and preallocate matrices for computational speed
2 offspringToCreate = (options.populationSize - size(parents, 1));
3 offspring = zeros(options.populationSize, options.genomeLength);
4 offspring(1:size(parents, 1), :) = parents;

// Create fitness bins
5 scores = abs(scores);
6 TotalFitness = floor(sum(scores));
7 FitnessBins = [0; cumsum(scores)];

// Initialise offspring creation index
8 iNewGeneration = size(parents, 1) + 1;

9 while offspringToCreate >= 1 do
// Choose parents from mating pool using Roulette Wheel

10 r = randi([1, TotalFitness], 2, 1);
11 NextBin = interp1(FitnessBins, FitnessBins, r, ’next’);
12 index1 = find(FitnessBins==NextBin(1))-1;
13 index2 = find(FitnessBins==NextBin(2))-1;
14 Parent1 = parents(index1, :);
15 Parent2 = parents(index2, :);

// Create new offspring by calculating the component wise mean of the parents
16 offspring(iNewGeneration, :) = round(mean([Parent1; Parent2],1));

// Update offpsring counter and index
17 offspringToCreate = offspringToCreate - 1;
18 iNewGeneration = iNewGeneration + 1;
19 end
20 end

exploiting the structure of the problem to most likely preserve the capacity constraint
of the problem.

The new generation, Gj+1, is created by considering all possible combinations ⊥ Sk
where k = 2 of the set S of parent candidate solutions. For each pair of parents, the
crossover function divides each candidate solution at n points (in our case 2) creating
n + 1 fragments. It then crosses the fragments of the parental solutions to create new
candidate solutions as seen in Figure 3.3.

3.3.3.5 The Mutation operator

Mutation operators change a solution by disturbing them based on random changes.
The strength of this disturbance is called the mutation rate.

In the mutation function we check the offspring created by our crossover function
for feasibility. Any offspring that are feasible are left as they are. Offspring that are
infeasible are checked to identify candidate solutions that can be turned feasible either

50 Chapter 3. Robust Capacity Control

Parent 1 Parent 2

Offspring 1 Offspring 2 Offspring 3 Offspring 4 Offspring 5 Offspring 6

FIGURE 3.3: Representation of the crossover operation

Algorithm 9: Pseudo-code for the mutation operator
1 index1 = any(infeasible offspring);
2 if sum(index1) > 0 then
3 cutoffspring = cut[offspring(index1, :)];
4 offspring(index1, :) = cutoffspring;
5 end
6 if all offspring are optimal then
7 geneSwappedoffspring = geneSwap[offspring];
8 children = geneSwappedoffspring;
9 else

10 index2 = any(optimal offspring);
11 geneSwappedoffspring = geneSwap[offspring(index2,:)];
12 offspring(index2, :) = geneSwappedoffspring;
13 index3 = any(suboptimal offspring);
14 optimisedoffspring = optimise[offspring(index3,:)];
15 offspring(index3, :) = optimisedoffspring;
16 children = offspring;
17 end

by swapping allocations to products or by cutting a number of seats from an allocation
to a product. The swapping and cutting operations are done randomly so that new
solutions are generated and checked.

In general,
Gj+1 = g(Osel + Ocross)

where g(·) is the mutation function described in section 3.3.3.5.

3.3. Genetic Algorithm 51

j1

j2

...

ji

...

jm−1

jm

Offspringj before swapping operation

j1

j2 − 1

...

ji + 1

...

jm−1

jm

Offspringj after swapping operation

+1−1

FIGURE 3.4: Example of swapping in a candidate solution

3.3.3.6 Termination conditions

The termination conditions define when the main evolutionary loop terminates. Again,
a number of options are available:

1. maxIterations - The most common termination condition is a predefined num-
ber of generations. The algorithm stops after running a predefined maxIterations

number of iterations.

2. maxTime - The algorithm stops after running for an amount of time in seconds
equal to MaxTime.

3. MaxStallGenerations — The algorithm stops when the average relative change
in the fitness function value over a number of generations is less than Function
tolerance.

As with most metaheuristics, the algorithm can terminate if any or a combination of
the following criteria are met:

• A prespecified number of iterations has been completed. This is set to 60.

• A prespecified number of iterations has been completed without improvement in
the fitness function. This is set to 20 iterations where the change in the best fitness
function is less than the function tolerance which is set to 0.000001. Improvement
in the function is taken from the average

fmax − f̄

52 Chapter 3. Robust Capacity Control

3.3.4 Hyper-optimisation of the genetic algorithm’s parameters

To optimise the performance of the algorithm we pay attention to the parameters of
the genetic operators. Fine tuning these hyper-parameters can help make the algo-
rithm more efficient in terms of computational speed, accuracy and performance. As
expected, a single optimal value for each of these parameters for any type of problem
does not exist. The optimal value of these parameters depends on the application in
question.

Meta-Genetic algorithms are heuristics designed to optimise these parameter values.
Such algorithms are computationally expensive as they employ a genetic algorithm to
optimise the parameters of the genetic algorithm used to solve the original problem.
Furthermore, in our specific application the fitness function is a second order conic
problem which is tractable but can be computationally demanding. Hence we avoid
such treatment and instead apply a simple grid search. Grid search seems appropri-
ate because the search space is discrete and an exhaustive search in a small subset of
possible values for these hyper-parameters is tractable.

To gauge the performance of the algorithm we pay attention to 4 parameters: popu-
lation size N, crossover fraction pc, crossover operator and selection operator. We op-
timise two measures: the objective function value and the average simulated revenue
generated.

We apply a grid search approach for each parameter where we fix all other parameters
to a certain value and only alter the value of the parameter in question. The initial set of
parameters is indicated by bold while the range of the investigated values is also given
in Table 3.4.

Typical sets are C = {pc|0.5 ≤ pc ≤ 1} for the crossover parameter and M = {pm|0.001 ≤
pm ≤ 0.05} for the mutation function. In this section we present the experiment design
we employed and the results it yielded in optimising the parameters of the genetic
algorithm.

Parameter Value

Population Size 10 : 10 : 200
Crossover Fraction 0.1 : 0.1 : 1
Crossover Operator Arithmetic mean, Uniform, N-point
Selection Operator Elitist, Roulette Wheel

TABLE 3.4: Investigate parameter values for the GA

The experiment setting was 20 runs of the genetic algorithm on each specified combina-
tion of parameters and then the objective values as well as the simulation results of the

3.3. Genetic Algorithm 53

yielding 20 optimal solutions are recorded. These simulation results and objective val-
ues are then compared to decide upon the optimal set of parameters. Sections 3.3.4.1,
3.3.4.2, and 3.3.4.3 present the results of the grid search experiment performed.

3.3.4.1 Population Size

Grefenstette (1986) argues that population size is critical to the efficiency of a genetic
algorithm. He asserts that small populations might lead to only suboptimal solutions
because not enough of the search space is covered, while too large populations might
demand too high computation times, thus unfavourable for the algorithm’s designer.

To evaluate these statements and choose the population size, N, we run the GA for
multiple values N ∈ {10, 20, . . . , 200} and plot the results as demonstrated in Figure
3.5. For each value of N, 20 runs of the algorithm are performed, where each run has
the same initial population. A red dash represents the objective value of each run, while
the blue dot represents the mean objective value for that N.

£62,000

£63,000

£64,000

£65,000

£66,000

O
bj

ec
ti

ve
V

al
ue

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

£68,000

£69,000

£70,000

Population Size - N

Si
m

ul
at

ed
R

ev
en

ue

FIGURE 3.5: Performance comparison of population size

Figure 3.5 does not yield an optimal value for the population size to use in our applica-
tion. We do, however, inspect the following: first, it is clear that minimal values for N
(10,20) are very inflexible. They do not provide enough coverage of the solution space
and converge too quickly to a suboptimal solution, as demonstrated by the smaller ob-
jective values and small variability among them. Second, slightly larger N (30-70) suffer
because the algorithm does not always converge. This is evident by the high variability
in the objective values, denoted as longer red tails in the graph. Third, we argue that
performance is enhanced by having a population greater than 100. For N ∈ [100, 170]
we observe increasing mean values and shorter tails; that is, the algorithm is more sta-
ble and finds better optimal solutions. In the experiment, the best performance was

54 Chapter 3. Robust Capacity Control

achieved at a population size of 170 chromosomes. Finally, it is interesting to draw
attention to the slight performance deterioration for values N greater than 170. This is
perhaps because too much variability is added.

While with the objective value measure, we were looking for the population size that
will deliver the highest and most precise results, with average simulated revenue, high
returns are not the desired outcome. This is because the objective function of the GA is
to maximise the minimum revenue, that is, to find the booking limits that will generate
the best revenue in the worst-case scenarios of demand, not the highest revenue on
average. Furthermore, small populations yield results closer to a DLP solution to a
single demand realisation. These solutions are the same for all 20 runs and perform the
same in the simulation, yielding higher average revenue than solutions with a higher
initial population size that consider more of the solution space and are more effective in
going along the trade-off line of average vs minimum revenue. Figure 3.5 demonstrates
this behaviour.

3.3.4.2 Crossover Fraction

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
6.2

6.3

6.4

6.5

6.6
·104

Crossover Fraction

O
bj

ec
ti

ve
V

al
ue

FIGURE 3.6: Performance comparison of alternative crossover fractions

Another important parameter is the crossover fraction which defines the percentage of
the population that will be created via the crossover operator. It can take values in (0, 1)
where having a value of 0 would mean that no crossover occurs while having a value
of 1 would mean that no chromosome from the starting population survives intact to
the next generation, both being undesirable properties and thus excluded by design.
Figure 3.6 presents the results of our experiment. Here the value setting of 0.8 seems to
be clearly outperforming the rest.

3.3.4.3 Crossover Operator

The crossover parameter is the first and perhaps most important genetic operator. Fig-
ure 3.7 clearly demonstrates that the choice of the operator has a significant effect on

3.3. Genetic Algorithm 55

the objective value by the clear gaps between the objective value lines for each of the
three possible operators.

It is easy to ascertain that the uniform crossover performs best in our experiment as in
all but one of the 20 runs of the algorithm, it has achieved the highest objective value.
Furthermore, on average it outperforms the arithmetic crossover by 1200 units while it
almost yields 2900 units more compare to the N-point crossover.

3.3.5 Convergence

Here we present some figures that illustrate the convergence of the implemented algo-
rithm. Figure 3.8 the minimisation of the maximum Regret, formulation 3.2a using an
ellipsoidal uncertainty set. We present two algorithm runs where the parameters are
set to the values defined by our grid search.

On the x-axis, we have the number of iterations the algorithm has completed, and on
the y-axis, the objective value. From each generation, we record the minimum, mean
and maximum scores. The figure illustrates three distinct features:

• First, there exists a clear downward trend. This is the desired behaviour as the
objective was to minimise the maximum Regret. One can see that the best answer
we obtain at the end of the algorithmic run is better than the best solution in the
original population.

• Second, the spread of the summary scores diminishes as iterations progress. Again
this is the desired effect as we want our algorithm to convergence to a single so-
lution.

• Third, it is clear that the score lines are not monotonically decreasing. The ab-
sence of monotonicity is an indication that the algorithm successfully continues

0 2 4 6 8 10 12 14 16 18 20
6.2

6.4

6.6

6.8
·104

Run

O
bj

ec
ti

ve
V

al
ue

Uniform Arithmetic N-point

FIGURE 3.7: Performance comparison of crossover operators

56 Chapter 3. Robust Capacity Control

O
bj

ec
ti

ve
va

lu
e

Iteration
0 5 10 15 20 25 30

0.8

1

1.2

1.4

1.6

1.8

·104 Run 1
Max

Mean

Min

0 10 20 30 40

0.8

1

1.2

1.4

1.6

1.8

2

·104 Run 2
Max

Mean

Min

FIGURE 3.8: GA convergence of the minimax regret criterion under ellipsoidal uncer-
tainty using the GUROBI solver

the exploration of the solution space throughout the search, and the random per-
mutations to the individuals that might yield worse objective values than chil-
dren from the previous generations might still enter the next generation to be
calculated.

O
bj

ec
ti

ve
va

lu
e

Iteration
0 5 10 15 20 25 30

6

6.2

6.4

6.6

6.8

7

·104 Run 1

Max

Mean

Min

0 10 20 30 40 50

6

6.2

6.4

6.6

6.8

7

·104 Run 2

Max

Mean

Min

FIGURE 3.9: GA convergence of the maximin revenue criterion under ellipsoidal un-
certainty using the GUROBI solver

Similarly figure 3.8 presents the maximisation of the minimum Revenue, formulation
3.2a using an ellipsoidal uncertainty set. The same observations made for the minimi-
sation of the maximum Regret are also made here, with the difference that the trend
now is upwards as expected.

3.4. Conclusion 57

3.4 Conclusion

In this chapter, we reconsider the robust formulation introduced by Perakis and Roels
(2010). Our contributions to the treatment of the robust network models is twofold;
first, we use ellipsoidal uncertainty sets to characterise demand, in addition to the poly-
hedral uncertainty sets originally proposed. The use of Ellipsoidal sets in the optimi-
sation of the inner problem leads to increased revenue but at the expense of increased
computation times. Second, we design and implement a genetic algorithm to optimise
the outer problem. The genetic algorithm results surpass the revenue gained by the
local gradient descent initially suggested Perakis and Roels (2010), but it also signifi-
cantly increases computation time.

59

Chapter 4

Numerical Results

This chapter presents our numerical experiments and compares them to those pre-
sented in de Boer et al. (2002) and Perakis and Roels (2010). We compare partitioned,
nested, and bid-price controls for the booking limits suggested by the DLP, RLP, EMR
models described in section 2.4.2 and the two robust measures minimax regret and
maximin revenue, seen in section 3.2.1, using both polyhedral and ellipsoidal uncer-
tainty sets. To compare them, we perform a simulation of the booking horizon, which is
described in detail in section 4.1 and the booking request acceptance procedure, which
is detailed in section 4.2.

The chapter is organised into six sections: The first two sections describe the demand
model and the booking acceptance algorithms we implemented to simulate the book-
ing period. The third section introduces the small forward serial network on which
our comparisons are built. The following three sections detail the numerical results of
the seven models we investigate for each of the three booking controls we implement:
partitioned, nested and bid-prices, respectively. The final section summarises the con-
clusions we draw from our results.

4.1 Simulating The Booking Period

Before we go on to present the allocation of seats to the different booking buckets cal-
culated by the different models described in Sections 2.4.2 and 3.2.1, we first introduce
the demand model and the algorithms that enforce the booking control policies de-
scribed in Section 2.2. This provides a testing environment for the booking period and
allows us to calculate the expected number of accepted and denied booking requests
according to the booking control policy we wish to implement.

Demand for the different products is usually assumed to be stochastic, thus simulating
the booking horizon is a very important step in solving NRM problems. It provides

60 Chapter 4. Numerical Results

a powerful tool in emulating the arrival process of itinerary requests within the book-
ing period. This is achieved by modelling the order and intensity of booking requests
arrivals, while group bookings and overbooking are features that can be incorporated
into the model. This is of importance because it provides a way to evaluate the effec-
tiveness of the seat allocations produced by the approximation models and our opti-
misation procedure in life-like situations and it can illuminate the effect of the different
booking control policies on the expected revenue.

The process of arrival of booking requests is an important factor in the simulation of
the booking period. Mathematical models have been developed in an effort to emulate
the intensity with which booking requests arrive. We follow Weatherford et al. (1993)
approach who try to capture this variability in the booking period by simulating the
arrival process using a Non-homogeneous Poisson process (NHPP). His approach has
been widely used in the academic literature to simulate the arrival process of booking
requests. de Boer et al. (2002), Bertsimas and De Boer (2005), Perakis and Roels (2010)
are just a few of the academics that follow the same approach. Mathematically the
process is characterised by the equation,

λj(t) = Bj(t)Gj (4.1)

where the Bj(t) follows a standardised beta distribution

Bj(t) =
1
T

(
1
T

)α−1 (
1 − t

T

)β−1 Γ(α + β)

Γ(α)Γ(β)

where T is the length of the booking period, with scale parameter α and shape param-
eter β. Gj follows a gamma distribution with shape parameter p and scale parameter
q.

In this model the arrival intensity λj(t) depends on two factors. The Expected Total
number of bookings, given by Gj a gamma random variable, and the Arrival pattern,
given by Bj(t) a standardised beta distribution. Gj follows a gamma distribution be-
cause as de Boer et al. argue it has been shown to fit airline booking data. Bj(t) is
modelled by a beta distribution because of its flexible shape and its limited range (it is
only valid between 0 and 1).

This model assumes that demand for each product is independent and that sales of
different products do not affect future demand.

Figure 4.1 displays the plots of three distributions that can be used to model the arrival
process of booking requests during a booking period. The three distributions param-
eters are as in Appendix A. The parameter values are identical to de Boer et al. (2002)
for the Γ and B distributions while the Normal distribution parameter values, µ and σ

are as in Perakis and Roels (2010).

4.1. Simulating The Booking Period 61

−10 −5 0 5 10 15 20 25 30 35 40 45 50 55
0.00
0.02
0.04
0.06 Fare Class 3

Fare Class 2
Fare Class 1

(A) Booking requests per Fare Class modelled as Normal Distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.00
2.00
4.00
6.00

Fare Class 1
Fare Class 2
Fare Class 3

(B) Pattern of arrivals per Fare Class modelled by Beta Distribution

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0.00
0.05
0.10
0.15
0.20

ODF 1 ODF 2 ODF 3 ODF 4 ODF 5 ODF 6 ODF 7

(C) Booking requests per ODF combination modelled as Gamma Distributions G(p, y)

FIGURE 4.1: Modelling Booking requests

It is evident from Figure 4.1a that simulating the arrival process of booking requests as
Normal random variables is not a good approximation to reality. Firstly, the left tails of
the distributions are taking negative values. This means that there is a small probability
that a negative number of booking requests arrives in the simulation, which does not
hold in reality. Secondly, the shape of Normal Distribution does not reflect the arrival
pattern of the different Fare Classes according to historical data. In this application
high fare customers arrive late in the booking period while low fare customers arrive
early and are unlikely to book towards the end of the period. Fare Class 2 customers
are spread in between the previous two categories. Figure 4.1b displays the desired
behaviour which is achieved with the parametrisation given to the Beta distribution
as seen in Appendix A. Finally, Figure 4.1c shows the expected number of booking
requests per ODF product to be arriving in the booking period modelled as a Gamma
Distribution.

As Equation 4.1 dictates, we combine the Gamma distributions modelling the expected
number of booking requests per ODF (intensity) with the Beta distributions modelling
the pattern of arrivals (order).

Figure 4.1 presents the MATLAB simulation for the non-homogeneous Poisson arrival
process in two graphs. The first graph presents the arrival intensity, λj(t), as generated
by the beta-scaled gamma distributions seen in Figures 4.1b, 4.1c. The second graph,
Figure 4.2b, is the Mean Arrival Rates generated from a Poisson Arrival Process with
rate λj(t).

62 Chapter 4. Numerical Results

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.2
0.4
0.6
0.8

1

(A) Lambda for Simulated Arrival Intensity

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.5

1

1.5

(B) Mean Arrival Rates

FIGURE 4.2: Comparison of Mean Arrival Rates, lambda parameters

4.2 Booking Acceptance Process Algorithms

A further important factor in simulating the booking period before a plane’s departure
is the booking acceptance process. Here we specify the rules that govern the acceptance
or decline of a booking request. These processes form part of reservation systems and
are derived from the different types of booking controls examined in Section 2.2. In this
section, we present three algorithms that are designed to represent partitioned booking
limits, nested booking limits and bid-price controls.

Mathematical Notation To introduce the algorithms some notation is needed. Let
x = [xj | j = 1, ..., n] denote the vector of seat allocations to each product j. C = [Ck | k =

1, ..., m] is the remaining capacity for each leg k of the network. A booking request for
a product j arriving to the system at time t is represented by P(t) = [Pj(t) | j = 1, ..., n]
and the number of accepted booking requests per product is denoted by the vector
q = [qj | j = 1, ..., n]. The itinerary of the booking request for product j is represented
by Ij. Let the dual prices of the capacity constraints be denoted by πk and the threshold
prices for each product j be Tj.

4.2.1 Partitioned Booking Limits

Algorithm 10 implements the partitioned booking limits control policy. It is a straight-
forward policy where each product is a booking bucket in its own right. Therefore there
are n booking buckets. Booking requests for a booking bucket can only be allocated to
the requested bucket and to no other. If a bucket is closed or sold out, then the request
cannot be accepted into any other bucket.

4.2. Booking Acceptance Process Algorithms 63

Algorithm 10: Pseudo-code for simulating booking acceptance for partitioned book-
ing limit control policy
Ensure: Ck = Total Capacity ∀ k, qj = 0 ∀ j, bj = xj ∀ j

1: if Pj(t) > 0 then
2: if bj >= Pj(t) accept booking request then
3: bj = bj − 1
4: Ck = Ck − 1 ∀ k ∈ I
5: qj = qj + 1
6: else
7: Decline request
8: end if
9: if New request arrives then

10: Go to step 1
11: end if
12: end if

The algorithm initialises by setting the state of the remaining capacity per leg, Ck, equal
to the total capacity of the plane servicing each leg k. The number of accepted booking
requests for product j, qj, is set equal to zero for all products j. The booking limit of
each bucket bj is equal to the seat allocation xj calculated by any of the approximation
models described in section 2.4.2.

When a booking request, Pj(t), for a product j arrives at time t, it must be considered for
acceptance. Since the booking request can only be allocated to the requested bucket, we
only have to check if there is space available in that bucket. We do so in Step 2. If seats
are available in the booking bucket, the request is accepted, and we proceed to Step
3, where we adjust the quantities of booking limits, remaining capacity, and accepted
requests. On the other hand, if there is not enough space in the bucket, the request
is denied immediately. The process is then repeated from Step 1 when a new request
arrives.

4.2.2 Nested Booking Limits

As already discussed in section 2.2.2, an intuitive extension to the partitioned booking
limits policy is the nested booking limits policy. It allows higher-ranked products ac-
cess to seats reserved for lower-ranked products. Below we present Algorithm 11 for
nested booking limits as proposed by de Boer et al. (2002).

In Step 0, the initialisation of the algorithm takes place. The remaining capacity is set
to the total capacity for each resource k. The vector of accepted booking requests is set
equal to 0. In Step 1, a booking request Pj(t) for a product arrives and is considered
for acceptance. In Step 2, the quantity bj is defined as the number of seats we wish
to protect for each product j against lower-ranked products for the remainder of the
booking horizon. Initially, bj = xj ∀j where xj is the seat allocation produced from any

64 Chapter 4. Numerical Results

Algorithm 11: Pseudo-code for the nested booking limit control
Ensure: Ck = Total Capacity ∀ k, qj = 0 ∀ j

1: while Pj(t) > 0 do
2: bj = max{xj − qj, 0}
3: bk = ∑

s∈Sk ;(xj)>(Pj)
b+j for each k ∈ I

4: cmin = min{Ck − bk|k ∈ I}
5: if cmin > 0 accept booking request then
6: Ck = Ck − 1 ∀ k ∈ I
7: qj = qj + 1
8: else
9: Decline request

10: end if
11: end while

approximation or robust model formulation described previously. In Step 3, the vari-
able bk is introduced, which is defined as the number of seats that need to be protected
at each leg k of the itinerary I for all products that are ranked higher than the product
requested. Then the minimum capacity is calculated as the minimum number of seats
available among all legs in the itinerary I of the requested product. If there is still ca-
pacity available, then the booking request is accepted, and the quantities C and q are
adjusted accordingly in Steps 6 and 7. Otherwise, the booking request is rejected, and
we return to Step 1 when a new request arrives.

4.2.3 Bid Prices Control

The final algorithm implements the control of static bid prices. The “static” in the de-
scription indicates that the displacement cost or shadow price for each leg πk is calcu-
lated once at the beginning of the booking horizon and not recalculated thereafter. We
assume that revenue depends on the remaining capacity in a linear way.

Algorithm 12: Pseudo-code for simulating booking acceptance for bid-prices book-
ing control policy
Ensure: Ck = Total Capacity ∀ k, qj = 0 ∀ j, π = [πk | k = 1, ..., m]

1: while Pj(t) > 0 do
2: Tj = ∑

k∈Ij

πk

3: if f j ≥ Tj and Ck > 1 ∀ k ∈ Ij then
4: Accept booking request and update values:
5: Ck = Ck − 1 ∀ k ∈ Ij
6: qj = qj + 1
7: else
8: Decline request
9: end if

10: end while

4.3. Airline network example 65

The algorithm initialises by setting the remaining capacity equal to the total capacity
of each resource of the network, and the number of accepted requests is equal to 0.
The variables πk are set equal to the shadow prices of each leg as calculated by any of
the models described in section 2.4.2. When a booking request arrives, it is considered
for acceptance. The threshold price associated with the product request Tj is equal to
the summation of the shadow prices of the legs the itinerary of the product in request
uses. In step 3, we check whether the requested product’s fare value is greater than
or equal to its threshold price and if there is enough capacity left for the requested
product. If these two conditions are met, then the request is accepted, and the quantities
of remaining capacity and accepted requests are adjusted accordingly. If the fare price
is lower than the threshold price or there is not enough capacity, the request is denied.
When a new request arrives, we repeat the process from Step 1.

4.3 Airline network example

To aid comparison, we use the example network, presented in Figure 4.3. It is the net-
work first introduced in Talluri and Van Ryzin (2006) and was also analysed by de Boer
et al. (2002) and Perakis and Roels (2010) whose work we expand. The methodology
presented in Chapter 3 was implemented in MATLAB, and the optimisation carried out
using the GUROBI solver.

A B C D75, 125, 250

130, 170, 400

200, 320, 460

100, 150, 330

160, 200, 420

80, 110, 235

FIGURE 4.3: Small Serial Network

In this example, four cities are arranged in series, represented by nodes in the diagram.
Flights are assumed to be in one direction only. This yields 6 OD pairs represented by
straight and dotted arcs. Straight lines represent OD pairs A-B, B-C and C-D, which are
direct itineraries that use single legs in the network. On the other hand, dotted lines
represent OD pairs A-C, A-D and B-D, which are itineraries that use multiple legs of
the network. For example, a customer requesting an itinerary A-C would use leg A-B
and then leg B-C of the network.

66 Chapter 4. Numerical Results

There are three Fare Classes for each OD pair. Fare Class 1 has the highest value, and
Fare Class 3 has the lowest. This yields 18 unique ODF combinations. Table 4.1 sum-
marises this information and reports the fare value for each ODF combination. The
numbers in brackets are used as an index for the products in what follows.

OD number Origin-Destination Fare class 3 Fare class 2 Fare class 1

1 A-B £75 (1) £125 (7) £250 (13)
2 A-C £130 (2) £170 (8) £400 (14)
3 A-D £200 (3) £320 (9) £460 (15)
4 B-C £100 (4) £150 (10) £330 (16)
5 B-D £160 (5) £200 (11) £420 (17)
6 C-D £80 (6) £110 (12) £235 (18)

TABLE 4.1: Origin-Destination-Fare combinations for linear network example

4.4 Partitioned Booking Limits

The easiest booking control policy, π, to implement is partitioned booking limits. Un-
der this policy the number of buckets, n, is equal to the number of ODF combinations
and each ODF is a bucket on its own.

4.4.1 DLP: Low, Mean and High Demand

The problem is solved initially using the DLP model, where, by definition, demand is
represented deterministically. We solve the model for three demand scenarios: low,
medium and high demand. We do so to highlight how extreme demand scenarios
affect the allocation of resources. Even though the low and demand scenarios are un-
realistic we do gain valuable insides from examining them. The low demand scenario
represents an extreme worst-case instance of the problem and has a direct connection
to robust formulations. The high demand scenario provides an upper bound to the ex-
pected revenue albeit a weak one as the probability of demand for all products to be at
its highest level simultaneously is insignificant.

To acquire deterministic values for these scenarios, we assume that demand follows
a Normal distribution as parametrised in Table A.1. We then generate 1000 random
numbers from the normal distribution for each booking bucket. For the mean demand
scenario we take the expected values of demand, E[D], for each booking bucket. For
the low demand scenario, we take the lower bound of demand for each booking bucket,
ls ∀ s, to be the 25th percentile of the random generated numbers. This is an unrealis-
tically pessimistic scenario because it is unlikely for demand to be low for all booking
buckets simultaneously. Lastly, for the high demand scenario, demand for each bucket

4.4. Partitioned Booking Limits 67

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

£20000

£40000

£60000

£80000

£100000

ODF product

Low Demand

Mean Demand

High Demand

FIGURE 4.4: Expected Revenues per ODF product with Partitioned booking limits as
produced by the DLP method

is set to an upper bound, us ∀ s, that is equal to the 75th percentile of the randomly gen-
erated numbers. The DLP is then solved for each scenario and the partitioned booking
limits calculated are presented in Table 4.2. It is worth noting that every time a new set
of normal random numbers is generated, the lower and upper bounds of demand take
new values leading to slightly different booking limits for these scenarios.

It is clear from Table 4.2 that for the high demand scenario, more seats are reserved for
the high-priced Fare Class 1 products while almost all of the low-priced Fare Class 3
products are closed. This is an intuitively sound result since if there is a high demand
from Fare Class 1 customers to fill the capacity, then the vendor will always prefer to sell
Fare Class 1 customers instead of lower-valued Fare Class 2 or Fare Class 3 customers
since it is more profitable.

On the other hand, when demand for all products is low, more seats are allocated to the
lower-paying customers who have a higher total expected number of booking requests.
High Fare Classes are still open but are allocated a significantly lower number of seats.

OD pair Low Demand Mean Demand High Demand

Class3 Class2 Class1 Class3 Class2 Class1 Class3 Class2 Class1

1 36 29 11 41 40 30 3 50 48
2 29 12 5 0 25 20 0 0 34
3 20 16 5 0 24 20 0 31 34
4 20 12 5 30 20 20 0 27 34
5 20 13 10 1 20 20 0 11 29
6 36 29 16 45 40 30 2 50 43

TABLE 4.2: Partitioned booking limits (DLP) for Low, Mean and High Demand

68 Chapter 4. Numerical Results

Scenario Expected
Revenue

Simulated Revenue 90% Confidence
Intervals

5th
Percentile

10th
Percentile

15th
Percentile

Min Average Max StD

Low £53,585 £45,020 £51,367 £53,585 £1,121 £51,341 £51,393 £49,280 £49,845 £50,165
Mean £84,915 £48,730 £69,767 £83,390 £5,365 £69,642 £69,892 £60,510 £62,615 £64,060
High £103,050 £35,290 £65,146 £91,170 £8,969 £64,937 £65,355 £50,123 £53,460 £55,798

TABLE 4.3: Comparison of Expected and Simulated Revenues for Low, Medium and
High Demand scenarios

The expected revenue is calculated for the partitioned booking limit control policy by
multiplying the fare value for each ODF by the number of seats allocated to each book-
ing bucket. Let xπ

s be the column vector indicating the number of seats allocated to
each booking bucket, s for policy π ∈ Π. Let f = [f1, f2, ..., fn] be the column vector of
fare values for each ODF, j = [1, ..., n]. When π is the partitioned booking limits control
policy, then the number of booking buckets is equal to the number of ODF products
and thus, E[Revenue] = f ′xπ

s .

Figure 4.4 displays a plot describing the aggregated expected revenues generated by
each ODF combination for the low, mean and high realisations of demand. It is impor-
tant to note that even though it has been proven that the objective value for the mean
demand scenario is indeed an upper bound for the expected revenue of the network
(Cooper, 2002), the best case scenario is adding information to the solution space of the
problem. This proves particularly useful when solving problems 3.2.1 using the genetic
algorithm (see Section 3.3).

To test the seat allocation and the booking control policy, we run 5000 simulations of
the booking period. To ensure a partitioned control policy, we use Algorithm 10 to ac-
cept or deny requests. The motivation for this experiment is to compare the expected
and simulated revenues. The numerical results suggest that the limited use of parti-
tioned booking limits in real-life applications is justified. We report the expected rev-
enue as calculated using seat allocations to buckets generated by the DLP model. We
also report summary statistics for the simulated revenue including 90% confidence in-
tervals and to assess the lower end of the simulated revenue distribution we report the
5th, 10th, and 15th percentile. The results are displayed in Table 4.3.

OD Pair
Fare Class 3 Fare Class 2 Fare Class 1

Booking Sold Total Booking Sold Total Booking Sold Total
Limits Seats Requests Limits Seats Requests Limits Seats Requests

1 3 3 48 50 34 34 48 10 10
2 0 0 46 0 0 20 34 12 12
3 0 0 36 31 17 17 34 34 35
4 0 0 23 27 10 10 34 18 18
5 0 0 40 11 11 27 29 13 13
6 2 2 46 50 34 34 43 30 30

TABLE 4.4: Booking Limits, Sold Seats and Total Requests for the High demand sce-
nario

4.4. Partitioned Booking Limits 69

The immediate conclusion drawn is that the DLP significantly overestimates the gener-
ated revenue. It is also evident that partitioned booking limits are a suboptimal control
policy. We illustrate this by a closer examination of the high demand scenario. Table
4.4 is an example of the results generated from a single simulation run. As noted before
most of the Fare Class 3 buckets are closed even though there was a considerable num-
ber of requests for them. Fare Class 2 buckets are either sold out or demand is less than
the allocated capacity to each bucket. For example ODF 7 has a 50 seat allocation but
there was only 34 booking requests during the booking period and thus only 34 seats
are sold. Here lies the limitation of partitioned booking control policy. The 16 seats left
cannot be sold to any other bucket. This means that there are empty seats in the plane
even though there were customers willing to fly. All booking buckets highlighted suf-
fer from the same limitation. This also explains the significant difference between the
expected revenue which assumes a full capacity of 200 passengers for every leg of the
network and the simulated capacity which is only 110, 115 and 141 passengers for legs
A-B, B-C and C-D respectively.

4.4.2 Comparison of Previous Approximation Models

OD number DLP EMR RLP

Class3 Class2 Class1 Class3 Class2 Class1 Class3 Class2 Class1

1 41 40 30 42 40 40 39 38 30
2 0 25 20 0 18 22 6 17 19
3 0 24 20 0 21 17 4 23 20
4 30 20 20 23 19 27 21 19 21
5 1 20 20 15 16 22 8 18 19
6 45 40 30 38 36 35 34 39 29

Expected Revenue: £84, 915 £71, 767 £82, 370

TABLE 4.5: Comparison of Partitioned booking limits from MP Models

In Table 4.5 the partitioned booking limits and expected revenue produced by the DLP,
EMR and the RLP models introduced in Section 2.4.2 are compared.

Our results are identical to what de Boer et al. (2002) report for the DLP and EMR
models. It is evident that the DLP model yields considerably more expected revenue,
provided that the capacity of the planes is filled. This is a somewhat unexpected result
in the intuitive sense since incorporating the stochasticity of demand should have re-
sulted in higher revenue. To this end, as an extension to the de Boer et al. (2002) study,
we implemented the RLP model that incorporates demand stochasticity. It performs
considerably better than the EMR and only slightly worse than the DLP. In general, the
RLP booking limits are almost identical to the DLP booking limits for Classes 1 and 2.
The RLP however is distinctly different for Class 3 since it allocates seats to OD 2 and 3
therefore allowing bookings for these products in contrast to the other two policies. It
is important to note that the RLP is seldom used to produce partitioned booking limits,
but rather for calculating bid prices.

70 Chapter 4. Numerical Results

Scenario
Expected
Revenue

Simulated Revenue 90% Confidence
Intervals

5th
Percentile

10th
Percentile

15th
PercentileMin Average Max StD

DLP £84,915 £48,730 £69,767 £83,390 £5,365 £69,642 £69,892 £60,510 £62,615 £64,060
EMR £71,767 £44,435 £70,757 £86,475 £6,136 £70,615 £70,900 £60,458 £62,753 £64,315
RLP £82,370 £45,165 £68,588 £80,955 £5,272 £68,466 £68,711 £59,463 £61,773 £63,088

TABLE 4.6: Comparison of Partitioned booking limits of traditional approximation
models

Another simulation of the booking period is run to test the different allocations pro-
duced by our traditional approximation models. The simulation has 5000 iterations
and Table 4.6 displays the summary statistics of the results.

The simulation results suggest that the EMR seat allocation to the booking buckets,xs,
performs the best under the partitioned booking limit control policy. It generates the
highest average simulated revenue, and even though the variation of this model is
slightly higher than the DLP or the RLP, the spread of the 90% confidence interval is
small. Furthermore, it is the only model that generates a Simulated Revenue close to
its Expected Revenue. This is primarily because the model’s objective function takes
into account the stochasticity of demand, which is not the case for the DLP or the RLP
models.

4.4.3 Robust Controls

In this section, we present results for the robust models described in Chapter 3 (section
3.2.1) using partitioned booking limits and compare them with results from Perakis and
Roels (2010) and de Boer et al. (2002). As the genetic algorithm has a random element,
we record 10 runs of the algorithm and find the best solution.

Table 4.7 presents the partitioned booking limits of 10 runs of the maximin Revenue
model. The seat allocation to each bucket (s), the expected revenue (f ′x), maximum
regret (ρ) and maximin Revenue (ϕ∗) for each instance are presented. We choose the
booking limits for the maximin Revenue model that return the highest maximin Rev-
enue objective value.

To calculate the minimax Regret (ρ∗) partitioned booking limits we also run 10 in-
stances of the model. This criterion tries to minimise the maximum regret and is on
average less conservative than the maximin Revenue criterion. This yields significantly
higher expected revenue because less seats are protected for the lower Fare Classes 2
and 3 while more seats are protected for the higher Fare Class 1.

The ellipsoidal uncertainty sets provide different booking limits as seen in Table 4.9.
Since demand for the products is characterised differently we see that, less seats are
protected for Fare Class 1 compared to the allocation of the polyhedral minimax regret.

4.4. Partitioned Booking Limits 71

Fare s Runs

Class 1 2 3 4 5 6 7 8 9 10

3

1 44 40 38 42 36 43 38 34 43 43
2 11 17 30 23 19 28 20 29 30 30
3 22 25 15 25 23 17 22 19 17 19
4 24 25 25 14 17 21 23 20 26 19
5 23 21 21 29 22 17 17 25 12 22
6 39 42 42 35 42 45 47 39 43 43

2

7 39 34 36 34 34 32 35 33 34 34
8 20 19 15 17 19 20 19 18 17 16
9 21 21 21 19 20 21 20 20 21 17

10 19 17 15 16 19 16 18 15 18 17
11 17 12 16 13 16 17 16 13 16 16
12 33 35 39 33 30 31 34 33 42 37

1

13 23 24 18 17 22 19 24 28 18 20
14 10 10 10 10 11 10 11 9 10 11
15 10 10 10 12 12 10 10 10 10 10
16 9 9 9 9 9 9 9 9 9 10
17 14 13 13 13 13 14 13 13 14 13
18 19 20 21 20 21 26 20 21 25 22

f ′x (£) 70,870 70,160 68,945 68,730 70,365 70,325 70,405 69,870 70,690 69,945
ρ (£) 26,025 26,425 27,860 28,495 26,320 26,400 26,420 26,715 26,545 26,640

ϕ∗ (£) 67,280 67,830 67,340 67,170 67,110 67,395 67,590 66,885 67,245 67,515

TABLE 4.7: 10 runs of the Maximin Revenue partitioned booking control policy

Fare s Runs

Class 1 2 3 4 5 6 7 8 9 10

3

1 45 21 42 44 23 41 44 40 33 45
2 1 26 4 5 12 0 0 4 4 0
3 2 4 11 3 15 0 0 8 16 0
4 27 9 27 26 9 33 34 20 6 29
5 2 13 9 14 3 0 0 7 12 1
6 41 32 39 41 39 42 50 42 32 47

2

7 34 43 40 35 37 39 40 34 38 40
8 16 5 5 12 11 18 20 18 18 17
9 22 22 21 21 23 22 22 19 15 21

10 20 17 17 19 21 19 21 21 23 21
11 17 16 16 10 15 21 14 13 18 35
12 42 38 31 34 33 41 40 35 33 35

1

13 37 37 35 34 35 36 32 35 35 35
14 23 22 23 22 23 22 23 23 22 23
15 20 20 19 20 19 19 18 19 19 19
16 27 25 26 26 27 25 27 26 24 28
17 22 21 21 21 21 21 21 22 22 21
18 32 34 33 36 32 33 35 34 33 35

f ′x (£) 88,555 86,800 86,705 86,755 86,360 87,635 87,925 87,090 85770 88,580
ϕ (£) 58,270 57,840 59,145 59,030 58,040 57,690 57,60 59,755 58,640 57,910
ρ∗ (£) 12,545 13,160 12,275 12,770 13,405 12,910 13,660 12,640 13,405 12,630

TABLE 4.8: Minimax Regret Partitioned booking control policy for 10 simulations

As was the case with the partitioned booking limits derived by traditional models and
presented in Table 4.5, we again simulate the booking period 5000 times and apply
Algorithm 10 to assess the effectiveness of the booking limits derived from the robust
models. Table 4.10 presents the summary statistics of the results.

The table shows that the minimax Regret performs significantly better than the max-
imin Revenue with difference in average revenue of 12%. This an expected result since

72 Chapter 4. Numerical Results

Fare Class s Runs

1 2 3 4 5 6 7 8 9 10

3

1 37 35 34 40 37 35 38 37 40 42
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 20 23 25 29 29 22 24 28 30 27
5 8 3 0 0 0 6 0 0 0 6
6 38 43 45 45 46 42 42 46 47 40

2

7 39 40 40 40 40 40 38 37 41 38
8 25 24 24 22 22 24 23 24 25 21
9 23 23 24 22 23 23 23 24 21 22
10 19 20 20 20 20 20 17 19 20 19
11 18 19 19 20 18 17 19 20 19 18
12 40 39 39 40 40 39 38 38 40 40

1

13 34 35 35 34 35 35 35 35 34 35
14 22 23 23 22 23 23 24 21 19 23
15 20 20 20 20 20 20 19 22 19 19
16 24 24 24 24 24 24 25 23 27 24
17 21 21 21 21 21 21 26 18 19 21
18 32 32 32 32 32 32 33 32 32 32

f ′x (£) 87,495 87,410 87,355 87,870 87,495 87,090 87,420 88,055 87,760 87,735
ϕ (£) 65,745 65,700 65,640 65,940 65,765 65,600 64,525 65,845 66,160 65,570
ρ∗ (£) 8,895 8,940 8,995 8,980 8,895 9,010 8,865 9,195 9,045 9,070

TABLE 4.9: Minimax Regret partitioned booking limits instances using ellipsoidal un-
certainty sets

the maximin Revenue model is concerned with the worst-case scenarios and tries to
maximise the revenue for such cases. The conservativeness of the maximin Revenue
model is reflected in the significantly smaller standard deviation it yields. As was the
case with the traditional approximation models the expected revenue is an overestima-
tion of the simulated revenue. Since we are still implementing the partitioned booking
control this difference is explained as the lost revenue from empty seats in buckets than
cannot be sold to any other customers.

Policy
Objective

Value
Expected
Revenue

Simulated Revenue 90% Confidence
Intervals

5th
Percentile

10th
Percentile

15th
PercentileMin Average Max StD

ϕ∗
UP

£64,330 £75,620 £49,285 £66,926 £74,740 £3,638 (£66,841 £67,011) £60,365 £62,020 £63,070
ρ∗UP

£11,595 £87,315 £46,810 £70,288 £85,595 £5,882 (£70,151 £70,425) £60,090 £62,493 £64,143
ϕ∗

UE
£70,225 £79,135 £50,550 £68,341 £78,310 £4,077 (£68,246 £68,436) £61,125 £62,890 £64,075

ρ∗UE
£8,865 £89,175 £45,945 £70,204 £87,845 £6,256 (£70,059 £70,350) £59,445 £61,858 £63,663

TABLE 4.10: Comparison of Expected and Simulated Revenues for Robust controls

The final result of this section is table 4.12. It is a collective representation of the sum-
mary statistics generated after simulating the booking period for all the seat allocation
models we have used under the partitioned booking control policy.

From table 4.12 it is easy to see that partitioned booking limits are a suboptimal book-
ing control policy. All models fail to generate the expected revenue by a considerable
margin. At the same time, the nature of the booking policy leads to average booking
acceptance decisions that half-fill the resources of the networks. It is worth noting that
the EMR is the clear winner in terms of simulated revenue since it considers the prob-
abilistic nature of demand, and the limits generated with this model seem to perform

4.5. Nested Booking Limits 73

Fare Class s Runs

1 2 3 4 5 6 7 8 9 10

1

1 46 46 46 47 47 47 46 46 45 46
2 7 9 9 8 11 6 7 9 9 9
3 4 5 3 3 5 2 4 4 3 4
4 27 25 26 26 30 27 27 26 28 26
5 10 11 10 12 7 12 10 10 9 11
6 43 42 44 43 49 43 43 44 46 44

2

7 40 39 39 40 38 40 40 39 40 39
8 25 24 25 25 24 25 25 25 25 25
9 24 23 24 23 23 24 24 23 23 23
10 20 20 20 20 20 20 20 20 20 19
11 20 20 20 20 19 20 20 20 20 20
12 39 39 39 39 39 39 39 39 39 38

3

13 25 25 25 25 24 26 25 25 26 25
14 15 15 15 15 15 16 15 15 15 15
15 14 14 14 14 13 14 14 14 14 14
16 16 16 16 16 15 16 16 16 16 16
17 18 18 18 18 18 18 18 18 18 18
18 28 28 28 28 27 28 28 28 28 28

f ′x (£) 79,230 78,955 79,145 79,135 78,110 79,745 79,230 79,025 79,325 78,925
ρ (£) 16,345 16,320 16,405 16,280 17,135 15,830 16,345 16,365 16,090 16,440
ϕ∗(£) 70,135 70,160 70,100 70,225 70,220 70,045 70,135 70,150 70,205 70,070

TABLE 4.11: Maximin revenue partitioned booking limits using ellipsoidal uncertainty
set

Policy Expected Simulation Simulated Revenue 90% Confidence

Revenue Runs Min Average Max StD Intervals

DLP-Low £53, 585 5000 £45, 520 £51, 762 £53, 585 £1, 079 (£51, 737, £51, 787)
DLP-High £103, 050 5000 £36, 930 £64, 793 £93, 830 £8, 993 (£64, 584, £65, 002)

DLP £84, 915 5000 £47, 750 £69, 647 £84, 150 £5, 447 (£69, 520, £69, 774)
RLP £82, 370 5000 £46, 540 £68, 779 £81, 180 £5, 352 (£68, 654, £68, 903)
EMR £71, 767 5000 £49, 960 £70, 972 £87, 715 £6, 125 (£70, 830, £71, 114)

MiniMax £86, 575 5000 £49, 075 £69, 918 £85, 985 £6, 111 (£69, 776, £70, 060)Regret
Maximin £71, 250 5000 £54, 210 £65, 582 £71, 140) £2, 780 (£65, 518, £65, 647)Revenue

TABLE 4.12: Comparison of Expected and Simulated Revenues for all controls

the best. The minimax Regret also performs surprisingly well in terms of simulated
revenue. Its results are on par with the DLP and RLP models, which showcases that it
is not as conservative as the maximin Revenue.

4.5 Nested Booking Limits

When π takes the form of nested booking controls, the booking buckets are no longer
equal to the number of ODF products, but as explained in section 2.2.2, products are
grouped together according to their OD pair and ranked according to their fare value.
Hence, in our network example, there are six OD pairs and six booking buckets.

74 Chapter 4. Numerical Results

4.5.1 Deterministic Linear Programming

Consider the seat allocation to each product j under the partitioned booking control
policy as calculated by the DLP for the different demand cases (Table 4.3). Then for the
nested booking control policy the seat allocation to the booking buckets is calculated
by firstly collecting all products that share the same OD pair into the same bucket, thus
creating six of them and then ordering the products in each bucket according to their
fare value. That is Fare Class1 ≥ Fare Class 2 ≥ Fare Class 3. Then the nested allocation
is calculated as the summation of the partitioned allocations for each product as shown
in Table 4.13. Using the same procedure slightly different nested booking limits can be
derived by calculating the initial partitioned booking limits using the EMR and RLP
models described in Section 2.4.2.

OD pair Low Demand Mean Demand High Demand

Class3 Class2 Class1 Class3 Class2 Class1 Class3 Class2 Class1

1 43 77 95 41 81 111 27 72 113
2 22 43 52 0 25 45 0 0 30
3 25 44 53 0 24 44 0 27 57
4 21 37 46 30 50 70 11 34 64
5 19 35 49 1 21 40 0 23 49
6 43 77 98 45 85 115 10 55 94

TABLE 4.13: Nested booking limits (DLP) for Low, Mean and High Demand

4.5.2 Maximin Revenue

o calculate the maximin Revenue nested booking limits, we do not follow the same
procedure as described above. In Chapter 3 it is seen that for the robust models mini-
max Regret and maximin Revenue, we specify the booking control policy constraints in
the inner problem (Eq. 3.2a) the booking control policy constraints. Then in the outer
problem, the genetic algorithm maximises the minimum revenue given the constraints
of the booking control policy we are implementing. For the nested booking limits, the
constraint matrix is given in Appendix C.2.

Table 4.14 reports the maximin Revenue nested booking limits. For each instance, the
maximum regret (ρ), the maximin Revenue (ϕ∗) and the time to compute the booking
limits are shown. For each set of instances (1-3, 4-6, 7-9, 10) of the problem, a different
initial population matrix was passed into the GA algorithm by recalculating the nested
booking limits for the three demand scenarios using the DLP model. Problem 3.2a was
solved to find the minimum revenue, and then the genetic algorithm was employed
to change the allocation to the buckets so that the minimum revenue is maximised
subject to booking control and capacity constraints. This procedure is repeated until
the stopping criteria of the algorithm are met. It is clear from the table that the different

4.5. Nested Booking Limits 75

initial solutions passed to the genetic algorithm yield slightly different results, but the
algorithm converges to the same answer for each initial solution. This is equivalent to
the low demand scenario.

Fare OD Instances

Class Pair 1 2 3 4 5 6 7 8 9 10

3

1 43 43 43 44 44 44 43 43 43 44
2 18 18 18 20 20 20 21 21 21 22
3 25 25 25 25 25 25 24 24 24 25
4 22 22 22 20 20 20 40 40 40 25
5 17 17 17 21 21 21 40 40 40 18
6 44 44 44 42 42 42 43 43 43 44

2

1 77 77 77 79 79 79 77 77 77 78
2 38 38 38 41 41 41 42 42 42 42
3 45 45 45 44 44 44 44 44 44 44
4 33 33 33 36 36 36 36 36 36 40
5 33 33 33 37 37 37 36 36 36 34
6 78 78 78 76 76 76 78 78 78 78

1

1 95 95 95 96 96 96 95 95 95 95
2 50 50 50 51 51 51 52 52 52 51
3 55 55 55 53 53 53 53 53 53 54
4 48 48 48 46 46 46 46 46 46 48
5 47 47 47 50 50 50 49 49 49 47
6 98 98 98 97 97 97 98 98 98 99

ρ (£) 27,225 27,225 27,225 27,825 27,825 27,825 27,525 27,525 27,525 28,905
ϕ∗ (£) 70,175 70,175 70,175 69,070 69,070 69,070 69,165 69,165 69,165 68,465

Time (sec) 110 97 121 107 137 107 115 93 93 114

TABLE 4.14: Maximin Revenue Nested booking control policy for 10 simulations

4.5.3 Minimax Regret

For the minimax Regret nested booking control policy the same procedure as described
in the previous section is followed. The same control policy constraint matrix is used as
for the maximin Revenue to solve the inner problem (Eq. 3.2a). Then the outer problem
is solved by the GA algorithm with initial solution being the DLP nested booking limits.
Table 4.15 presents the results of the algorithm for 10 different instances. The maximum
regret is minimised by Run 4 nested booking limits thus these are the limits we choose.

4.5.4 Comparison of Nested control policies

Table 4.16 is a comparison of the Nested booking limits generated by the DLP, maximin
Revenue, (ϕ∗), and minimax Regret (ρ∗) models. It is clear from the table that the min-
imax Regret model produces nested booking limits close to the DLP while the maximin
Revenue produces far more conservative limits for all products. Furthermore, the DLP
and minimax Regret models severely limit the amount of seats allocated to Fare Class
3 customers with three such products being almost closed. The extra seats are rather

76 Chapter 4. Numerical Results

Fare OD Instances

Class Pair 1 2 3 4 5 6 7 8 9 10

3

1 39 40 40 38 38 38 37 42 37 41
2 0 0 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 1 0 0 0
4 27 24 30 27 34 27 27 28 27 33
5 1 4 1 4 0 2 3 0 1 2
6 46 44 47 47 49 50 45 45 45 57

2

1 80 77 80 78 78 78 78 80 84 79
2 22 24 22 21 22 24 20 20 22 20
3 23 22 22 22 22 22 23 22 22 22
4 49 47 50 46 49 51 48 52 47 48
5 18 21 18 22 18 19 20 17 21 19
6 83 80 87 82 87 88 84 84 83 85

1

1 114 113 114 114 114 114 114 115 114 115
2 44 45 44 44 44 45 43 44 45 44
3 42 42 42 42 42 41 43 41 41 41
4 74 71 74 71 75 74 73 76 72 74
5 40 42 40 43 39 40 41 39 42 41
6 118 116 118 115 119 119 116 120 117 118

ρ∗ (£) 11,730 11,720 11,685 11,305 11,770 11,985 11,525 12,095 11,910 11,855
ϕ (£) 58,290 59,030 58,365 58,490 57,770 57,960 58,245 58,045 57,380 58,290

Time (sec) 282 342 88 1580 837 145 940 103 182 191

TABLE 4.15: Minimax Regret Nested booking control policy for 10 simulations

OD pair Nested - DLP Nested - ϕ∗ Nested - ρ∗

Class3 Class2 Class1 Class3 Class2 Class1 Class3 Class2 Class1

1 41 81 111 43 78 95 39 79 114
2 0 25 45 20 41 51 0 22 44
3 0 24 44 25 44 54 0 22 42
4 30 50 70 27 36 47 28 49 73
5 1 21 41 25 35 49 2 19 41
6 45 85 115 43 77 98 48 84 118

TABLE 4.16: Nested booking limits from the DLP, Minimax Regret and Maximin Rev-
enue controls

allocated to Fare Class 1 products. On the other hand maximin Revenue behaves in the
converse way by allocating a significant number of seats to lower fare class customers
and having less seats strictly available to Fare Class 1 customers.

To test the limits produced by the different models we run 5000 simulations of the
booking period and applied Algorithm 11 to implement the nested booking acceptance
policy each time using the limits calculated by a different model. Table 4.17 displays
the summary statistics for all nesting booking control policies.

The surprising result here is that the DLP is the model that yields the best limits in
terms of average simulated revenue. This is in agreement with de Boer et al. (2002). We
further find that the minimax Regret performs on par with the DLP model and outper-
forms all others. The EMR and RLP models also perform well with average simulated
revenues close to those of the DLP and minimax Regret. Finally, the maximin Revenue

4.6. Bid Prices 77

Policy Objective Value Expected Revenue
Simulated Revenue

90% Confidence Intervals
5th

Percentile
10th

Percentile
15th

PercentileMin Average Max StD

ρ∗
UP £11,595 £87,315 £39,315 £67,015 £93,045 £7,774 £66,834 £67,196 £53,920 £56,955 £59,178

ϕ∗
UP £64,330 £75,620 £44,145 £65,225 £89,720 £6,482 £65,074 £65,376 £55,215 £57,245 £58,523

ρ∗
UE £8,865 £89,175 £39,015 £67,417 £98,180 £7,972 £67,232 £67,603 £54,030 £57,053 £59,185

ϕ∗
UE £70,225 £79,135 £42,765 £66,850 £88,495 £6,589 £66,696 £67,003 £56,513 £58,573 £59,868

Low £53,585 £53,585 £40,005 £53,728 £68,160 £3,858 £53,638 £53,818 £47,698 £49,023 £49,818
DLP £84,915 £84,915 £39,750 £68,440 £99,115 £7,817 £68,258 £68,622 £55,600 £58,293 £60,290
High £103,050 £103,050 £25,870 £59,257 £100,380 £10,973 £59,002 £59,513 £41,758 £45,415 £47,600
EMR £71,767 £88,675 £38,335 £65,464 £92,035 £7,593 £65,287 £65,640 £53,175 £56,003 £57,783
RLP £82,370 £82,370 £37,445 £66,394 £90,015 £7,144 £66,228 £66,561 £54,605 £57,360 £59,078

TABLE 4.17: Comparison of Expected and Simulated Revenues for all Nested controls

performs worse than most of the other models but this is expected due to its conser-
vative nature. Nonetheless, it outperforms significantly the low-demand scenario DLP
limits and provides a guarantee of minimum revenue.

4.5.5 Comparison with Perakis and Roels (2010) simulated results

Table 4.18 compares our results for the nested booking limits against those by Perakis
and Roels (2010). Our results are highlighted for comparison. The booking limits gen-
erated by our policies outperform those of Perakis and Roels (2010) in terms of mini-
mum revenue by a considerable margin. Greater minimum revenues are produced, a
desirable outcome since we are trying to maximise this quantity, for every model. On
the other hand, the Maximum Regret of the booking limits generated from our policies
is only slightly higher for the DLP and minimax Regret models while it outperforms
the booking limits generated for the maximin Revenue. Furthermore, the 90% CIs on
simulated revenue show that all of our policies yield higher revenue on average. The
improved performance in revenues is most likely created from the use of a GA algo-
rithm to minimise/maximise problem 3.2a instead of a local gradient algorithm as used
by Perakis and Roels (2010).

Policy Maximum Regret Minimum Revenue 90% Confidence Intervals

DLP £14, 040 £14, 275 £54, 820 £58, 440 £73, 248 ± 343 £75, 666 ± 164
ρ∗ £10, 595 £11, 525 £56, 890 £58, 245 £73, 734 ± 338 £74, 699 ± 171
ϕ∗ £28, 150 £27, 225 £52, 085 £70, 175 £66, 744 ± 134 £70, 614 ± 161

TABLE 4.18: Comparison with Perakis and Roels (2010) Simulated Revenues

4.6 Bid Prices

The last booking control policy that we implement is the fixed bid-price control. To
decide whether to accept or reject an incoming booking request, the bid prices of the
comprising legs for the requested itinerary are summed to calculate a price threshold.
If the fare value for the requested itinerary is higher than the threshold then the request
is accepted, otherwise it is rejected.

78 Chapter 4. Numerical Results

Consider our example. There are three legs in the network, therefore the bid price of
each leg can be calculated using the DLP or the RLP model. Table 4.19 presents the
bid and threshold prices. The DLP bid prices are calculated by the dual prices of the
capacity constraints. The RLP bid prices are calculated as the average of the dual prices
of the capacity constraints from 200 randomised DLPs.

Leg
DLP RLP

Bid Price Threshold Prices Bid Price Threshold Prices

A-B £75 £75 £60 £60
B-C £80 £80 £91 £91
C-D £80 £80 £72 £72
A-C - £155 - £151
B-D - £160 - £163
A-D - £235 - £223

TABLE 4.19: Bid Prices for the different itineraries

Consider that a booking request arrives for the itinerary A-C which comprises of trav-
elling on legs A-B and B-C of the network. Let π be the DLP bid prices. Then, the OD
pair A-C has a threshold price of £75 + £80 = £155. Therefore if the booking request
is for Fare Classes 1 or 2 it is accepted since the fare values of these classes are greater
than the threshold price, £400 > £170 > £155. On the other hand, if the booking re-
quest is for Fare Class 3, it is rejected since its value is lower than the threshold price,
£130 < £155.

From Table 4.19 we can see that the RLP bid prices are slightly lower for legs A-B and
C-D but higher for the bottleneck leg B-C. Furthermore, the lower bid price for A-B leg
means that even Fare Class 3 customers have their booking requests accepted on the
leg.

To compare the two bid prices controls we simulate the booking period and implement
Algorithm 12 to accept or deny booking requests. Table 4.20 summarises the results
after 5000 simulation runs.

Policy Simulation Simulation Simulated Revenue 90% Confidence

Runs Time (sec) Min Average Max StD Intervals

DLP 5000 13.91 £43490 £73183 £102575 £8400 £72988 £73379
RLP 5000 14.44 £51455 £76720 £94390 £6016 £76580 £76860

TABLE 4.20: Comparison of Expected and Simulated Revenues for all Nested controls

The RLP outperfoms the DLP bid prices. The effect of the taking stochasticity of de-
mand into account when calculating the bid prices is evident from the considerable
increase in average simulated revenue and the higher CI. Furthermore, the RLP bid

4.7. Conclusion 79

prices have lower standard deviation for the simulated revenue suggesting that they
are a more stable policy.

4.7 Conclusion

This chapter considers three booking control policies: partitioned booking limits, nested
booking limits, and fixed bid prices. We also implement seven seat-allocation models:
the traditional DLP, EMR, RLP and the robust minimax Regret and maximin Revenue
models using polyhedral and ellipsoidal uncertainty sets. To evaluate their perfor-
mance, we simulate the booking horizon using the non-homogeneous Poisson demand
model and implement the three booking request acceptance algorithms described in
Section 4.2.

Our numerical experiments are a direct extension of de Boer et al. (2002) and Perakis
and Roels (2010) work. We expand de Boer et al. (2002) comparison of DLP and EMR
models to include the RLP, minimax Regret and maximin Revenue models. Further-
more, in contrast to de Boer et al. (2002) we provide a study of the partitioned booking
limits control (Section 4.4) in addition to the nested booking limits and bid prices which
they also examine. For the robust models, we introduce the genetic algorithm for the
outer problem in comparison to the local gradient algorithm Perakis and Roels (2010)
use which improves the simulated revenue and results in higher minimum revenue for
all booking policies. Although it produces narrowly higher maximum regret for the
DLP and minimax Regret models, it successfully lowers the maximum regret for the
maximin Revenue model. The comparative results are summarised in Table 4.18.

4.7.1 Future Work

Further work could expand our experiments to include more booking control policies
like the Displacement Adjusted Virtual Nesting (DAVN). Non-static control policies
that allow updating the booking limits during the booking horizon and evaluating all of
our models under increased variance demand parametrisation and smaller fare spread
are immediate extensions of this work. A further enhancement is the creation of better
uncertainty sets that will adequately assess the risk posed by demand uncertainty but
will be lenient enough to allow considerable revenue to be generated. As many uncer-
tainty sets have already been proposed, mapping the robustness vs revenue trade-off
would also be of interest.

81

Chapter 5

Cruise Line Application

In this chapter, we introduce a novel application of the methodology described in Chap-
ter 3; a cruise network problem. Cruise revenue management is a complicated problem
with a larger number of products with more characteristics and additional constraints
compared to the airline formulation. Secondly, while there is an active but albeit small
field of research on cruise revenue management, to the extent of our knowledge, the
cruise network problem has not been studied thus far, and the robust methodology has
not been employed in single or multiple legs setting.

The chapter is organised into five sections. First, in the introduction we state the contri-
butions made in this chapter. Then an overview of the cruise industry is given, and the
reasons that motivate the study of the cruise application as a compelling but different
revenue management problem to the airline application are examined. We then state
the mathematical problem to solve and the formulations we employ in section 5.2. In
section 5.2.3 we describe the procedure we followed to derive simulation and optimi-
sation parameters from data, crucial to producing the numerical results described in
sections 5.3 and 5.4 respectively. Finally, in the last section of the chapter, we conclude
and discuss future work on the cruise application.

5.1 Introduction

5.1.1 Contributions

The contributions we make are twofold. Firstly, we consider a network of cruise itineraries
and not just a single voyage with a single point of embarkation and debarkation. This is
different to previous formulations such as Sturm and Fischer (2018) who only consider
a single leg multiple product setting or Li (2014) that consider as multiple resources the
various combinations of product characteristics. Our approach also also incorporates

82 Chapter 5. Cruise Line Application

FIGURE 5.1: The rise of the cruise industry

the different product characteristics. This increases the size of the solution space and
the complexity of the problem.

Secondly, we introduce robust optimisation to characterise uncertainty. This approach
is particularly useful for legs in the network that have limited historical information
available. This is a very common case in the cruise industry because year on year
itineraries change, demand for certain voyages can be very limited and sporadic and
the vast complexity of the product can mean that little data is available to infer mar-
ket demand from sales. Furthermore, the COVID-19 pandemic has introduced great
uncertainty in the sector and historical data is no longer such a good guide to future
behaviour. Robust optimisation is designed to provide a solution that is robust to these
uncertainties in demand.

5.1.2 Motivation

Up until the COVID pandemic in 2020, cruising was among the fastest-growing sectors
in the leisure-travel industry with an average rate of passenger increase of over 6%
year on year, which is more than double the industry’s average (Ji and Mazzarella,
2007; Giese, 2020). The sector has been enjoying an increasing number of passengers
and revenues for the past 20 years with its global economic impact estimated at 150

5.1. Introduction 83

FIGURE 5.2: Cruise networks as tracked by the MarineVesselTravel website

billion US dollars in 2018 by the Cruise Line International Association (CLIA, 2019).
The passenger growth, graphed in Figure 5.1, clearly shows the upward trend in the
popularity of cruising. A further important characteristic of the sector is the very high
occupancy rates of 95%, which distinguish it from similar sectors such as hotels which
only have a capacity rate of 59% (Toh et al., 2005).

Despite the industry’s continual rise since 1990 both in popularity and revenues, the
coronavirus pandemic, which has caused a severe impact on the tourism industry, dev-
astated the cruise sector in particular. The first cluster of COVID-19 cases upon a cruise
ship was found on Diamond Princess in February 2020, recording 712 infections and
14 deaths. The outbreak was highly publicised and monitored worldwide, spreading
concern and fear about travel and transmission of the virus upon cruise ships. This
scepticism, in turn, led to an increased number of people cancelling or postponing
their voyages with cruise ships, and in the best interest of public health, cruise lines
paused operations. The continuous uncertainty regarding the end of the pandemic led
to extending the cruising hiatus for an extended period. At the same time, upon recom-
mencement of operations, new laws and regulations have been imposed, limiting the
capacity and deployment of cruise ships while the wider effects of the pandemic on
world trade have also disrupted the supply of food, beverages and merchandise to the
ships. The elongated pause and new restrictions have led to much higher uncertainty in
demand estimates and, consequently, a need for robust pricing and allocation policies.

The cruise sector satisfies many of the underlying assumptions of revenue management
practice. All of the characteristics discussed in section 1.1 are evident in the cruising
sector.

84 Chapter 5. Cruise Line Application

• Cruise ships have a fixed number of cabins of each type, and a set number of
lifeboat seats (fixed capacity)

• Once a specific voyage has sailed, customers can no longer travel on it (Perishable
inventory)

• Customers can be segmented via age, itinerary, booking type etc. (Market/Cus-
tomer segmentation)

• Itinerary tickets are sold in advance, in many cases up to two years before the
embark date (Advanced sales/reservations)

• Demand for products varies during the booking period and can be estimated
based on historical data (Time-variable demand)

• Marginal costs are low.

The cruise line industry has received little attention in academic literature. Li (2014)
suggests that this is because cruising has a smaller scale of operations than airlines.
Ayvaz-Cavdaroglu et al. (2019) and Talluri and Van Ryzin (2006) cite the widespread
belief that cruise ships are essentially floating hotels; hence the techniques and appli-
cations developed for hotels could easily be applied to cruise ships. This view is no
longer dominant, and Biehn (2006) explores the differences between the cruising and
hospitality sectors.

Most importantly, cruising is unique in the aspect that it combines travel, transportation,
hospitality, entertainment and shore excursions. A customer can choose from several
combinations of cabin types, fares, itineraries and departure days. Cabin types can
differ by size, amenities or location on the ship. For example, suites, balconies and
inside cabins are all examples of distinct cabin types. Several different fare options are
available such as premium, standard and saver where each class offers different perks.
Of course the higher the fare the more amenities are included. Figure 5.2 displays the
plethora of cruise routes that yield an even greater number of available itineraries to
select. These itineraries are often repeated and thus offered on multiple departure days.
The complexity introduced by these different characteristics of a cruise product makes
the problem computationally and logistically expensive.

Readers might be more familiar with the notion of cruising, where ships travel to sev-
eral ports, but embarkment and disembarkment happen in a single port. During the
journey, the cruise ship calls at various ports, which passengers can visit on a schedule
and then return to the ship to continue their voyage back to the original port where
they commenced their cruise, thus completing a loop. Figure 5.3 is an example of such
standard cruise. The thick lines represent the cruise ship’s route, starting and finish-
ing in Southampton with stops first at Norwegian Fjords and then at Iceland. While
there are three nodes and three arcs in the figure representing the cruise ship’s ports of

5.1. Introduction 85

Southampton

Iceland

Norwegian
Fjords

Full Fare,
Discount Fare

FIGURE 5.3: Representation of standard cruise itinerary

call and route, this does not constitute a cruise network. Because passengers can only
embark or disembark in Southampton, even though the ship calls at two more ports,
only a single itinerary is available to fill up the cruise ship’s capacity, represented in the
diagram via the loosely dotted line. Researchers and practitioners model such cruises
as a single leg with multiple products.

Southampton Canary
Islands Barbados Saint

Lucia

Full Fare,
Discount Fare

Full Fare,
Discount Fare

FIGURE 5.4: Representation of Type A cruise network

However, it is more common to consider a network of cruise itineraries. Cruise com-
panies often allow passengers to embark at one port and disembark at another while
offering a flight option back to the passenger’s original point of embarkment. Such
cruises use a network of resources. Figure 5.4 demonstrates such a network. As in the
previous figure, thick lines represent the route that the ship follows while the dotted
lines represent the itineraries on sale. The cruise commences in the UK and heads to
the Caribbean. Customers can either travel until they reach Barbados or continue until
they reach Saint Lucia. These are two distinct itineraries operated by the same ship on
the same route. Such networks arise in cruises that travel to distant destinations and
we refer to them as Type A. Another important example of a type A cruise network is
the World cruise, where a ship travels around the globe. While the whole world route
is on sale, there is usually not enough demand to fill the whole ship, so supplementary
itineraries of shorter duration are offered to fill up the ship.

86 Chapter 5. Cruise Line Application

There exists a second type of cruise network which we refer to as Type B. Consider
the case where a cruise route is strictly between only two ports, such as Southampton
and New York. A cruise company deploys a cruise ship on this route, and operates it
continuously; that is, the ship goes back and forth to these two ports only for a spec-
ified period. The company then offers four different origin - destination itineraries;
Southampton to Southampton, Southampton to New York, New York to Southampton
and New York to New York. Thus, a network arises as seen in figure 5.5. This is a three
leg network where 5 itineraries are on offer, Southampton to New York is offered twice
where the second journey is at a different date to the first.

Southampton New York Southampton New York
Full Fare,

Discount Fare

Full Fare,
Discount Fare

Full Fare,
Discount Fare

Full Fare,
Discount Fare

Full Fare,
Discount Fare

FIGURE 5.5: Representation of Type B cruise network

In any of the above cruises, revenue generated by a passenger is the sum of the cabin
fare and passengers’ on-board expenditure. On-board expenditure is the cash flow gen-
erated for a cruise operator from a passenger’s spending on bars, restaurants, shops,
spas, casinos and activities such as onshore excursions. On-board expenditure is in-
tegral to the total revenue generated by cruise lines. Cruise Market Watch (2018), a
market watchdog, states that ‘the average per passenger per day cruise expense is pro-
jected to be $214.25, with $152.12 per person per day ticket price and $62.13 per person
per day on-board spending’. This figure translates to 29% of the total revenue that a
cruise line generates. At the same time Giese (2020) reports a 38% of cruise revenue at-
tributed to on-board spend. While the numbers from different sources might not agree,
it is clear that a significant proportion of the revenue results from on-board spend and
as such, attention must be paid to the way it is forecast and modelled in the decision
making process of allocating network resources to various demand requests.

5.2 Problem Statement

Based on the points discussed above, the revenue management problem that cruise
companies are considering is the following: make pricing and cabin assignment de-
cisions for the cabins according to price tiers in order to maximize the total revenue
over the ship’s whole route, which is calculated as the sum of the cabin sales and pas-
sengers’ on-board spend. In other words, given the market demand and its elasticity,

5.2. Problem Statement 87

the company has to decide how much to charge for each cabin-type and fare-class-
itinerary combination while also deciding how many cabins should be assigned to that
cabin-type and fare-class-itinerary combination given the constraints on the number of
cabins of each type that are available and a second constraint on the total number of
people on board. This second constraint arises from the limit on the lifeboat capacity.
Note that demand is forecast based on historical data according to customer requests
for cabin amenities.

Notational convention In what follows scalars are denoted by lower-case letters, for
example α, while vectors are always assumed to be column vectors and are typeset in
bold lower-case letters, x. The transpose of a vector is given by xT while subscripts de-
note vector components, xj. Matrices are represented by capital letters, A and similarly
to vectors aij represents its component in the ith row and jth column. aT

i is the ith row
of the matrix while aj the jth column.

Consider a cruise network that is comprised of multiple legs. A leg is a route in a
cruise network where it commences at a port of embarkation and ends at a port of
debarkation. Let the set L represent the set of all such legs such that L = {l | l =

1, ..., |L|}. On this network, a cruise company sells several itineraries. These itineraries
can span a single or multiple legs and comprise set I which is defined as I = {i | i =
1, ..., |I|}. On each itinerary, different cabins types are available. Cabins of the same type
are similar in location, size and amenities but are distinct from other types. Cabin types
are defined as the set K = {k | k = 1, ..., |K|}. In addition, each cabin type can have
different occupancy. The industry standard is double occupancy, but occupancy can
be higher with bunk beds. In larger cabin types like suites, more than two beds might
already be installed in the permanent configuration of the room. At the same time,
single occupancy cabins also exist, while companies will often sell higher occupancy
cabins to solo travellers to fill up the ship if there is not enough demand for the higher
occupancy. Let the set O = {o | o = 1, ..., |O|} denote the different occupancy available.
Furthermore, different price tiers are available. Typical examples of price tiers are Full,
Saver and Discount fares. Let price tiers comprise the set P = {p | p = 1, ..., |P|}.

Then a booking request for a product consists of an itinerary, which utilises a certain
number of network legs, a cabin type, an occupancy and a price tier. Hence the set of
products is given as J = {j | j = 1, ..., |J|} where the cardinality of the set is given by
|J| = |I| × |K| × |O| × |P|.

Consider a finite time horizon (0, T] during which sales can be made. Over this period,
customers arrive according to a stochastic process and request to buy products j ∈ J.
The revenue from selling product j is given by the fare rj, where rj is the sum of the fare
and the on-board expenditure of the passenger mix as estimated from historical data.
We assume no cancellations occur during the booking period, an unrealistic modelling

88 Chapter 5. Cruise Line Application

assumption as it is a common phenomenon in the cruise industry, but simplifies our
treatment of the problem considerably.

5.2.1 Capacity control formulation

Given the above notation and assuming that revenue for the different price tiers are
fixed, the cabin and lifeboat capacity control problem to solve is the following.

maximise
x

f ′ x

subject to Ax ≤ c

Bx ≤ e

x ≤ d

x ≥ 0

(5.1)

Let x be the column vector representing the decision vector such that x ∈ R|J|. It rep-
resents the realised sales. The amount f ′x is the total revenue obtained from selling x
different products across a cruise network. The capacity vector c ∈ R|K|×|L| is the cabin
type capacity vector. Its elements are the total number of each cabin type available at
each leg of the network. The incidence matrix A ∈ R|K|∗|L|×|J| where A{kl}j is equal
to 1 when a product j comprises of cabin type k and uses leg l of the network and 0
otherwise. Matrix B ∈ R|L|×|J| is a different construct to matrix A because it represents
the number of lifeboat seats a product requires in contrast to the number of cabins a
product requires. Thus while it also represents a capacity constraint, it is a distinct con-
straint concerning lifeboats with different structure. It is defined as Bl j = oj where oj

is the occupancy of product j that utilises leg l of the network and 0 otherwise. Finally,
the vector e ∈ R|L| represents the lifeboat seat capacity per leg of the network. The final
two constraints ensure that the realised product sales do not exceed their respective
demand and are non negative.

Since cabin types are set and cannot be altered between legs of the network, as opposed
to aeroplane seats that can be altered, it is not feasible to employ the nested booking
limits policy. Instead, we use the partitioned booking limits policy (see section 2.2).

5.2. Problem Statement 89

5.2.2 Robust Formulation

Using the notation introduced in section 5.2, the maximum regret ρ for a cruise network
is given by the optimal value of the below MIP.

maximise
z,x,d,α,β,γ,δ

f ′z − f ′x (5.2a)

subject to Ax ≤ c (5.2b)

Az ≤ c (5.2c)

Bx ≤ e (5.2d)

Bz ≤ e (5.2e)

0 ≤ x ≤ d (5.2f)

0 ≤ z ≤ d (5.2g)

d ∈ U (5.2h)

∑
s∈S

xs ≤ bs S ∈ S (5.2i)

x + M(1 − α) ≥ d (5.2j)

∑
s∈S

xs ≥ βbs S ∈ S (5.2k)

aT
i x ≥ ciγi (5.2l)

bT
i x ≥ eiδi (5.2m)

αj + ∑
S:j∈S

βs +
|L|

∑
l=1:al

γl +
|L|

∑
l=1:al

δl ≥ 1 (5.2n)

α ∈ {0, 1}|J| (5.2o)

β ∈ {0, 1}|S| (5.2p)

γ ∈ {0, 1}|L| (5.2q)

δ ∈ {0, 1}|L| (5.2r)

where M ≥ {maxj dj : d ∈ U}. Similarly, the minimum revenue ϕ is equal to the
negative of the optimal value of 5.2 when z = 0.

Constraints 5.2b and 5.2c ensure that the decision variables z and x do not violate the
cabin type capacity. Similarly, constraints 5.2d and 5.2e ensure that the lifeboat capacity
is not exceeded. Constraints 5.2f - 5.2h concern the demand. Constraints 5.2f and 5.2g
enforce that the chosen sales will not exceed the demand. Constraint 5.2h stipulates
that an uncertainty set characterises d. As in the previous chapter, we examine poly-
hedral uncertainty sets. Constraint 5.2i is to facilitate that the booking limits bs are not
exceeded. Finally, the last set of constraints, which involves the binary variables α, β,
γ, and δ ensures that the realised sales x equal the demand d unless the demand is cen-
sored. In constraint 5.2j α = 1 only if x = d. Similarly, constraint 5.2k states that β = 1

90 Chapter 5. Cruise Line Application

Itinerary Cabin Type Fare Class Ocucpancy

1 2 3 4

A - B

Suite Full £7,416 £7,499 £7,821 £8,140
Saver £6,437 £6,437 £6,759 £7,078

Mini Suite Full £6,184 £6,276 £6,596 £6,917
Saver £5,632 £5,632 £5,952 £6,273

Balcony Full £3,234 £4,183 £4,503 £4,952
Saver £2,880 £3,700 £4,020 £4,437

Inside Full £2,001 £2,508 £2,925 £3,246
Saver £1,748 £2,186 £2,571 £2,892

B- C

Suite Full £7,644 £7,725 £8,044 £8,366
Saver £6,727 £6,727 £7,045 £7,367

Mini Suite Full £6,512 £6,598 £6,918 £7,561
Saver £5,954 £5,954 £6,274 £6,917

Balcony Full £3,315 £4,247 £4,600 £5,049
Saver £2,961 £3,764 £4,117 £4,534

Inside Full £2,001 £2,508 £2,925 £3,246
Saver £1,748 £2,186 £2,603 £2,924

A - C

Suite Full £15,016 £14,531 £14,755 £16,294
Saver £ 12,353 £ 12,296 £ 13,591 £ 15,059

Mini Suite Full £ 12,805 £ 12,048 £ 12,228 £ 13,597
Saver £ 11,510 £ 10,741 £ 12,785 £ 14,110

Balcony Full £7,201 £9,051 £8,798 £ 10,672
Saver £5,381 £7,681 £8,483 £8,172

Inside Full £3,848 £5,511 £5,892 £6,346
Saver £3,242 £4,064 £4,835 £5,947

TABLE 5.1: Revenue generated per product on offer for a two-leg cruise network

only if the booking limit for product j in bucket s has been reached while γ and δ equal
1 if on some leg of the network the cabin or lifeboat capacity respectively is reached
(constraints 5.2l and 5.2m). Finally, constraint 5.2n joins these scenarios and guarantees
that at least one occurs for every product.

We choose uncertainty sets to be either polyhedral or ellipsoidal. We define UP to be
a polyhedral uncertainty set such that UP(d) = [l, u] where l and u are the lower and
upper bounds respectively and are computed as l = [lj | lj = µj − 3σj ∀j ∈ J] and
u = {uj | uj = µj + 3σj ∀j ∈ J} where µ, σ are the mean and standard deviation
estimates for each product j. Similarly, we define UE to be an ellipsoidal uncertainty set
such that UE(d) = (d − µ)TΣ−1(d − µ) ≤ λ where λ is a scalar.

5.2.3 Derivation of optimisation parameter values

For an instance of the formulations 5.1 and 5.2 to be solved and produce numerical
results, several parameter values have to be estimated from data regarding cruise ships
and bookings.

The parameters to be estimated are the following:

5.2. Problem Statement 91

1. The vector c represents the total number of cabins per cabin type per leg of the
network.

2. The vector e represents the total number of lifeboat seats on the ship excluding
staff for a leg of the network.

3. The revenue associated with each product f j. A product is the result of an itinerary,
cabin type, occupancy and fare class combination. Thus the income related to the
product is the product combination fare plus the expected onboard revenue to be
generated from the occupants.

4. The lower and upper bounds on the demand for each product, lj ≤ dj ≤ uj.

5. Infer the distribution parameters for simulating the booking process over the
booking horizon.

Forecasting demand in the cruise industry can be very challenging as there are many
factors to be considered, such as seasonality; time-of-day, day-of-week and week-of-
year variability; demand dependencies between booking classes; sensitivity to pricing;
demand volatility; schedule changes; truncation of historical demand data; reservation
system limitations; and of course the impact from external shocks like the coronavirus
pandemic.

Several techniques can be used to model demand ranging from simple exponential
smoothing (ES) techniques to more advanced methods such as neural networks, prin-
cipal component analysis and adaptive models. A common technique is using Poisson
models to simulate the booking arrival process. Another is a Gamma distribution with
Poisson random errors, which gives a negative binomial distribution for total demand.

Here we have two objectives; to estimate the aggregate demand per product and infer
the booking curves during the booking horizon. To achieve these goals, we rely on
sample booking data from the cruise industry. While there are itineraries with a con-
siderable history of booking requests, there are also new or not so popular itineraries
where limited data is available. Cabin type capacities, c, and lifeboat seats, e, per ship
are publicly available information from owners’ and shipyards’ websites. All product
booking parameters are estimated from historical booking data provided by a lead-
ing company in the sector. Historical booking data reveal the aggregate demand and
fares paid per product combination. The expected onboard spending per passenger is
assumed to be proportional to the product combination fare and thus can be inferred
from an analysis of historical booking and onboard sales data.

Since the available historical data sample was small, we estimate the mean, µ̂, and
standard deviation, σ̂, of the products in offer, and then use the statistical technique
of bootstrap sampling to assess the variability associated with these estimates. We fol-
lowed the procedure below:

92 Chapter 5. Cruise Line Application

0

500

1000

1500

0 1 2 3
µ

C
ou

nt

400

800

1200

1600

Count

(A) Occ:1

0

100

200

20 25 30 35 40
µ

C
ou

nt

0

50

100

150

200

250

Count

(B) Occ:2

0

200

400

600

800

2 4 6 8 10
µ

C
ou

nt

200

400

600

Count

(C) Occ:3

0

500

1000

1500

0 1 2 3
µ

C
ou

nt

400

800

1200

1600

Count

(D) Occ:4

FIGURE 5.6: Histograms of the estimates of µ̂ obtained from 10000 bootstrap samples
for all four different occupancies of product AB - Suite - Full fare

1. From the original dataset observations, determine the demand values observed
for each product combination.

2. Choose a large number B to produce B different bootstrap samples Z∗
1 , ..., Z∗

B.

3. Obtain a distinct bootstrap dataset Z∗
i i ∈ B by repeatedly resampling observa-

tions for each product from the original dataset with replacement. The size of the
bootstrap sample must be equal to the size of the original data set.

4. A new estimate for the mean, µ∗
i , and standard deviation, σ∗

i
2, is calculated for

each bootstrap sample Z∗
i by

µ∗
i =

1
|Z∗

i |

|Z∗
i |

∑
r=1

Z∗
ir ∀i ∈ B

σ∗
i

2 =
1

|Z∗
i | − 1

|Z∗
i |

∑
r=1

(Z∗
ir − µ∗

i)
2 ∀i ∈ B

5. Repeat this B times, then we have µ∗
1 , µ∗

2 , ..., µ∗
B and σ∗

1
2, σ∗

2
2, ..., σ∗

B
2. These are em-

pirical bootstrap distributions of the sample mean and variance. Figure 5.6 is an
example for the product combination of a double occupancy suite cabin at the full
fare tier for an itinerary that utilises all the legs of the example network.

6. We compute the standard error and create confidence intervals for these estima-
tors using the formulae,

µ̂ = MeanB(µ
∗) =

1
B

B

∑
i=1

µ∗
i

SEB(µ̂) =

√√√√ 1
B − 1

B

∑
i=1

(
µ∗

i −
1
B

B

∑
i′=1

µ∗
i′

)2

and similarly for σ̂.

5.2. Problem Statement 93

Cabin Type Fare Class Occupancy
boot(100) boot(1000) boot(10000)

Γ(α) Γ(β) B(α) B(β)
N(µ) N(σ) N(µ) N(σ) N(µ) N(σ)

Suite

Select

1 1.48 1.10 1.45 1.11 1.50 1.11 1.81 0.83

15 2

2 42.18 8.16 43.07 7.84 43.01 7.81 30.33 1.42
3 9.14 2.93 9.48 3.43 9.46 3.45 7.52 1.26
4 2.16 1.50 2.02 1.43 1.98 1.41 1.96 1.01

Saver

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 4.36 1.02 4.48 1.11 4.51 1.13 16.06 0.28
3 1.00 0.80 0.98 0.83 1.01 0.82 1.51 0.67
4 0.49 0.50 0.51 0.50 0.50 0.50 1.01 0.50

Mini Suite

Select

1 3.14 1.91 2.92 1.99 2.98 2.01 2.19 1.36

10 2

2 60.06 9.68 61.28 9.65 61.04 9.47 41.58 1.47
3 9.51 2.25 9.48 2.29 9.54 2.30 17.25 0.55
4 2.98 1.46 3.03 1.38 2.99 1.41 4.47 0.67

Saver

1 1.10 0.80 1.00 0.83 0.99 0.82 1.48 0.67
2 17.09 2.75 16.53 2.87 16.50 2.86 33.27 0.50
3 2.92 0.80 3.01 0.84 3.01 0.82 13.56 0.22
4 0.47 0.50 0.52 0.50 0.50 0.50 0.98 0.50

Balcony

Select

1 71.58 11.72 70.54 11.19 69.88 11.31 38.15 1.83

4 5

2 874.69 120.29 857.63 111.64 863.56 111.19 60.32 14.32
3 43.26 11.67 42.02 12.52 41.91 12.46 11.31 3.71
4 13.32 3.40 13.56 3.38 13.50 3.42 15.54 0.87

Saver

1 16.17 2.47 16.02 2.55 16.01 2.59 38.36 0.42
2 199.11 25.95 196.89 26.67 197.13 25.85 58.14 3.39
3 9.87 2.85 9.61 2.93 9.50 2.87 10.93 0.87
4 3.19 0.80 3.00 0.81 3.00 0.82 13.52 0.22

Inside

Select

1 52.42 11.83 53.40 11.97 53.41 11.66 21.00 2.54

2 4

2 250.37 36.96 246.83 38.08 248.54 38.15 42.43 5.86
3 17.67 5.15 17.36 5.26 17.45 5.16 11.43 1.53
4 5.71 1.98 6.04 2.01 5.98 1.98 9.16 0.65

Saver

1 22.53 5.08 22.49 5.20 22.56 5.19 18.90 1.19
2 103.56 16.51 106.54 16.77 105.72 16.47 41.18 2.57
3 7.45 2.42 7.48 2.26 7.48 2.31 10.50 0.71
4 2.57 1.05 2.45 1.12 2.48 1.12 4.96 0.50

TABLE 5.2: Bootstrap estimated values for distribution parameters
N(µ), N(σ), Γ(α), Γ(β), B(α) and B(β) for itineraries that utilise two legs of the

example network

To simulate the booking period we follow the same procedure as we described in Chap-
ter 4.1. Therefore we need to estimate the parameters of Gamma distibution. We set the
parameters of the gamma distribution using the the boostrap estimators of mean and
standard deviation, using the formulae,

α = µ̂2/σ̂ (5.3)

β = σ̂/µ̂ (5.4)

while these are not maximum likelihood estimators of the parameters, they do provide
a convenient, fast and empirically well performing outcome hence they are our method
of choice. Finally, the beta distribution parameters were chosen so that the shape of the
pdf function fits the arrival pattern curve of customers for different cabin types.

Table 5.2 details the bootstrapped means and standard deviations using different B
values, namely 100, 1000 and 10000. The bootstrap estimators’ values are very close.

94 Chapter 5. Cruise Line Application

Thus, we expect that choosing to use the values of any B in the optimisation realisations
and the simulation study will not significantly affect the results. We opt for B = 10000.

5.3 Simulating the booking horizon

We follow the same approach used in section 4.1. As discussed previously, the non-
homogeneous Poisson arrival process allows for the flexibility to simulate the different
arrival patterns of customers asking for different products.

Figure 5.7 gives the probability density function curves for each cabin type’s booking
arrivals pattern using the beta and gamma distributions parameters as inferred in sec-
tion 5.2.3. The pattern for each cabin type is different. Suites and Mini-Suites that are
higher valued resources have booking requests arriving late in the booking horizon.
There is a zero probability of requests arriving in the first half of the booking horizon.
When comparing the two high-value cabin types, it is clear that Suites booking requests
arrive even later than those of Mini-Suites as the curve peaks almost at the end of the
horizon.

On the other hand, the lower-yielding cabin types, Balconies and Insides, have their
booking requests start arriving early and keep arriving almost throughout the whole
period of the booking horizon and die out in the right tail of the distribution. The pdf
yields a zero probability of a booking request arriving for any of the two cabin types in
the last fifth of the booking horizon. Balconies differ from Insides because the bulk of
requests for Balconies arrives later than Insides, just before the midpoint of the horizon.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

Suite Mini Suites Balconies Inside

FIGURE 5.7: Inferred beta distribution for the shape of arrivals of booking requests per
cabin type

5.4. Numerical Results 95

5.4 Numerical Results

As described in section 5.2.3, to solve instances of the cruise optimisation formulations
given by equations 5.1 and 5.2, we inferred parameter values for a type A cruise net-
work as seen in Figure 5.8.

A B C

Full Fare,
Saver Fare

Full Fare,
Saver Fare

Full Fare,
Saver Fare

FIGURE 5.8: Type A cruise network example

The cruise network example we choose resembles the structure of several real life cruise
networks and is similar to the network from which we obtained historical data to set the
optimisation parameters. The network consists of two legs, AB and BC, and offers three
itineraries, I = {AB, BC, AC}. The cruise ship deployed on the network has four dif-
ferent cabin types; Suites, Mini-Suites, Balconies and Insides, K = {S, M, B, I}, where
each cabin type is assumed to be able to hold up to four occupants, O = {1, 2, 3, 4}. Fi-
nally, the cruise company offers two price tiers, a Full fare and a Saver fare, P = {F, S}.
Hence, there exist 96 distinct products on sale on this cruise network.

Because of COVID restrictions a limit to the total number of passengers allowed on-
board of the cruise ship was often placed on the cruise companies. To facilitate this
restriction, the lifeboat passenger capacity constraint right hand side value can be al-
tered. To that end we investigate two scenarios, the normal case where a 100% passen-
ger capacity is allowed and a second scenario where only a 75% passenger capacity is
allowed.

5.4.1 DLP

We first investigate the results of the DLP relaxation to the 5.1 formulation. Table 5.3
displays the derived booking limits for both lifeboat capacity scenarios. As expected,
the DLP reserves more seats for higher-yielding products. For the 100% lifeboat sce-
nario, the Saver price tier is closed for Suites and Balconies. Since Suites are the highest
revenue yielding cabin type and Balconies are the most popular, it is more profitable
not to offer the lower price tier. The Saver price tier is open mainly for the Inside cabin
type, indicating that there might not be enough demand for Full fare passengers to

96 Chapter 5. Cruise Line Application

fill up Inside cabins. Further to Inside cabins, a few Saver fare seats are also reserved
for Mini-Suite cabins. Since Mini-Suites are higher-yielding than balconies, if there is
still lifeboat capacity available, it is more profitable to allow Mini-Suite than Balconies
Saver fare passengers on board.

Cabin Type Price Tier Occupancy A-B A-C B-C

Suite

Full

1 2 1 2
2 43 5 43
3 9 0 9
4 2 2 2

Saver

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

Mini Suite

Full

1 3 1 3
2 61 11 61
3 9 0 10
4 3 0 3

Saver

1 1 1 0
2 0 0 0
3 0 1 0
4 0 1 0

Balcony

Full

1 0 0 0
2 783 408 786
3 0 0 0
4 8 7 5

Saver

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

Inside

Full

1 53 18 53
2 249 78 249
3 17 7 17
4 6 2 5

Saver

1 0 0 1
2 17 0 10
3 0 0 7
4 0 1 0

Objective Value €14,845,932.73

(A) 100% Lifeboat occupancy scenario

Cabin Type Price Tier Occupancy A-B A-C B-C

Suite

Full

1 2 1 2
2 43 18 43
3 0 0 0
4 0 0 0

Saver

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

Mini Suite

Full

1 3 1 3
2 61 25 61
3 0 0 0
4 0 0 0

Saver

1 1 1 1
2 0 0 0
3 0 0 0
4 0 0 0

Balcony

Full

1 70 35 70
2 677 408 677
3 0 0 0
4 0 0 0

Saver

1 16 0 16
2 0 0 0
3 0 0 0
4 0 0 0

Inside

Full

1 53 18 53
2 0 20 0
3 0 0 0
4 0 0 0

Saver

1 23 7 23
2 0 0 0
3 0 0 0
4 0 0 0

Objective Value €12,820,513.87

(B) 75% Lifeboat occupancy scenario

TABLE 5.3: Booking limits derived using the DLP under mean demand

In the 75% lifeboat capacity scenario, it is interesting to see that the DLP still reserves
more seats for the higher-yielding price tier products, but now the saver fare is also
open for the single occupancy Balcony cabin type. The effect of the reduced lifeboat ca-
pacity is evident by the zero booking limits allowed for any product where occupancy
is equal to 3 or 4 and the significant reduction of booking limits for all products involv-
ing Inside cabins. This is an expected result, as inside cabins are the lowest yielding.
Of course, the objective value is lower compared to the full capacity scenario as fewer
passengers are allowed on board.

In both scenarios, more cabins are assigned on itineraries that utilise single legs of the
network instead of products that utilise both legs, while symmetry between the A-B
and B-C legs of the network is also evident as the optimisation parameters for these
products are very similar.

5.4. Numerical Results 97

5.4.2 Robust Measures

For the same scenarios, we also implement the robust formulations described in equa-
tion 5.2. Table 5.4 shows the allocation using maximin revenue robust control with
Polyhedral uncertainty set.

Cabin Type Price Tier Occupancy A-B A-C B-C

Suite

Full

1 0 0 0
2 37 15 37
3 7 1 7
4 1 0 1

Saver

1 0 0 0
2 1 2 1
3 0 0 0
4 0 0 0

Mini Suite

Full

1 1 0 1
2 52 19 53
3 7 1 8
4 0 0 3

Saver

1 0 0 1
2 10 1 3
3 1 0 2
4 0 0 0

Balcony

Full

1 8 0 6
2 790 354 793
3 18 2 14
4 11 4 10

Saver

1 4 0 1
2 6 1 12
3 6 1 7
4 1 0 1

Inside

Full

1 49 14 47
2 222 67 223
3 15 5 14
4 4 0 5

Saver

1 12 4 16
2 49 0 48
3 6 0 5
4 1 0 0

Objective Value €14,655,343.12

(A) 100% available lifeboat occupancy scenario

Cabin Type Price Tier Occupancy A-B A-C B-C

Suite

Full

1 0 0 0
2 37 23 37
3 2 0 1
4 0 0 1

Saver

1 0 0 0
2 1 1 1
3 0 0 0
4 0 0 0

Mini Suite

Full

1 1 0 1
2 54 29 54
3 0 0 0
4 0 0 1

Saver

1 0 0 0
2 8 0 7
3 0 0 0
4 0 0 0

Balcony

Full

1 62 27 61
2 742 354 745
3 0 0 0
4 0 0 0

Saver

1 14 2 14
2 3 2 1
3 0 0 0
4 0 0 0

Inside

Full

1 46 14 43
2 1 15 0
3 0 0 0
4 0 0 0

Saver

1 18 5 19
2 0 0 0
3 0 0 0
4 0 0 0

Objective Value €12,696,498.34

(B) 75% available lifeboat occupancy scenario

TABLE 5.4: Booking limits derived using the maximin revenue criterion and polyhe-
dral uncertainty set

For the 100% lifeboat scenario, in contrast to the DLP, the maximin revenue control
does not close off the saver price tier. As with the DLP, the maximin revenue assigns
the most saver products to the Inside cabin type. The symmetry of the allocation to A-B
and B-C itineraries is still visible, especially on the Full price tier allocations.

On the other hand, for the 75% scenario, the maximin revenue control also closes almost
all products with occupancy higher than three passengers. Furthermore, the reduction
in passengers is achieved by reducing the booking limits of the Full fare inside cabins.

The maximin revenue yields a 1.3% lower objective value than the DLP, but this is
expected as the DLP returns an upper bound of the objective function and the minimax
revenue is a measure concerning itself with the worst-case scenario.

The second robust measure we look at is the minimax regret. Table 5.5 shows the allo-
cation using minimax regret robust control with Polyhedral uncertainty set.

98 Chapter 5. Cruise Line Application

This measure, for the 100% lifeboat capacity, yields different booking limits to both the
DLP and the maximin revenue measure. The stark difference of the minimax regret to
the other policies is the open Saver price tier for all products, including the Suite cabin
type. In similar fashion to the other methods there exists a symmetry to the allocations
of A-B and B-C itineraries with lower allocation to A-C itinerary.

Cabin Type Price Tier Occupancy A-B A-C B-C

Suite

Full

1 3 2 3
2 25 11 27
3 9 1 9
4 3 1 4

Saver

1 2 0 0
2 3 1 3
3 3 0 1
4 0 0 1

Mini Suite

Full

1 4 2 4
2 38 18 38
3 11 1 11
4 2 1 4

Saver

1 0 0 0
2 11 2 7
3 2 0 4
4 0 0 0

Balcony

Full

1 2 0 4
2 697 466 694
3 8 0 5
4 12 1 10

Saver

1 6 2 9
2 6 0 10
3 1 0 4
4 5 0 1

Inside

Full

1 62 16 54
2 210 71 210
3 15 3 21
4 8 0 7

Saver

1 16 0 13
2 35 0 41
3 7 0 9
4 5 0 3

Objective Value €6,061,575.64

(A) 100% Lifeboat Occupancy

Cabin Type Price Tier Occupancy A-B A-C B-C

Suite

Full

1 0 1 2
2 34 22 30
3 1 1 2
4 1 0 1

Saver

1 0 0 2
2 0 0 2
3 0 0 0
4 0 0 0

Mini Suite

Full

1 3 1 3
2 45 23 44
3 5 0 3
4 1 0 1

Saver

1 1 0 0
2 7 4 8
3 1 0 1
4 0 0 0

Balcony

Full

1 79 41 82
2 639 358 569
3 5 6 20
4 4 2 6

Saver

1 19 8 21
2 15 7 18
3 0 3 10
4 2 0 1

Inside

Full

1 53 19 57
2 6 20 15
3 0 0 6
4 2 0 1

Saver

1 19 8 26
2 0 1 9
3 1 0 0
4 1 0 0

Objective Value €6,283,604.69

(B) 75% Lifeboat Capacity

TABLE 5.5: Booking limits derived using the minimax regret criterion and polyhedral
uncertainty set

For the 75% scenario, the minimax regret control in contrast to the previous measures
does not close all products with occupancy higher than three passengers. It does how-
ever, in the same fashion as before, achieve the required reduction in passengers by
reducing the booking limits of the Full fare inside cabins from 448 total inside cabins in
each network leg to 130 and 162 Inside cabins per A-B and B-C legs respectively.

The minimax regret for the full lifeboat capacity, yields a 3.5% lower objective value
than the 75% scenario.

5.4.3 Simulation Comparison

Table 5.6 details the simulation results for the Cruise network example. In the compar-
ison we have 5 booking policies, run on two scenarios, 75% and 100% capacity.

5.5. Conclusion 99

Policy Objective Expected Simulated Revenue 90% Confidence
5th Percentile 10th Percentile 15th Percentile

Value Revenue Min Average Max StD Intervals
DLP-Low £ 11,622,461 £ 14,587,345 £ 12,569,491 £ 14,215,799 £ 14,567,552 £ 260,516 £ 14,209,738 £ 14,221,860 £ 13,659,519 £ 13,878,684 £ 14,006,855

DLP £ 14,916,945 £ 14,845,933 £ 11,883,201 £ 13,936,790 £ 14,700,050 £ 472,551 £ 13,925,796 £ 13,947,785 £ 13,013,725 £ 13,268,028 £ 13,439,822
DLP-High £ 14,845,933 £ 14,916,945 £ 11,418,363 £ 13,568,225 £ 14,722,545 £ 583,899 £ 13,554,640 £ 13,581,810 £ 12,512,598 £ 12,763,699 £ 12,917,801

ϕ∗ £ 14,655,343 £ 14,698,044 £ 12,422,538 £ 14,259,941 £ 14,684,376 £ 335,976 £ 14,252,124 £ 14,267,758 £ 13,558,251 £ 13,801,601 £ 13,933,605
ρ∗ £ 6,061,576 £ 14,758,951 £ 11,702,577 £ 13,706,422 £ 14,555,914 £ 566,030 £ 13,693,253 £ 13,719,591 £ 12,689,125 £ 12,915,162 £ 13,071,297

(A) 100% Lifeboat Occupancy

Policy Objective Expected Simulated Revenue 90% Confidence
5th Percentile 10th Percentile 15th Percentile

Value Revenue Min Average Max StD Intervals
DLP-Low £ 9,570,468 £ 11,302,476 £ 9,518,826 £ 11,007,957 £ 11,297,847 £ 205,282 £ 11,003,181 £ 11,012,733 £ 10,581,471 £ 10,744,085 £ 10,822,386

DLP £ 12,898,480 £ 12,820,514 £ 10,368,327 £ 12,211,501 £ 12,767,503 £ 413,431 £ 12,201,882 £ 12,221,120 £ 11,377,327 £ 11,596,554 £ 11,747,945
DLP-High £ 12,820,514 £ 12,898,480 £ 9,826,151 £ 11,827,398 £ 12,769,970 £ 555,942 £ 11,814,463 £ 11,840,332 £ 10,817,837 £ 11,035,845 £ 11,196,740

ϕ∗ £ 12,696,498 £ 12,696,498 £ 10,667,266 £ 12,409,143 £ 12,696,498 £ 279,352 £ 12,402,644 £ 12,415,642 £ 11,816,937 £ 12,026,170 £ 12,150,264
ρ∗ £ 6,283,605 £ 12,460,978 £ 10,448,838 £ 12,018,735 £ 12,384,052 £ 255,045 £ 12,012,801 £ 12,024,669 £ 11,467,616 £ 11,674,716 £ 11,823,425

(B) 75% Lifeboat Occupancy

TABLE 5.6: Simulated Revenues for Cruise network example

The full passenger capacity scenario reveals a surprising result; the policies that are ex-
tremely risk-averse yield the best results. The maximin revenue control, ϕ∗, yields the
highest average simulated revenue and the worst-case DLP has the highest simulated
revenue in the lower percentiles of the revenue distribution. The DLP and minimax re-
gret, ρ∗, control policies perform similarly but the DLP outperforms the robust control.
Since the main difference in the structure of these controls was that the ρ∗ is leaving
products in the Saver class open that the othe policies close and seems to deteriorate
the average performance.

The limited passenger capacity scenario (75%) showcases the power of robust controls.
The maximin revenue control, ϕ∗, yields the highest average simulated revenue and
the highest simulated revenue in the low percentiles of the revenue distribution. The
DLP closely follows the maximin revenue. The fact that the two control policies yield
similar simulated results is not very surprising since they share the same structure, i.e.
they close the same products and only differ in the number of cabins they assign to
open products. The minimax regret, ρ∗, also performs well and yields revenue, close
to albeit lower than the DLP. It still however outperforms the booking limits yielded by
the worst-case DLP scenario and the over optimistic best-case DLP.

5.5 Conclusion

The simulation results revealed some unexpected results; First, as expected the scenario
that restricts capacity to 75% forces all policies to limit the passengers on board by
closing the lowest yielding products, Inside cabins on the Saver fare class. Furthermore,
as also expected, it yields lower simulated revenue for all policies. The surprising result
is the overwhelming success of the maximin revenue control policy which outperforms
all others both in average simulated revenue but also has the highest revenue on the
lower percentiles of the revenue distribution.

100 Chapter 5. Cruise Line Application

This is also true in the full capacity scenario. The maximin revenue assigns the most
cabins to the Balcony cabin type for both Full and Saver classes. These products enjoy
the highest demand and thus seem to be more important than the higher-value yielding
Suites and Mini-Suites that are way lower in numbers. On the other hand the minimax
regret suffers from the fact that it has allowed the Saver class for all Cabin types to
remain open. If the Saver class for Suites and Mini Suites remained closed and those
capacities were allocated to other products, predominantly Balconies, then the struc-
ture pf the booking limits would be similar to the one by the DLP and the maximin
revenue, but it would probably lead to higher simulated revenue.

5.5.1 Future Work

One major simplification assumption made in our methodology is that prices remain
constant and we are only considering the cabin allocation problem. If pricing is volatile
then one could either treat the whole problem as a price-based problem and adopt
treatments like the ones by Ayvaz-Cavdaroglu et al. (2019) and Maddah et al. (2010).
Of course this approach would then lack the dimension of resource allocation.

A different approach would be to attempt to optimise cabin allocation and pricing at
the same time by including a pricing term in the objective function as done by Beck
et al. (2021).

A third approach, that would be a direct expansion to the methodology presented here,
would be to remain in a cabin allocation formulation and consider splitting fare classes
to pricing buckets. That is increase the number of elements in the fare class set, F, to
include elements that denote different price ranges within a fare class denomination.
For example, one could decide that the the prices of fare class f are strictly in the range
[a, b]. Then the interval [a, b] can be split up in p number of portions. Then the set
of price tiers would expand in size by a factor p. This would increase the number of
products available therefore expanding the size of the problem.

Further to the modifications discussed above, another important modelling question
arising is whether should price tiers be allowed to overlap. If they are allowed to over-
lap, how does one model or impose constraints on such overlaps? Furthermore, in such
case it is very likely that there are going to be migrations of customers between cabin
or fare segments, a situation that business practitioners refer to as cannibalisation. What
are the rules and assumptions that dictate such migrations? Are there enough data to
model such movements? How can a vendor detect them and how can he manage them
to maximise revenue?

101

Chapter 6

Conclusions and Future Work

6.1 Research outcomes

In this research project, we expand current methodologies used to tackle the problem
of quantity-based network revenue management to carry out robust capacity control in
both an airline and cruise network settings. To achieve this goal, we first gained a com-
prehensive knowledge of the problems by familiarising ourselves with traditional and
state-of-the-art model formulations and identifying gaps in the current literature. In the
robust capacity control problem, we add to the formulation by introducing ellipsoidal
uncertainty sets, applying a faster and more efficient optimisation routine in the form
of a tailored genetic algorithm, and conducting an expanded numerical comparison of
models and policies.

We further discuss the application of capacity control in a cruise application, an indus-
try where revenue management is well suited to be applied but has received little aca-
demic attention. We introduce a straightforward formulation for a multiple leg cruise
network problem that, in addition to the limited resources of lifeboat seats, cabin types
and occupancy of the ship, also considers multiple ports of embarkation and debarka-
tion, a level of complexity that, to the best of our knowledge has not been dealt with
before in the cruise revenue management literature. We further expand the novelty of
the formulation by introducing robust controls to the formulation and employing poly-
hedral uncertainty sets to characterise demand. We discuss the alterations that needed
to be made to the genetic algorithm to facilitate the added complexity of the cabin and
lifeboat capacity constraints, and we conduct a simulation study of the revenue.

The Literature Review (Chapter 2) distinguishes between traditional risk-neutral method-
ologies and risk-averse and robust modelling. In the Classical Revenue Management
approach, the problem is tackled by assuming that demand follows a known statisti-
cal distribution and that the decision-maker is risk-neutral and the methods find the

102 Chapter 6. Conclusions and Future Work

strategy that optimises the expected revenue. The problem can be formulated as a
dynamic program but is easier solved by approximating it, either by dissecting the net-
work into many single-resource RM problems that are considerably easier to handle or
by static mathematical programming models. We focus on the latter case and describe
the traditional DLP, EMR and RLP models that are among the most researched and
implemented in the industry. Booking Control policies that dictate the acceptance or
rejection of booking requests are also introduced.

We discuss more recent approaches that aim to relax the risk-neutrality assumption of
the traditional models. Research into methods that use robust optimisation approaches
are almost exclusively focused on the single-leg example. To the best of our knowledge,
the only work to have applied a robust approach to a capacity control network up to
this time is by Perakis and Roels (2010). We also investigate a third approach, which
is to model customers’ behaviour and their choice of products over a set of products
available to each type of customer. Customer choice models developed so far for the
network setting are based on the DLP model to create the set of offered products to cus-
tomers while there is no published work on robust customer choice network revenue
management. Hence we discuss Robust Optimisation methodology and conclude the
chapter by identifying two areas of future research: a) robust/risk-averse network revenue
management and b) robust customer-choice.

In Chapter 3 we introduce a comprehensive and universal mathematical notation for
all the booking control policies, seat-allocation models, booking acceptance algorithms
and demand simulation models that we collected from the different works in literature.
We expand the methodology by introducing ellipsoidal uncertainty sets in the inner
problem and suggesting a genetic algorithm to optimise the outer problem.

In Chapter 4 we present our numerical results where we built upon Perakis and Roels
(2010) work and reproduced their results for the two robust seat allocation models they
introduce. We show that our genetic algorithm performs better than their local gradient
algorithm by producing 3% higher simulated revenues on average. Furthermore, in a
similar fashion to de Boer et al. (2002) which describes a comparison of 2 traditional
seat-allocation models, we built a comparison of 5 seat allocation models, of which
two are the robust controls we introduced in Chapter 3. We implement three different
booking control policies and simulate the booking horizon to evaluate the performance
of each model under these policies.

In Chapter 5 we present our novel contributions to the cruise network capacity control.
In addition to the multiple resources considered by other formulations such as lifeboat
seats, cabin types and occupancy, we allow the network considered to span multiple
itineraries. We introduce robust controls for the network formulation characterised
by polyhedral uncertainty sets and perform a simulation on the booking horizon to
assess the performance of the formulations in terms of revenue. The simulation results

6.2. Limitations and Future Work 103

revealed that the maximin revenue measure performed the best as it assigned higher
volume of Balcony cabins to Full Fare customers and closed lower yielding products
such as Saver fare on Inside cabins.

6.2 Limitations and Future Work

We have already implemented several models and booking control strategies. How-
ever, as mentioned in section 4.7, our experiments can be improved by implementing
new booking controls, specifically DAVN. A further enhancement to the investigation
is to implement dynamic controls. That is to optimise the network at fixed points dur-
ing the booking horizon instead of using the static controls that we are currently im-
plementing, which only optimise the network once at the beginning of the booking
horizon. Finally, a different avenue to explore would be to expand our experiments to
include different parametrisation of the demand model used to simulate the arrival pat-
tern of booking requests and investigate the effect of a lower fare spread or increased
demand variance, as seen in Tables A.2 and A.3. These extensions could provide better
approximations of real-life systems and allow a more comprehensive comparison of
the methods under investigation.

An immediate step to improve this body of research is to reformulate the robust con-
trols seen in Chapter 5 by introducing ellipsoidal uncertainty sets to problem 5.2. The
motivation behind this is the link of ellipsoidal uncertainty sets to risk-measures such
as VaR as argued by Natarajan et al. (2009). We are particularly interested in investigat-
ing the new robust formulation’s computational tractability, computation speed, and
theoretical properties.

A more significant extension to this work would be the investigation of robust con-
trols with customer behaviour models. Current academic and industry literature sug-
gests that companies and consumers focus on the personalisation of the product offer.
This is clearly an area where customer-choice network revenue management could im-
pact significantly. Specifically, we are interested in modelling the arrival of customers,
the probability of a customer choosing a product and the inner assortment problem of
which products should be offered to the customer. These aspects of the problem are
usually modelled by specifying a probabilistic demand model, estimating probabilities
from booking data observed in the past and the assortment problem is usually solved
as a DLP (Davis et al., 2014). These approaches are prone to data uncertainty, which
motivates the use of a robust approach.

105

Appendix A

Airline Distributions
Parametrisation

The following tables present the parametrisation of demand distributions used in our
numerical experiments in Chapter 4.

OD Pair Class 3, α = 5, β = 6 Class 3, α = 2, β = 5 Class 1, α = 2, β = 13

p γ µ σ p γ µ σ p γ µ σ

1 80 1.6 50 9.01 80 2 40 7.75 3 0.1 30 18.17
2 80 2 40 7.75 50 2 25 6.12 2 0.1 20 14.83
3 60 2 30 6.71 72 3 24 5.66 2 0.1 20 14.83
4 60 2 30 6.71 40 2 20 5.48 2 0.1 20 14.83
5 60 2 30 6.71 60 3 20 5.12 6 0.3 20 9.31
6 80 1.6 50 9.01 80 2 40 7.75 6 0.2 30 13.42

TABLE A.1: Initial Demand Parametrisation for B(α, β), Γ(p, y), and N(µ, σ) distribu-
tions

OD Pair Class 3, α = 5, β = 6 Class 3, α = 2, β = 5 Class 1, α = 2, β = 13

p γ µ σ p γ µ σ p γ µ σ

1 20 0.4 50 13.23 20 0.5 40 10.95 3 0.1 30 18.17
2 20 0.5 40 10.95 5 0.2 25 12.25 2 0.1 20 14.83
3 15 0.5 30 9.49 18 0.75 24 7.48 2 0.1 20 14.83
4 15 0.5 30 9.49 10 0.5 20 7.75 2 0.1 20 14.83
5 15 0.5 30 9.49 15 0.75 20 6.83 6 0.3 20 9.31
6 20 0.4 50 13.23 20 0.5 40 10.95 6 0.2 30 13.42

TABLE A.2: Increased Variance of demand Parametrisation of B(α, β), Γ(p, y), and
N(µ, σ) distributions for Fare Classes 2 and 3

OD number Origin-Destination Fare class 3 Fare class 2 Fare class 1

1 A-B £75 (1) £125 (7) £175 (13)
2 A-C £130 (2) £170 (8) £220 (14)
3 A-D £200 (3) £320 (9) £440 (15)
4 B-C £100 (4) £150 (10) £210 (16)
5 B-D £160 (5) £200 (11) £250 (17)
6 C-D £80 (6) £110 (12) £160 (18)

TABLE A.3: Smaller fare value spread

107

Appendix B

Mathematical Background

B.1 Introduction to Robust Optimisation

Consider the following uncertain linear optimization problem,

max{cTx | Ax ≤ b} (B.1)

where c ∈ Rn are the coefficients of the decision variables x ∈ Rn. The column vector
b ∈ Rm contains the right hand side values of the constraints and A ∈ Rm×n is the
constraint matrix.

It is assumed that data uncertainty only affects the elements in matrix A. This is because
uncertainty in the objective function can be treated by reformulating the original un-
certain linear problem to an uncertain linear problem with certain objective. Introduce
a new variable t and rewrite the uncertain problem as,

max{t | t − cTx ≤ 0, Ax ≤ b}

The data uncertainty is characterised as follows. Consider a particular row i of the
matrix A and let Ji represent the set of coefficients in row i that are subject to uncertainty.
Each entry aij, j ∈ Ji is modelled as a symmetric and bounded random variable
ãij, j ∈ Ji (as introduced by Ben-Tal and Nemirovski (2000)) takes values in the interval
[aij − âij, aij + âij]. Associated with the uncertain data ãij, we define the random variable
ξij = (ãij − aij)/âij, which obeys an unknown but symmetric distribution, and takes
values in [−1, 1].

108 Chapter B. Mathematical Background

B.2 Robust Counterpart Optimisation

We consider the following uncertain linear optimisation problem,

maximise cTx

subject to
n

∑
j=1

ãijxj ≤ b̃i i = 1, ..., m
(B.2)

where ãij and b̃i represent the true value of the parameters which are subject to uncer-
tainty. Assuming that the uncertainty in each constraint is independent, consider the
ith constraint of problem B.2 where both the LHS and RHS parameters are subject to
uncertainty. We define the uncertainty as follows,

ãij = aij + ξij âij ∀j ∈ Ji (B.3a)

b̃i = bi + ξi0b̂i (B.3b)

where aij and bi represent the nominal value of the parameters while âij and b̂i repre-
sent the constant perturbations. Ji is the index subset that contains the variable indices
that have uncertain coefficients. ξi0, ξij∀i, ∀j ∈ Ji are random variables which are sub-
ject to uncertainty. Hence, the ith constraint becomes,

∑
j/∈Ji

aijxj + ∑
j∈Ji

ãijxj ≤ b̃i (B.4)

which can be formulated by substituting in equations (B.3a) and (B.3b),

∑
j

aijxj +

[
−ξi0b̂i + ∑

j∈Ji

ξij âijxj

]
≤ bi (B.5)

Under the robust optimisation methodology we introduce an uncertainty set U and aim
to find solutions that remain feasible no matter the value ξ variables take. Replacing the
original uncertain constraints with the robust counterpart constraints (B.5), the Robust
Counterpart of the original problem is obtained,

max cTx

s.t. ∑
j

aijxj +

[
max
ξ∈U

{
−ξi0b̂i + ∑

j∈Ji

ξij âijxj

}]
≤ bi ∀i

(B.6)

B.3 Uncertainty Sets

As described by Li et al. (2011).

B.3. Uncertainty Sets 109

Definition B.1 (Box Uncertainty Set). The box uncertainty set is described using the
∞-norm of the uncertain data vector as follows:

U∞ = {ξ | ∥ξ∥∞ ≤ Ψ} = {ξ | |ξ| ≤ Ψ, ∀ j ∈ Ji} (B.7)

where Ψ is the adjustable parameter controlling the size of the uncertainty set.

ξ2

¸1
Ψ

α̃2

f̃f1α2

α1

FIGURE B.1: Illustations of box uncertainty set

Definition B.2 (Ellipsoidal Uncertainty Set). The ellipsoidal uncertainty is described
using the 2-norm of the uncertain data vector as shown in Figure B.2,

U2 = {ξ | ∥ξ∥2 ≤ Ω} =

ξ |
√

∑
j ∈ Ji

ξ2
j ≤ Ω

 (B.8)

where Ω is the adjustable parameter controlling the size of the uncertainty set. Note
that it is known from geometry that for the bounded uncertainty ξ j ∈ [−1, 1], when
Ω ≥ (|Ji|)

1
2 (where |Ji| is the cardinality of the set Ji), the entire uncertain space is

covered by the ellipsoid uncertainty set.

ξ2

¸1
Ω

α̃2

f̃f1α2

α1

FIGURE B.2: Illustations of ellipsoidal uncertainty set

110 Chapter B. Mathematical Background

Definition B.3 (Polyhedral Uncertainty Set). The polyhedral uncertainty is described
using the 1-norm of the uncertain data vector as shown in Figure B.3,

U1 = {ξ | ∥ξ∥1 ≤ Γ} =

{
ξ | ∑

j ∈ Ji

|ξ j| ≤ Γ

}
(B.9)

where Γ is the adjustable parameter controlling the size of the uncertainty set. Note
that for the bounded uncertainty ξ j ∈ [−1, 1], when Γ ≥ |Ji|, the overall uncertain
space is covered by the polyhedral uncertainty set.

ξ2

¸1
Γ

α̃2

f̃f1α2

α1

FIGURE B.3: Illustations of polyhedral uncertainty set

Definition B.4 (“Box+ellipsoidal” Uncertainty Set). This type of uncertainty set is the
intersection between an ellipsoid and a box defined as follows,

U2 ∩ ∞ = {ξ | ∑
j ∈ Ji

ξ2
j ≤ Ω2, |ξ| ≤ Ψ, ∀j ∈ Ji} (B.10)

In order to avoid the situation where the intersection of the box and ellipsoidal uncer-
tainty set reduces to any one of its components, the parameters must satisfy:

Ψ ≤ Ω ≤ Ψ
√
|Ji| (B.11)

Definition B.5 (“Box+polyhedral” Uncertainty Set). This type of uncertainty set is the
intersection between a polyhedral and an interval set defined with either the 1-norm or
∞-norm as follows,

U1 ∩ ∞ = {ξ | ∑
j ∈ Ji

|ξ j| ≤ Γ, |ξ| ≤ Ψ, ∀j ∈ Ji} (B.12)

In order to avoid the situation where the intersection of the interval and polyhedral
uncertainty set reduces to any one of its components, the parameters must satisfy:

Ψ ≤ Ω ≤ Ψ|Ji| (B.13)

B.3. Uncertainty Sets 111

Definition B.6 (“Box+ellipsoidal+polyhedral” Uncertainty Set). This type of uncer-
tainty set is the intersection between the ellipsoid, polyhedral and box sets defined
as follows,

U1 ∩ 2 ∩ ∞ = {ξ | ∑
j ∈ Ji

|ξ j| ≤ Γ, ∑
j ∈ Ji

ξ2
j ≤ Ω2, |ξ| ≤ Ψ, ∀j ∈ Ji} (B.14)

In order to avoid the situation where the intersection of the set reduces to any one of its
components, the parameters must satisfy:

Ψ ≤ Ω ≤ Ψ
√
|Ji|

Ω ≤ Γ ≤ Ω
√
|Ji|

(B.15)

0 < Ω < 1 Ω = 1 1 < Ω <
√
|Ji| Ω =

√
|Ji|

(A) Illustration of “Interval + Ellipsoidal” uncertainty set

0 < Γ < 1 Γ = 1 1 < Ω <
√
|Ji|

Γ =
√
|Ji|

(B) Illustration of “Interval + Polyhedral” uncertainty set

Γ = Ω Ω ≤ Γ ≤ Ω
√
|Ji| Γ = Ω

√
|Ji|

(C) Illustration of “Interval + Polyhedral + Box” uncertainty set

113

Appendix C

Booking control Constraint Matrices

C.1 Partitioned booking limits

The capacity constraint matrix for our example is an m × n matrix where akj = 1 if a
product j uses resource k. For the example in Figure 4.3, m = 3 and n = 18,

1 1 1 0 0 0 1 1 1 0
0 0 1 1 1 0 0 0
1 1 1 1 1 0 0 1 1 1
1 0 0 1 1 1 1 0
0 0 1 0 1 1 0 0 1 0
1 1 0 0 1 0 1 1

(C.1)

The demand and booking limits constraints have the same n × n diagonal structure
where n is the number of products in offer,

1 0 · · · 0

0
.

...
...

. 0
0 · · · 0 1

C.2 Nested booking limits

There are 6 booking buckets, that use the 3 resources of the network. Each bucket con-
tains three products ordered by Fare Value such that FareClass1 ≥ FareClass2 ≥ Fare-
Class3 ≥ 0 To represent this relationship between the products in the booking buckets,
let there be n columns in a matrix where each column corresponds to a product. Let

114 Chapter C. Booking control Constraint Matrices

the first 6 columns be Fare Class 3 products and the last six columns be Fare Class 1
products. Then, the hierarchical order of products is represented by the matrix,

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

1 0 · · · 0

0 1
. . .

...
...

. 0
0 · · · 0 1

−1 0 · · · 0

0 −1
. . .

...
...

. 0
0 · · · 0 −1

1 0 · · · 0

0 1
. . .

...
...

. 0
0 · · · 0 1

−1 0 · · · 0

0 −1
. . .

...
...

. 0
0 · · · 0 −1

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

−1 0 · · · 0

0 −1
. . .

...
...

. 0
0 · · · 0 −1

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

The capacity matrix of Fare Class 1 products is given by,1 1 1 0 0 0
0 1 1 1 1 0
0 0 1 0 1 1

 (C.2)

115

References

Daniel Adelman. Dynamic bid prices in revenue management. Operations Research, 55
(4):647–661, 2007.

Elodie Adida and Georgia Perakis. Dynamic pricing and inventory control: robust vs.
stochastic uncertainty models—a computational study. Annals of Operations Research,
181(1):125–157, 2010.

Nur Ayvaz-Cavdaroglu, Dinesh K Gauri, and Scott Webster. Empirical evidence of
revenue management in the cruise line industry. Journal of Travel Research, 58(1):104–
120, 2019.

Michael O Ball and Maurice Queyranne. Toward robust revenue management: Com-
petitive analysis of online booking. Operations Research, 57(4):950–963, 2009.

Justin Beck, John Harvey, Kristina Kaylen, Corrado Sala, Melinda Urban, Peter Ver-
meulen, Norman Wilken, Wei Xie, Dan Iliescu, and Pratik Mital. Carnival optimizes
revenue and inventory across heterogenous cruise line brands. INFORMS Journal on
Applied Analytics, 51(1):26–41, 2021.

Peter Belobaba. Air travel demand and airline seat inventory management. Technical
report, Cambridge, MA: Flight Transportation Laboratory, Massachusetts Institute of
Technology,[1987], 1987a.

Peter P Belobaba. Survey paper — airline yield management an overview of seat in-
ventory control. Transportation Science, 21(2):63–73, 1987b.

Peter P Belobaba. Or practice — application of a probabilistic decision model to airline
seat inventory control. Operations Research, 37(2):183–197, 1989.

Aharon Ben-Tal and Arkadi Nemirovski. Robust convex optimization. Mathematics of
Operations Research, 23(4):769–805, 1998.

Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of uncertain linear pro-
grams. Operations Research letters, 25(1):1–13, 1999.

116 REFERENCES

Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of linear programming prob-
lems contaminated with uncertain data. Mathematical Programming, 88(3):411–424,
2000.

Aharon Ben-Tal, Arkadi Nemirovski, and Cees Roos. Robust solutions of uncertain
quadratic and conic-quadratic problems. SIAM Journal on Optimization, 13(2):535–
560, 2002.

Dimitris Bertsimas and David B Brown. Constructing uncertainty sets for robust linear
optimization. Operations Research, 57(6):1483–1495, 2009.

Dimitris Bertsimas and Sanne De Boer. Simulation-based booking limits for airline
revenue management. Operations Research, 53(1):90–106, 2005.

Dimitris Bertsimas and Ioana Popescu. Revenue management in a dynamic network
environment. Transportation Science, 37(3):257–277, 2003.

Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network flows.
Mathematical Programming, 98(1-3):49–71, 2003.

Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations Research, 52
(1):35–53, 2004.

Dimitris Bertsimas and Aurélie Thiele. A robust optimization approach to inventory
theory. Operations Research, 54(1):150–168, 2006.

Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory and
Applications of Robust Optimization. SIAM Review, 53(3):464–501, 2011.
ISSN 0036-1445. . URL http://books.google.com/books?hl=en{&}lr=

{&}id=DttjR7IpjUEC{&}oi=fnd{&}pg=PR9{&}dq=Robust+Optimization{&}ots=

W463fBWlR-{&}sig=N1DRhYF4NIE1XxZRwGsmZXy-0gU.

Neil Biehn. A cruise ship is not a floating hotel. Journal of Revenue and Pricing Manage-
ment, 5(2):135–142, 2006.

S Ilker Birbil, JBG Frenk, Joaquim AS Gromicho, and Shuzhong Zhang. The role of
robust optimization in single-leg airline revenue management. Management Science,
55(1):148–163, 2009.

Gabriel Bitran and René Caldentey. An overview of pricing models for revenue man-
agement. Manufacturing & Service Operations Management, 5(3):203–229, 2003.

Shelby L Brumelle and Jeffrey I McGill. Airline seat allocation with multiple nested
fare classes. Operations Research, 41(1):127–137, 1993.

Augustin Cauchy et al. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

http://books.google.com/books?hl=en{&}lr={&}id=DttjR7IpjUEC{&}oi=fnd{&}pg=PR9{&}dq=Robust+Optimization{&}ots=W463fBWlR-{&}sig=N1DRhYF4NIE1XxZRwGsmZXy-0gU
http://books.google.com/books?hl=en{&}lr={&}id=DttjR7IpjUEC{&}oi=fnd{&}pg=PR9{&}dq=Robust+Optimization{&}ots=W463fBWlR-{&}sig=N1DRhYF4NIE1XxZRwGsmZXy-0gU
http://books.google.com/books?hl=en{&}lr={&}id=DttjR7IpjUEC{&}oi=fnd{&}pg=PR9{&}dq=Robust+Optimization{&}ots=W463fBWlR-{&}sig=N1DRhYF4NIE1XxZRwGsmZXy-0gU

REFERENCES 117

Wen-Chyuan Chiang, Jason CH Chen, and Xiaojing Xu. An overview of research on
revenue management: current issues and future research. International journal of rev-
enue management, 1(1):97–128, 2006.

CLIA. The global economic contribution of cruise tourism 2018. Technical report,
Cruise Lines International Association, 2019.

William L Cooper. Asymptotic behavior of an allocation policy for revenue manage-
ment. Operations Research, 50(4):720–727, 2002.

Robert G Cross. Revenue management: Hard-core tactics for market domination. Crown
Business, 1997.

Cruise Market Watch. Financial breakdown of typical cruiser, 2018. URL https://

cruisemarketwatch.com/financial-breakdown-of-typical-cruiser/.

Renwick E Curry. Optimal airline seat allocation with fare classes nested by origins and
destinations. Transportation Science, 24(3):193–204, 1990.

James M Davis, Guillermo Gallego, and Huseyin Topaloglu. Assortment optimization
under variants of the nested logit model. Operations Research, 62(2):250–273, 2014.

Sanne V de Boer, Richard Freling, and Nanda Piersma. Mathematical programming for
network revenue management revisited. European Journal of Operational Research, 137
(1):72–92, 2002.

Laurent El Ghaoui and Hervé Lebret. Robust solutions to least-squares problems with
uncertain data. SIAM Journal on Matrix Analysis and Applications, 18(4):1035–1064,
1997.

Laurent El Ghaoui, Francois Oustry, and Hervé Lebret. Robust solutions to uncertain
semidefinite programs. SIAM Journal on Optimization, 9(1):33–52, 1998.

Virginie Gabrel, Cécile Murat, and Aurélie Thiele. Recent advances in robust optimiza-
tion: An overview. European Journal of Operational Research, 235(3):471–483, 2014.

G. Gallego, G. Iyengar, R. Phillips, and A. Dubey. Managing flexible products on a
network, 2004.

Guillermo Gallego and Garrett Van Ryzin. A multiproduct dynamic pricing problem
and its applications to network yield management. Operations Research, 45(1):24–41,
1997.

Monique Giese. Covid-19 impacts on global cruise industry. Blog post,
July 2020. URL https://home.kpmg/xx/en/blogs/home/posts/2020/07/

covid-19-impacts-on-global-cruise-industry.html.

Fred Glover, Randy Glover, Joe Lorenzo, and Claude McMillan. The passenger-mix
problem in the scheduled airlines. Interfaces, 12(3):73–80, 1982.

https://cruisemarketwatch.com/financial-breakdown-of-typical-cruiser/
https://cruisemarketwatch.com/financial-breakdown-of-typical-cruiser/
https://home.kpmg/xx/en/blogs/home/posts/2020/07/covid-19-impacts-on-global-cruise-industry.html
https://home.kpmg/xx/en/blogs/home/posts/2020/07/covid-19-impacts-on-global-cruise-industry.html

118 REFERENCES

Jochen Gonsch. A survey on risk-averse and robust revenue management. European
Journal of Operational Research, 263(2):337 – 348, 2017. ISSN 0377-2217. . URL http:

//www.sciencedirect.com/science/article/pii/S0377221717304800.

John J Grefenstette. Optimization of control parameters for genetic algorithms. IEEE
Transactions on systems, man, and cybernetics, 16(1):122–128, 1986.

John Henry Holland et al. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. 1992.

Lu Ji and Joseph Mazzarella. Application of modified nested and dynamic class al-
location models for cruise line revenue management. Journal of Revenue and Pricing
Management, 6(1):19–32, 2007.

Sheryl E Kimes. Yield management: a tool for capacity-considered service firms. Journal
of operations management, 8(4):348–363, 1989.

Robert Klein, Sebastian Koch, Claudius Steinhardt, and Arne K Strauss. A review of
revenue management: Recent generalizations and advances in industry applications.
European Journal of Operational Research, 2019.

Oliver Kramer. Genetic algorithms. In Genetic algorithm essentials, pages 11–19. Springer,
2017.

Sumit Kunnumkal and Kalyan Talluri. A note on relaxations of the choice network
revenue management dynamic program. Operations Research, 64(1):158–166, 2016.

Yingjie Lan, Huina Gao, Michael O Ball, and Itir Karaesmen. Revenue management
with limited demand information. Management Science, 54(9):1594–1609, 2008.

Tak C Lee and Marvin Hersh. A model for dynamic airline seat inventory control with
multiple seat bookings. Transportation Science, 27(3):252–265, 1993.

Bingzhou Li. A cruise line dynamic overbooking model with multiple cabin types from
the view of real options. Cornell Hospitality Quarterly, 55(2):197–209, 2014.

Zukui Li, Ran Ding, and Christodoulos A Floudas. A comparative theoretical and
computational study on robust counterpart optimization: I. robust linear optimiza-
tion and robust mixed integer linear optimization. Industrial & engineering chemistry
research, 50(18):10567–10603, 2011.

Ken Littlewood. Special issue papers: Forecasting and control of passenger bookings.
Journal of Revenue and Pricing Management, 4(2):111–123, 2005.

Qian Liu and Garrett Van Ryzin. On the choice-based linear programming model for
network revenue management. Manufacturing & Service Operations Management, 10
(2):288–310, 2008.

http://www.sciencedirect.com/science/article/pii/S0377221717304800
http://www.sciencedirect.com/science/article/pii/S0377221717304800

REFERENCES 119

Bacel Maddah, Lama Moussawi-Haidar, Muhammad El-Taha, and Hussein Rida. Dy-
namic cruise ship revenue management. European Journal of Operational Research, 207
(1):445–455, 2010.

Jeffrey I McGill and Garrett J Van Ryzin. Revenue management: Research overview
and prospects. Transportation Science, 33(2):233–256, 1999.

Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

Karthik Natarajan, Dessislava Pachamanova, and Melvyn Sim. Constructing risk mea-
sures from uncertainty sets. Operations research, 57(5):1129–1141, 2009.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

Georgia Perakis and Guillaume Roels. Robust controls for network revenue manage-
ment. Manufacturing & Service Operations Management, 12(1):56–76, 2010.

Georgia Perakis and Anshul Sood. Competitive multi-period pricing for perishable
products: A robust optimization approach. Mathematical Programming, 107(1-2):295–
335, 2006.

Lawrence W Robinson. Optimal and approximate control policies for airline booking
with sequential nonmonotonic fare classes. Operations Research, 43(2):252–263, 1995.

Marvin Rothstein. An airline overbooking model. Transportation Science, 5(2):180–192,
1971.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

Paat Rusmevichientong and Huseyin Topaloglu. Robust assortment optimization in
revenue management under the multinomial logit choice model. Operations Research,
60(4):865–882, 2012.

Leonard J Savage. The theory of statistical decision. Journal of the American Statistical
association, 46(253):55–67, 1951.

Robert Warren Simpson. Using network flow techniques to find shadow prices for market
demands and seat inventory control. MIT, Department of Aeronautics and Astronautics,
Flight Transportation Laboratory, 1989.

SN Sivanandam and SN Deepa. Genetic algorithms. In Introduction to genetic algorithms,
pages 15–37. Springer, 2008.

Allen L Soyster. Technical note — convex programming with set-inclusive constraints
and applications to inexact linear programming. Operations Research, 21(5):1154–1157,
1973.

120 REFERENCES

Arne K Strauss, Robert Klein, and Claudius Steinhardt. A review of choice-based rev-
enue management: Theory and methods. European Journal of Operational Research, 271
(2):375–387, 2018.

Daniel Sturm and Kathrin Fischer. Cruise line revenue management: Overview
and research opportunities. In Operations Research Proceedings 2016, pages 441–447.
Springer, 2018.

Kalyan T Talluri and Garrett J Van Ryzin. An analysis of bid-price controls for network
revenue management. Management Science, 44(11-part-1):1577–1593, 1998.

Kalyan T Talluri and Garrett J Van Ryzin. A randomized linear programming method
for computing network bid prices. Transportation Science, 33(2):207–216, 1999.

Kalyan T Talluri and Garrett J Van Ryzin. Revenue management under a general dis-
crete choice model of consumer behavior. Management Science, 50(1):15–33, 2004.

Kalyan T Talluri and Garrett J Van Ryzin. An introduction to revenue management.
Tutorials in operations research, pages 142–195, 2005.

Kalyan T Talluri and Garrett J Van Ryzin. The theory and practice of revenue management,
volume 68. Springer Science & Business Media, 2006.

Aurélie Thiele. A robust optimization approach to supply chains and revenue management.
PhD thesis, Massachusetts Institute of Technology, 2004.

Rex S Toh, Mary J Rivers, and Teresa W Ling. Room occupancies: cruise lines out-do
the hotels. International Journal of Hospitality Management, 24(1):121–135, 2005.

Garrett Van Ryzin and Gustavo Vulcano. Computing virtual nesting controls for net-
work revenue management under customer choice behavior. Manufacturing & Service
Operations Management, 10(3):448–467, 2008.

John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior.
Princeton university press, 1944.

Abraham Wald. Statistical decision functions which minimize the maximum risk. An-
nals of Mathematics, pages 265–280, 1945.

Abraham Wald. Statistical decision functions. Wiley, New York, 1950.

Lawrence R Weatherford, Samuel E Bodily, and Phillip E Pfeifer. Modeling the cus-
tomer arrival process and comparing decision rules in perishable asset revenue man-
agement situations. Transportation Science, 27(3):239–251, 1993.

Elizabeth Louise Williamson. Comparison of optimization techniques for origin-
destination seat inventory control. Technical report, [Cambridge, Mass.: Mas-
sachusetts Institute of Technology], Flight Transportation Laboratory,[1988], 1988.

REFERENCES 121

Elizabeth Louise Williamson. Airline network seat inventory control: Methodologies and
revenue impacts. PhD thesis, Massachusetts Institute of Technology, 1992.

RD Wollmer. A hub-spoke seat management model. Unpublished Internal Report, Mc
Donnell Douglas Corporation, Long Beach, CA, 1986.

Richard D Wollmer. An airline seat management model for a single leg route when
lower fare classes book first. Operations Research, 40(1):26–37, 1992.

Dan Zhang and Daniel Adelman. An approximate dynamic programming approach
to network revenue management with customer choice. Transportation Science, 43
(3):381–394, 2009. ISSN 00411655, 15265447. URL http://www.jstor.org/stable/

25769459.

http://www.jstor.org/stable/25769459
http://www.jstor.org/stable/25769459

	List of Figures
	List of Tables
	Nomenclature
	Declaration of Authorship
	Acknowledgements
	1 Introduction
	1.1 Background and Motivation
	1.2 Aims and Contributions
	1.3 Outline

	2 Literature Review
	2.1 Introduction
	2.2 Types of Control
	2.2.1 Booking Limits and Protection Levels
	2.2.2 Nested Controls
	2.2.3 Bid-Price Controls

	2.3 Single-Resource Revenue Management
	2.3.1 Quantity Based
	2.3.2 Price Based
	2.3.3 Customer Choice Modelling

	2.4 Network Revenue Management
	2.4.1 Price Based
	2.4.1.1 The Dynamic Program

	2.4.2 Quantity Based
	2.4.3 Customer Choice Modelling

	2.5 Robust and Risk-Averse Revenue Management
	2.5.1 Robust Decision Framework
	2.5.1.1 Maximin Revenue Principle
	2.5.1.2 Minimax Regret Principle

	2.5.2 Single-Resource
	2.5.3 Network

	2.6 Gradient Descent Algorithms
	2.7 Conclusion

	3 Robust Capacity Control
	3.1 Introduction
	3.1.1 Problem Statement

	3.2 Mathematical Formulation
	3.2.1 Robust MIP formulation
	3.2.2 Constructing Uncertainty sets
	3.2.3 Constructing the Constraint Matrix

	3.3 Genetic Algorithm
	3.3.1 Motivation
	3.3.2 Overview
	3.3.3 Implementation of genetic operators
	3.3.3.1 Initialisation
	3.3.3.2 The Evaluation operator
	3.3.3.3 The Selection operator: Survival and Mating pool choices
	3.3.3.4 The Crossover operator
	3.3.3.5 The Mutation operator
	3.3.3.6 Termination conditions

	3.3.4 Hyper-optimisation of the genetic algorithm's parameters
	3.3.4.1 Population Size
	3.3.4.2 Crossover Fraction
	3.3.4.3 Crossover Operator

	3.3.5 Convergence

	3.4 Conclusion

	4 Numerical Results
	4.1 Simulating The Booking Period
	4.2 Booking Acceptance Process Algorithms
	4.2.1 Partitioned Booking Limits
	4.2.2 Nested Booking Limits
	4.2.3 Bid Prices Control

	4.3 Airline network example
	4.4 Partitioned Booking Limits
	4.4.1 DLP: Low, Mean and High Demand
	4.4.2 Comparison of Previous Approximation Models
	4.4.3 Robust Controls

	4.5 Nested Booking Limits
	4.5.1 Deterministic Linear Programming
	4.5.2 Maximin Revenue
	4.5.3 Minimax Regret
	4.5.4 Comparison of Nested control policies
	4.5.5 Comparison with PerakisandRoels2010 simulated results

	4.6 Bid Prices
	4.7 Conclusion
	4.7.1 Future Work

	5 Cruise Line Application
	5.1 Introduction
	5.1.1 Contributions
	5.1.2 Motivation

	5.2 Problem Statement
	5.2.1 Capacity control formulation
	5.2.2 Robust Formulation
	5.2.3 Derivation of optimisation parameter values

	5.3 Simulating the booking horizon
	5.4 Numerical Results
	5.4.1 DLP
	5.4.2 Robust Measures
	5.4.3 Simulation Comparison

	5.5 Conclusion
	5.5.1 Future Work

	6 Conclusions and Future Work
	6.1 Research outcomes
	6.2 Limitations and Future Work

	Appendix A Airline Distributions Parametrisation
	Appendix B Mathematical Background
	Appendix B.1 Introduction to Robust Optimisation
	Appendix B.2 Robust Counterpart Optimisation
	Appendix B.3 Uncertainty Sets

	Appendix C Booking control Constraint Matrices
	Appendix C.1 Partitioned booking limits
	Appendix C.2 Nested booking limits

	References

