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Chapter 1

Introduction

The present research paper thesis consists of the articles [Lib, LLM, Lia, Li22] given by
the Chapters 2, 3, 4, and 5, respectively. In this introduction we explain the context in
which the four articles form a coherent body of work and highlight some of our main
results. These include cohomological characterisations of relative amenability (Theo-
rem 1.29) and relative hyperbolicity (Theorem 1.32) and a vanishing theorem for relative
simplicial volume (Theorem 1.37). Furthermore, we compute the amenable category of
right-angled Artin groups (Theorem 1.38) and Farber’s topological complexity of certain
relatively hyperbolic groups (Theorem 1.45).

1.1 Classifying spaces for families of subgroups

The connecting theme of this thesis is classifying spaces for families of subgroups. These
are important objects in equivariant algebraic topology and geometric group theory that
were introduced by tom Dieck. The equivariant cohomology of classifying spaces for
families is a generalisation of group cohomology and provides lower bounds for the gen-
eralised Lusternik–Schnirelmann category. Throughout the entire section, let G be a
discrete group.

1.1.1 Basics on classifying spaces for families

We will mostly work in the equivariant setting of G-CW-complexes and G-maps. For
background on G-CW-complexes and a survey on classifying spaces for families we refer
to [Lüc05].

A G-CW-complex Y is a G-space together with a G-invariant filtration

∅ = Y (−1) ⊂ Y (0) ⊂ Y (1) ⊂ · · · ⊂ Y (n) ⊂ · · · ⊂ Y (1.1)
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such that the following hold:

• Y =
⋃∞
n=0 Y

(n);

• Y carries the weak topology with respect to the filtration (1.1);

• Y (n) is obtained from Y (n−1) as a G-pushout of the form

∐
i∈In G/Hi × Sn−1 Y (n−1)

∐
i∈In G/Hi ×Dn Y (n) .

The subgroups Hi of G and their conjugates are called isotropy groups of Y .

For example, given a path-connected CW-complex X with fundamental group G, the
universal covering space X̃ carries the structure of a G-CW-complex with trivial isotropy
groups. For an aspherical space BG, the universal covering space EG is characterised
(up to G-homotopy) as a contractible space with a free G-action. Equivalently, EG is
terminal (up to G-homotopy) among G-CW-complexes with trivial isotropy groups.

Classifying spaces for families of subgroups are generalisations of EG to the setting
of G-CW-complexes with (not necessarily trivial) isotropy groups that are contained in
a specified family of subgroups.

Definition 1.1 (Family of subgroups). A family F of subgroups of G is a non-empty set
of subgroups of G that is closed under conjugation by elements of G and under taking
subgroups.

Important examples of families are the following:

T R = {the trivial subgroup};

FIN = {all finite subgroups};

VCY = {all virtually cyclic subgroups};

AME = {all amenable subgroups};

ALL = {all subgroups}.

A definition of amenable groups is given later (Definition 1.25). Amenable groups may
be considered as “small” for many purposes in geometry, topology, and dynamics and
will play a key role throughout this thesis.

The above examples of families are defined by group-theoretic properties that are in-
variant under conjugation and under taking subgroups. Another source of examples is
determined by any set of subgroups.
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Example 1.2 (Family generated by a set of subgroups). Let H be a set of subgroups
of G. The family F〈H〉 generated by H is defined as the smallest (with respect to
inclusion) family of subgroups of G containing H. Explicitly,

F〈H〉 = {F ⊂ G | F ⊂ gHg−1 for some H ∈ H, g ∈ G} .

We say that a G-CW-complex has isotropy in a family F if all its isotropy groups are
contained in F .

Definition 1.3 (Classifying space for a family of subgroups). Let F be a family of
subgroups of G. A classifying space EFG of G with respect to F is a terminal object in
the G-homotopy category of G-CW-complexes with isotropy in F .

The usual constructions of Segal and Milnor for EG generalise to give generic construc-
tions for EFG, proving the existence of such classifying spaces. An equivalent character-
isation of EFG can be given in terms of fixed-point sets.

Theorem 1.4 ([Lüc05, Theorem 1.9]). A G-CW-complex Y is a model for EFG if and
only if Y has isotropy in F and for all H ∈ F the fixed-point set Y H is contractible (and
in particular non-empty).

As mentioned above, a model for ET RG is the same as a model for EG. A model
for EALLG is given by the point G/G. Since every family F contains the trivial fam-
ily T R, by the universal property of EFG there exists a G-map EG → EFG that is
unique up to G-homotopy. We illustrate this map in an example.

Example 1.5 (The infinite dihedral group). Consider the infinite dihedral group

D∞ = Z/2Z ∗ Z/2Z ∼= 〈s, t | s2 = t2 = 1〉 .

A model for E(D∞) is given by the D∞-pushout

D∞ × S0 D∞ ×〈s〉 S∞
∐
D∞ ×〈t〉 S∞

D∞ ×D1 E(D∞) ,

where the maps are the obvious ones. Here S∞ is the infinite dimensional sphere viewed
as a Z/2Z-CW-complex via the antipodal action and D∞ ×〈s〉 S∞ is the induced D∞-
CW-complex.

A model for EFIN (D∞) is given by the real line R on which s and t act by reflection
in 0 and 1, respectively. This action endows R with the structure of a D∞-CW-complex
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given by the following D∞-pushout

D∞ × S0 D∞/〈s〉
∐
D∞/〈t〉

D∞ ×D1 R .

Then the canonical D∞-map E(D∞) → EFIN (D∞) is induced by collapsing each copy
of S∞ to a point.

SinceD∞ is virtually cyclic and hence amenable, a model for EVCY(D∞) and EAME(D∞)

is given by the point D∞/D∞. Thus the canonical D∞-maps E(D∞)→ EVCY(D∞) and
E(D∞)→ EAME(D∞) are the constant maps.

Especially for the family FIN of finite subgroups, where we are considering proper
actions, many interesting constructions of EFING for various classes of groups are known
(Table 1.1). For more details see [Lüc05, Section 4]. Note that if G is torsion-free, we
have FIN = T R and hence EFING = EG.

Group G Model for EFING
graph of finite groups Bass–Serre tree

right-angled Coxeter group Davis complex
hyperbolic group Rips complex

mapping class group Teichmüller space
Out(Fn) Culler–Vogtmann outer space

Table 1.1: Constructions of EFING.

For concrete computations it is desirable to have models for EFG of small dimension or
with a small number of (equivariant) cells. For two nested families E ⊂ F satisfying a
certain maximality condition, there is a construction of Lück–Weiermann [LW12] that
produces a “small” model for EFG from EEG (Theorem 5.3).

Remark 1.6 (Isomorphism conjectures in K-theory). The classifying spaces for the fam-
ilies FIN and VCY make a prominent appearance in the isomorphism conjectures
of Farrell–Jones and Baum–Connes. For a comprehensive introduction to the topic,
see [Lüc]. One version of the Farrell–Jones conjecture predicts that the assembly map

HG
n (EVCYG;K)→ Kn(ZG) (1.2)

is an isomorphism. Here Kn(ZG) is the algebraic K-theory of the group ring ZG
and HG

n (−;K) is the G-homology theory associated to the K-theory spectrum K. Many
powerful obstructions, such as the Wall finiteness obstruction or the Whitehead torsion,
live in (quotients of) the algebraic K-groups. While the right hand side of (1.2) is
extremely difficult to compute in general, the left hand side is accessible via standard
tools from equivariant algebraic topology. In principle, the left hand side of (1.2) can be
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computed using the equivariant Atiyah–Hirzebruch spectral sequence from the Bredon
homology of EVCYG with appropriate coefficients. This is one reason why the Bredon
(co)homology (Section 1.1.2) of classifying spaces for families is of interest.

Remark 1.7 (Convention on families). We point out that in Chapter 3 a different conven-
tion for families of subgroups is used. In Chapter 3 a family is only assumed to be closed
under conjugation (and not necessarily under taking subgroups). In all other chapters
including this introduction the term “family” is used as in Definition 1.1.

1.1.2 Bredon cohomology

The equivariant version of cellular cohomology for G-CW-complexes is given by Bredon
cohomology [Bre67]. A nice introduction to Bredon cohomology is provided in [Flu].

Fix a ground ring R. Let F be a family of subgroups of G. The (F-restricted) orbit
category OFG has as objects G-sets G/H with H ∈ F and as morphisms G-maps.
An OFG-module is a contravariant functor M : OFG → R-Mod to the category of
R-modules. Morphisms of OFG-modules are natural transformations.

For example, any RG-module V gives rise to an OFG-module V ? : OFG → R-Mod by
taking invariants V ?(G/H) = V H . For a G-CW-complex Y , the cellular chains of its
fixed-point sets form an OFG-module Ccell

n (Y ?) : OFG→ R-Mod,

Ccell
n

(
Y ?
)
(G/H) = Ccell

n

(
Y H
)
.

Taking cohomology of the OFG-chain complex Ccell
∗ (−?) defines a G-cohomology theory.

Equivalently, one can also use the singular chain complex instead.

Definition 1.8 (Bredon cohomology). Let F be a family of subgroups of G and let M
be an OFG-module. Let Y be a G-CW-complex with isotropy in F . The (G-equivariant)
Bredon cohomology of Y with coefficients in M is defined as

H∗G(Y ;M) := H∗
(
HomOFG(Ccell

∗ (Y ?),M)
)
.

For an RG-module V , we denote H∗G(Y ;V ) := H∗G(Y ;V ?).

The Bredon cohomology of the group G with respect to F and with coefficients in M is
defined to be

H∗F (G;M) := H∗G(EFG;M) . (1.3)

For the trivial family T R, the orbit category OT RG is isomorphic to the groupoid G,
which shows that an OT RG-module is the same as an RG-module. Since ET RG = EG,
in this case the Bredon cohomology of G recovers ordinary group cohomology [Bro82].
The notions of geometric dimension gd(G) and cohomological dimension cd(G) admit
generalisations to the setting of families.
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Definition 1.9 (Bredon geometric and cohomological dimension). Let F be a family of
subgroups of G. The geometric dimension gdF (G) of G with respect to F is the infimum
of n ∈ N≥0 for which there exists a model for EFG of dimension n. (In particular,
if no finite dimensional model for EFG exists, then gdF (G) = ∞.) For R = Z, the
cohomological dimension cdF (G) of G with respect to F is the supremum of k ∈ N≥0 for
which Hk

F (G;M) is non-trivial for some OFG-module M .

Clearly, we have cdF (G) ≤ gdF (G). The classical result gd(G) ≤ max{cd(G), 3} of
Eilenberg–Ganea [EG57] holds more generally with respect to every family.

Theorem 1.10 (Lück–Meintrup [LM00]). For every family F of subgroups of G, we
have

gdF (G) ≤ max{cdF (G), 3} .

Thus, if cdF (G) ≥ 3, then the Bredon geometric and cohomological dimensions coincide.

Remark 1.11 (Algebraic definition of Bredon group cohomology). Recall that ordinary
group cohomology can be defined purely algebraically via derived functors and also
concretely via a standard resolution [Bro82]. While our definition of (1.3) is topo-
logical, the Bredon cohomology H∗F (G;M) may alternatively be defined algebraically
as Ext∗OFG(R,M), where R is the constant OFG-module with value R. There is a stan-
dard resolution of the OFG-module R which can be used to compute H∗F (G;M). The
usual computational tools for group cohomology, such as the long exact coefficient se-
quence, Shapiro’s lemma, and the Lyndon–Hochschild–Serre spectral sequence, all have
versions for Bredon cohomology [Flu, MP02]. More details on this algebraic point of
view are given in Chapter 2.

1.1.3 Generalised Lusternik–Schnirelmann category

A basic approach to study a topological space X is to find a cover U of X by open subsets
that are simple or small in an appropriate sense and to analyse how these overlap. More
precisely, one wants to understand how the topology of X is reflected in the nerve N(U)

of U . By a classical result of Leray, if all open subsets in U and all their non-empty
intersections are contractible, then X is in fact homotopy equivalent to N(U).

The minimal number of contractible open subsets needed to cover X (not requiring
conditions on intersections) yields a naive “measure of complexity” for X, the Lusternik–
Schnirelmann category. It is a well-studied homotopy invariant originating from critical
point theory [CLOT03].

Definition 1.12 (Lusternik–Schnirelmann category). Let X be a topological space.
The Lusternik–Schnirelmann category (LS-category for short) LS-cat(X) is the infimum
of n ∈ N≥0 for which there exists a cover X =

⋃n
i=0 Ui by (not necessarily path-

connected) open subsets Ui that are contractible in X.
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The usual strategy to determine the precise value of the LS-category and similar invari-
ants below is twofold: First, to construct an explicit open cover as in Definition 1.12 and
second, to show that no smaller cover can exist using cohomological obstructions.

The LS-category of a simplicial complex X is bounded above by its dimension. Indeed,
we have X =

⋃dim(X)
i=0 Ui, where Ui is the disjoint union of open stars corresponding to i-

simplices of X. For any space X, an obstruction to admitting open covers by contractible
sets is given by cup products on cohomology. If there exists a non-trivial cup product
of k cohomology classes in positive degrees, then LS-cat(X) ≥ k.

Since the LS-category is homotopy invariant, we obtain an invariant of discrete groups
by defining the LS-category of G to be LS-cat(G) := LS-cat(BG). This corresponds to
restricting ourselves to aspherical spaces, which we will do similarly for other invariants
below. The LS-category of an aspherical space can be identified with the cohomological
dimension of its fundamental group. For aspherical spaces this provides an algebraic
characterisation of the topologically defined LS-category.

Theorem 1.13 (Eilenberg–Ganea [EG57], Stallings [Sta68], Swan [Swa69]). We have

LS-cat(G) = cd(G) .

Note that for an aspherical space X, the requirement on Ui to be contractible in X is
equivalent to being simply-connected in X. From this point of view, it is natural to relax
the condition on Ui to having fundamental group in a prescribed family of subgroups
of π1(X).

Definition 1.14 (Generalised LS-category). Let F be a family of subgroups of G. Let X
be a path-connected topological space with fundamental group G. The generalised LS-
category with respect to F (also F-category) catF (X) is the infimum of n ∈ N≥0 for which
there exists a cover X =

⋃n
i=0 Ui by (not necessarily path-connected) open subsets Ui

satisfying
im
(
π1(Ui ↪→ X,x)

)
∈ F

for all x ∈ Ui.

The F-category of the group G is defined to be catF (G) := catF (BG).

This general setup encompasses the following interesting special cases:

• catT R(G) = LS-cat(G) = cd(G) the cohomological dimension;

• catAME(G) the amenable category;

• catD(π× π) = TC(π) Farber’s topological complexity, where π is a group and D is
the family of subgroups of π × π generated by the diagonal subgroup.
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The amenable category will be discussed further in Section 1.2. It was systematically
studied as an invariant of 3-manifolds in [GLGAH13, GLGAH14] and for arbitrary spaces
recently in [CLM, LM]. Lower bounds for the amenable category are provided by several
important invariants from algebraic topology, such as bounded cohomology, `2-Betti
numbers, and mod p homology growth (Section 1.2.5). Farber’s topological complexity
is motivated by robotics and it is the subject of Section 1.3.

The following theorem characterises the F-category of G in terms of classifying spaces for
families. In the author’s opinion, it is a beautiful result because it relates two important
concepts which facilitates the transfer of methods. As we shall see in Chapter 3, it allows
to prove new results and re-prove existing results for the amenable category in a very
conceptual way. In special cases the next theorem was previously obtained in [FGLO19,
BCVEB22].

Theorem 1.15 (Capovilla–Löh–Moraschini [CLM, Proposition 7.5]). Let F be a family
of subgroups of G. The F-category catF (G) coincides with the infimum of n ∈ N≥0 for
which the canonical G-map EG→ EFG is equivariantly homotopic to a map with values
in the n-skeleton of EFG.

Roughly speaking, Theorem 1.15 states that the F-category catF (G) coincides with the
“geometric dimension of the G-map EG→ EFG”. This interpretation offers an obvious
lower bound given by the “cohomological dimension of the G-map EG→ EFG” in terms
of Bredon cohomology.

Definition 1.16. Let F be a family of subgroups of G. We define cdT R⊂F (G) to be the
supremum of k ∈ N≥0 for which the induced map on Bredon cohomology

Hk
G(EFG;M)→ Hk

G

(
EG;M(G/1)

)
is non-trivial for some OFG-module M .

Clearly, we have

cdT R⊂F (G) ≤ catF (G) ≤ min{gd(G), gdF (G)} . (1.4)

The question when the equality cdT R⊂F (G) = catF (G) holds is posed and addressed
briefly in Section 1.3.4.

Remark 1.17 (Convention on normalisation). We point out that in Chapter 3 a different
normalisation for catF (X) is used, which produces values that are by 1 larger than in
Definition 1.14.
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1.2 Bounded cohomology and simplicial volume

Bounded cohomology is a homotopy invariant defined in terms of bounded singular
cochains. It is often described as a “functional analytic variant” of singular cohomol-
ogy, though it is not a cohomology theory. Originally, Gromov [Gro82] studied the
simplicial volume of manifolds using the duality between the `1-seminorm on singular
homology and the `∞-seminorm on bounded cohomology. Today bounded cohomology
has become an object of interest in its own right due to plentiful connections to topics in
geometric group theory [Mon06]. For instance, bounded cohomology characterises both
amenable groups and hyperbolic groups. The standard references are [Fri17, Mon01]. In
this section, the ground ring is R.

1.2.1 Basics on bounded cohomology

We recall the definition of simplicial volume which is a homotopy invariant of oriented
closed connected manifolds. At the same time, the simplicial volume of Riemannian man-
ifolds encodes geometric information about the Riemannian volume. It was introduced
by Gromov in his proof of Mostow rigidity.

Singular homology is naturally equipped with an `1-seminorm as follows. For a topo-
logical space X, the singular chain module Cn(X;R) is equipped with an `1-norm, for a
singular chain c =

∑
i ciσi ∈ Cn(X;R) with singular simplices σi and ci ∈ R given by

|c|1 :=
∑
i

|ci| .

This `1-norm on Cn(X;R) descends to an `1-seminorm on singular homology Hn(X;R),
for a singular homology class α ∈ Hn(X;R) given by

‖α‖1 := inf
{
|c|1

∣∣ c ∈ Cn(X;R), ∂c = 0, [c] = α
}
.

Definition 1.18 (Simplicial volume). Let M be an oriented closed connected mani-
fold of dimension n. The real fundamental class [M ]R ∈ Hn(M ;R) is the image of
the fundamental class [M ]Z ∈ Hn(M ;Z) under the change of coefficients homomor-
phism Hn(M ;Z)→ Hn(M ;R). The simplicial volume of M is defined as

‖M‖ :=
∥∥[M ]R

∥∥
1
∈ R≥0 .

It is easy to see from the definition that the circle S1 has vanishing simplicial volume.
More generally, the simplicial volume of manifolds with amenable fundamental group
vanishes (Corollary 1.27). On the other hand, the simplicial volume of hyperbolic man-
ifolds is proportional to the Riemannian volume, in particular it is positive. The value
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of simplicial volume and in particular its (non-)vanishing behaviour is detected by the
dual theory of bounded cohomology. The definition is analogous to that of singular
cohomology, however, using only bounded cochains.

Definition 1.19 (Bounded cohomology). Let X be a topological space. Consider the
singular chain module Cn(X;R) equipped with the `1-norm. Taking topological duals
yields the bounded cochain complex

C∗b (X;R) := B
(
C∗(X;R),R

)
.

The bounded cohomology of X is defined as

Hn
b (X;R) := Hn

(
C∗b (X;R)

)
.

The inclusion of bounded cochains into all (not necessarily bounded) cochains induces
the so-called comparison map

comp∗ : H∗b (X;R)→ H∗(X;R) .

We mention that the comparison map is neither injective nor surjective in general.

The operator-norm on Cnb (X;R) descends to an `∞-seminorm on Hn
b (X;R), for a class

ϕ ∈ Hn
b (X;R) given by

‖ϕ‖∞ := inf
{
|f |∞

∣∣ f ∈ Cnb (X;R), δf = 0, [f ] = ϕ
}
.

Proposition 1.20 (Duality principle [Fri17, Lemma 6.1]). Let X be a topological space
and let α ∈ Hn(X;R) be a homology class. We have

‖α‖1 = max
{
〈compn(ϕ), α〉

∣∣ ϕ ∈ Hn
b (X;R), ‖ϕ‖∞ ≤ 1

}
.

In particular, for an oriented closed connected manifold M of dimension n, the compar-
ison map compn : Hn

b (M ;R)→ Hn(M ;R) ∼= R is surjective if and only if ‖M‖ > 0.

We warn the reader that bounded cohomology is not a cohomology theory. While it
is functorial and homotopy invariant, it does not satisfy the Mayer–Vietoris or excision
axiom. This makes explicit computations very difficult, which is why the focus is often
on qualitative (non-)vanishing results. Another feature of bounded cohomology is that it
is insensitive to abelian groups (and more generally, to amenable groups (Theorem 1.26))
and hence to higher homotopy groups.

Theorem 1.21 (Mapping theorem [Fri17, Theorem 5.9]). Let X be a path-connected
topological space with fundamental group G. The classifying map X → BG induces an
isometric isomorphism

H∗b (BG;R)
∼=−→ H∗b (X;R) .
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Theorem 1.21 essentially reduces the study of bounded cohomology of arbitrary spaces
to that of aspherical spaces, in other words, to that of groups.

Equivariant bounded cohomology. The definition of bounded cohomology can be
extended to G-spaces and to allow for twisted coefficients.

A normed G-module V is a G-module equipped with a G-invariant norm. For two
normed G-modules U and V , we denote by BG(U, V ) the set of G-equivariant bounded
linear maps.

Definition 1.22 (Equivariant bounded cohomology). Let G be a group and let V be a
normed G-module. Let Y be a G-space. The singular chain module Cn(Y ;R) equipped
with the `1-norm is a normed G-module. The cochain complex of G-equivariant bounded
cochains with coefficients in V is

C∗G,b(Y ;V ) := BG
(
C∗(Y ;R), V

)
.

The (G-equivariant) bounded cohomology of Y with coefficients in V is defined as

Hn
G,b(Y ;V ) := Hn

(
C∗G,b(Y ;V )

)
.

Forgetting boundedness of the cochains induces the comparison map

comp∗ : H∗G,b(Y ;V )→ H∗G(Y ;V ) .

The bounded cohomology of the group G with coefficients in V is defined to be

H∗b (G;V ) := H∗G,b(EG;V ) . (1.5)

On the one hand, bounded cohomology (with dual coefficients) vanishes for amenable
groups (Theorem 1.26), such as the integers Z. On the other hand, bounded cohomology
is non-trivial in the presence of negative curvature, e.g., for hyperbolic groups (Theo-
rem 1.30). As a matter of fact, for the free group F2 on two generators, H2

b (F2;R) is
infinite dimensional. This example shows that bounded cohomology does not satisfy the
Mayer–Vietoris axiom nor the dimension axiom.

Remark 1.23 (Alternative definition of bounded group cohomology). There is also a con-
crete definition of bounded group cohomology via a standard resolution and an algebraic
framework of relative homological algebra due to Ivanov [Iva85]. However, an easy al-
gebraic description via derived functors does not seem to be available, having to do
with the fact that the category of normed G-modules is not abelian. Nevertheless, some
cohomological tools are still available [Mon01].

The main novelty of Chapter 2 is a bounded version of Bredon group cohomology.
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Definition 1.24 (Bounded Bredon cohomology for groups). Let G be a group and let F
be a family of subgroups. For a normed G-module V , we define

H∗F ,b(G;V ) := H∗G,b(EFG;V ) .

Clearly, Definition 1.24 is a generalisation of ordinary bounded group cohomology (1.5)
which is recovered for the trivial family T R. In Chapter 2 we also give an alternative
definition of bounded Bredon cohomology via a standard resolution. We generalise two
essential theorems on bounded cohomology to the setting of families: characterisations
of amenable groups and of hyperbolic groups.

1.2.2 Amenability

The class of amenable groups is fundamental in geometric group theory and beyond.
Amenable groups can be considered as small from the point of view of large scale geom-
etry.

Let G be a group and S be a G-set. The R-module `∞(S,R) of bounded functions S → R
admits the structure of an RG-module, given by (g · f)(s) = f(g−1s) for f ∈ `∞(S,R),
g ∈ G, and s ∈ S.

A G-invariant mean on S is an R-linear function m : `∞(S,R)→ R satisfying

• m(const1) = 1, where const1 is the constant function with value 1;

• m(f) ≥ 0 for all f ∈ `∞(S,R) with f ≥ 0;

• m(g · f) = m(f) for all f ∈ `∞(S,R) and g ∈ G.

Definition 1.25 (Amenable group). A group G is amenable if the G-set G admits
a G-invariant mean.

For example, all finite groups and all abelian groups are amenable. The class of amenable
groups is closed under taking subgroups, quotients, extensions, and directed unions. The
free group F2 is not amenable, a fact that lies at the core of the Banach–Tarski paradox.

Amenability is characterised by the vanishing of bounded cohomology with dual coeffi-
cients. For a normed RG-module V , we denote its topological dual by V # := B(V,R)

which is again a normed RG-module.

Theorem 1.26 (Johnson [Joh72]). Let G be a group. The following are equivalent:

(i) G is amenable;

(ii) Hn
b (G;V #) = 0 for every dual normed RG-module V # and all n ≥ 1;
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(iii) H1
b (G;V #) = 0 for every dual normed RG-module V #.

Combining the implication (i) ⇒ (ii) of Theorem 1.26 with the mapping theorem (The-
orem 1.21) and the duality principle (Proposition 1.20), we deduce the following.

Corollary 1.27. Let M be an oriented closed connected manifold of positive dimension.
If the fundamental group of M is amenable, then we have ‖M‖ = 0.

Relative amenability. There is a generalisation of amenability to the relative setting,
see e.g., [MP03, JOR12].

Definition 1.28. Let G be a group and let H be a set of subgroups of G. We say
that G is amenable relative to H if the G-set

∐
H∈HG/H admits a G-invariant mean.

If H consists of a single subgroup H, we also say that G is amenable relative to H. (In
the literature it is also common to say that H is co-amenable in G.)

We collect some examples: Obviously, a group G is amenable if and only if it is amenable
relative to the trivial subgroup. Given a normal subgroup N of G, we have that G is
amenable relative to N if and only if the quotient group G/N is amenable. An ascending
HNN-extension H∗ϕ is amenable relative to H [MP03]. If H contains a subgroup that
has finite index in G or that contains the commutator subgroup of G, then G is amenable
relative to H.

We consider the bounded Bredon cohomology (Definition 1.24) with respect to the fam-
ily F〈H〉 generated by H (Example 1.2).

Theorem 1.29 (Characterisation of relative amenability, Theorem 2.3). Let G be a
group and let H be a set of subgroups of G. The following are equivalent:

(i) G is amenable relative to H;

(ii) Hn
F〈H〉,b(G;V #) = 0 for every dual normed RG-module V # and all n ≥ 1;

(iii) H1
F〈H〉,b(G;V #) = 0 for every dual normed RG-module V #.

The proof of Theorem 1.29 is analogous to the classical proof of Theorem 1.26 in the
non-relative case. It uses the algebraic definition of bounded (Bredon) group cohomology
and relies on a transfer map and the long exact coefficient sequence.

1.2.3 Hyperbolicity

Another class of groups that is fundamental in geometric group theory and geometric
topology is that of hyperbolic groups. In a certain probabilistic sense, most finitely
presented groups are hyperbolic.
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A finitely generated group G is hyperbolic if its Cayley graph with respect to some finite
generating set is hyperbolic as a metric space.

Examples of hyperbolic groups are finite groups, free groups, fundamental groups of
surfaces of genus ≥ 2, and more generally, fundamental groups of closed hyperbolic
manifolds. Hyperbolic groups are always finitely presented and cannot contain Z2 as a
subgroup.

Hyperbolicity is characterised by surjectivity of the comparison map for all coefficients.

Theorem 1.30 (Mineyev [Min01, Min02]). Let G be a finitely presented group. The
following are equivalent:

(i) G is hyperbolic;

(ii) compn : Hn
b (G;V ) → Hn(G;V ) is surjective for every normed RG-module V and

all n ≥ 2;

(iii) comp2 : H2
b (G;V )→ H2(G;V ) is surjective for every normed RG-module V .

Theorem 1.30 was motivated by the fact that hyperbolic manifolds have positive sim-
plicial volume. The implication (i) ⇒ (ii) together with the duality principle (Proposi-
tion 1.20) yields the following generalisation.

Corollary 1.31. Let M be an aspherical oriented closed connected manifold of dimen-
sion n ≥ 2. If the fundamental group of M is hyperbolic, then we have ‖M‖ > 0.

Relative hyperbolicity. Various generalisations of hyperbolicity have been at the
forefront of mathematical research in recent years. A key notion is that of relatively
hyperbolic groups, see e.g., [Hru10].

Let G be a finitely generated group and let P be a finite set of subgroups. We say
that G is hyperbolic relative to P if the coned-off Cayley graph of G with respect to P is
hyperbolic and fine.

For example, a free product G1 ∗ G2 is hyperbolic relative to its factors {G1, G2}. The
fundamental group of a finite volume hyperbolic manifold is hyperbolic relative to the
cusp subgroups. If G is torsion-free hyperbolic relative to P, then the set P is a malnor-
mal collection, i.e., for all Pi, Pj ∈ P and g ∈ G, we have Pi ∩ gPjg−1 = {1} unless i = j

and g ∈ Pj .

We consider the comparison map for bounded Bredon cohomology (Definition 1.24) with
respect to the family F〈P〉 generated by P (Example 1.2).

Theorem 1.32 (Characterisation of relative hyperbolicity, Theorem 2.31). Let G be a
finitely presented torsion-free group and let P be a finite malnormal collection of subgroups
consisting of finitely presented groups. The following are equivalent:
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(i) G is hyperbolic relative to P;

(ii) compn : Hn
F〈P〉,b(G;V )→ Hn

F〈P〉(G;V ) is surjective for every normed RG-module V
and all n ≥ 2;

(iii) comp2 : H2
F〈P〉,b(G;V )→ H2

F〈P〉(G;V ) is surjective for every normed RG-module V .

The proof strategy of Theorem 1.32 follows that of Theorem 1.30 in the non-relative
case. The key ingredients are bicombing techniques developed by Mineyev–Yaman [MY]
and a criterion for relative hyperbolicity in terms of linear homological isoperimetric
inequalities due to Martínez-Pedroza [MP16] and Franceschini [Fra18].

1.2.4 A question of Gromov

One observes that, among aspherical manifolds, many conditions ensuring the vanishing
of simplicial volume also imply the vanishing of the Euler characteristic. For example,
both invariants vanish for aspherical manifold that have amenable fundamental group,
that are the total space of a fibre bundle whose fibre has amenable fundamental group,
that admit a non-trivial self-covering, or that admit a smooth non-trivial S1-action.
This raises the following question, which is one of the main open problems in the field of
simplicial volume.

Question 1.33 (Gromov). Let M be an aspherical oriented closed connected manifold.
Does vanishing of the simplicial volume ‖M‖ imply vanishing of the Euler characteris-
tic χ(M)?

For more motivation and a recent status report on Question 1.33 we refer to [LMR].
At the time of writing, it is completely open. The main source of examples satisfying
Question 1.33 is the topic of the next section.

1.2.5 Vanishing results for amenable covers

We have discussed that the simplicial volume of manifolds with amenable fundamental
group vanishes (Corollary 1.27). The following theorem is a generalisation to the case
when the manifold has small amenable category (Definition 1.14).

For a topological space X, we have catAME(X) ≤ n if there exists a cover X =
⋃n
i=0 Ui

by (not necessarily path-connected) open subsets Ui satisfying

im
(
π1(Ui ↪→ X,x)

)
∈ AME

for all basepoints x ∈ Ui.
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Theorem 1.34 (Vanishing theorem [Gro82, Iva85]). Let X be a path-connected topo-
logical space. Then the comparison map compk : Hk

b (X;R) → Hk(X;R) is trivial for
all k > catAME(X).

In particular, ifM is an oriented closed connected manifold with catAME(M) < dim(M),
then ‖M‖ = 0.

Theorem 1.34 is one of the strongest known vanishing results for simplicial volume.
Apart from the original proofs of Gromov [Gro82] and Ivanov [Iva85], recently several
new accounts have been given [FM, LS20, Iva, Rap].

There is an analogous vanishing result for the `2-Betti numbers of aspherical spaces in
degrees larger than the amenable category. Moreover, in the case of aspherical manifolds
one even obtains vanishing in all degrees.

Theorem 1.35 (Sauer [Sau09]). Let X be an aspherical path-connected CW-complex.
We have b(2)

k (X) = 0 for all k > catAME(X).

Moreover, let M be an aspherical oriented closed connected manifold. If M satisfies
catAME(M) < dim(M), then we have b(2)

k (M) = 0 for all k ≥ 0 and in particular,
χ(M) = 0.

Together, Theorem 1.34 and Theorem 1.35 show that aspherical manifolds M with
catAME(M) < dim(M) satisfy Question 1.33.

Remark 1.36 (Vanishing theorems for acyclic covers). Both Theorem 1.34 and Theo-
rem 1.35 involve the amenable category because amenable groups are both boundedly
acyclic as well as `2-acyclic. In fact, Theorem 1.34 holds more generally for uniformly
boundedly acyclic covers (Corollary 3.78) and Theorem 1.35 for `2-acyclic covers (The-
orem 3.86).

A vanishing theorem for relative simplicial volume. There are notions of rela-
tive simplicial volume for manifolds with boundary and of relative bounded cohomology
for pairs of topological spaces. It is indispensable to consider these relative versions,
e.g., when studying manifolds that are constructed by glueing manifolds with boundary
(Section 3.8).

Joint with Clara Löh and Marco Moraschini, we introduce the relative amenable category
(Definition 3.43) and obtain a vanishing theorem analogous to Theorem 1.34.

Theorem 1.37 (Relative vanishing theorem, Corollary 3.80). Let (X,A) be a CW-pair
with path-connected ambient space X. Suppose that A has only finitely many connected
components, each of which is π1-injective in X. Then the comparison map

compk : Hk
b (X,A;R)→ Hk(X,A;R)
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is trivial for all k > catAME(X,A).

In particular, if (M,∂M) is an oriented compact connected manifold with π1-injective
boundary components and catAME(M,∂M) < dim(M), then ‖M,∂M‖ = 0.

To prove Theorem 1.37, we adapt Löh–Sauer’s recent proof [LS20] of Theorem 1.34 to
the relative setting. To this end we introduce classifying spaces for group pairs and
equivariant nerve pairs. Using recent results of Moraschini–Raptis [MR], we are able to
allow for more general uniformly boundedly acyclic covers (Corollary 3.78). Furthermore,
we obtain new estimates on the simplicial volume of manifolds constructed by glueing
manifolds with boundedly acyclic boundary (Section 3.8).

Chapter 3 also contains several other results that use classifying spaces for group pairs,
most notably a vanishing theorem for relative `2-Betti numbers (Theorem 3.86) and
a relative version of a result of Dranishnikov–Rudyak [DR09] for maps of degree one
(Corollary 3.29).

Amenable category of aspherical spaces. In view of the vanishing results for the
comparison map (Theorem 1.34) and for `2-Betti numbers (Theorem 1.35), the amenable
category is an interesting and meaningful invariant. As usual, by restricting ourselves to
aspherical spaces, we obtain an invariant of discrete groups. We list some examples for
which the precise value of the amenable category can be computed. We have

• catAME(G) = 0 if and only if G is amenable (Definition 1.14);

• catAME(G) = 1 if and only if G is a non-amenable fundamental group of a graph
of amenable groups [CLM, Corollary 5.4];

• catAME(G) = cd(G) if G is torsion-free non-elementary hyperbolic (Theorem 1.30
and Theorem 1.34).

In Chapter 4 we compute the amenable category for all right-angled Artin groups. These
groups interpolate between free groups and free abelian groups, and are an important
source of (counter-)examples in geometric group theory.

Let L be a finite flag complex, i.e., a simplicial complex in which every clique spans
a simplex. The right-angled Artin group AL has as generators vertices of L subject to
the relations that two generators commute if the corresponding vertices span an edge
in L. The right-angled Coxeter group WL is the quotient of AL obtained by adding
the relations that each generator is of order two. Since WL is virtually torsion-free, the
virtual cohomological dimension vcd(WL) is well-defined as the cohomological dimension
of a finite index torsion-free subgroup of WL.
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Theorem 1.38 (Amenable category of right-angled Artin groups, Corollary 4.17). Let AL
be the right-angled Artin group associated to a finite flag complex L. We have

catAME(AL) = vcd(WL) .

The proof of Theorem 1.38 relies on combining existing results from the literature. The
upper bound follows from a construction of classifying spaces that are of small dimension
by Petrosyan–Prytuła [PP]. The lower bound uses a vanishing theorem analogous to
Theorem 1.35 for mod p homology growth by Sauer [Sau16] and a recent computation
of this growth for right-angled Artin groups by Avramidi–Okun–Schreve [AOS21].

Our methods also yield a complete characterisation of right-angled Artin groups with
(non-)vanishing minimal volume entropy (Theorem 4.20). This resolves the remaining
cases left open by recent work of Haulmark–Schreve [HS] (see also [BC21]).

1.3 Farber’s topological complexity

The notion of topological complexity was introduced by Farber [Far03] motivated by the
motion planning problem in robotics. For example, let us consider a robot moving on
the floor of a warehouse. A motion planning algorithm takes as input an initial and
final location of the robot and produces as output a trajectory connecting the two that
avoids obstacles in the floor plan. In theory the robot can then move autonomously
along the trajectory. More generally, the initial and final states can be viewed as points
in a configuration space encoding various parameters (e.g., the angle determining the
position of a robot arm). Then the trajectory is a path in this configuration space.
The idea of topological complexity is to measure the “complexity” of a motion planning
algorithm in a given space. This concept has attracted the interest of both applied and
pure mathematicians.

1.3.1 Basics on topological complexity

Finding a path connecting prescribed start and end points can be formalised mathemat-
ically via sections of the path fibration.

For a path-connected topological space X, we have the path fibration

pX : X [0,1] → X ×X, pX(γ) = (γ(0), γ(1)) .

It is easy to observe that pX admits a global section (i.e., a map s : X×X → X [0,1] such
that pX ◦ s = idX×X) if and only if X is contractible. In the spirit of the Lusternik–
Schnirelmann category (Section 1.1.3), open subsets of X × X on which pX admits a
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local section may be regarded as small, and we consider the minimal number of such open
subsets needed to cover X×X. This number yields a homotopy invariant measuring how
many continuous rules are required to implement a motion planning algorithm in X.

Definition 1.39 (Topological complexity). LetX be a path-connected topological space.
The topological complexity TC(X) is the infimum of n ∈ N≥0 for which there exists an
open cover X ×X =

⋃n
i=0 Ui such that pX admits a local section over each Ui.

The topological complexity of a group π is defined to be TC(π) := TC(Bπ).

The general strategy to computing the precise value of TC(X) is as for the Lusternik–
Schnirelmann category. One constructs an explicit open cover together with local sections
of pX as in Definition 1.39, and then one needs to show that this cover is minimal. A
basic obstruction to the existence of such covers is given by non-trivial cup-products
of cohomology classes in the kernel of the map H∗(X × X) → H∗(X) induced by the
diagonal map.

For example, the topological complexity of spheres Sn for n > 0 is given by

TC(Sn) =

1 if n is odd;

2 if n is even.

The topological complexity of real projective space RP k is closely related to the smallest
dimension n for which RP k can be immersed into Rn [FTY03]. The latter example gives
evidence that the topological complexity encodes interesting geometric information.

Remark 1.40 (Convention on normalisation). In the literature also a different normal-
isation for TC is used, producing values that are by 1 larger than ours. Therefore,
Definition 1.39 is sometimes called the reduced topological complexity.

Topological complexity of aspherical spaces. The connection between generalised
LS-category and classifying spaces for families (Theorem 1.15) was first observed in the
context of topological complexity by Farber–Grant–Lupton–Oprea in their remarkable
work [FGLO19].

For a group π, we consider the product π × π and denote by D := F〈∆〉 the family of
subgroups of π × π generated by the diagonal subgroup ∆ ⊂ π × π (Example 1.2).

Theorem 1.41 (Farber–Grant–Lupton–Oprea [FGLO19]). Let π be a group. The topo-
logical complexity TC(π) coincides with the infimum of n ∈ N≥0 for which the canoni-
cal (π× π)-map E(π× π)→ ED(π× π) is equivariantly homotopic to a map with values
in the n-skeleton of ED(π × π).

The topological complexity TC(π) satisfies the inequalities

cd(π) ≤ TC(π) ≤ cd(π × π) , (1.6)
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which can easily be deduced from Theorem 1.41. Since the topological complexity of
groups containing torsion is infinite, one reduces to the study of torsion-free groups. The
precise value of TC(π) has been computed for several classes of groups, for an account see
e.g., [FGLO19, FM20, Dra20]. For torsion-free abelian groups π, we have TC(π) = cd(π)

because in this case a model for ED(π×π) is given by Eπ. For right-angled Artin groups
in general, the topological complexity provides a new invariant.

Theorem 1.42 (González et al. [GGG+15], Cohen–Pruidze [CP08]). Let AL be the
right-angled Artin group associated to a finite flag complex L with vertex set V . Then

TC(AL) = max
{
|V1 ∪ V2|

∣∣ V1, V2 ⊂ V each spanning a simplex in L
}
.

In particular, for n, k ∈ N with n ≤ k ≤ 2n, the right-angled Artin group Zn ∗ Zk−n

satisfies cd(Zn ∗Zk−n) = n and TC(Zn ∗Zk−n) = k [Rud16]. This shows that TC(π) can
attain any value between the lower bound cd(π) and the upper bound cd(π×π) in (1.6).

1.3.2 A question of Farber

The topological complexity is defined topologically and similar in spirit to the Lusternik–
Schnirelmann category (Definition 1.12). We have seen that the LS-category of a group
coincides with its cohomological dimension (Theorem 1.13). This raises the following
question which is one of the main open problems in the field of topological complexity.

Question 1.43 (Farber). Let π be a group. What is an algebraic characterisation
of TC(π)?

We do not specify what is meant precisely by an “algebraic characterisation” in Ques-
tion 1.43. Certainly a characterisation in terms of (Bredon) group cohomology qualifies
as such.

Recall from Definition 1.16 that cdT R⊂D(π × π) denotes the supremum of degrees k for
which the map

Hk
π×π

(
ED(π × π);M

)
→ Hk

π×π
(
E(π × π);M(π × π/1)

)
is non-trivial for some OD(π × π)-module M . By Theorem 1.41, it provides a lower
bound

cdT R⊂D(π × π) ≤ TC(π) . (1.7)

To the author’s knowledge, there is no known example of a group π for which the in-
equality (1.7) is strict. This makes cdT R⊂D(π × π) an obvious candidate to answer
Question 1.43. In the next section, we discuss that the lower bound (1.7) can be used to
compute the topological complexity of hyperbolic groups. In particular, for hyperbolic
groups the inequality (1.7) is in fact an equality.
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1.3.3 Computations for hyperbolic groups

To compute the topological complexity of a group π, knowledge about centralisers in π is
essential. In torsion-free hyperbolic groups, the centraliser of any non-trivial element is
cyclic. This property is sufficient to show that TC(π) takes the maximal value cd(π×π).

Theorem 1.44 (Dranishnikov [Dra20]). Let π be a torsion-free group with cd(π) ≥ 2.
Assume that the centraliser of every non-trivial element in π is cyclic. Then we have
TC(π) = cd(π × π).

For groups π as in Theorem 1.44, it was previously shown by Farber–Mescher [FM20]
that TC(π) ∈ {cd(π × π) − 1, cd(π × π)} using a purely algebraic approach. On the
other hand, Dranishnikov’s proof of Theorem 1.44 uses the characterisation of TC(π) via
classifying spaces for families (Theorem 1.41), an original construction for ED(π × π),
and cohomology with compact support.

We were able to generalise Theorem 1.44 to a relative setting using different methods.
More precisely, we show that the lower bound (1.7) in terms of Bredon cohomology is
maximal by building a model for ED(π × π) in two steps via a construction of Lück–
Weiermann (Theorem 5.3).

Theorem 1.45 (Theorem 5.11). Let π be a torsion-free group with cd(π) ≥ 2. Suppose
that π admits a malnormal collection of abelian groups P = {Pi | i ∈ I} satisfying
cd(Pi × Pi) < cd(π × π). Assume that the centraliser of every element of π that is not
conjugate into any of the Pi is cyclic. Then we have

TC(π) = cd(π × π) .

Our main examples of groups satisfying the assumptions of Theorem 1.45 are certain
toral relatively hyperbolic groups.

Theorem 1.45 was generalised by Sam Hughes and the author in [HL] to Rudyak’s higher
topological complexities [Rud10]. We deduce that hyperbolic groups satisfy a conjecture
by Farber–Oprea [FO19] on the rationality of the TC-generating function [HL, Corol-
lary 1.3]. The article [HL] was also produced during the author’s candidature. It is not
included in this thesis due to its similarity with Chapter 5.

1.3.4 Questions

We conclude this introduction by posing two questions that are inspired by Farber’s
Question 1.43. We ask the same question more generally for the F-category (Defini-
tion 1.14), where F is an arbitrary family of subgroups.
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Question 1.46. Let G be a group and let F be a family of subgroups of G. What is an
algebraic characterisation of catF (G)?

Question 1.46 contains Question 1.43 a special case since TC(π) = catD(π × π). In
Chapter 4 we apply established methods from topological complexity, most notably
from [FGLO19], to other families. One might hope that, vice versa, finding answers
to Question 1.46 for other families can provide new insights to the case of topological
complexity.

An obvious candidate to answer Question 1.46 is the lower bound in terms of Bredon
cohomology (Definition 1.16)

cdT R⊂F (G) ≤ catF (G) . (1.8)

However, we note that the inequality (1.8) can be strict. Namely, when F is generated
by a single normal subgroup N , then the invariants in (1.8) reduce to geometric and co-
homological invariants of the group epimorphism G� G/N . Goodwillie [Gra] exhibited
an example satisfying cdT R⊂F〈N〉(G) < catF〈N〉(G). In a slightly different language, the
question when the equality cdT R⊂F〈N〉(G) = catF〈N〉(G) holds was recently investigated
in [Sco, DK]. It is a special case of our following general question.

Question 1.47. For which groups G and families F does the equality

catF (G) = cdT R⊂F (G)

hold?

Goodwillie’s example shows that Question 1.47 does not hold in general. On the other
hand, in this thesis we will encounter several interesting examples that satisfy Ques-
tion 1.47, some of which are listed in Table 1.2.

Group G Family F catF (G) Reference
every group G T R cd(G) Theorem 1.13

right-angled Coxeter group WL FIN vcd(WL) Corollary 4.15
right-angled Artin group AL F〈S〉 vcd(WL) Proposition 4.13
torsion-free non-elementary AME cd(G) [CLM, Example 7.8]hyperbolic group G

π × π, where π is a torsion-free D cd(π × π) Theorem 5.11non-elementary hyperbolic group

Table 1.2: Examples satisfying catF (G) = cdT R⊂F (G).
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Chapter 2

Bounded cohomology of classifying
spaces for families of subgroups

This chapter is the article [Lib] which has been accepted for publication in the journal
Algebraic and Geometric Topology.

Abstract. We introduce a bounded version of Bredon cohomology for groups relative
to a family of subgroups. Our theory generalises bounded cohomology and differs from
Mineyev–Yaman’s relative bounded cohomology for pairs. We obtain cohomological char-
acterisations of relative amenability and relative hyperbolicity, analogous to the results of
Johnson and Mineyev for bounded cohomology.

2.1 Introduction

Bounded cohomology is a homotopy invariant of topological spaces with deep connections
to Riemannian geometry via the simplicial volume of manifolds [Gro82]. An astonishing
phenomenon known as Gromov’s Mapping Theorem is that for every CW-complexX, the
classifying mapX → Bπ1(X) induces an isometric isomorphism on bounded cohomology.
This emphasises the importance of the corresponding theory of bounded cohomology
for groups, which is also of independent interest due to its plentiful applications in
geometric group theory [Mon01, Mon06, Fri17]. The bounded cohomology Hn

b (G;V )

of a (discrete) group G with coefficients in a normed G-module V is the cohomology
of the cochain complex of bounded G-maps Gn+1 → V . The inclusion of bounded
G-maps into (not necessarily bounded) G-maps induces the so-called comparison map
Hn
b (G;V ) → Hn(G;V ). On the one hand, the bounded cohomology groups are very

difficult to compute in general. On the other hand, they characterise interesting group-
theoretic properties such as amenability [Joh72] and hyperbolicity [Min01, Min02].

Theorem 2.1 (Johnson). Let G be a group. The following are equivalent:
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(i) G is amenable;

(ii) Hn
b (G;V #) = 0 for all dual normed RG-modules V # and all n ≥ 1;

(iii) H1
b (G;V #) = 0 for all dual normed RG-modules V #.

Theorem 2.2 (Mineyev). Let G be a finitely presented group. The following are equiv-
alent:

(i) G is hyperbolic;

(ii) The comparison map Hn
b (G;V ) → Hn(G;V ) is surjective for all normed QG-

modules V and all n ≥ 2;

(iii) The comparison map H2
b (G;V ) → H2(G;V ) is surjective for all normed RG-

modules V .

There are well-studied notions of relative amenability and relative hyperbolicity in the
literature [JOR12, Hru10]. In the present article we introduce a new “relative bounded
cohomology theory” characterising these relative group-theoretic properties as a bounded
version of Bredon cohomology. For a group G, a family of subgroups F is a non-empty
set of subgroups which is closed under conjugation and taking subgroups. For a set of
subgroups H of G, we denote by F〈H〉 the smallest family containing H. The Bredon
cohomology Hn

F (G;V ) with coefficients in a G-module V (or more general coefficient
systems) is a generalisation of group cohomology, which is recovered when F consists
only of the trivial subgroup. A fundamental feature of Bredon cohomology is that for
a normal subgroup N of G there is an isomorphism Hn

F〈N〉(G;V ) ∼= Hn(G/N ;V N ).
From a topological point of view, the Bredon cohomology of G can be identified with the
equivariant cohomology of the classifying space EFG for the family F , which is a terminal
object in the G-homotopy category of G-CW-complexes with stabilisers in F . Especially
the classifying spaces EFING and EVCYG for the family of finite groups and virtually
cyclic groups have received a lot of attention in recent years due to their prominent role
in the Isomorphism Conjectures of Baum–Connes and Farrell–Jones, respectively.

We introduce the bounded Bredon cohomology Hn
F ,b(G;V ) of G with coefficients in a

normed G-module V , which generalises bounded cohomology (Definition 2.7). Our the-
ory still is well-behaved with respect to normal subgroups (Corollary 2.17) and admits
a topological interpretation in terms of classifying spaces for families (Theorem 2.16).
We obtain the following generalisations of Theorems 2.1 and 2.2. A group G is called
amenable relative to a set of subgroups H if there exists a G-invariant mean on the
G-set

∐
H∈HG/H.

Theorem 2.3. Let G be a group and H be a set of subgroups. The following are equiv-
alent:
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(i) G is amenable relative to H;

(ii) Hn
F〈H〉,b(G;V #) = 0 for all dual normed RG-modules V # and all n ≥ 1;

(iii) H1
F〈H〉,b(G;V #) = 0 for all dual normed RG-modules V #.

Theorem 2.3 is a special case of the more general Theorem 2.23. We also provide a
characterisation of relative amenability in terms of relatively injective modules (Propo-
sition 2.26). Recall that a finite set of subgroups H is called a malnormal (resp. almost
malnormal) collection if for all Hi, Hj ∈ H and g ∈ G we have Hi ∩ gHjg

−1 is trivial
(resp. finite), unless i = j and g ∈ Hi. A group G is said to be of type Fn,F for a family
of subgroups F , if there exists a model for the classifying space EFG with cocompact
n-skeleton.

Theorem 2.4 (Theorem 2.31). Let G be a finitely generated torsion-free group and H
be a finite malnormal collection of subgroups. Suppose that G is of type F2,F〈H〉 (e.g., G
and all subgroups in H are finitely presented). Then the following are equivalent:

(i) G is hyperbolic relative to H;

(ii) The comparison map Hn
F〈H〉,b(G;V ) → Hn

F〈H〉(G;V ) is surjective for all normed
QG-modules V and all n ≥ 2;

(iii) The comparison map H2
F〈H〉,b(G;V ) → H2

F〈H〉(G;V ) is surjective for all normed
RG-modules V .

In Theorem 2.4 the equivalence of (i) and (iii) still holds if the group G contains torsion
andH is almost malnormal, see Remark 2.32. Note that condition (iii) is trivially satisfied
for groups of Bredon cohomological dimension cdF〈H〉 equal to 1.

The topological interpretation of bounded Bredon cohomology via classifying spaces for
families was used by Löh–Sauer [LS20] to give a new proof of the Nerve Theorem and
Vanishing Theorem for amenable covers. We prove a converse of [LS20, Proposition 5.2],
generalising a recent result of [MR, Theorem 3.1.3] where the case of a normal subgroup
is treated.

Theorem 2.5. Let G be a group and F be a family of subgroups. The following are
equivalent:

(i) All subgroups in F are amenable;

(ii) The canonical map Hn
F ,b(G;V #) → Hn

b (G;V #) is an isomorphism for all dual
normed RG-modules V # and all n ≥ 0;

(iii) The canonical map H1
F ,b(G;V #) → H1

b (G;V #) is an isomorphism for all dual
normed RG-modules V #.
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Theorems 2.5 is a special case of the more general Theorem 2.23. As an application
of Theorem 2.5, the comparison map vanishes for groups which admit a “small” model
for EFG, where F is any family consisting of amenable subgroups (Corollary 2.24).
Examples are graph products of amenable groups (e.g., right-angled Artin groups) and
fundamental groups of graphs of amenable groups.

There is another natural relative cohomology theory given by the relative cohomol-
ogy of a pair of spaces. For a set of subgroups H, it gives rise to the cohomology
Hn(G,H;V ) of the group pair (G,H) introduced by Bieri–Eckmann [BE78]. A bounded
version Hn

b (G,H;V ) was defined by Mineyev–Yaman [MY] to give a characterisation
of relative hyperbolicity (see also [Fra18]). A characterisation of relative amenability
in terms of this relative theory was obtained in [JOR12]. There is a canonical map
Hn
F〈H〉(G;V )→ Hn(G,H;V ) for n ≥ 2 which is an isomorphism if H is malnormal (see

Remark 2.6). Similarly, there is a map for the bounded versions but we do not know
when it is an isomorphism due to the failure of the excision axiom for bounded coho-
mology (see Remark 2.18). We also mention that Mineyev–Yaman’s relative bounded
cohomology was extended to pairs of groupoids in [Bla16].

Acknowledgements. The present work is part of the author’s PhD project. He wishes
to thank his supervisors Nansen Petrosyan for suggesting this topic as well as for numer-
ous discussions and Ian Leary for his support. We are grateful to the organisers of the
“Virtual workshop: Simplicial Volumes and Bounded Cohomology” held in September
2020 during which parts of this work were discussed. We thank Clara Löh for several
interesting conversations, Francesco Fournier-Facio, Sam Hughes, and Eduardo Martínez-
Pedroza for helpful comments. We thank the referee for several useful comments.

2.2 Preliminaries on Bredon cohomology and
classifying spaces

In this section we briefly recall the notion of Bredon cohomology for groups and its
topological interpretation as the equivariant cohomology of classifying spaces for families
of subgroups. For an introduction to Bredon cohomology we refer to [Flu] and for a
survey on classifying spaces to [Lüc05].

Let G be a group, which shall always mean a discrete group. A family of subgroups F is
a non-empty set of subgroups of G that is closed under conjugation by elements of G and
under taking subgroups. Typical examples are T R = {1}, FIN = {finite subgroups},
VCY = {virtually cyclic subgroups}, and ALL = {all subgroups}. We will moreover be
interested in AME = {amenable subgroups}. For a subgroup H of G, we denote by F|H
the family {L∩H | L ∈ F} of subgroups of H. (In the literature this family is sometimes
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denoted by F∩H instead.) For a set of subgroupsH, one can consider the smallest family
containing H which is F〈H〉 = {conjugates of elements in H and their subgroups} and
called the family generated by H. When H consists of a single subgroup H, we denote
F〈H〉 instead by F〈H〉 and call it the family generated by H. We denote by G/H the
G-set

∐
H∈HG/H.

Let R be a ring and ModR denote the category of R-modules. We will often suppress the
ring R, so that G-modules are understood to be RG-modules. The (F-restricted) orbit
category OFG has as objects G-sets of the form G/H with H ∈ F and as morphisms
G-maps. An OFG-module is a contravariant functor M : OFG →ModR, the category
of which is denoted by OFG-ModR. Note that OT RG-ModR can be identified with the
category of G-modules (see e.g., [Flu, Chapter 1, Section 4]). For a G-module V , there is
a coinduced OFG-module V ? given by V ?(G/H) = V H . (In the literature this is some-
times called a fixed-point functor.) Observe that (−)? is right-adjoint to the restriction
OFG-ModR → OT RG-ModR, M 7→ M(G/1) (see e.g., [Flu, Proposition 1.31]). That
is, for every OFG-module M and G-module V there is a natural isomorphism

HomOFG-ModR(M,V ?) ∼= HomRG(M(G/1), V ) . (2.1)

For a G-spaceX and a G-CW-complex Y with stabilisers in F , there are singular and cel-
lular OFG-chain complexes C∗(X?)(G/H) = C∗(X

H) and Ccell
∗ (Y ?)(G/H) = Ccell

∗ (Y H),
where C∗(XH) and Ccell

∗ (Y H) denote the usual singular and cellular chain complexes,
respectively.

The Bredon cohomology of G with coefficients in an OFG-module M is defined as the
R-module

Hn
F (G;M) := ExtnOFG-ModR

(R,M)

for n ≥ 0, where R is regarded as a constant OFG-module. It can be computed as the
cohomology of the cochain complex HomOFG-ModR(R[((G/F)∗+1)?],M) (see e.g., [Flu,
Proposition 3.5]). We define the G-chain complex CF∗ (G) given by G-modules

CFn (G) := R[(G/F)n+1]

with the diagonal G-action and differentials ∂n : CFn (G)→ CFn−1(G),

∂n(g0H0, . . . , gnHn) =
n∑
i=0

(−1)i(g0H0, . . . , ĝiHi, . . . , gnHn) .

For a G-module V , the G-cochain complex C∗F (G;V ) is given by

CnF (G;V ) := HomR(CFn (G), V )
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so that by adjunction (2.1)

Hn
F (G;V ) := Hn

F (G;V ?) ∼= Hn(C∗F (G;V )G) .

For a G-space X with stabilisers in F , the Bredon cohomology of X with coefficients in
an OFG-module M is defined as

Hn
G(X;M) := Hn(HomOFG-ModR(C∗(X

?),M))

for n ≥ 0. If X is a G-CW-complex, then Hn
G(X;M) can be computed using Ccell

∗ (X?)

instead of C∗(X?).

A classifying space EFG for the family F is a terminal object in theG-homotopy category
of G-CW-complexes with stabilisers in F . It can be shown that a G-CW-complex X is a
model for EFG if and only if the fixed-point set XH is contractible for H ∈ F and empty
otherwise (see e.g., [Lüc05, Theorem 1.9]). An explicit model is given by the geometric
realisation Y of the semi-simplicial set {(G/F)n+1 | n ≥ 0} with the usual face maps.
Then Y has (non-equivariant) n-cells corresponding to (G/F)n+1 and we refer to Y as
the simplicial model for EFG. Note that a model for ET RG is given by EG and a model
for EALLG is the point G/G. The cellular OFG-chain complex of any model for EFG is
a projective resolution of the constant OFG-module R (see e.g., [Flu, Proposition 2.9])
and thus we have

Hn
F (G;M) ∼= Hn

G(EFG;M) (2.2)

for all OFG-modules M . If N is a normal subgroup of G, then a model for EF〈N〉G is
given by E(G/N) regarded as a G-CW-complex and we find

Hn
F〈N〉(G;M) ∼= Hn(G/N ;M(G/N)) (2.3)

(see e.g., [ANCMSS21, Corollary 4.11]).

For a subgroup H of G, when viewed as an H-space EFG is a model for EF|HH which
induces the restriction map

resnH⊂G : Hn
F (G;M)→ Hn

F|H (H;M) (2.4)

for all OFG-modules M . For two families of subgroups F ⊂ G, the up to G-homotopy
unique G-map EFG→ EGG induces the canonical map

cannF⊂G : Hn
G (G;M)→ Hn

F (G;M) (2.5)

for all OGG-modules M .

Remark 2.6 (Bieri–Eckmann’s relative cohomology). For a group G and a set of sub-
groups H, Bieri–Eckmann [BE78] have introduced the relative cohomology Hn(G,H;V )

of the pair (G,H) with coefficients in a G-module V . It can be identified with the relative
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cohomologyHn
G(EG,

∐
H∈HG×HEH;V ) of the pair of G-spaces (EG,

∐
H∈HG×HEH).

Here a model for EG is chosen that contains
∐
H∈HG×HEH as a subcomplex by taking

mapping cylinders. Hence there is a long exact sequence

· · ·Hn(G,H;V )→ Hn(G;V )→
∏
H∈H

Hn(H;V )→ · · · ,

which is one of the main features of the relative cohomology groups.

There is a relation between Bredon cohomology and Bieri–Eckmann’s relative cohomol-
ogy as follows. Consider the G-space X obtained as the G-pushout

∐
H∈HG×H EH EG

∐
H∈HG/H X ,

where the left vertical map is induced by collapsing each EH to a point. Then the
G-space X has stabilisers in F〈H〉 and hence admits a G-map X → EF〈H〉G. For an
OFG-module M , we have maps

Hn
G(X;M) Hn

G(X,
∐
H∈HG/H;M)

Hn
G(EF〈H〉G;M) Hn

G(EG,
∐
H∈HG×H EH;M) ,

∼=

where the right vertical map is an isomorphism by excision. Now, if H is a malnormal
collection, then X is a model for EF〈H〉G and we have

Hn
F〈H〉(G;M) ∼= Hn(G,H;M(G/1))

for n ≥ 2. This was shown in [ANCMSS21, Theorem 4.16] for the special case when H
consists of a single subgroup.

2.3 Bounded Bredon cohomology

In this section we introduce a bounded version of Bredon cohomology and develop some
of its basic properties. We follow the exposition in [Fri17] for bounded cohomology.
Throughout, let G be a group and F be a family of subgroups.

From now on, let the ring R be one of Z, Q or R. A normed G-module V is a G-module
equipped with a G-invariant norm ‖ · ‖ : V → R. (That is, for all v, u ∈ V , r ∈ R,
and g ∈ G we have ‖v‖ = 0 if and only if v = 0, ‖rv‖ ≤ |r| · ‖v‖, ‖v + u‖ ≤ ‖v‖ + ‖u‖,
and ‖g · v‖ = ‖v‖.) A morphism f : V → W of normed G-modules is a morphism of
G-modules with finite operator-norm ‖f‖∞. By bHomR(V,W ) we denote the G-module
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of R-linear maps f : V → W with finite operator-norm, where the G-action is given by
(g ·f)(v) = g ·f(g−1v). We denote the topological dual bHomR(V,R) of V by V #. For a
set S and a normed module V , we denote by bMap(S, V ) the module of functions S → V

with bounded image. Instead of bMap(S,R) we also write `∞(S).

The following is our key definition. Recall the notation G/F =
∐
H∈F G/H and consider

CFn (G) = R[(G/F)n+1] as a normed G-module equipped with the `1-norm with respect
to the R-basis (G/F)n+1. For a normed G-module V , we define the cochain complex
C∗F ,b(G;V ) of normed G-modules by

CnF ,b(G;V ) := bHomR(CFn (G), V )

together with the differentials δn : CnF ,b(G;V )→ Cn+1
F ,b (G;V ),

δn(f)(g0H0, . . . , gn+1Hn+1) =
n+1∑
i=0

(−1)if(g0H0, . . . , ĝiHi, . . . , gn+1Hn+1) .

Definition 2.7 (Bounded Bredon cohomology of groups). The bounded Bredon coho-
mology of G with coefficients in a normed G-module V is defined as

Hn
F ,b(G;V ) := Hn(C∗F ,b(G;V )G)

for n ≥ 0. The inclusion CnF ,b(G;V ) ⊂ CnF (G;V ) induces a map

cnF : Hn
F ,b(G;V )→ Hn

F (G;V )

called the comparison map.

Note that for F = T R, Definition 2.7 recovers the usual definition of bounded cohomol-
ogy.

Remark 2.8 (Coefficient modules). We only consider normed G-modules as coefficients,
rather than more general OFG-modules equipped with a “compatible norm”. Hence
strictly speaking our theory is a bounded version of Nucinkis’ cohomology relative to the
G-set G/F [Nuc99], rather than a bounded version of Bredon cohomology.

Remark 2.9 (Canonical semi-norm). The `∞-norm on CnF ,b(G;V ) descends to a canonical
semi-norm on Hn

F ,b(G;V ). However, we do not consider semi-norms anywhere in this
article and regard Hn

F ,b(G;V ) merely as an R-module.

Bounded Bredon cohomology satisfies the following basic properties.

Lemma 2.10. The following hold:

(i) Let 0 → V0 → V1 → V2 → 0 be a short exact sequence of normed G-modules such
that 0→ V H

0 → V H
1 → V H

2 → 0 is exact for each H ∈ F . Then there exists a long
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exact sequence

0→ H0
F ,b(G;V0)→ H0

F ,b(G;V1)→ H0
F ,b(G;V2)→ H1

F ,b(G;V0)→ · · · ;

(ii) H0
F ,b(G;V ) ∼= V G for all normed G-modules V ;

(iii) H1
F ,b(G;R) = 0.

Proof. (i) For a G-set S =
∐
i∈I G/Hi and a normed G-module V , we can identify the

module bMapG(S, V ) with the submodule of
∏
i∈I V

Hi consisting of the elements (vi)i∈I

satisfying supi∈I ‖vi‖ < ∞. It follows that for a G-set S with stabilisers in F , the
sequence of modules

0→ bMapG(S, V0)→ bMapG(S, V1)→ bMapG(S, V2)→ 0

is exact. Applying the above to the G-sets (G/F)n+1 for n ≥ 0, we obtain that the
sequence of cochain complexes

0→ C∗F ,b(G;V0)G → C∗F ,b(G;V1)G → C∗F ,b(G;V2)G → 0

is exact. Then the associated long exact sequence on cohomology is as desired.

(ii) We have H0
F ,b(G;V ) = ker(δ0), where

δ0 : bHomRG(R[G/F ], V )→ bHomRG(R[(G/F)2], V )

is given by δ0(f)(g0H0, g1H1) = f(g1H1)− f(g0H0). Hence ker(δ0) consists precisely of
the constant G-maps G/F → V , which are in correspondence to V G.

(iii) We identify

CnF ,b(G;R)G ∼= bMap
( ∐
H0,...,Hn∈F

H0\(G/H1 × · · · ×G/Hn),R
)

for n ≥ 1 and C0
F ,b(G;R)G ∼= bMap

(∐
H0∈F ∗H0 ,R

)
. The differentials of this “inhomo-

geneous” complex in low degrees are given by

δ0(f)(H0g1H1) = f(∗H1)− f(∗H0)

δ1(ϕ)(H0(g1H1, g2H2)) = ϕ(H1g
−1
1 g2H2)− ϕ(H0g2H2) + ϕ(H0g1H1) .

Then it is not difficult to check that ker(δ1) = im(δ0).

We also define the bounded cohomology of a G-space X as follows. Denote by Sn(X)

the set of singular n-simplices in X and consider Cn(X) = R[Sn(X)] equipped with
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the `1-norm as a normed G-module. For a normed G-module V , we define the cochain
complex C∗b (X;V ) of normed G-modules by

Cnb (X;V ) := bHomR(Cn(X), V )

together with the usual differentials.

Definition 2.11 (Bounded cohomology of G-spaces). The (G-equivariant) bounded co-
homology of a G-space X with coefficients in a normed G-module V is defined as

Hn
G,b(X;V ) := Hn(C∗b (X;V )G)

for n ≥ 0. The inclusion Cnb (X;V ) ⊂ Cn(X;V ) induces a map

cnX : Hn
G,b(X;V )→ Hn

G(X;V )

called the comparison map.

Note that the functors H∗G,b are G-homotopy invariant and that Hn
G,b(G/H;V ) is iso-

morphic to V H for n = 0 and trivial otherwise. However, beware that H∗G,b is neither a
G-cohomology theory, nor can it be computed cellularly for G-CW-complexes, as is the
case already when G is the trivial group (see e.g., [Fri17, Remark 5.6]).

Relative homological algebra. We develop the relative homological algebra that will
allow us to compute bounded Bredon cohomology via resolutions, analogous to Ivanov’s
approach for bounded cohomology [Iva85].

A map p : A → B of G-modules is called F-strongly surjective if for each H ∈ F there
exists a map τH : B → A of H-modules such that p ◦ τH = idB. A G-module P is
called relatively F-projective if for every F-strongly surjective G-map p : A → B and
every G-map φ : P → B, there exists a G-map Φ: P → A such that p ◦ Φ = φ. A chain
complex of G-modules is called relatively F-projective if each chain module is relatively
F-projective. A resolution (C∗, ∂∗) of G-modules is called F-strong if it is contractible as
a resolution of H-modules for each H ∈ F . (That is, there exist H-maps kH∗ : C∗ → C∗+1

such that ∂n+1 ◦ kHn + kHn−1 ◦ ∂n = idCn .)

Lemma 2.12. The following hold:

(i) If S is a G-set with stabilisers in F , then the G-module R[S] is relatively F-
projective;

(ii) If S is a G-set with SH 6= ∅ for all H ∈ F , then the resolution R[S∗+1] → R of
G-modules is F-strong;
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(iii) If X is a G-space with contractible fixed-point set XH for each H ∈ F , then the
resolution C∗(X)→ R of G-modules is F-strong.

Proof. (i) Given a lifting problem as in the definition of relative F-projectivity,

R[S]

A B 0

φΦ

p

τH

we construct a lift Φ as follows. Let T be a set of representatives of G\S and denote
the stabiliser of an element t ∈ T by Gt. Then for every s ∈ S there exist unique
elements ts ∈ T and gsGts ∈ G/Gts such that g−1

s s = ts. Define Φ: R[S] → A on
generators by

Φ(s) = gs · τGts (φ(g−1
s s))

which is independent of the choice of gs, since the map τGts is Gts-equivariant. Then Φ

is a G-equivariant lift of φ.

(ii) ForH ∈ F , fix an element sH ∈ SH and define kH∗ : R[S∗+1]→ R[S∗+2] on generators
by

kHn (s0, . . . , sn) = (sH , s0, . . . , sn) .

Then kH∗ is an H-equivariant contraction.

(iii) For H ∈ F , fix a point xH ∈ XH and define a contraction kH∗ : C∗(X) → C∗+1(X)

of H-chain complexes inductively as follows. Starting with kH−1 : R→ C0(X), r 7→ r ·xH ,
we may assume that kHn−1 has been constructed. Let s be a singular n-simplex in X

and denote its stabiliser by Hs. Then there exists a singular (n + 1)-simplex s′ with
0-th vertex xH and opposite face s, satisfying ∂n+1(s′) + kHn−1(∂n(s)) = s. Moreover,
since XHs is contractible we may choose s′ such that its image is contained in XHs . Now,
for each H-orbit of singular n-simplices in X choose a representative s, define kHn (s) to
be s′ and then extend H-equivariantly.

The proof of the following proposition is standard and omitted.

Proposition 2.13. Let f : V → W be a map of G-modules, P∗ → V be a G-chain
complex with Pn relatively F-projective for all n ≥ 0, and C∗ → W be an F-strong
resolution of G-modules. Then there exists a G-chain map f∗ : P∗ → C∗ extending f ,
which is unique up to G-chain homotopy.

While relatively F-projective F-strong resolutions are useful to compute Bredon homol-
ogy, the following dual approach will compute bounded Bredon cohomology.
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A map i : A → B of normed G-modules is called F-strongly injective if for each H ∈ F
there exists a map σH : B → A of normed H-modules with ‖σH‖∞ ≤ K such that
σH ◦ i = idA, for a uniform constant K ≥ 0. A normed G-module I is called relatively
F-injective if for every F-strongly injective G-map i : A→ B and every map ψ : A→ I

of normed G-modules, there exists a map Ψ: B → I of normed G-modules such that
Ψ ◦ i = ψ. A chain complex of normed G-modules is called relatively F-injective if
each chain module is relatively F-injective. A resolution of normed G-modules is called
F-strong if it is contractible as a resolution of normed H-modules for each H ∈ F .

Dually to Lemma 2.12 and Proposition 2.13 we obtain the following.

Lemma 2.14. Let V be a normed G-module. The following hold:

(i) If S is a G-set with stabilisers in F , then bHomR(R[S], V ) is a relatively F-injective
normed G-module;

(ii) If S is a G-set with SH 6= ∅ for all H ∈ F , then the resolution of normed G-modules
V → bHomR(R[S∗+1], V ) is F-strong;

(iii) If X is a G-space with contractible fixed-point set XH for each H ∈ F , then the
resolution V → C∗b (X;V ) of normed G-modules is F-strong.

Proof. (i) Given an extension problem as in the definition of relative F-injectivity,

0 A B

bHomR(R[S], V )

i

ψ

σH

Ψ

we construct an extension Ψ as follows. Let T be a set of representatives of G\S and
denote the stabiliser of an element t ∈ T by Gt. Then for every s ∈ S there exist
unique elements ts ∈ T and gsGts ∈ G/Gts such that g−1

s s = ts. Define the map
Ψ: B → bHomR(R[S], V ) for b ∈ B and s ∈ S by

Ψ(b)(s) = ψ(gs · σGts (g
−1
s b))(s) .

One checks that Ψ is a well-defined map of normed RG-modules extending ψ.

The proofs of (ii) and (iii) are dual to those of Lemma 2.12 (ii) and (iii), respectively,
and are left to the reader.

Proposition 2.15. Let f : V → W be a map of normed G-modules, V → C∗ be an
F-strong resolution of normed G-modules, and W → I∗ be a G-chain complex with In

relatively F-injective for all n ≥ 0. Then there exists a G-chain map f∗ : C∗ → I∗

extending f , which is unique up to G-chain homotopy.
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As a consequence of Proposition 2.15, we may use any relatively F-injective F-strong res-
olution to compute bounded Bredon cohomology. We obtain the isomorphisms analogous
to (2.2) and (2.3) for Bredon cohomology.

Theorem 2.16. Let G be a group, F be a family of subgroups, and V be a normed
G-module. For all n ≥ 0 there is an isomorphism

Hn
F ,b(G;V ) ∼= Hn

G,b(EFG;V ) .

Proof. Both C∗F ,b(G;V ) and C∗b (EFG;V ) are relatively F-injective F-strong resolutions
of V by Lemma 2.14 and hence G-chain homotopy equivalent by Proposition 2.15.

Corollary 2.17. Let G be a group, N be a normal subgroup of G, and V be a normed
G-module. For all n ≥ 0 there is an isomorphism

Hn
F〈N〉,b(G;V ) ∼= Hn

b (G/N ;V N ) .

Proof. As a model for EF〈N〉G we take E(G/N) regarded as a G-space. Then it suffices
to observe that

bHomRG(R[Sn(E(G/N))], V ) ∼= bHomR[G/N ](R[Sn(E(G/N))], V N )

and to apply Theorem 2.16 twice.

Analogous to (2.4) and (2.5) for Bredon cohomology, for a subgroup H of G and two
families of subgroups F ⊂ G, we have the maps

resnH⊂G,b : Hn
F ,b(G;V )→ Hn

F|H ,b(H;V ) ;

cannF⊂G,b : Hn
G,b(G;V )→ Hn

F ,b(G;V )

for all normed G-modules V .

Remark 2.18 (Mineyev–Yaman’s relative bounded cohomology). Mineyev–Yaman have
introduced the bounded analogue of Bieri–Eckmann’s relative cohomology for pairs (Re-
mark 2.6) in [MY]. For a group G, a finite set of subgroups H, and a normed G-
module V , their relative bounded cohomology groups Hn

b (G,H;V ) can be identified
with Hn

G,b(EG,
∐
H∈HG×H EH;V ) and therefore fit in a long exact sequence

· · · → Hn
b (G,H;V )→ Hn

b (G;V )→
∏
H∈H

Hn
b (H;V )→ · · · .
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As in Remark 2.6, we denote by X the G-space obtained as a G-pushout from EG by
collapsing G×H EH to G/H for each H ∈ H. Then we have maps

Hn
G,b(X;V ) Hn

G,b(X,
∐
H∈HG/H;V )

Hn
G,b(EF〈H〉G;V ) Hn

G,b(EG,
∐
H∈HG×H EH;V ) .

For n ≥ 2, the horizontal map is an isomorphism by the long exact sequence of a pair,
using the fact that H∗G,b(G/H;V ) = 0 for ∗ ≥ 1. Hence for n ≥ 2 we obtain a map

Hn
F〈H〉,b(G;V )→ Hn

b (G,H;V ) .

However, even if H is a malnormal collection in which case X is a model for EF〈H〉G, this
map need not be an isomorphism due to the failure of the excision axiom for bounded
cohomology.

2.4 Characterisation of relative amenability

In this section we prove a characterisation of relatively amenable groups in terms of
bounded Bredon cohomology analogous to Theorem 2.1.

Recall that a G-invariant mean on a G-set S is an R-linear map m : `∞(S)→ R which is
normalised, non-negative, andG-invariant. (That is, for the constant function 1 ∈ `∞(S),
f ∈ `∞(S), and g ∈ G we have m(1) = 1, m(f) ≥ 0 if f ≥ 0, and m(g · f) = m(f).)
Note that for a G-map S1 → S2 of G-sets, a G-invariant mean on S1 is pushed forward
to a G-invariant mean on S2.

Definition 2.19 (Relative amenability). A group G is amenable relative to a set of
subgroups H if the G-set G/H admits a G-invariant mean. When G is amenable relative
to H consisting of a single subgroup H, we also say that H is co-amenable in G.

When H is a finite set of subgroups, we recover the notion of relative amenability studied
in [JOR12] (see also [MP03]).

Example 2.20. Let G be a group, H be a subgroup, and H be a set of subgroups.

(i) If G is amenable, then G is amenable relative to H;

(ii) If H is a normal subgroup, then H is co-amenable in G if and only if the quotient
group G/H is amenable;

(iii) If H has finite index in G or contains the commutator subgroup [G,G], then H is
co-amenable in G;
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(iv) If H is finite and G is amenable relative to H, then H contains an element that is
co-amenable in G;

(v) G is amenable relative to H if and only if G is amenable relative to F〈H〉.

The following lemma is proved analogously to [Fri17, Lemma 3.2] (see also [Mon01,
Corollary 5.3.8]).

Lemma 2.21. Let G be a group and H be a set of subgroups. Then G is amenable
relative to H if and only if there exists a non-trivial G-invariant element in `∞(G/H)#.

By Proposition 2.15 bounded Bredon cohomology can be computed using relatively F-
injective F-strong resolutions. If one considers coefficients in dual normed RG-modules,
then such resolutions can be obtained from G-sets whose stabilisers are amenable relative
to F .

Lemma 2.22. Let G be a group, F be a family of subgroups, and V # be a dual normed
RG-module. If S is a G-set such that every stabiliser Gs is amenable relative to F|Gs,
then the normed RG-module bHomR(R[Sn+1], V #) is relatively F-injective for all n ≥ 0.

Proof. Since the stabilisers of Sn+1 are intersections of stabilisers of S, and relative
amenability passes to subgroups, it is enough to consider the case n = 0. Let an extension
problem as in the definition of relative F-injectivity be given.

0 A B

bHomR(R[S], V #)

i

ψ
Ψ

σH

Let T be a set of representatives of G\S. We denote the stabiliser of an element t ∈ T
by Gt and by assumption there exists a Gt-invariant mean mt on Gt/F|Gt . Note that
any subgroup L ∈ F|Gt can also be viewed as an element in F . Now, for every s ∈ S
there exist unique elements ts ∈ T and gsGts ∈ G/Gts such that g−1

s s = ts. Define
Ψ: B → bHomR(R[S], V #) for b ∈ B, s ∈ S, and v ∈ V by

Ψ(b)(s)(v) = mts

(
gL 7→ (gsg · ψ(σL(g−1g−1

s b)))(s)(v)
)
.

One checks that Ψ is a well-defined map of normed RG-modules extending ψ.

For a family of subgroups F , consider the short exact sequence of normed RG-modules

0→ R→ `∞(G/F)→ `∞(G/F)/R→ 0 ,
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where R is regarded as the constant functions. Then the sequence of topological duals

0→ (`∞(G/F)/R)# → `∞(G/F)# → R→ 0

is exact, since an R-linear split R→ `∞(G/F)# is given by evaluation at the trivial coset
of the trivial subgroup in G/F . We define the relative Johnson class

[JF ] ∈ H1
F ,b(G; (`∞(G/F)/R)#)

as the cohomology class of the 1-cocycle JF ∈ C1
F ,b(G; (`∞(G/F)/R)#) given by

JF (g0H0, g1H1) = εg1H1 − εg0H0 ,

where εgiHi is the evaluation map at giHi for i = 0, 1.

Theorem 2.23. Let G be a group and F ⊂ G be two families of subgroups. The following
are equivalent:

(i) Every subgroup H ∈ G is amenable relative to F|H ;

(ii) The canonical map Hn
G,b(G;V #) → Hn

F ,b(G;V #) is an isomorphism for all dual
normed RG-modules V # and all n ≥ 0;

(iii) The canonical map H1
G,b(G;V #) → H1

F ,b(G;V #) is an isomorphism for all dual
normed RG-modules V #;

(iv) The relative Johnson class [JF ] ∈ H1
F ,b(G; (`∞(G/F)/R)#) lies in the image of the

canonical map can1
F⊂G,b.

Proof. Suppose that every subgroupH ∈ G is amenable relative to F|H . Then the resolu-
tion of normed RG-modules V # → C∗G(G;V #) is F-strong and relatively F-injective by
Lemmas 2.14 (ii) and 2.22 applied to the G-set G/G. Hence the canonical map cannF⊂G,b
is an isomorphism for all n ≥ 0 by Proposition 2.15.

The implications (ii) ⇒ (iii) ⇒ (iv) are obvious. Suppose that the relative Johnson
class [JF ] lies in the image of the canonical map can1

F⊂G,b and denote V := `∞(G/F)/R.
We claim that for every subgroup H ∈ G, the image of [JF ] under the restriction map

res1
H⊂G,b : H1

F ,b(G;V #)→ H1
F|H ,b(H;V #)

is trivial. Indeed, there is a commutative diagram

H1
G,b(EGG;V #) H1

G,b(EFG;V #)

H1
H,b(EGG;V #) H1

H,b(EFG;V #) H1
H,b(EF|HH;V #) ,

can1
F⊂G,b

res1
H⊂G,b

∼=
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where the vertical maps are induced by viewing a G-space as an H-space. Observe that
the lower left corner H1

H,b(EGG;V #) is trivial, since when viewed as an H-space EGG is
a model for EALL|HH and hence H-equivariantly contractible. This proves the claim.

Now, fix a subgroup H ∈ G and denoteW := `∞(H/F|H)/R. Consider the commutative
diagram of normed RH-modules

0 V # `∞(G/F)# R 0

0 W# `∞(H/F|H)# R 0 ,

=

where the rows are exact, and remain exact when restricted to L-fixed-points for ev-
ery L ∈ F|H . By Lemma 2.10 there are associated long exact sequences on bounded
cohomology

0 (V #)H (`∞(G/F)#)H R H1
F|H ,b(H;V #) · · ·

0 (W#)H (`∞(H/F|H)#)H R H1
F|H ,b(H;W#) · · · .

∂0
V#

=

∂0
W#

Observe that the image of ∂0
V # is precisely R ·res1

H⊂G,b[JF ] and hence trivial by the claim
above. This implies that the map ∂0

W# is trivial and hence there exists a non-trivial H-
invariant element in `∞(H/F|H)#. Thus H is amenable relative to F|H by Lemma 2.21.
This finishes the proof.

As special cases of Theorem 2.23 we obtain Theorem 2.3 by taking G = ALL and
Theorem 2.5 by taking F = T R. The case when F = T R and G = ALL recovers
Theorem 2.1.

Corollary 2.24. Let X be a CW-complex with fundamental group G and F be a family
consisting of amenable subgroups of G. Suppose that there exists a model for EFG whose
orbit space G\EFG is homotopy equivalent to a k-dimensional CW-complex. Then the
comparison map cnX : Hn

b (X;R)→ Hn(X;R) vanishes for all n > k.

Proof. By Gromov’s Mapping Theorem [Gro82, page 40] (see also [Fri17, Theorem 5.9]),
the comparison map cnX vanishes if the map cnEG : Hn

G,b(EG;R)→ Hn
G(EG;R) vanishes.

The G-map EG→ EFG induces a commutative square

Hn
G,b(EG;R) Hn

G(EG;R)

Hn
G,b(EFG;R) Hn

G(EFG;R) ,

cnEG

cannT R⊂F,b ∼=
cnEFG

cannT R⊂F
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where the canonical map cannT R⊂F ,b is an isomorphism by Theorem 2.5. Since we are
considering trivial coefficients, the lower right corner can be identified with the (non-
equivariant) cohomology of the orbit space

Hn
G(EFG;R) ∼= Hn(G\EFG;R)

(see e.g., [Flu, Theorem 4.2]).

As an application of Corollary 2.24 we obtain the following well-known examples.

Example 2.25. The comparison map vanishes in all positive degrees for CW-complexes
with the following fundamental groups:

(i) Graph products of amenable groups (e.g., right-angled Artin groups);

(ii) Fundamental groups of graphs of groups with amenable vertex groups.

Indeed, if GΓ is a graph product of amenable groups, we consider the family F generated
by the vertex groups and direct products of vertex groups whenever the correspond-
ing vertices form a clique in the underlying graph Γ. We claim that there exists a
model for EF (GΓ) with contractible orbit space. If Γ is a complete graph, then a model
for EF (GΓ) is given by the point. Otherwise, Γ can be written as Γ1 ∪Γ0 Γ2, where Γi

are proper full subgraphs of Γ for i = 0, 1, 2, and we have GΓ
∼= GΓ1 ∗GΓ0

GΓ2 . Let Fi
be the corresponding family of subgroups of GΓi for i = 0, 1, 2. Then a model for the
classifying space EF (GΓ) can be constructed as the following G-pushout

GΓ ×GΓ0
EF0(GΓ0)× S0 GΓ ×GΓ1

EF1(GΓ1)
∐
GΓ ×GΓ2

EF2(GΓ2)

GΓ ×GΓ0
EF0(GΓ0)×D1 EF (GΓ) .

By induction on the number of vertices of Γ, the classifying spaces EFi(GΓi) have con-
tractible orbit spaces for i = 0, 1, 2, and hence so does EF (GΓ).

If G is the fundamental group of a graph of groups with amenable vertex groups, we
consider the family F generated by the vertex groups. Then the Bass–Serre tree is
a 1-dimensional model for EFG. Recall that the comparison map always vanishes in
degree 1, since H1

b (G;R) is trivial for every group G.

We also obtain a characterisation of relative amenability via relatively F-injective mod-
ules, analogous to [Fri17, Proposition 4.18] (see also [Mon01, Theorem 5.7.1]).

Proposition 2.26. Let G be a group and F be a family of subgroups. The following are
equivalent:
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(i) G is amenable relative to F ;

(ii) Every dual normed RG-module V # is relatively F-injective;

(iii) The trivial normed RG-module R is relatively F-injective.

Proof. Suppose that G is amenable relative to F and let mF be a G-invariant mean
onG/F . The inclusion V # → C0

F ,b(G;V #) of normedG-modules admits a right inverse r
given by

r(f)(v) = mF
(
gH 7→ f(gH)(v)

)
for f ∈ C0

F ,b(G;V #) and v ∈ V . Then the relative F-injectivity of V # follows from the
relative F-injectivity of C0

F ,b(G;V #).

Clearly, condition (ii) implies (iii). Suppose that R is relatively F-injective. Consider
the strongly F-injective map i : R → `∞(G/F) of normed G-modules that has an H-
section τH given by τH(f) = f(eH) for each H ∈ F . Then the identity idR admits
an extension along i which yields a non-trivial G-invariant element in `∞(G/F)#. By
Lemma 2.21 this finishes the proof.

Characterisation of relative finiteness. Analogously to Theorem 2.23, when in-
stead considering all (not necessarily dual) normed RG-modules, one obtains the theorem
below. Let G be a group and F be a family of subgroups.

Let `1(G/F) denote the normed RG-module of summable functions f : G/F → R with
norm ‖f‖1 =

∑
gH∈G/F |f(gH)|. Let `10(G/F) be the kernel of the map `1(G/F) → R,

f 7→
∑

gH∈G/F f(gH). We define the class [KF ] ∈ H1
F ,b(G; `10(G/F)) as the cohomology

class of the 1-cocycle KF ∈ C1
F ,b(G; `10(G/F)) given by

KF (g0H0, g1H1) = χg1H1 − χg0H0 ,

where χgiHi is the characteristic function supported at giHi for i = 0, 1.

We say that G is finite relative to F , if F contains a finite index subgroup of G.

Theorem 2.27. Let G be a group and F ⊂ G be two families of subgroups. The following
are equivalent:

(i) Every subgroup H ∈ G is finite relative to F|H ;

(ii) The canonical map Hn
G,b(G;V ) → Hn

F ,b(G;V ) is an isomorphism for all normed
RG-modules V and all n ≥ 0;

(iii) The canonical map H1
G,b(G;V ) → H1

F ,b(G;V ) is an isomorphism for all normed
RG-modules V ;
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(iv) The class [KF ] ∈ H1
F ,b(G; `10(G/F)) lies in the image of the canonical map can1

F⊂G,b.

Proof. We only give a sketch of the proof which is entirely analogous to that of Theo-
rem 2.23. Suppose that every subgroup H ∈ G is finite relative to F|H . One shows
that the resolution of normed RG-modules V → C∗G(G;V ) is relatively F-injective
by taking averages over finite sets of cosets. Moreover, the resolution is F-strong by
Lemma 2.14 (ii) and hence the canonical map cannF⊂G,b is an isomorphism for all n ≥ 0

by Proposition 2.15.

The implications (ii) ⇒ (iii) ⇒ (iv) are obvious. Suppose that the class [KF ] lies in the
image of the canonical map can1

F⊂G,b. Fix a subgroup H ∈ G and consider the diagram
of normed RH-modules

0 `10(G/F) `1(G/F) R 0

0 `10(H/F|H) `1(H/F|H) R 0 .

=

Following the proof of Theorem 2.23, one obtains a non-trivial H-invariant element
f ∈ `1(H/F|H). Since f is constant on H-orbits, non-trivial, and summable, there
exists a finite H-orbit in H/F|H . Thus H is finite relative to F|H .

Theorem 2.27 has the following interesting special cases. If F is arbitrary and G = ALL,
we characterise that F contains a finite index subgroup of G. If F = T R and G is arbi-
trary, we characterise that all subgroups in G are finite, generalising [MR, Theorem B].
We recover the characterisation of finite groups ([Fri17, Theorem 3.12]) for F = T R
and G = ALL.

2.5 Characterisation of relative hyperbolicity

In this section we prove a characterisation of relatively hyperbolic groups in terms of
bounded Bredon cohomology analogous to Theorem 2.2.

Let G be a finitely generated group and H be a finite set of subgroups. Recall that G
is hyperbolic relative to H if the coned–off Cayley graph is hyperbolic and fine (see e.g.,
[Hru10]). For example, hyperbolic groups are hyperbolic relative to the trivial subgroup,
free products G1 ∗ G2 are hyperbolic relative to {G1, G2}, and fundamental groups of
finite volume hyperbolic manifolds are hyperbolic relative to the cusp subgroups. If G
is hyperbolic relative to H, then H is almost malnormal and hence malnormal if G is
torsion-free.

From now on, let the ring R be either Q or R. A map f : C → B of normed RG-modules
is called undistorted if there exists a constant K ≥ 0 such that for all b ∈ im(f) there
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exists c ∈ C with f(c) = b such that ‖c‖C ≤ K · ‖b‖B. A normed RG-module P is
called boundedly projective if for every undistorted epimorphism f : C → B and every
map φ : P → B of normed RG-modules, there exists a map Φ: P → C of normed
RG-modules such that f ◦ Φ = φ.

The following lemma [MY, Lemma 52] is useful to construct G-equivariant maps.

Lemma 2.28 (Mineyev–Yaman). Let G be a group and S be a G-set with finite sta-
bilisers. Then Q[S] is projective as a QG-module and boundedly projective as a normed
QG-module when equipped with the `1-norm.

Let X be a G-CW-complex with cocompact (n+ 1)-skeleton and consider for k ≥ 0 the
cellular chains Ccell

k (X;R) as a normed RG-module equipped with the `1-norm. We say
that X satisfies a linear homological isoperimetric inequality over R in degree n if the
boundary map

∂n+1 : Ccell
n+1(X;R)→ Ccell

n (X;R)

is undistorted. Equivalently, there exists a constant K ≥ 0 such that for every cellular
n-boundary b ∈ Bcell

n (X;R) we have ‖b‖∂ ≤ K · ‖b‖1, where

‖b‖∂ := inf{‖c‖1 | c ∈ Ccell
n+1(X;R), ∂n+1(c) = b}

(which is sometimes called the filling norm). (In [MM85], the terminology of the uniform
boundary condition is used for a linear homological isoperimetric inequality.)

If G is hyperbolic relative to H, Mineyev–Yaman [MY, Theorem 41] have constructed
the so-called “ideal complex” X. It is in particular a cocompact G-CW-complex with
precisely one equivariant 0-cell G/H for each each H ∈ H and finite edge-stabilisers.
Moreover, X is (non-equivariantly) contractible and hence a model for EF〈H〉G provided
that G is torsion-free. We summarise some of its properties [MY, Theorem 47 and 51].

Theorem 2.29 (Mineyev–Yaman). Let G be a finitely generated torsion-free group and
H be a finite set of subgroups. If G is hyperbolic relative to H, then there exists a
cocompact model X for EF〈H〉G satisfying the following:

(i) X satisfies linear homological isoperimetric inequalities over Q in degree n for
all n ≥ 1;

(ii) There exists a map q : X(0) ×X(0) → Ccell
1 (X;Q) with ∂1(q(a, b)) = b− a, called a

homological Q-bicombing, that is G-equivariant and satisfies

‖q(a, b) + q(b, c)− q(a, c)‖1 ≤ K

for all a, b, c ∈ X(0) and a uniform constant K ≥ 0.
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The following criterion for relative hyperbolicity is a combination of [Fra18, Proposi-
tion 8.3 and Theorem 8.5] (see also [MP16, Theorems 1.6 and 1.10]).

Theorem 2.30 (Franceschini, Martínez-Pedroza). Let G be a group and H be a finite
set of subgroups. Then G is hyperbolic relative to H if there exists a G-CW-complex Z
satisfying the following:

(i) Z is simply-connected;

(ii) The 2-skeleton Z(2) is cocompact;

(iii) H is a set of representatives of distinct conjugacy classes of vertex-stabilisers such
that each infinite stabiliser is represented;

(iv) The edge-stabilisers of Z are finite;

(v) Z satisfies a linear homological isoperimetric inequality over R in degree 1.

We prove a characterisation of relative hyperbolicity closely following Mineyev’s original
proof of Theorem 2.2 ([Min01, Theorem 11] and [Min02, Theorem 9]).

Theorem 2.31. Let G be a finitely generated torsion-free group and H be a finite mal-
normal collection of subgroups. Let F be the family F〈H〉 and suppose that G is of
type F2,F . Then the following are equivalent:

(i) G is hyperbolic relative to H;

(ii) The comparison map Hn
F ,b(G;V ) → Hn

F (G;V ) is surjective for all normed QG-
modules V and all n ≥ 2;

(iii) The comparison map H2
F ,b(G;V ) → H2

F (G;V ) is surjective for all normed RG-
modules V .

Proof. Suppose that G is hyperbolic relative to H. Let X be the model for EFG that is
given by Mineyev–Yaman’s ideal complex (Theorem 2.29) and Y be the simplicial model
for EFG with (non-equivariant) n-cells corresponding to (G/F)n+1 for all n ≥ 0. We
claim that there is a G-chain map

ϕ∗ : Ccell
∗ (Y ;Q)→ Ccell

∗ (X;Q)

with ϕn bounded for all n ≥ 2, admitting a G-homotopy left inverse. We construct ϕ∗
inductively as follows. In degree 0, we define

ϕ0 : Ccell
0 (Y ;Q) = Q[G/F ]→ Ccell

0 (X;Q)
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to map a generator of the form eH to the vertex of X with stabiliser containing H.
Then extend G-equivariantly and Q-linearly to all of Q[G/F ]. In degree 1, we define
ϕ1 : Ccell

1 (Y ;Q)→ Ccell
1 (X;Q) on generators by

ϕ1(g0H0, g1H1) = q(ϕ0(g0H0), ϕ0(g1H1)) ,

where q is the homological Q-bicombing on X from Theorem 2.29 (ii). Since both q

and ϕ0 are G-equivariant, so is ϕ1. In degree 2, we consider the maps

Ccell
2 (Y ;Q) Ccell

1 (Y ;Q)

Ccell
2 (X;Q) Ccell

1 (X;Q)

∂Y2

ϕ1

∂X2

(2.6)

and observe that the composition ϕ1 ◦ ∂Y2 is bounded by properties of q and that ∂X2 is
undistorted by Theorem 2.29 (i). There is a G-invariant decomposition

Ccell
2 (Y ;Q) ∼= Q[S1]⊕Q[S2] ,

where S1 and S2 denote the sets of 2-cells of Y with trivial resp. non-trivial stabilisers.
We obtain a bounded G-map ϕ2 : Ccell

2 (Y ;Q) → Ccell
2 (X;Q) by using the bounded pro-

jectivity of Q[S1] (Lemma 2.28) and by setting ϕ2 to be zero on Q[S2]. This renders the
square (2.6) commutative because the edge-stabilisers of X are trivial.

Assuming that ϕn has been constructed, one analogously defines a bounded G-map ϕn+1

using that ∂Xn+1 is undistorted by Theorem 2.29 (i). Thus one obtains a G-chain map ϕ∗
with ϕn bounded for n ≥ 2. To conclude the claim, we note that Ccell

∗ (Y ;Q) is a relatively
F-projective F-strong resolution of Q by Lemma 2.12. Hence by Proposition 2.13 any
G-chain map ψ∗ : Ccell

∗ (X;Q) → Ccell
∗ (Y ;Q) extending idQ is a G-homotopy left inverse

of ϕ∗.

Now, let V be a normed QG-module. Applying HomQG(−, V ) yields a cochain map

ϕ∗ : C∗cell(X;V )G → C∗cell(Y ;V )G

with homotopy right inverse ψ∗. In particular, the composition ϕ∗ ◦ ψ∗ induces the
identity on H∗(C∗cell(Y ;V )G) ∼= H∗F (G;V ). Finally, for n ≥ 2 let c ∈ Cncell(Y ;V )G be a
cocycle. Then ϕn(ψn(c)) and c represent the same cohomology class in Hn

F (G;V ). We
have

‖ϕn(ψn(c))‖∞ = ‖ψn(c) ◦ ϕn‖∞ ≤ ‖ψn(c)‖∞ · ‖ϕn‖∞ ,

where ϕn is bounded by construction and so is ψn(c) ∈ Cncell(X;V )G because X has only
finitely many orbits of n-cells. Thus we have shown that for n ≥ 2 every cohomology
class in Hn

F (G;V ) admits a bounded representative.
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Obviously condition (ii) implies (iii). Suppose that the comparison map is surjective in
degree 2 for coefficients in every normed RG-module. Let Z be a model for EFG with
cocompact 2-skeleton. Since H is malnormal, by collapsing fixed-point sets of Z we may
assume that for every non-trivial subgroup H ∈ F the fixed-point set ZH consists of
precisely one point.1 In other words, Z has one equivariant 0-cell of the form G/H for
each H ∈ H and all other cells have trivial stabilisers. In order to apply Theorem 2.30
and conclude that G is hyperbolic relative to H, it remains to verify that Z satisfies a
linear homological isoperimetric inequality over R in degree 1.

We take as coefficients the cellular 1-boundaries V := Bcell
1 (Z;R) equipped with the

norm ‖ · ‖∂ . Let Y be the simplicial model for EFG. Then there is a G-chain homotopy
equivalence

ψ∗ : Ccell
∗ (Z;R)→ Ccell

∗ (Y ;R)

with G-homotopy inverse ϕ∗. Applying HomRG(−, V ) yields a cochain homotopy equiv-
alence

ψ∗ : C∗cell(Y ;V )G → C∗cell(Z;V )G

with homotopy inverse ϕ∗. In particular, the composition ψ∗ ◦ ϕ∗ induces the identity
on H∗(C∗cell(Z;V )G) ∼= H∗F (G;V ). Consider the 2-cocycle u ∈ C2

cell(Z;V )G given by the
boundary map

u = ∂2 : Ccell
2 (Z;R)→ Bcell

1 (Z;R) = V .

Then we can write
u = (ψ2 ◦ ϕ2)(u) + δ1

Z(v) (2.7)

for some v ∈ C1
cell(Z;V )G. Since the comparison map H2

F ,b(G;V ) → H2
F (G;V ) is sur-

jective by hypothesis, we can write

ϕ2(u) = u′ + δ1
Y (v′) (2.8)

for a bounded 2-cocycle u′ ∈ C2
cell(Y ;V )G and some v′ ∈ C1

cell(Y ;V )G. For a fixed
vertex y ∈ Y (0) = G/F , let Coney : Ccell

1 (Y ;R) → Ccell
2 (Y ;R) be defined on generators

by
Coney ((g0H0, g1H1)) = (y, g0H0, g1, H1) .

Obviously Coney preserves the `1-norms. For a G-CW-complex W , we denote the eval-
uation pairing by

〈·, ·〉W : C∗cell(W ;V )G × Ccell
∗ (W ;R)→ V .

1A detailed proof of this fact was communicated to us by Sam Hughes.
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Now, for b ∈ Ccell
1 (Z;R) and c ∈ Ccell

2 (Z;R) with ∂2(c) = b, we find by (2.7) that

b = 〈u, c〉Z = 〈(ψ2 ◦ ϕ2)(u) + δ1
Z(v), c〉Z

= 〈(ψ2 ◦ ϕ2)(u), c〉Z + 〈v, ∂Y2 (c)〉Z
= 〈ϕ2(u), ψ2(c)〉Y + 〈v, b〉Z .

Since ϕ2(u) is a cocycle and ψ2(c)−Coney(∂
Y
2 (ψ2(c))) is a cycle and hence a boundary,

we have

〈ϕ2(u), ψ2(c)〉Y = 〈ϕ2(u),Coney(∂
Y
2 (ψ2(c)))〉Y

= 〈ϕ2(u),Coney(ψ1(b))〉Y
= 〈u′ + δ1

Y (v′),Coney(ψ1(b))〉Y
= 〈u′,Coney(ψ1(b))〉Y + 〈v′, ∂Y2 (Coney(ψ1(b)))〉Y
= 〈u′,Coney(ψ1(b))〉Y + 〈v′, ψ1(b)〉Y
= 〈u′,Coney(ψ1(b))〉Y + 〈ψ1(v′), b〉Z ,

where we used (2.8). Together, we have

b = 〈u′,Coney(ψ1(b))〉Y + 〈ψ1(v′) + v, b〉Z .

We claim that ‖〈u′,Coney(ψ1(b))〉Y ‖∂ ≤ ‖u
′‖∞ · ‖Coney(ψ1(b))‖1. Indeed, consider the

map induced by ∂2 on coefficients

(∂2)∗ : C2
cell(Y ;Ccell

2 (Z;R))G → C2
cell(Y ;V )G .

Since ∂2 is surjective, there exists a preimage ũ′ ∈ C2
cell(Y ;Ccell

2 (Z;R))G of u′ un-
der (∂2)∗ with ‖ũ′‖∞ ≤ ‖u′‖∞. Then 〈ũ′,Coney(ψ1(b))〉Y ∈ Ccell

2 (Z;R) is a preimage
of 〈u′,Coney(ψ1(b))〉Y under ∂2 witnessing the desired inequality. Similarly, one shows
that ‖〈ψ1(v′) + v, b〉Z‖∂ ≤ ‖ψ1(v′) + v‖∞ · ‖b‖1. It follows that

‖b‖∂ ≤ ‖〈u′,Coney(ψ1(b))〉Y ‖∂ + ‖〈ψ1(v′) + v, b〉Z‖∂
≤ ‖u′‖∞ · ‖Coney(ψ1(b))‖1 + ‖ψ1(v′) + v‖∞ · ‖b‖1
= ‖u′‖∞ · ‖ψ1(b)‖1 + ‖ψ1(v′) + v‖∞ · ‖b‖1
≤ (‖u′‖∞ · ‖ψ1‖∞ + ‖ψ1(v′) + v‖∞) · ‖b‖1 .

Finally, u′ is bounded by construction and so are ψ1 and ψ1(v′) + v because they are
G-maps with domain Ccell

1 (Z;R) and Z has only finitely many orbits of 1-cells. Thus
we have shown that Z satisfies a linear homological isoperimetric inequality over R in
degree 1. This finishes the proof.

Remark 2.32 (Groups with torsion). In Theorem 2.31, if the group G is not assumed to
be torsion-free and H is instead assumed to be almost malnormal, one can still prove the
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equivalence of (i) and (iii). However, a few modifications are necessary which we shall
only outline.

Assuming that G is hyperbolic relative to H, Mineyev–Yaman’s ideal complex has to
be replaced by a Rips type construction X due to Martínez-Pedroza–Przytycki that is
a model for EF∪FING. This complex X satisfies a linear homological isoperimetric
inequality over Z in degree 1 ([MPP19, Corollary 1.5]). It is part of a hyperbolic tuple in
the sense of [MY, Definition 38] and hence admits a homological Q-bicombing by [MY,
Theorem 47]. Then one can construct a G-chain map ϕ∗ with ϕ2 bounded similarly
as before and conclude surjectivity of the comparison map in degree 2 for the family
F ∪ FIN . This implies the same for the family F over the ring R.

For the converse implication, since H is almost malnormal, there exists a model Z
for EFG such that for every infinite subgroup H ∈ F the fixed-point set ZH consists
of precisely one point. Then one shows as before that Z satisfies a linear homological
isoperimetric inequality over R in degree 1 and concludes by Theorem 2.30.

We do not know whether condition (ii) is equivalent to (i) and (iii) in this case.
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Chapter 3

Bounded acyclicity and relative
simplicial volume

This chapter is the article [LLM] which is joint with Clara Löh and Marco Moraschini.

Abstract. We provide new vanishing and glueing results for relative simplicial volume,
following up on two current themes in bounded cohomology: The passage from amenable
groups to boundedly acyclic groups and the use of equivariant topology.

More precisely, we consider equivariant nerve pairs and relative classifying spaces for
families of subgroups. Typically, we apply this to uniformly boundedly acyclic families of
subgroups. Our methods also lead to vanishing results for `2-Betti numbers of aspherical
CW-pairs with small relative amenable category and to a relative version of a result by
Dranishnikov and Rudyak concerning mapping degrees and the inheritance of freeness of
fundamental groups.

3.1 Introduction

Bounded cohomology is defined as the cohomology of the bounded dual of the singular or
bar chain complex [Gro82] and it has many applications in group theory and geometry
of manifolds. A fundamental phenomenon is that bounded cohomology of amenable
groups is trivial (i.e., amenable groups are boundedly acyclic). On the other hand, the
bounded cohomology of negatively curved groups surjects onto ordinary cohomology. In
manifold topology, the simplicial volume of an oriented compact manifold is a homotopy
invariant defined as the `1-seminorm of the R-fundamental class [Gro82]. Using a duality
argument, the simplicial volume can be expressed in terms of bounded cohomology.

We provide new vanishing results for relative simplicial volume, following up on two
current themes in bounded cohomology:

• The passage from amenable groups to boundedly acyclic groups;
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• The use of equivariant topology, most notably of classifying spaces for families of
subgroups.

A technical difficulty in the passage from amenable to boundedly acyclic groups is that
the class of amenable groups possesses a large degree of uniformity when it comes to
bounded cohomology. This includes the fact that the class of amenable groups is closed
under subgroups and quotients and the fact that amenable groups are not only bound-
edly acyclic, but uniformly boundedly acyclic. Therefore, in the setting of boundedly
acyclic groups, generalised vanishing results for simplicial volume come with additional
uniformity and closure hypotheses.

As we aim at results for relative bounded cohomology and relative simplicial volume, we
adapt tools from equivariant topology to this relative setting.

Uniform bounded acyclicity. Group actions with amenable stabilisers have proved
to be a valuable tool to compute bounded cohomology [Mon01, BM02, BI09]. Similarly,
also uniformly boundedly acyclic actions allow us to compute bounded cohomology, where
the uniformity refers to a uniform bound on the norms of primitives. Recently, uniformly
boundedly acyclic actions have been used to compute the bounded cohomology of geo-
metrically relevant groups [FFLMa, MN].

Let X be a path-connected space. We say that a set of path-connected subspaces A of X
is uniformly boundedly acyclic [of order n] in X if the collection of all finite [resp. n-fold]
intersections of conjugates of the subgroups

(
im(π1(A ↪→ X))

)
A∈A

in π1(X) is uniformly boundedly acyclic (Definition 3.58). In the special case when the
above groups are amenable, we also speak of an amenable set of subspaces. The issue
of basepoints is addressed in Section 3.1. We have two geometric situations in which
uniformly boundedly acyclic sets of subspaces lead to interesting uniformly boundedly
acyclic actions: Open covers and glueing loci of manifolds obtained by glueing manifolds
with boundary.

Vanishing via relative open covers. Gromov [Gro82] and Ivanov [Iva85] established
vanishing results for the comparison map (and thus for simplicial volume) in the presence
of amenable open covers with small multiplicity.

Following the approach by Löh and Sauer [LS20] through equivariant nerves and classi-
fying spaces for families, we generalise these vanishing results in two directions. First, we
allow more general covers: A cover U of X by path-connected open subsets is uniformly
boundedly acyclic if the underlying set of subsets of X is uniformly boundedly acyclic
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in X. Second, we adapt the setting to pairs of CW-complexes (X,A), where A is π1-
injective in X (Theorem 3.76). To this end, we introduce the notion of [weakly convex ]
relative covers (Definition 3.41). Using equivariant nerve pairs and classifying spaces of
group pairs for families, we obtain:

Theorem 3.1 (Corollary 3.78). Let (X,A) be a CW-pair with path-connected ambient
space X. Assume that A has only finitely many connected components, each of which is
π1-injective in X. Let U be a relative cover of (X,A) that is uniformly boundedly acyclic.

(i) If U is weakly convex, then the comparison map

compk : Hk
b (X,A;R)→ Hk(X,A;R)

vanishes in all degrees k ≥ multA(U).

(ii) Let ν : (X,A) → (|N(U)|, |NA(U)|) be a nerve map. If U is convex, then the com-
parison map comp∗ factors through ν:

H∗b (X,A;R) H∗(X,A;R)

H∗(|N(U)|, |NA(U)|;R) .

comp∗

H∗(ν;R)

Here multA(U) denotes the relative multiplicity of U with respect to A (Definition 3.35)
and the simplicial complex NA(U) is a suitable subcomplex of the nerve N(U) (Defini-
tion 3.36).

In the absolute case, Ivanov proved a similar vanishing theorem for weakly boundedly
acyclic covers using spectral sequences [Iva]. Our notion of uniformly boundedly acyclic
covers is similar, but the relation between the two is unclear (Remark 3.69).

Theorem 3.1 applies in particular to relative covers that are amenable. We introduce the
relative amenable multiplicity multAME(X,A) (Definition 3.45) as the minimal relative
multiplicity of weakly convex relative amenable covers of (X,A) by path-connected open
subsets.

Theorem 3.2 (Corollary 3.80). Let (X,A) be a CW-pair with path-connected ambient
space X. Assume that A consists of finitely many connected components, each of which
is π1-injective in X. Then the comparison map

compk : Hk
b (X,A;R)→ Hk(X,A;R)

vanishes in all degrees k ≥ multAME(X,A).

In particular, if (M,∂M) is an oriented compact connected triangulable manifold with
π1-injective boundary components and multAME(M,∂M) ≤ dim(M), then the relative
simplicial volume ‖M,∂M‖ vanishes.
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In the absolute case, every cover is a weakly convex relative cover, hence multAME(X, ∅)
is the minimal multiplicity of amenable covers of X. For a CW-complex X, this co-
incides with the minimal cardinality of amenable covers of X by not necessarily path-
connected subsets [CLM, Remark 3.13]. The latter quantity is called the amenable
category catAME(X) (Remark 3.47), a notion that is modelled on the classical LS-
category [CLOT03].

As an application of Theorem 3.2, we give an alternative proof of a relative vanishing the-
orem, which is a consequence of Gromov’s vanishing theorem for non-compact manifolds
(Theorem 3.82).

Our methods for equivariant nerve pairs and relative classifying spaces also lead to van-
ishing results for `2-Betti numbers of aspherical CW-pairs with small relative amenable
multiplicity (Theorem 3.86). In the absolute case (Corollary 3.87), this recovers a result
by Sauer [Sau09, Theorem C].

Glueings. We adapt the additivity of relative simplicial volume for glueings along
amenable boundaries [Gro82, BBF+14, Kue15] to situations with boundedly acyclic
boundaries. As we move away from amenability, we lose control on the norm, and
thus only retain control on the vanishing behaviour.

Theorem 3.3 (Theorem 3.88). Let n ≥ 3 and (Mi, ∂Mi)i∈I be a finite collection of
oriented compact connected n-manifolds. Assume that every connected component of
every boundary component ∂Mi has boundedly acyclic fundamental group. Let N be
a set of π1-injective boundary components of the (Mi)i∈I and let (M,∂M) be obtained
from (Mi, ∂Mi)i∈I by a pairwise glueing of the boundary components in N .

If N , viewed as a set of subsets of M , is uniformly boundedly acyclic of order n in M ,
then the following are equivalent:

(i) We have ‖M,∂M‖ = 0;

(ii) For all i ∈ I, we have ‖Mi, ∂Mi‖ = 0.

Mapping degrees. One of the classical applications of simplicial volume is an a priori
estimate on mapping degrees [Gro82, Thu, FM21]. In contrast, the exact relation between
mapping degrees and monotonicity of (generalised) LS-category invariants is still wide
open [Rud17, CLM].

In the absolute case, Eilenberg and Ganea showed that the LS-category invariant for the
family containing only the trivial subgroup of an aspherical space recovers the cohomo-
logical dimension of its fundamental group [EG57]. Moreover, cohomological dimension
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one can be characterised in terms of freeness. Thus, the monotonicity problem for (gen-
eralised) LS-category leads to inheritance properties of fundamental groups under maps
of non-zero degree.

We use equivariant and group cohomological methods to establish the following relative
version (and a simplified proof) of a monotonicity result by Dranishnikov and Rudyak
for closed manifolds [DR09]:

Theorem 3.4 (Corollary 3.29). Let f : (M,∂M) → (N, ∂N) be a map between ori-
ented compact connected manifolds of the same dimension with π1-injective boundary
components. Let ∂M =

∐m
i=1Mi and ∂N =

∐n
i=1Ni be decompositions into connected

components. If deg(f) = ±1 and there exists a free group FM such that

π1(M) ∼= FM ∗ ∗mi=1π1(Mi) ,

then there exists a free group FN such that π1(N) ∼= FN ∗ ∗ni=1π1(Ni).

For closed manifolds our approach also yields inheritance properties for virtual freeness:

Theorem 3.5 (Corollary 3.31). Let f : M → N be a map between oriented closed con-
nected manifolds of the same dimension. If deg(f) 6= 0 and π1(M) is virtually free, then
also π1(N) is virtually free.

Conventions. In this article, we adhere to the following conventions:

Instead of the usual notion of families of sets, groups, modules, . . . , we will speak of
collections; this is to avoid confusion with the term “families of subgroups”. I.e., a
collection (Hi)i∈I of groups [or sets, . . . ] is a map I → Group, i 7→ Hi from a set I to
the class of all groups [or sets, . . . ]. In particular, collections can contain repetitions.

Families of subgroups will only be closed under conjugation but not necessarily under
finite intersections or taking subgroups (Definition 3.9).

All groups will be discrete groups; in particular, we consider bounded cohomology of
discrete groups and G-CW-complexes for discrete groups G. The geometric realisation
of G-simplicial complexes will always be equipped with the G-CW-structure coming from
the barycentric subdivision (Example 3.7).

Given a compact manifold M with non-empty boundary, we say that M has π1-injective
boundary if every connected component of ∂M is π1-injective in M .

We usually refrain from spelling out basepoints for fundamental groups. Strictly speak-
ing, fixing basepoints is necessary to make the notion of the image of “the” fundamental
group of a subspace in “the” fundamental group of an ambient space precise. However, we
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will always deal with situations concerning conjugation-invariant properties or concern-
ing collections of all conjugates of such subgroups. Therefore, all choices of basepoints
would lead to the same outcome.

We always work with open covers consisting of path-connected sets. We explain in
Remark 3.47 why this condition is not restrictive in our setting.
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3.2 Classifying spaces of group pairs for families
of subgroups

The goal of this section is to introduce classifying spaces for families of subgroups in
a relative setting. We first recall classifying spaces for families of subgroups and then
explain the extension to the relative setting.

This is motivated by our geometric situations of topological pairs (X,A) (e.g., manifolds
with boundary), where two classes of subgroups of the fundamental group G := π1(X)

will be involved:

• A family F of subgroups of G, describing the allowed fundamental groups of sets
in open covers of X;

• A collection H of subgroups of G, coming from the fundamental groups of the
components of A.

3.2.1 G-CW-complexes

We briefly recall the definitions of G-CW-complexes and the induction functor. For more
background on G-CW-complexes we refer the reader to the literature [Lüc89, Lüc05].

Definition 3.6 (G-CW-complex). A G-CW-complex Y is a G-space equipped with a
G-invariant filtration

∅ = Y (−1) ⊂ Y (0) ⊂ Y (1) ⊂ · · · ⊂ Y (n) ⊂ · · · ⊂ Y (3.1)

such that the following hold:
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• Y =
⋃
n≥0 Y

(n);

• Y carries the weak topology with respect to the filtration (3.1);

• Y (n) is obtained from Y (n−1) as a G-pushout of the form

∐
i∈In G/Hi × Sn−1 Y (n−1)

∐
i∈In G/Hi ×Dn Y (n) .

The subgroups Hi of G and their conjugates are called isotropy groups of Y . If all
isotropy groups of Y are trivial, we also say that Y is a free G-CW-complex.

A morphism of G-CW-complexes is a G-map.

For example, the universal covering X̃ of a path-connected CW-complex X is a free
π1(X)-CW-complex with respect to the CW-structure inherited from X.

Example 3.7 (Barycentric subdivision of G-simplicial complexes). Let N be an (ab-
stract) simplicial complex and letG be a group acting onN via simplicial automorphisms.
Then the geometric realisation |N ′| of the barycentric subdivision is a G-CW-complex,
while |N | need not be a G-CW-complex in general. The standard homeomorphism be-
tween the geometric realisations |N | → |N ′| is a G-homeomorphism. Therefore, |N |
admits a canonical structure as a G-CW-complex and we will always use this G-CW-
structure.

Given a subgroup H ⊂ G, there is a natural way to associate to an H-CW-complex a
G-CW-complex.

Definition 3.8 (Induction). Let H be a subgroup of G. The induction (along the
inclusion H ⊂ G) is the functor

G×H (−) : H-CW-complexes→ G-CW-complexes

that assigns to an H-CW-complex B the G-CW-complex G ×H B, that is the quotient
of G×B by the (right) H-action (g, b) · h = (gh, h−1b). Here G acts on G×H B by left
multiplication. We denote elements of G×H B by [g, b].

For an H-map f : B → C between H-CW-complexes, the induced G-map

G×H f : G×H B → G×H C

is given by G×H f([g, b]) = [g, f(b)].

The induction functor is left-adjoint to the restriction functor, which associates to a
G-CW-complex the same space viewed as an H-CW-complex.
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3.2.2 Classifying spaces for families of subgroups

We use the following (non-standard) convention for families of subgroups:

Definition 3.9 (Family of subgroups). Let G be a group and F be a non-empty set of
subgroups of G. We say that F is a family of subgroups (or conjugation-closed family of
subgroups) of G if it is closed under conjugation. We say that F is an intersection-closed
family of subgroups of G if it is closed under conjugation and taking finite intersections.

Example 3.10. The following are examples of families of subgroups:

(i) The set of isotropy groups of a G-CW-complex;

(ii) The family T R consisting only of the trivial subgroup;

(iii) The family FIN consisting of all finite subgroups;

(iv) The family AME consisting of all amenable subgroups;

(v) Let H be a subgroup of G and let F be a family of subgroups of G. Then the set
F|H = {L ⊂ H | L ∈ F} is a family of subgroups of H.

Example 3.11 (Families generated by a set of subgroups). Let G be a group and
let G be a non-empty set of subgroups. The intersection-closed family F〈G〉 generated
by G is defined to be the smallest (with respect to inclusion) intersection-closed family
containing G, that is

F〈G〉 =

{ n⋂
i=1

giHig
−1
i

∣∣∣∣ n ∈ N, Hi ∈ G, gi ∈ G
}
.

For n ∈ N we define the (conjugation-closed) family

Fn〈G〉 :=

{ n⋂
i=1

giHig
−1
i

∣∣∣∣ Hi ∈ G, gi ∈ G
}
.

Recall that EG, the universal covering of an Eilenberg–MacLane space BG, is a ter-
minal object in the G-homotopy category of free G-CW-complexes. The following is a
generalisation to G-CW-complexes with not necessarily trivial isotropy groups.

Definition 3.12 (Classifying space for a family of subgroups). Let G be a group and
let F be a (conjugation-closed) family of subgroups of G. A classifying space for G with
respect to F is a G-CW-complex E with the following universal property:

• All isotropy groups of E lie in F ;

• For each G-CW-complex Y whose isotropy groups all lie in F , there is up to G-
homotopy exactly one G-map Y → E.
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We usually denote such classifying spaces by EFG (even though they are only unique up
to G-homotopy equivalence).

If F contains the trivial group, then the universal property of EFG ensures that there
exists a G-map EG→ EFG, which is unique up to G-homotopy.

Theorem 3.13 (Existence of classifying spaces for families of subgroups). Let G be a
group and let F be a (conjugation-closed) family of subgroups.

(i) A G-CW-complex Y is a classifying space for G with respect to F if and only if the
following conditions are satisfied:

• All isotropy groups of Y lie in F ;

• For all H ∈ F , the fixed point set Y H is contractible.

(ii) There exists a classifying space for G with respect to F .

Proof. (i) This follows from an equivariant version of the Whitehead theorem [Lüc05,
Theorem 1.6] applied to the map Y → G/G.

(ii) In view of the first part, such a classifying space can be constructed by inductively
attaching cells to kill homotopy groups of the fixed point sets [Lüc89, Proposition 2.3].

Remark 3.14. We point out that the construction of classifying spaces in Theorem 3.13 (ii)
indeed works for (conjugation-closed) families of subgroups with no additional closure
properties. This level of generality is usually not considered in the literature, where
classifying spaces are often defined only for families that are intersection-closed or closed
under taking arbitrary subgroups.

Many interesting constructions of classifying spaces for intersection-closed families, most
notably for FIN , are known [Lüc05, Section 4]. For a (conjugation-closed) family G
of subgroups of G, we can consider the intersection-closed family F〈G〉 generated by G
(Example 3.11). Then a model for EGG is given by the G-CW-subcomplex of EF〈G〉G
consisting of all cells with isotropy in G.

Example 3.15. Let D∞ = 〈s, t | s2 = t2 = e〉 be the infinite dihedral group. A model
for EFIND∞ is given by the real line R on which s and t act via reflection at 0

and 1, respectively. Considering the (conjugation-closed) family FIN \T R, a model for
EFIN\T RD∞ is given by the subcomplex Z ⊂ R, that is D∞/〈s〉 tD∞/〈t〉.

3.2.3 (G,H)-CW-pairs

In this section we introduce a notion of pairs of equivariant CW-complexes adapted to a
collection of subgroups.
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Definition 3.16 (Group pair). A group pair is a pair (G,H), consisting of a group G
and a collection H of subgroups of G (see Section 3.1 for the term “collection”).

For our purposes, the most important examples of group pairs will arise as pairs of
fundamental groups.

Example 3.17 (Fundamental group pair). Let (X,A) be a CW-pair, where X is path-
connected, and let x0 ∈ X. Moreover, we assume that each connected component of A
is π1-injective in X. A group pair (G,H) is a fundamental group pair of (X,A) (at the
basepoint x0) if:

• G = π1(X,x0) and

• H = (Hi)i∈I , where A =
∐
i∈I Ai is a decomposition of A into connected com-

ponents and for each i ∈ I, there exists a basepoint xi ∈ Ai and a path γi in X
from x0 to xi, such that Hi is the subgroup of π1(X,x0) isomorphic to π1(Ai, xi)

via the homomorphism induced by γi.

In this situation, we will also abuse notation and just write π1(Ai) for this subgroup Hi

in G. It should be noted that there is always an implicit (fixed) choice of basepoints
and paths involved. In many cases, these choices will be of no consequence; when these
choices would matter, we will be in situations, where we include all G-conjugates of
the (Hi)i∈I in the collection of subgroups in question, and thus avoid ambiguities.

Definition 3.18 ((G,H)-CW-pair). Let (G,H) be a group pair with H = (Hi)i∈I . A
(G,H)-CW-pair is a G-CW-pair (Y,B) together with a decomposition

B =
∐
i∈I

G×Hi Bi ,

where Bi is an Hi-CW-complex.

Let F be a family of subgroups of G. We say that (Y,B) has isotropy in F if all isotropy
groups of Y lie in F .

The relative dimension dim(Y,B) ∈ N ∪ {∞} is the dimension of the relative G-CW-
complex (Y,B).

A map of (G,H)-CW-pairs f : (Y,B)→ (Z,C) is a G-map of pairs such that the restric-
tion f |B is of the form

∐
i∈I G×Hi fi, where fi : Bi → Ci is an Hi-map.

If a (G,H)-CW-pair (Y,B) as above has isotropy in F , then the isotropy groups of
the Hi-CW-complex Bi lie in F|Hi .

In the situation of Definition 3.18, replacing a subgroup Hi by a conjugate gHig
−1

with g ∈ G corresponds to changing the reference point in the description of the induced
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spaceG×HiBi. Thus, the collectionH can also be viewed as a collection of representatives
of conjugacy classes of subgroups of G.

Example 3.19 (Universal covering pair). Let (X,A) be a CW-pair with fundamen-
tal group pair (G,H), where A =

∐
i∈I Ai and H = (Hi)i∈I = (π1(Ai))i∈I are as in

Example 3.17. Denote by p : X̃ → X the universal covering map. Then there is a G-
homeomorphism p−1(A) ∼=

∐
i∈I G×Hi Ãi, where Ãi is the universal covering of Ai. This

shows that (X̃, p−1(A)) is a (G,H)-CW-pair with isotropy in the trivial family T R.

3.2.4 Classifying spaces of group pairs with respect to a family

We now let families of subgroups and an additional collection of subgroups interact:

Definition 3.20 (Classifying space for group pairs). Let G be a group, H be a collection
of subgroups of G, and F be a family of subgroups of G. A classifying space for the group
pair (G,H) with respect to F is a (G,H)-CW-pair (E,D) with the following universal
property:

• The pair (E,D) has isotropy in F ;

• For each (G,H)-CW-pair (Y,B) with isotropy in F , there is up to G-homotopy
exactly one G-map (Y,B)→ (E,D) of (G,H)-CW-pairs.

We usually denote such classifying spaces by EF (G,H) (even though they are only unique
up to G-homotopy equivalence of pairs).

Models for EF (G,H) can be constructed as mapping cylinders:

Lemma 3.21 (Existence of classifying spaces for group pairs). Let (G,H) be a group
pair and let F be family of subgroups of G. Then there exists a classifying space for the
group pair (G,H) with respect to F .

Proof. We write the collection H as (Hi)i∈I . For every i ∈ I, let EF|HiHi be a clas-
sifying space for Hi with respect to the family F|Hi . The induced G-CW-complex
G ×Hi (EF|Hi

Hi) has isotropy in the family F and hence, by the universal property
of EFG, there exists a G-map G ×Hi (EF|Hi

Hi) → EFG (that is unique up to G-
homotopy). Then the mapping cylinder of the G-map∐

i∈I
G×Hi (EF|Hi

Hi)→ EFG

is a model for EF (G,H). This follows from the universal properties of the classifying
spaces EF|HiHi and EFG.
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3.3 Relative cohomological dimension and mapping degrees

We discuss an application of classifying spaces for group pairs and relative group co-
homology to maps between manifolds. We obtain inheritance results for the freeness of
fundamental groups of manifolds in terms of mapping degrees. The results of this section
are independent from the rest of the paper.

3.3.1 Relative group cohomology

We recall the definition of relative cohomology of a group pair and a characterisation of
groups pairs with relative cohomological dimension one.

Definition 3.22 (Relative cohomology of group pairs). Let (G,H) be a group pair and R
be a commutative ring. We define the relative cohomology H∗(G,H;V ) with coefficients
in an RG-module V to be the R-module

H∗(G,H;V ) := H∗G(ET R(G,H);V ) ,

where ET R(G,H) is a classifying space for (G,H) with respect to the trivial fam-
ily. Here the equivariant cohomology H∗G(ET R(G,H);V ) is by definition the cohomol-
ogy H∗(BG,

∐
H∈HBH;V ) with twisted coefficients.

Definition 3.23 (Relative cohomological dimension). The relative cohomological dimen-
sion cdR(G,H) of the group pair (G,H) over the ring R is defined as follows:

cdR(G,H) := sup{n ∈ N | Hn(G,H;V ) 6∼= 0 for some RG-module V }.

For simplicity we denote cdZ(G,H) by cd(G,H).

To illustrate these definitions, we mention that for H = (Hi)i∈I the long exact sequence
for the pair ET R(G,H) takes the following form:

· · · →
∏
i∈I

Hn−1(Hi;V )→ Hn(G,H;V )→ Hn(G;V )→
∏
i∈I

Hn(Hi;V )→ · · · .

This shows that cdR(G,H) ≤ n if and only if for all RG-modules V the restriction map
Hk(G;V )→

∏
i∈I H

k(Hi;V ) is an isomorphism for k > n and an epimorphism for k = n.

Remark 3.24. Let (G,H) be a group pair with H = (Hi)i∈I . While our definition
of H∗(G,H;V ) is purely topological, one may also define it algebraically via derived
functors. More precisely, consider the augmentation RG-map R[

∐
i∈I G/Hi] → R and

let ∆ denote its kernel. Then there exists a natural isomorphism

H∗(G,H;V ) ∼= Ext∗−1
RG (∆, V ) .
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In this situation we have that cdR(G,H) = pdRG(∆) + 1, where pdRG denotes the
projective dimension.

Many of the usual cohomological tools for group cohomology have been developed for
the relative case as well [Tak59, BE78, Alo91].

In the case of a single subgroup H, the relation between H∗(G,H;V ) and the Bredon
cohomology H∗G(EF〈H〉G;V ) has recently been investigated [ANCM17, ANCMSS21].

By the work of Stallings [Sta68] and Swan [Swa69] groups of cohomological dimension
one are precisely the free groups. The following is a generalisation to the relative setting.

Theorem 3.25 (Group pairs of relative cohomological dimension one [Dic80, Alo91]).
Let (G,H) be a group pair with H = (Hi)i∈I . Then the following are equivalent:

(i) cd(G,H) = 1;

(ii) There exists a free group F such that G ∼= F ∗ ∗i∈IHi.

3.3.2 Mapping degrees and monotonicity

For maps between manifolds with π1-injective boundary components, we prove mono-
tonicity results on the cohomological dimension of the fundamental group pairs.

First, we introduce some notation. Let (X,A) be a CW-pair with X path-connected.
Let A =

∐
i∈I Ai be a decomposition into connected components and assume that each Ai

is π1-injective in X. We denote by (π1(X), π1(A)) a fundamental group pair of (X,A)

(Example 3.17) and by p : X̃ → X the universal covering map. Let H∗(X,A;V ) be
the cohomology with twisted coefficients in a π1(X)-module V . Then the classifying
map ϕ(X,A) : (X̃, p−1(A))→ ET R(π1(X), π1(A)) induces a map on cohomology:

H∗(ϕ(X,A)) : H∗(π1(X), π1(A);V )→ H∗(X,A;V ) .

Lemma 3.26. Let (X,A) be a CW-pair with fundamental group pair (π1(X), π1(A)) as
above. The map H2(ϕ(X,A)) : H2(π1(X), π1(A);V )→ H2(X,A;V ) is injective for every
π1(X)-module V .

Proof. We argue via the four lemma for monomorphisms. We consider the following
commutative diagram, where the coefficient module is omitted:

H1(π1(X))
∏
i∈I H

1(π1(Ai)) H2(π1(X), π1(A)) H2(π1(X))

H1(X) H1(A) H2(X,A) H2(X) .

H2(ϕ(X,A))
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Here all vertical maps are induced by the respective classifying maps. Since a model
for ET R(π1(X)) [resp. for ET R(π1(Ai))] can be built from X̃ [resp. from Ãi] by attaching
cells of dimension greater than or equal to 3, the first and second vertical arrows are
isomorphisms, while the last vertical arrow is injective. Applying the four lemma for
monomorphisms, we conclude that H2(ϕ(X,A)) is injective.

We use the convention (Section 3.1) to say that a manifold M has π1-injective bound-
ary ∂M if every component of ∂M is π1-injective in M .

Theorem 3.27 (Mapping degree and relative cohomological dimension one).
Let f : (M,∂M) → (N, ∂N) be a map between oriented compact connected manifolds of
the same dimension with π1-injective boundary. Then the following hold:

(i) If deg(f) = ±1 and cd(π1(M), π1(∂M)) ≤ 1, then cd(π1(N), π1(∂N)) ≤ 1;

(ii) If deg(f) 6= 0 and cdQ(π1(M), π1(∂M)) ≤ 1, then cdQ(π1(N), π1(∂N)) ≤ 1.

Proof. We proceed by contraposition. Let R = Z [resp. R = Q] and suppose that
cdR(π1(N), π1(∂N)) > 1. Then by a dimension shifting argument, there exists an
Rπ1(N)-module V such that H2(π1(N), π1(∂N);V ) is non-trivial. We denote by f−1V

the Rπ1(M)-module that is obtained from V by restriction along π1(f). Consider the
following commutative diagram:

H2(N, ∂N ;V ) H2(M,∂M ; f−1V )

H2(π1(N), π1(∂N);V ) H2(π1(M), π1(∂M); f−1V ) .

H2(f)

H2(ϕ(N,∂N))

H2(π1(f))

H2(ϕ(M,∂M))

Here the vertical maps, which are induced by the respective classifying maps, are injective
in degree 2 (Lemma 3.26). By Poincaré–Lefschetz duality with twisted coefficients, there
exists an Umkehr map

f! : H
2(M,∂M ; f−1V )→ H2(N, ∂N ;V )

such that the composition f! ◦H2(f) : H2(N, ∂N ;V )→ H2(N, ∂N ;V ) is given by mul-
tiplication with deg(f). Hence the map H2(f) is injective in each of the following cases:

(i) If deg(f) = ±1 and R = Z;

(ii) If deg(f) 6= 0 and R = Q.

This shows that in the situations (i) and (ii) the composition

H2(f) ◦H2(ϕ(N,∂N)) = H2(ϕ(M,∂M)) ◦H2(π1(f))
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is injective, whence H2(π1(f)) is injective. Therefore the relative cohomology group
H2(π1(M), π1(∂M); f−1V ) is non-trivial and we have cdR(π1(M), π1(∂M)) > 1.

Remark 3.28. If the universal coverings of N and ∂N are k-connected, then the map
Hk+1(ϕ(N,∂N)) is injective and hence similar monotonicity results hold for cohomological
dimension at most k.

Theorem 3.27 readily implies the following:

Corollary 3.29. Let f : (M,∂M) → (N, ∂N) be a map between oriented compact con-
nected manifolds of the same dimension with π1-injective boundary. Let ∂M =

∐m
i=1Mi

and ∂N =
∐n
i=1Ni be decompositions into connected components. If deg(f) = ±1 and

there exists a free group FM such that

π1(M) ∼= FM ∗ ∗mi=1π1(Mi) ,

then there exists a free group FN such that π1(N) ∼= FN ∗ ∗ni=1π1(Ni).

Proof. This follows from Theorem 3.27 (i) and the group-theoretic characterisation of
relative cohomological dimension one (Theorem 3.25).

Examples of manifolds satisfying the assumptions of Corollary 3.29 are the following:

Example 3.30. Let Fk be a free group of rank k, and let H = (H1, . . . ,Hm) be a
finite collection of finitely presented groups. Then for every n ≥ 7, there exists a com-
pact connected n-dimensional manifold (M,∂M) with fundamental group pair (G,H)

such that G ∼= Fk ∗ ∗mi=1Hi. Indeed, let Li be an oriented closed connected 4-manifold
with π1(Li) ∼= Hi and consider

(M,∂M) := (#k
i=1S

1 × Sn−1) # (#m
i=1Li ×Dn−4) .

Then ∂M ∼=
∐m
i=1 Li × Sn−5 and π1(M) ∼= Fk ∗ ∗mi=1π1(Li).

In the case of closed manifolds, Corollary 3.29 provides a simplified proof of a result
by Dranishnikov and Rudyak [DR09, Theorem 5.2], without making use of the Berstein
class. We also obtain the following analogue for maps of non-zero degree:

Corollary 3.31. Let f : M → N be a map between oriented closed connected manifolds
of the same dimension with deg(f) 6= 0. If π1(M) is the fundamental group of a graph
of finite groups, then so is π1(N). In particular, if π1(M) is virtually free, then π1(N)

is virtually free.

Proof. This follows from Theorem 3.27 (ii) and Dunwoody’s characterisation [Dun79]
of groups of cohomological dimension one over arbitrary rings. As fundamental groups
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of closed manifolds are finitely generated, this characterisation can also be expressed in
terms of virtual freeness [Dun79, Corollary 1.2].

We are not aware of a relative version of Dunwoody’s result that would characterise
group pairs of relative cohomological dimension one over arbitrary rings. The results in
this section motivate the following:

Question 3.32. For which other classes C of groups does the following hold? Whenever
f : M → N is a map between oriented closed connected manifolds of the same dimension
with deg(f) 6= 0 [or deg(f) = 1] and π1(M) is the fundamental group of a graph of
groups from C, also π1(N) must be the fundamental group of a graph of groups from C.

Positive answers to Question 3.32 lead to corresponding monotonicity results for the
generalised LS-category ≤ 2 associated with the class C, provided that C is closed under
isomorphisms, subgroups, and quotients [CLM, Corollary 5.4 and the following para-
graph].

3.4 Relative open covers and equivariant nerve pairs

In this section, we study equivariant nerves of open covers in a relative setting. Given
an open cover of a space, the nerve of the cover gives an approximation of the space.
Considering actions on spaces and compatible covers leads to equivariant nerves, studied
by Löh and Sauer [LS20] for universal covering spaces with the action by the fundamental
group. We adapt this approach to pairs of spaces.

3.4.1 Open covers and nerve pairs

We fix some notation and terminology on open covers and their nerves.

Let Y be a space and V be a cover of Y by path-connected open subsets. We regard V
as a set of subsets of Y (and not as a collection of subsets).

Definition 3.33 (F-Cover). Let F be a family of subgroups of π1(Y ). We say that V
is an F-cover of Y if im(π1(V, x)→ π1(Y, x)) ∈ F for all V ∈ V and all x ∈ V .

Definition 3.34 (Convex cover). The cover V of Y is said to be convex if every inter-
section of finitely many elements of V is path-connected or empty.

The multiplicity mult(V) of V is defined as follows:

mult(V) := sup
{
n ∈ N

∣∣∣ n⋂
i=1

Vi 6= ∅ for some pairwise different V1, . . . , Vn ∈ V
}
.
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The nerve N(V) of V is the (abstract) simplicial complex with vertex set V; pairwise
different V0, . . . , Vn ∈ V span an n-simplex in N(V) if V0 ∩ · · · ∩ Vn 6= ∅. By definition,
dim(N(V)) = mult(V)− 1.

Let |N(V)| be the geometric realisation of the nerve N(V). Given a partition of unity
(ψV )V ∈V on Y subordinate to V, there is an associated nerve map

µ : Y → |N(V)| , y 7→ µ(y) :=
∑
V ∈V

ψV (y) · V . (3.2)

The nerve map is unique up to homotopy, since different choices of partitions of unity
lead to homotopic nerve maps.

Definition 3.35 (Relative multiplicity). For a subspace B of Y , we define the relative
multiplicity multB(V) of V (with respect to B) as follows:

multB(V) := sup
{
n ∈ N

∣∣∣ n⋂
i=1

Vi 6= ∅ and B ∩
( n⋂
i=1

Vi

)
= ∅

for some pairwise different V1, . . . , Vn ∈ V
}
.

Definition 3.36 (Nerve pair). For a subspace B of Y , we denote by NB(V) the simplicial
subcomplex of N(V) with vertex set VB := {V ∈ V | V ∩ B 6= ∅}, and pairwise differ-
ent V0, . . . , Vn ∈ VB span a simplex in NB(V) if V0 ∩ · · · ∩ Vn ∩ B 6= ∅. By construction
we have N(V) = NY (V).

The nerve map µ : Y → |N(V)| induces a map of pairs

µ : (Y,B)→ (|N(V)|, |NB(V)|) .

The relative dimension dim(N(V), NB(V)) is the dimension of the relative simplicial
complex (N(V), NB(V)). By definition, dim(N(V), NB(V)) = multB(V)− 1.

3.4.2 Equivariant nerve pairs

We now consider open covers that are compatible with a group action, giving rise to an
action on their nerve.

Definition 3.37 (Invariant cover and partition of unity). Let Y be a G-CW-complex
and V be a cover of Y by path-connected open subsets. We say that V is G-invariant if
for all g ∈ G and V ∈ V, we have g · V ∈ V. For V ∈ V, we write

StabG(V ) := {g ∈ G | g · V = V } .

For a family of subgroups F of G, we say that the cover V has isotropy in F if for
all V ∈ V, we have StabG(V ) ∈ F .
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A partition of unity (ψV )V ∈V on Y subordinate to a G-invariant cover V is said to be
G-invariant if for all g ∈ G and y ∈ Y , we have

ψV (y) = ψg·V (g · y) .

The key examples will come from covers of a space X giving rise to π1(X)-invariant
covers of the universal covering space X̃ (Example 3.40).

We recall basic properties of equivariant nerves [LS20, Lemmas 4.8 and 4.11] and their
proofs for completeness.

Lemma 3.38 (Equivariant nerve). Let Y be a G-CW-complex and V be a G-invariant
cover of Y . Then the following hold:

(i) Let B be an H-invariant subcomplex of Y for a subgroup H of G. Then NB(V) is an
H-simplicial complex and its geometric realisation |NB(V)| is an H-CW-complex.
In particular, N(V) is a G-simplicial complex;

(ii) Suppose that g · V ∩ V 6= ∅ implies g · V = V for all g ∈ G,V ∈ V. Let F be an
intersection-closed family of subgroups of G. If the cover V has isotropy in F , then
the G-CW-complex |N(V)| has isotropy in F ;

(iii) Let (ψV )V ∈V be a G-invariant partition of unity on Y subordinate to V. Then the
induced nerve map µ : Y → |N(V)| is G-equivariant.

Proof. (i) To show that NB(V) is an H-simplicial complex, it suffices to prove that the
H-action sends simplices of NB(V) to simplices of NB(V). Let v be a vertex of NB(V)

corresponding to V ∈ V with V ∩B 6= ∅. Then for every h ∈ H, we have

∅ 6= h · (V ∩B) = (h · V ) ∩ (h ·B) ⊂ (h · V ) ∩B .

This shows that the vertex h · v of N(V) corresponding to h · V ∈ V lies in NB(V). The
same argument also extends to higher-dimensional simplices, which proves the claim.
Then the geometric realisation |NB(V)| is an H-CW-complex (Example 3.7).

(ii) We show that the isotropy groups of the vertices of the barycentric subdivision of
N(V) lie in F . This is indeed sufficient; since the action is simplicial the stabiliser of every
interior point of a k-simplex in the barycentric subdivision of N(V) is the intersection of
the stabilisers of its k+1 vertices. Then the fact that F is closed under finite intersections
yields the thesis.

Let v be a vertex in the barycentric subdivision of N(V), associated to a k-simplex
corresponding to V0, . . . , Vk ∈ V with V0 ∩ · · · ∩ Vk 6= ∅. It remains to show that the
subgroup

Gv =
{
g ∈ G

∣∣ {g · V0, . . . , g · Vk} = {V0, . . . , Vk}
}
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of G lies in the family F . For k = 0, we know that Gv = StabG(V0) ∈ F by the
assumption that V has isotropy in F . On the other hand, for k > 0, by the assumption
that g ·V ∩V 6= ∅ implies g ·V = V , we have that g ·Vi = Vj for i, j ∈ {0, . . . , k} implies
i = j. Hence Gv = StabG(V0) ∩ · · · ∩ StabG(Vk). This group lies in F since F is closed
under finite intersections.

(iii) The G-invariance of the partition of unity implies the G-equivariance of the nerve
map (3.2) as follows: For all g ∈ G and all y ∈ Y , we have

µ(g · y) =
∑
V ∈V

ψV (g · y) · V =
∑
V ∈V

ψg−1·V (y) · V

=
∑
V ∈V

ψV (y) · (g · V ) = g · µ(y) .

This finishes the proof.

We extend the previous results to the relative situation:

Lemma 3.39 (Equivariant nerve pair). Let (G,H) be a group pair and let (Y,B) be
a (G,H)-CW-pair. Let F be an intersection-closed family of subgroups of G and V be
a G-invariant cover of Y with isotropy in F . Suppose that the following hold:

(i) For all V ∈ V, g ∈ G with g · V ∩ V 6= ∅, we have g · V = V ;

(ii) There exists a G-invariant partition of unity on Y subordinate to V;

(iii) For all V ∈ V with V ∩B 6= ∅, the intersection V ∩B is connected.

Then (|N(V)|, |NB(V)|) is a (G,H)-CW-pair with isotropy in F . Moreover, the nerve
map µ : Y → |N(V)| induces a map of (G,H)-CW-pairs:

µ : (Y,B)→
(
|N(V)|, |NB(V)|

)
.

Proof. By Lemma 3.38, assumption (i) implies that |N(V)| is a G-CW-complex with
isotropy in F , and assumption (ii) implies that the nerve map µ : Y → |N(V)| is G-
equivariant.

We write the collection H as (Hi)i∈I . Since (Y,B) is a (G,H)-CW-pair, we have a
decomposition B =

∐
i∈I G×HiBi, where Bi is an Hi-CW-complex. We identify Bi with

the subset [e,Bi] ⊂ B ⊂ Y , where e ∈ G denotes the neutral element. We also identify
the set of vertices of |N(V)| with V. There is a G-map

Φ:
∐
i∈I

G×Hi |NBi(V)| → |NB(V)| ,
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mapping a vertex [g, V ] of G ×Hi |NBi(V)| to the vertex g · V of |NB(V)|, and that
is defined by affine extension. The affine extension is well-defined, since the images of
vertices spanning a simplex in |NBi(V)| also span a simplex in |NB(V)|. We claim that
assumption (iii) implies that Φ is a G-homeomorphism.

Indeed, the inverse map Φ−1 is given as follows: For a vertex V of |NB(V)|, we have
V ∩B 6= ∅ and hence the intersection V ∩B is connected by assumption (iii). Thus, there
exists a unique element i ∈ I and a unique coset gHi ∈ G/Hi such that V ∩ [g,Bi] 6= ∅.
Since V ∩ [g,Bi] = g(g−1 · V ∩ Bi), we may define Φ−1 to map the vertex V to the
vertex [g, g−1 · V ]. This assignment is G-equivariant: Indeed, for every g′ ∈ G, we have
∅ 6= g′(V ∩ [g,Bi]) = g′g(g−1 · V ∩Bi). Hence under Φ−1 the vertex g′ · V is mapped to
the vertex [g′g, g−1 · V ].

Then Φ−1 is determined by affine extension. This is well-defined because the images of
vertices spanning a simplex in |NB(V)| also span a simplex in the corresponding |NBi(V)|.
Thus Φ is a G-homeomorphism, showing that (|N(V)|, |NB(V)|) is a (G,H)-CW-pair.

The G-map µ : (Y,B) → (|N(V)|, |NB(V)|) is a map of (G,H)-CW-pairs, since we have
µ(Bi) ⊂ |NBi(V)|.

3.4.3 Relative open covers

We study our main example of equivariant nerve pairs coming from lifted covers of CW-
pairs.

Example 3.40 (Lifted cover). Let X be a connected CW-complex, let G := π1(X), and
let p : X̃ → X denote the universal covering. For a cover U of X by path-connected open
subsets, we consider the lifted cover Ũ of X̃:

Ũ :=
{
V ⊂ X̃

∣∣ V is a path-connected component of p−1(U) for some U ∈ U
}
.

Clearly, Ũ is a G-invariant cover of X̃. Note that for every g ∈ G, V ∈ Ũ , the condition
g · V ∩ V 6= ∅ implies g · V = V . Moreover, for every V ∈ Ũ we have that StabG(V ) is
conjugate to im(π1(p(V )) → π1(X)). This shows that if U is an F-cover of X, then Ũ
has isotropy in F .

Every given partition of unity (ϕU )U∈U on X subordinate to U lifts to a G-invariant
partition of unity (ϕ̃V )

V ∈Ũ on X̃ subordinate to Ũ as follows: For V ∈ Ũ , define

ϕ̃V := χV · (ϕp(V ) ◦ p) : X̃ → [0, 1] ,

where χV : X̃ → [0, 1] denotes the characteristic function on V ⊂ X̃. Let ν and ν̃ be the
nerve maps associated to (ϕU )U∈U and (ϕ̃V )

V ∈Ũ , respectively.
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The simplicial map N(p) : N(Ũ)→ N(U), which maps a simplex of N(Ũ) corresponding
to V0, . . . , Vk ∈ Ũ to the simplex of N(U) corresponding to p(V0), . . . , p(Vk) ∈ U , makes
the following diagram commute:

X̃ |N(Ũ)|

X |N(U)| .

ν̃

p |N(p)|

ν

Given a pair of spaces (X,A), we introduce conditions on covers of X requiring a certain
regularity near the subspace A. These conditions will give rise to desirable properties of
the lifted covers.

Definition 3.41 (Relative cover). Let (X,A) be a pair of spaces with path-connected
ambient space X. A relative cover of (X,A) is a cover U of X by path-connected open
subsets such that for all U ∈ U the following hold:

(RC1) If U ∩A 6= ∅, then U ∩A is path-connected;

(RC2) If U ∩A 6= ∅, then the inclusion

im
(
π1(U ∩A, x)→ π1(X,x)

)
↪→ im

(
π1(U, x)→ π1(X,x)

)
is an isomorphism for some (whence every) x ∈ U ∩A.

A relative open cover U is weakly convex if for every k ∈ N and all U1, . . . , Uk ∈ U with
U1 ∩ · · · ∩ Uk ∩A 6= ∅, each path-connected component of U1 ∩ · · · ∩ Uk intersects A.

We also say that a relative open cover U of (X,A) is convex if the underlying cover U of
X is convex. Clearly, every convex relative cover is in particular weakly convex.

Given a family F of subgroups of π1(X), a relative cover U of (X,A) is a relative F-cover
if the cover U of X is an F-cover.

Keeping the same notation as in Example 3.40, we have the following:

Proposition 3.42 (Equivariant nerve pair of lifted covers). Let (X,A) be a CW-pair
with fundamental group pair (G,H). Let F be an intersection-closed family of subgroups
of G and U be a relative F-cover of X. Let ν and ν̃ be the above nerve maps of U and Ũ ,
respectively.

Then (|N(Ũ)|, |Np−1(A)(Ũ)|) is a (G,H)-CW-pair with isotropy in F and the map ν̃

induces a map of (G,H)-CW-pairs

ν̃ :
(
X̃, p−1(A)

)
→
(
|N(Ũ)|, |Np−1(A)(Ũ)|

)



72 kevin li, clara löh, and marco moraschini

that makes the following diagram commute:

(
X̃, p−1(A)

) (
|N(Ũ)|, |Np−1(A)(Ũ)|

)
(X,A)

(
|N(U)|, |NA(U)|

)
.

ν̃

p |N(p)|

ν

Moreover, we have the following:

(i) If U is weakly convex, then

dim
(
N(Ũ), Np−1(A)(Ũ)

)
= multA(U)− 1 ;

(ii) If U is convex, then the map N(p) induces isomorphisms of simplicial complexes:

G\N(Ũ) ∼= N(U) ;

G\Np−1(A)(Ũ) ∼= NA(U) .

Proof. To show that (|N(Ũ)|, |Np−1(A)(Ũ)|) is a (G,H)-CW-pair with isotropy in F , we
verify that the lifted G-invariant cover Ũ of X̃ satisfies all assumptions of Lemma 3.39.
By Example 3.40, we know that Ũ has isotropy in F , that there exists a G-invariant
partition of unity on X̃ subordinate to Ũ , and that g · V ∩ V 6= ∅ implies g · V = V for
all g ∈ G,V ∈ Ũ . Hence, we are left to show that if V ∈ Ũ with V ∩ p−1(A) 6= ∅, then
V ∩ p−1(A) is connected.

Assume for a contradiction that V ∩ p−1(A) is disconnected. Let us set U := p(V ). By
condition (RC1) we know that U ∩A is connected. This shows that there exists a point
a ∈ U ∩ A with two lifts ã1, ã2 contained in different components of V ∩ p−1(A). Since
V is path-connected, there exists a path γ in V connecting ã1 to ã2. By construction,
the image of γ under p is a loop p∗γ in U based at a. Then, by condition (RC2), the
homotopy class [p∗γ] ∈ π1(X, a) admits a representative whose support is contained
in U ∩A. Thus, there exists a lifted homotopy in X̃ relative to the endpoints from γ to a
path in V ∩ p−1(A). This contradicts the fact that ã1 and ã2 lie in different components
of V ∩ p−1(A). Hence Lemma 3.39 applies and yields the claim.

(i) We show that multp−1(A)(Ũ) = multA(U), which immediately implies the claim. The
inequality multp−1(A)(Ũ) ≥ multA(U) is clear. To show the opposite inequality, let
V1, . . . , Vk ∈ Ũ with

⋂k
i=1 Vi 6= ∅ and

⋂k
i=1 Vi ∩ p−1(A) = ∅. We claim that we have⋂k

i=1 p(Vi) ∩ A = ∅, whence k ≤ multA(U) because the (p(Vi))i are pairwise different.
Indeed, assume for a contradiction that

⋂k
i=1 p(Vi) ∩ A 6= ∅. Take a point x̃ ∈

⋂k
i=1 Vi

and consider p(x̃) ∈
⋂k
i=1 p(Vi). Then the component of

⋂k
i=1 p(Vi) containing p(x̃)

intersects A by weak convexity of U . Hence, we can choose a path τ in
⋂k
i=1 p(Vi)

connecting p(x̃) to some point in A. Then the lifted path τ̃ of τ in X̃ with starting point x̃
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has endpoint in p−1(A) and is supported in
⋂k
i=1 Vi. This shows

⋂k
i=1 Vi ∩ p−1(A) 6= ∅,

which is a contradiction.

(ii) If U is convex, then the map N(p) : N(Ũ) → N(U) induces the first isomorphism
G\N(Ũ) ∼= N(U) by [LS20, Lemma 4.5 (3)]. Hence, to deduce the second isomorphism,
it suffices to show that Np−1(A)(Ũ) = N(p)−1(NA(U)). The inclusion of Np−1(A)(Ũ) into
N(p)−1(NA(U)) is clear. To prove the opposite inclusion, let V1, . . . , Vk ∈ Ũ span a
simplex in N(p)−1(NA(U)). This means that

⋂k
i=1 Vi 6= ∅ and

⋂k
i=1 p(Vi) ∩ A 6= ∅, and

we need to show that
⋂k
i=1 Vi ∩ p−1(A) 6= ∅. Take a point x̃ ∈

⋂k
i=1 Vi and consider

p(x̃) ∈
⋂k
i=1 p(Vi). Since U is convex and

⋂k
i=1 p(Vi) ∩ A 6= ∅, we can choose a path τ

in
⋂k
i=1 p(Vi) with starting point p(x̃) and endpoint in A. As before, the lifted path τ̃

of τ in X̃ starting at x̃ shows that
⋂k
i=1 Vi ∩ p−1(A) 6= ∅.

3.4.4 Relative generalised LS-category

We introduce a relative version of the generalised Lusternik–Schnirelmann category for
families of subgroups [CLM, Definition 2.16].

Definition 3.43 (Relative F-category). Let (X,A) be a CW-pair with fundamental
group pair (G,H) and let p : X̃ → X denote the universal covering. Let F be a family
of subgroups of G that contains the trivial subgroup. The relative F-category of (X,A),
denoted by catF (X,A), is the minimal n ∈ N such that there exists a (G,H)-CW-
pair (Y,B) with isotropy in F of relative dimension n−1 and a map of (G,H)-CW-pairs
(X̃, p−1(A))→ (Y,B). If no such integer n exists, we set catF (X,A) := +∞.

We will refer to catAME(X,A) also as the relative amenable category of (X,A).

Remark 3.44. In the situation of Definition 3.43, let EF (G,H) be a model for the clas-
sifying space of the group pair (G,H) with respect to the family F . Consider the (up to
G-homotopy unique) map of (G,H)-CW-pairs

f :
(
X̃, p−1(A)

)
→ EF (G,H) .

Let n ∈ N. Then the following are equivalent:

(i) We have catF (X,A) ≤ n;

(ii) The map f factors (up to G-homotpy) through a (G,H)-CW-pair (Y,B) with
isotropy in F of relative dimension n− 1;

(iii) The map f is G-homotopic to a map of (G,H)-CW-pairs with values in the relative
(n− 1)-skeleton of EF (G,H).

Indeed, the equivalence of these conditions follows from the universal property ofEF (G,H)

and the equivariant cellular approximation theorem [Lüc89, Theorem 2.1].
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By definition, the relative F-category satisfies catF (X,A) ≤ dim(X,A) + 1. A more
efficient upper bound for the relative category is provided by the existence of weakly
convex relative covers:

Definition 3.45 (Relative F-multiplicity). Let (X,A) be a pair of spaces and let F
be a family of subgroups of π1(X). The relative F-multiplicity of (X,A), denoted
by multF (X,A), is the minimal n ∈ N such that there exists a weakly convex rel-
ative F-cover U of (X,A) with multA(U) = n. If no such integer n exists, we set
multF (X,A) := +∞.

We will refer to multAME(X,A) also as the relative amenable multiplicity of (X,A).

Lemma 3.46. Let (X,A) be a CW-pair with fundamental group pair (G,H). Let F be
a family of subgroups of G that contains the trivial subgroup. Then we have

catF (X,A) ≤ multF (X,A) .

Proof. We may assume that n := multF (X,A) is finite. Let U be a weakly convex
relative F-cover of (X,A) with multA(U) = n. By Proposition 3.42, the equivariant
nerve pair (|N(Ũ)|, |Np−1(A)(Ũ)|) of the lifted cover Ũ of X̃ is a (G,H)-CW-pair with
isotropy in F and of relative dimension n− 1. Hence the nerve map

ν̃ :
(
X̃, p−1(A)

)
→
(
|N(Ũ)|, |Np−1(A)(Ũ)|

)
exhibits the desired inequality.

Remark 3.47 (Category and multiplicity, absolute case). Let X be a path-connected
CW-complex with fundamental group G and let F be a family of subgroups of G. In the
absolute case, the generalised Lusternik–Schnirelmann category catF (X) is defined as the
minimal n for which there exists an open F-cover of X by n many not necessarily path-
connected subsets. If the family F is closed under taking subgroups, this is compatible
with Definition 3.43 in the sense that catF (X, ∅) = catF (X) by [CLM, Lemma 7.6].

In particular, also the converse estimate of Lemma 3.46 holds in the absolute case: In-
deed, taking path-connected components of open F-covers with n not necessarily path-
connected members produces an F-cover of multiplicity at most n. Therefore, we ob-
tain catF (X, ∅) = multF (X, ∅).

If f : (Z,C) → (X,A) is a homotopy equivalence of CW-pairs, then pulling back fun-
damental group pairs and families of subgroups along the induced map π1(f) shows
that catπ1(f)∗F (Z,C) = catF (X,A). In contrast, it is not clear whether multF is also a
relative homotopy invariant.
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3.5 Simplicial volume, bounded cohomology, and acyclicity

In this section we recall the notions of simplicial volume and bounded cohomology. We
also recall bounded acyclicity and we introduce a uniform version of bounded acyclicity.
In particular, we explain how uniformly boundedly acyclic actions lead to computa-
tions of bounded cohomology. This is an adaptation of standard techniques in bounded
cohomology [Mon01, MR]; similar results are also discussed in recent computations of
bounded cohomology groups [FFLMa, MN].

3.5.1 Simplicial volume

We recall the definition of simplicial volume [Gro82]. Let (X,A) be a pair of spaces. For
every singular n-chain c =

∑k
i=1 aiσi ∈ Cn(X,A;R), written in reduced form, we define

the `1-norm as follows:

|c|1 :=
k∑
i=1

|ai| .

The restriction of the `1-norm to the subspace of relative cycles induces a quotient `1-
seminorm (denoted by ‖ · ‖1) on the homology group Hn(X,A;R).

Definition 3.48 (Relative simplicial volume). LetM be an oriented connected compact
n-manifold with (possibly non-empty) boundary. Then the relative simplicial volume
of M is

‖M,∂M‖ :=
∥∥[M,∂M ]

∥∥
1
,

where [M,∂M ] ∈ Hn(M,∂M ;R) ∼= R denotes the relative fundamental class of M .

Example 3.49. Let M be an oriented compact connected n-manifold.

(i) If the interiorM◦ admits a complete finite-volume hyperbolic metric, then we have
‖M,∂M‖ = vol(M)/vn [Gro82, FM11];

(ii) If M is a handlebody of genus g ≥ 2, then ‖M,∂M‖ = 3 · (g − 1) [BFP15];

(iii) If M = Σg × I, where Σg is a surface of genus g ≥ 2, then ‖M,∂M‖ = 5
4 · ‖∂M‖

[BFP15];

(iv) The simplicial volume of graph manifolds is zero [Som81, Gro82].

(v) If M admits a self-map f with |deg(f)| ≥ 2, then ‖M,∂M‖ = 0 [Gro82].

(vi) If M is closed and admits an open cover by amenable subsets of multiplicity at
most dim(M), then ‖M‖ = 0 [Gro82]. Many examples are known to satisfy this
condition [LMS, Section 1.1].

Further computations of simplicial volume are surveyed in the literature [LMR].
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We also recall the locally finite version of simplicial volume for non-compact mani-
folds [Gro82, Löh08, FM]. Given a topological space X, a (possibly infinite) real singular
n-chain c =

∑
σ∈map(∆n,X) aσσ is locally finite if every compact subset of X intersects

only finitely many simplices with non-trivial coefficient. We define C lf
∗ (X;R) as the

R-module of locally finite chains on X. The usual boundary operator for finite chains
admits a canonical extension to C lf

∗ (X;R). The locally finite homology H lf
∗ (X;R) of X

is the homology of the complex C lf
∗ (X;R).

As in the finite case, the `1-norm of a locally finite chain c =
∑

σ∈map(∆n,X) aσσ in
C lf
n (X;R) is given by

|c|1 :=
∑

σ∈map(∆n,X)

|aσ| ∈ [0,+∞] .

As before, this norm induces an `1-seminorm ‖ · ‖1 on H lf
n (X;R).

Definition 3.50 (Locally finite simplicial volume). LetM be an oriented (possibly non-
compact) connected n-manifold without boundary. The locally finite simplicial volume
of M is defined by

‖M‖lf :=
∥∥[M ]lf

∥∥
1
,

where [M ]lf ∈ H lf
n (M ;R) ∼= R denotes the locally finite fundamental class.

The [locally finite] simplicial volume can be defined for every normed ring R. In this
case, we will consider the `1-seminorm on H

[lf]
∗ (−;R) and we will talk about [locally

finite] R-simplicial volume ‖ · ‖R,[lf].

3.5.2 Bounded cohomology

We recall the definition of bounded cohomology of groups and spaces [Gro82, Iva85,
Mon01, Fri17] as well as its equivariant version [LS20, Lib].

For a group G and a normed RG-module V , we write

C∗b (G;V ) := `∞(G∗+1, V )G

(equipped with the simplicial coboundary operator) for the bounded cochain complex of G
with coefficients in V .

Definition 3.51 (Bounded cohomology of groups). The bounded cohomology of G with
coefficients in V is defined by

H∗b (G;V ) := H∗
(
C∗b (G;V )

)
.

Similarly, if (X,A) is a topological pair, we can consider the singular cochain complex

C∗(X,A;R) :=
{
f ∈ C∗(X;R)

∣∣ f(σ) = 0 for all σ supported in A
}
,
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where a singular n-simplex σ is supported in A if σ(∆n) ⊂ A . We can restrict to the
subcomplex of bounded cochains:

C∗b (X,A;R) :=
{
f ∈ C∗(X,A;R)

∣∣ supσ∈map(∆∗,X) |f(σ)| <∞
}
.

Definition 3.52 (Bounded cohomology of spaces). Let (X,A) be a pair of spaces. The
bounded cohomology of (X,A) (with real coefficients) is defined by

H∗b (X,A;R) := H∗
(
C∗b (X,A;R)

)
.

The inclusion of complexes C∗b (X,A;R) ↪→ C∗(X,A;R) induces a natural map from
bounded cohomology to ordinary cohomology, the comparison map:

comp∗(X,A) : H∗b (X,A;R)→ H∗(X,A;R) .

The connection between bounded cohomology and simplicial volume is encoded in the
following classical result:

Proposition 3.53 (Duality principle, qualitative version [Gro82, Fri17]). Let M be an
oriented connected compact n-manifold with (possibly empty) boundary. Then the follow-
ing are equivalent:

(i) ‖M,∂M‖ > 0;

(ii) The comparison map compn(M,∂M) is surjective.

We also recall the equivariant version of bounded cohomology [LS20, Definition 5.1]:

Definition 3.54 (Equivariant [bounded] cohomology). Let Y be a G-space and C∗(Y ;R)

denote the singular chain complex. For coefficients in a [normed] RG-module V , we define
the cochain complex

C∗G(Y ;V ) := HomRG
(
C∗(Y ;R), V

)
and the subcomplex C∗G,b(Y ;V ) ⊂ C∗G(Y ;V ) consisting of [bounded] RG-homomor-
phisms. Then we set

Hn
G(Y ;V ) := Hn

(
C∗G(Y ;V )

)
;

Hn
G,b(Y ;V ) := Hn

(
C∗G,b(Y ;V )

)
.

For a pair of G-spaces (Y,B) one similarly defines Hn
G(Y,B;V ) and Hn

G,b(Y,B;V ). As
in the absolute case, there is a comparison map

compnG,(Y,B) : Hn
G,b(Y,B;V )→ Hn

G(Y,B;V ) .
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We have the following induction isomorphisms:

Lemma 3.55. Let H be a subgroup of G, let B be an H-space, and let n ∈ N. Then
there are natural isomorphisms of R-vector spaces:

Hn
G(G×H B;R)

∼=−→ Hn
H(B;R) ;

Hn
G,b(G×H B;R)

∼=−→ Hn
H,b(B;R) .

Proof. Let C∗(−) denote the singular chain complexes (with real coefficients). Since
the induced G-space G ×H B consists of disjoint copies of B, the image of a singular
simplex in G×HB is contained in a single copy. Hence we have a natural isomorphism of
RG-chain complexes C∗(G×HB) ∼= RG⊗RHC∗(B) and thus an adjunction isomorphism

Φ: C∗G(G×H B;R)
∼=−→ C∗H(B;R) .

This yields the isomorphism on equivariant cohomology. The claim on equivariant
bounded cohomology follows by observing that Φ restricts to an isomorphism on the
subcomplexes of bounded cochains C∗G,b(G×H B;R)→ C∗H,b(B;R) .

3.5.3 Bounded acyclicity

We recall the definition of bounded acyclicity for modules and groups:

Definition 3.56 (Boundedly acyclic group). Let G be a group and let n ∈ N. A
normed RG-module V is boundedly n-acyclic if Hk

b (G;V ) ∼= 0 for all k ∈ {1, . . . , n}. A
normed RG-module V is boundedly acyclic if Hk

b (G;V ) ∼= 0 for all k ∈ N≥1.

The group G is boundedly n-acyclic [resp. boundedly acyclic] if the trivial RG-module R
is boundedly n-acyclic [resp. boundedly acyclic].

Amenable groups are boundedly acyclic; by now, there is a wide range of known examples
of non-amenable boundedly acyclic groups, including finitely presented examples [MM85,
Löh17, FFLMb, FFLMa, MN, Mon].

Resolutions by boundedly acyclic modules can be used to compute bounded cohomol-
ogy [MR, Proposition 2.5.4 and Remark 2.5.5]:

Theorem 3.57 (Fundamental lemma for boundedly acyclic resolutions [MR]). Let G be
a group and let n ∈ N. Let 0→ V → V ∗ be a resolution of normed RG-modules such that
V j is a dual normed RG-module and boundedly (n−j)-acyclic for every j ∈ {0, . . . , n−1}.
Then there is a canonical isomorphism (of R-vector spaces)

Hk(V ∗G)
∼=−→ Hk

b (G;V )
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for all k ∈ {0, . . . , n} and a canonical injective map

Hn+1(V ∗G) ↪→ Hn+1
b (G;V ) .

Moreover, if the given resolution is strong, then these maps are the ones induced by the
canonical G-cochain homotopy class V ∗ → `∞(G∗+1, V ).

3.5.4 Uniform bounded acyclicity

To formulate uniform bounded acyclicity for collections of groups, we need additional
control on the norms of primitives. This can be expressed in terms of the uniform bound-
ary condition (see Appendix 3.A for a definition and some properties). More precisely,
we use the uniform uniform boundary condition denoted by UUBC (Definition 3.108).

Definition 3.58 (Uniformly boundedly acyclic collection of groups). A collection G of
groups is uniformly boundedly acyclic if

• all members of G are boundedly acyclic and

• the collection (C∗b (H;R))H∈G satisfies UUBCk for all k ∈ N.

Similarly, for n ∈ N, we define uniformly boundedly n-acyclic collections of groups if the
previous conditions are satisfied up to degree n. Moreover, we extend these definitions
to sets of groups.

For example, all collections consisting of amenable groups are uniformly boundedly
acyclic (Example 3.109). Also, all finite collections of boundedly acyclic groups are
uniformly boundedly acyclic (Example 3.110).

Proposition 3.59. Let n ∈ N, let G be a group, let (Hi)i∈I be a uniformly boundedly
n-acyclic collection of subgroups of G, and let k ∈ {1, . . . , n}. Then

Hk
b

(
G; `∞(G/Hi,R)

) ∼= 0

for all i ∈ I and the collection (C∗b (G; `∞(G/Hi,R)))i∈I satisfies UUBCk.

Proof. This is a boundedly controlled version of the Shapiro lemma: By the Shapiro
lemma in bounded cohomology [Mon01, Proposition 10.1.3], we have

Hk
b

(
G; `∞(G/Hi,R)

) ∼= Hk
b (Hi;R) ∼= 0

for all i ∈ I and all k ∈ {1, . . . , n}. In order to conclude that (C∗b (G; `∞(G/Hi,R)))i∈I

satisfies UUBCk, we make the proof of the Shapiro lemma more explicit:
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Let H ⊂ G be a subgroup of G. Then there is a non-empty set J such that G, as an
H-space, is isomorphic to J×H (with the translation action on the H-factor). Therefore,
on the one hand, we obtain isometric isomorphisms

C∗b
(
G; `∞(G/H,R)

) ∼= `∞
(
G∗+1, `∞(G/H,R)

)G ∼= `∞
(
resGH G

∗+1,R
)H

∼= `∞
(
(J ×H)∗+1,R

)H
of cochain complexes (each equipped with the simplicial coboundary operator). On the
other hand, C∗b (H;R) = `∞(H∗+1,R)H . Both sides are connected through mutually
homotopy inverse cochain homotopy equivalences

`∞
(
H∗+1,R

)H ↔ `∞
(
(J ×H)∗+1,R

)H
given by (where 0 ∈ J is a chosen basepoint)

ϕ∗ : `∞
(
H∗+1,R

)H → `∞
(
(J ×H)∗+1,R

)H
f 7→

(
((i0, h0), . . . , (ik, hk)) 7→ f(h0, . . . , hk)

)
ψ∗ : `∞

(
(J ×H)∗+1,R

)H → `∞
(
H∗+1,R

)H
f 7→

(
(h0, . . . , hk) 7→ f

(
(0, h0), . . . , (0, hk)

))
;

these cochain maps have norm 1 in each degree. Indeed, ψ∗ ◦ ϕ∗ is the identity on
`∞(H∗+1,R)H and the standard map

`∞
(
(J ×H)∗+1,R

)H → `∞
(
(J ×H)∗,R

)H
f 7→

(
((i0, h0), . . . , (ik−1, hk−1)) 7→

k−1∑
j=0

(−1)j · f
(
(i0, h0), . . . , (ij , hj), (0, hj), . . . , (0, hk−1)

))

is a cochain homotopy between ϕ∗ ◦ ψ∗ and the identity on `∞((J × H)∗+1,R)H , with
norm k in degree k. In particular, all these norms are independent of the subgroup H
of G.

Hence, the claim follows by applying these considerations and homotopy inheritance
of UBC (Proposition 3.102) to the subgroups (Hi)i∈I of G.

3.5.5 Uniformly boundedly acyclic actions

Group actions with amenable stabilisers, so-called amenable actions, have proved to
be a valuable tool to compute bounded cohomology in specific cases [Mon01, BM02,
BI09]. Similarly, also uniformly boundedly acyclic actions allow us to compute bounded
cohomology. This is an easy application of the fact that bounded cohomology can be
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computed via acyclic resolutions (Theorem 3.57). However, usually, in this approach we
cannot compute the seminorm on bounded cohomology.

Definition 3.60 (Uniformly boundedly acyclic action). A group action on a set is uni-
formly boundedly acyclic if the collection of all stabilisers forms a uniformly boundedly
acyclic collection of groups. Similarly, for n ∈ N, we introduce the notion of uniformly
boundedly n-acyclic actions.

Uniformly boundedly acyclic actions lead to boundedly acyclic modules:

Proposition 3.61. Let G be a group, let n ∈ N, and let G y S be a uniformly bound-
edly n-acyclic action on a set S. Then, for all k ∈ {1, . . . , n}, we have

Hk
b

(
G; `∞(S,R)

) ∼= 0 .

Proof. Without loss of generality, we may assume that S =
∐
i∈I G/Hi with the left

translation action on each summand. Using the uniform version of the Shapiro lemma
(Proposition 3.59) and the compatibility with bounded products (Theorem 3.114), we
obtain for every k ∈ {1, . . . , n}

0 ∼=
∏b

i∈I
Hk
b

(
G; `∞(G/Hi,R)

)
(Proposition 3.59)

∼= Hk
(∏b

i∈I
C∗b
(
G; `∞(G/Hi,R)

))
(Theorem 3.114)

∼= Hk
(
C∗b

(
G;
∏b

i∈I
`∞(G/Hi,R)

))
(direct computation)

∼= Hk
(
C∗b

(
G; `∞

(∐
i∈I

G/Hi,R
))

(Example 3.112)

= Hk
b

(
G; `∞(S,R)

)
,

as claimed.

Corollary 3.62 (Bounded cohomology via uniformly boundedly acyclic actions). Let G
be a group, let Gy S be an action on a non-empty set S. Let n ∈ N>0 and suppose that
the diagonal action G y Sn is uniformly boundedly n-acyclic. Then the cohomology of
the simplicial cochain complex `∞(S∗+1,R)G is canonically isomorphic to H∗b (G;R) in
all degrees ≤ n and there exists a canonical injective map

Hn+1
(
`∞(S∗+1,R)G

)
↪→ Hn+1(G;R) .

More precisely, every G-cochain map `∞(S∗+1,R) → `∞(G∗+1,R) that is degree-wise
bounded and extends idR : R→ R induces an isomorphism [resp. injection]

Hk(`∞(S∗+1,R)G)→ Hk
b (G;R)
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in the corresponding range for k.

Proof. Bounded cohomology can be computed through boundedly acyclic resolutions
(Theorem 3.57). As S is non-empty, `∞(S∗+1,R) is a strong resolution of R by normed
RG-modules. Therefore, it suffices to notice that in the present situation the RG-
modules `∞(Sk+1,R) are boundedly acyclic (Definition 3.56) for every k ∈ {0, . . . , n−1}
by Proposition 3.61.

Remark 3.63 (Amenable actions). Proposition 3.61 and Corollary 3.62 are analogous to
the corresponding results for amenable actions [Mon01][Fri17, Section 4.9]: If the action
of G on a set S is amenable, then the normed RG-module `∞(S,R) is relatively injective
and hence the cochain complex `∞(S∗+1,R)G computes H∗b (G;R).

Remark 3.64 (Bounded cohomology via alternating cochains). Let G be a group and
let G y S be an action on a non-empty set S. A bounded function f ∈ `∞(Sk,R) is
alternating if

f
(
sσ(1), . . . , sσ(k)

)
= sign(σ) · f(s1, . . . , sk)

holds for every permutation σ ∈ Σk and all (s1, . . . , sk) ∈ Sk. We write

`∞alt(S
∗+1,R) ⊂ `∞(S∗+1,R)

for the subcomplex of alternating functions, which is well-defined since the coboundary
operator preserves being alternating.

Let n ∈ N>0 and suppose that the diagonal action G y Sn is uniformly boundedly
n-acyclic. Then also the cohomology of the simplicial cochain complex

`∞alt(S,R)G → `∞alt(S
2,R)G → `∞alt(S

3,R)G → · · ·

is canonically isomorphic to H∗b (G;R) in all degrees ≤ n and the canonical map

Hn+1(`∞alt(S
∗+1,R)G)→ Hn+1(G;R)

is injective. Indeed, by Corollary 3.62, we already know that the previous result holds
for the non-alternating complex. Moreover, the inclusion `∞alt(S

∗+1,R) ↪→ `∞(S∗+1,R)

induces an isomorphism on cohomology; this can be seen from the same computation as
in the case of the complex `∞(G∗+1,R) [Fri17, Proposition 4.26].

We conclude this section by showing that the computation of bounded cohomology via
alternating cochains of boundedly acyclic actions is natural in the following sense. This
is analogous to the case of amenable actions [BBF+14, Lemma 2.2].

Lemma 3.65. Let i : H → G be a group homomorphism. Let H y SH and Gy SG be
actions on non-empty sets SH and SG, respectively. Let ϕ : SH → SG be an i-equivariant
map.
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(i) Then the following diagram commutes, where the horizontal arrows are the canon-
ical maps (induced by restriction to a single orbit):

H∗
(
`∞alt(S

∗+1
G ,R)G

)
H∗b (G;R)

H∗
(
`∞alt(S

∗+1
H ,R)H

)
H∗b (H;R) .

H∗(ϕ∗+1) H∗b (i)

(ii) Let n ∈ N>0 and suppose that the diagonal actions H y SnH and G y SnG are
uniformly boundedly n-acyclic. Then the horizontal arrows are isomorphisms in all
degrees ≤ n and injective in degree n+ 1.

Proof. Part (ii) is shown in Remark 3.64.

Part (i) is a straightforward computation: As SH and SG are non-empty, we can choose
a point xH ∈ SH and set xG := ϕ(xH). The orbit maps ψH : H → SH for xH and
ψG : G→ SG for xG induce cochain maps extending idR : R→ R and therefore induce the
canonical maps H∗(`∞alt(S

∗+1
H ,R)H) → H∗b (H;R) and H∗(`∞alt(S

∗+1
G ,R)G) → H∗b (G;R),

respectively. Because ϕ is i-equivariant and because ϕ(xH) = xG, the diagram

`∞alt(S
∗+1
G ,R)G C∗b (G;R)

`∞alt(S
∗+1
H ,R)H C∗b (H;R) ,

ψ∗+1
G

ϕ∗+1 C∗b (i;R)

ψ∗+1
H

commutes. Taking cohomology proves part (i).

3.6 A vanishing theorem for relative simplicial volume

We prove vanishing theorems for the comparison map and for relative simplicial volume
in the presence of uniformly boundedly acyclic open covers with small multiplicity, as
outlined in Section 3.1. The proof uses equivariant nerve pairs and equivariant bounded
cohomology with respect to families of boundedly acyclic subgroups.

3.6.1 Uniformly boundedly acyclic open covers

We introduce the notion of uniformly boundedly acyclic open covers.

Definition 3.66 (Families associated to a set of subspaces). Let X be a path-connected
space with π1(X) = G and A be a set of path-connected subspaces of X. Consider the
set

G :=
{

im
(
π1(A ↪→ X)

) ∣∣ A ∈ A}
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of subgroups of G; again, we implicitly use the convention on basepoints (Section 3.1).
Then the intersection-closed family of subgroups of G associated to A is defined as

F〈A〉 := F〈G〉 =

{ n⋂
i=1

giHig
−1
i

∣∣∣∣ n ∈ N, Hi ∈ G, gi ∈ G
}
.

For fixed n ∈ N, we define the (conjugation-closed) family of subgroups of G associated
to A as

Fn〈A〉 := Fn〈G〉 =

{ n⋂
i=1

giHig
−1
i

∣∣∣∣ Hi ∈ G, gi ∈ G
}
.

Using the notion of uniformly boundedly acyclic collections of groups (Definition 3.58),
we define the following:

Definition 3.67 (Uniformly boundedly acyclic set of subspaces). Let X be a path-
connected space and A be a set of path-connected subspaces of X. We say that A is
uniformly boundedly acylic [of order n] in X if the associated family F〈A〉 [resp. Fn〈A〉]
is uniformly boundedly acyclic.

Definition 3.68 (Uniformly boundedly acyclic open cover). Let X be a path-connected
space and U be a cover of X by path-connected open subsets. We say that U is uniformly
boundedly acyclic if it is uniformly boundedly acyclic in X when viewed as a set of
subspaces of X.

By Example 3.109, every amenable cover is uniformly boundedly acyclic.

Remark 3.69. The above notion of uniformly boundedly acyclic open covers is similar to
Ivanov’s notion of weakly boundedly acyclic open covers [Iva, Section 4]. The difference
is that we consider intersections of subgroups of the fundamental group whereas Ivanov
considers fundamental groups of intersections of subspaces. The key steps of our argu-
ments happen on the level of bounded cohomology. In contrast, Ivanov’s arguments via
spectral sequences target the comparison map more directly. It is not clear to us whether
one of the concepts contains the other.

3.6.2 Strong H∗b -admissibility

We show that classifying spaces with respect to uniformly boundedly acyclic families
can be used to compute bounded cohomology. This is phrased in terms of equivariant
bounded cohomology (Definition 3.54).

Definition 3.70 (Strongly H∗b -admissible family). Let G be a group and let F be
a (conjugation-closed) family of subgroups of G that contains the trivial subgroup 1.
Since 1 ∈ F , there is a canonical (up to G-homotopy) G-map f : EG → EFG. The
family F is strongly H∗b -admissible if the induced map

H∗G,b(f ;R) : H∗G,b(EFG;R)→ H∗G,b(EG;R) ∼= H∗b (G;R)
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is bijective.

Definition 3.70 is a slight generalisation of the original definition [LS20, Definition 5.1],
where only families are considered that are closed under taking subgroups.

Proposition 3.71. Let G be a group and let F be an intersection-closed family of sub-
groups of G that is uniformly boundedly acyclic and contains the trivial subgroup. Then
F is strongly H∗b -admissible.

Proof. We use Proposition 3.61 and the fact that bounded cohomology can be computed
using acyclic resolutions (Theorem 3.57). Let EFG be a model for the classifying space
of G with respect to the family F . We show that the chain complex C∗b (EFG;R) together
with the canonical augmentation R→ C0

b (EFG;R) is a boundedly acylic resolution of R
overG: As 1 ∈ F , the space EFG is contractible (Theorem 3.13). Therefore, C∗b (EFG;R)

is a resolution of R.

Moreover, for each n ∈ N, the Banach G-module Cnb (EFG;R) is boundedly acyclic:
By definition, Cnb (EFG;R) = `∞(S,R) with S := map(∆n, EFG). In view of Propo-
sition 3.61, it thus suffices to show that the stabilisers of the G-action on S lie in the
uniformly boundedly acyclic collection F . If σ : ∆n → EFG is a singular simplex, then
σ(∆n) meets only finitely many cells of EFG. Therefore, the stabiliser of σ is an inter-
section of finitely many elements of F and thus lies in F .

Let f : EG→ EFG be the canonical (up to G-homotopy) G-map. Then the fundamental
lemma for boundedly acyclic resolutions (Theorem 3.57) shows that the cochain map

C∗b (f ;R)G : C∗b (EFG;R)G → C∗b (EG;R)G

induces an isomorphism in bounded cohomology.

Corollary 3.72 ([LS20, Proposition 5.2]). Every intersection-closed family F that con-
sists of amenable groups and contains the trivial subgroup is strongly H∗b -admissible.

3.6.3 A relative vanishing theorem

In this section, we prove the relative vanishing theorem by making use of the relative
equivariant setting developed in the previous sections. This result extends the classical
vanishing theorem by Ivanov [Iva85, Iva] to the relative setting. By now there are several
alternative proofs of Ivanov’s result [FM, LS20, Rap]; moreover, in the case of aspherical
manifolds, the vanishing of simplicial volume can also be obtained directly through the
amenable reduction lemma [AK16, FM, LMS]. We will follow the approach via classifying
spaces by Löh and Sauer [LS20].



86 kevin li, clara löh, and marco moraschini

First, we prove a vanishing result for the comparison map in terms of the relative gener-
alised LS-category (Definition 3.43).

Setup 3.73 (CW-pair with a family of subgroups). Let (X,A) be a CW-pair with X
path-connected and let A have only finitely many connected components.

• We suppose that the inclusion of every component of A into X is π1-injective and
we let (G,H = (Hi)i∈I) be a fundamental group pair for (X,A) (Example 3.17);

• Let F be a family of subgroups of G that contains the trivial subgroup;

• For every i ∈ I, let F|Hi be the restricted family of subgroups of Hi (Exam-
ple 3.10 (v));

• Let p : X̃ → X be the universal covering of X.

Lemma 3.74. In the situation of Setup 3.73, suppose that the family F of subgroups
of G is strongly H∗b -admissible and that for every i ∈ I the family F|Hi of subgroups
of Hi is strongly H∗b -admissible.

Then the canonical map f : (X̃, p−1(A)) → EF (G,H) of (G,H)-CW-pairs induces an
isomorphism in equivariant bounded cohomology:

H∗G,b(f) : H∗G,b
(
EF (G,H);R

) ∼=−→ H∗G,b
(
X̃, p−1(A);R

)
.

In particular, the comparison map compk(X,A) : Hk
b (X,A;R) → Hk(X,A;R) vanishes in

all degrees k ≥ catF (X,A).

Proof. By Example 3.19, (X̃, p−1(A)) is a (G,H)-CW-pair with isotropy in the trivial
family T R. Thus, since F contains the trivial subgroup, the G-map f can be factored
(up to G-homotopy) as

(
X̃, p−1(A)

) f1−→ ET R(G,H)
f2−→ EF (G,H) .

Using the long exact sequence for pairs in equivariant bounded cohomology together
with the induction isomorphism (Lemma 3.55), we have the following: The induced map
H∗G,b(f1) is a (not necessarily isometric) isomorphism by the mapping theorem [Gro82]
and the five lemma. The map H∗G,b(f2) is an isomorphism by the five lemma and the
assumption that the families F and F|Hi are strongly H∗b -admissible. Together, this
yields the desired isomorphism.
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Moreover, by naturality of the comparison map we have a commutative diagram, where
we omit the trivial R-coefficients:

Hk
G,b

(
EF (G,H)

)
Hk
G,b

(
X̃, p−1(A)

)
Hk
b (X,A)

Hk
G

(
EF (G,H)

)
Hk
G

(
X̃, p−1(A)

)
Hk(X,A) .

Hk
G,b(f)

∼=

compk
G,EF (G,H)

compk
G,(X̃,p−1(A))

∼=
H∗b (p)

compk
(X,A)

Hk
G(f) H∗(p)

∼=

The claim follows, since the map Hk
G(f) is trivial in all degrees k ≥ catF (X,A) (Re-

mark 3.44).

Second, we use the relation between relative category and relative multiplicity to derive
a vanishing theorem via relative open covers:

Setup 3.75 (Relative F-cover and its nerves). In the situation of Setup 3.73, we addi-
tionally consider a relative F-cover U of (X,A) (Definition 3.41). We will use the notions
of relative multiplicity (Definition 3.35) and weak convexity (Definition 3.41) of relative
covers. Moreover, we fix the following notation:

• Let Ũ be the lifted G-invariant cover of X̃ (Example 3.40);

• Let ν :
(
X,A

)
→
(
|N(U)|, |NA(U)|

)
be a nerve map;

• Let ν̃ :
(
X̃, p−1(A)

)
→
(
|N(Ũ)|, |Np−1(A)(Ũ)|

)
be a corresponding nerve map of

(G,H)-CW-pairs (Proposition 3.42).

The following theorem is a relative version of the vanishing theorem for strongly H∗b -
admissible families [LS20, Theorem 5.3].

Theorem 3.76 (Relative vanishing theorem). In the situation of Setups 3.73 and 3.75,
suppose that the family F of subgroups of G is strongly H∗b -admissible and that for all i ∈ I
the family F|Hi of subgroups of Hi is strongly H∗b -admissible.

Then the comparison map comp∗G factors through the equivariant nerve map ν̃:

H∗G,b(X̃, p
−1(A);R) H∗G(X̃, p−1(A);R)

H∗G(|N(Ũ)|, |Np−1(A)(Ũ)|;R) .

comp∗G

H∗G(ν̃;R)

In particular, the following hold:

(i) If U is weakly convex, then the comparison map

compk : Hk
b (X,A;R)→ Hk(X,A;R)
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vanishes in all degrees k ≥ multA(U);

(ii) If U is convex, then the comparison map comp∗ factors through the nerve map ν:

H∗b (X,A;R) H∗(X,A;R)

H∗(|N(U)|, |NA(U)|;R) .

comp∗

H∗(ν;R)

Proof. Let EF (G,H) be a model for the classifying space of (G,H) with respect to the
family F (Lemma 3.21). By Proposition 3.42, (|N(Ũ)|, |Np−1(A)(Ũ)|) is a (G,H)-CW-pair
with isotropy in F . By Example 3.19, (X̃, p−1(A)) is a (G,H)-CW-pair with isotropy
in the trivial family T R. The universal property of EF (G,H) yields that the canoni-
cal map f : (X̃, p−1(A)) → EF (G,H) of (G,H)-CW-pairs factors (up to G-homotopy)
through the equivariant nerve map ν̃:

(
X̃, p−1(A)

) ν̃−→
(
|N(Ũ)|, |Np−1(A)(Ũ)|

) ϕ−→ EF (G,H) .

Hence, we have the following commutative diagram, where the trivial coefficient module R
is omitted from the notation.

H∗b (X,A) H∗(X,A) H∗
(
|N(U)|, |NA(U)|

)
H∗G,b

(
X̃, p−1(A)

)
H∗G
(
X̃, p−1(A)

)
H∗G
(
|N(Ũ)|, |Np−1(A)(Ũ)|

)
H∗G,b

(
EF (G,H)

)
H∗G
(
EF (G,H)

)

comp∗

∼=H∗b (p) H∗(p) ∼=

H∗(ν)

H∗(|N(p)|)

comp∗G H∗G(ν̃)

H∗G,b(f) ∼=
comp∗

G,EF (G,H)

H∗G(f)
H∗G(ϕ)

The map H∗G,b(f) is an isomorphism by Lemma 3.74. Therefore, the desired factorisation
of the comparison map comp∗G is given by

comp∗G = H∗G(ν̃) ◦H∗G(ϕ) ◦ comp∗G,EF (G,H) ◦H
∗
G,b(f)−1 .

(i) If U is weakly convex, then we have catF (X,A) ≤ multA(U) (Lemma 3.46) and we con-
clude by Lemma 3.74. More explicitly, let n = multA(U). Then, by Proposition 3.42 (i),
we have dim(|N(Ũ)|, |Np−1(A)(Ũ)|) = n − 1 and hence Hk

G(|N(Ũ)|, |Np−1(A)(Ũ)|) = 0

for k ≥ n. This shows that compk vanishes in every degree k ≥ n.

(ii) If U is convex, then the map H∗(|N(p)|) is an isomorphism by Proposition 3.42 (ii).
Hence the desired factorisation of the comparison map comp∗ is given by

comp∗ = H∗(ν) ◦H∗(|N(p)|)−1 ◦H∗G(ϕ) ◦ comp∗G,EF (G,H) ◦H
∗
G,b(f)−1 ◦H∗b (p) .

This proves the statement.



bounded acyclicity and relative simplicial volume 89

Remark 3.77 (H∗b -admissible families). A family F of subgroups of G containing the
trivial subgroup is called (not necessarily strongly) H∗b -admissible if the canonical G-
map EG → EFG induces a surjective map in equivariant bounded cohomology in all
degrees [LS20, Definition 5.1].

The conclusions of Theorem 3.76 hold more generally, if in the situation of Setup 3.75
the family F of subgroups of G is only assumed to be (not necessarily strongly) H∗b -
admissible, while the families F|Hi of subgroups of Hi are still assumed to be strongly
H∗b -admissible. Indeed, similarly to Lemma 3.74, in this case it follows from the four
lemma for epimorphisms that the canonical G-map (X̃, p−1(A))→ EF (G,H) induces a
surjective map in equivariant bounded cohomology in all degrees. This suffices to carry
out the above proof of Theorem 3.76.

As an application of the previous theorem, we can deduce the vanishing theorem for
uniformly boundedly acyclic open covers (Definition 3.68), which complements a recent
result by Ivanov [Iva].

Corollary 3.78 (Relative vanishing theorem for uniformly boundedly acyclic covers).
In the situation of Setup 3.73 and Setup 3.75, suppose that the relative cover U of (X,A)

is uniformly boundedly acyclic, viewed as an open cover of X.

Then all statements in Theorem 3.76 hold.

Proof. We take F to be the family F〈U〉 ∪ {1} of subgroups of G. Since the cover U
is uniformly boundedly acyclic, the family F is uniformly boundedly acyclic and hence
strongly H∗b -admissible (Proposition 3.71). As subsets of uniformly boundedly acyclic
sets of groups are again uniformly boundedly acyclic, the restricted families F|Hi of
subgroups of Hi are strongly H∗b -admissible for every i ∈ I. Thus, Theorem 3.76 applies
and yields the thesis.

Remark 3.79 (`1-Homology). In view of strong H∗b -admissibility, the analogues of Theo-
rem 3.76 and Corollary 3.78 for `1-homology also hold. One can simply argue through
duality as in the absolute case [LS20, Section 6].

In particular, Theorem 3.76 gives a relative vanishing theorem in the presence of “small”
relative amenable multiplicity (Definition 3.45).

Corollary 3.80 (Relative vanishing theorem for amenable covers). Let (X,A) be a
CW-pair with path-connected ambient space X. Assume that A consists of finitely many
connected components, each of which is π1-injective in X. Then the comparison map

compk(X,A) : Hk
b (X,A;R)→ Hk(X,A;R)

vanishes in all degrees k ≥ multAME(X,A).
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In particular, if (M,∂M) is an oriented compact connected triangulable manifold with
(possibly empty) π1-injective boundary and multAME(M,∂M) ≤ dim(M), then the rela-
tive simplicial volume ‖M,∂M‖ vanishes.

Proof. The claim on the comparison map follows from the strong H∗b -admissibility of the
family AME (Corollary 3.72).

Because (M,∂M) is triangulable, both M and ∂M admit compatible triangulations; in
particular, we can view (M,∂M) as a CW-pair. Therefore, the statement on relative
simplicial volume follows from the duality principle (Proposition 3.53).

Remark 3.81 (Optimality of assumptions). Let Σ denote the surface of genus one with
one boundary component. Since the interior of Σ admits a complete hyperbolic met-
ric with finite volume, we know that ‖Σ, ∂Σ‖ > 0 (Example 3.49 (i)). This shows
that multAME(Σ, ∂Σ) = 3. However, when either one of the conditions (RC1), (RC2),
or weak convexity on the open cover is dropped, then it is not difficult to construct
amenable covers of (Σ, ∂Σ) with relative multiplicity at most 2. In this sense, our set of
assumptions in Corollary 3.80 is optimal.

3.6.4 Amenable covers with small multiplicity on the boundary

We compare Corollary 3.80 with existing results in the literature [LMR, Section 3.3].
The main available relative vanishing result is the following, which is based on Gromov’s
vanishing theorem for non-compact manifolds [Gro82][FM, Corollary 11]:

Theorem 3.82 ([LMR, Theorem 3.13]). Let (M,∂M) be an oriented compact connected
n-manifold with non-empty boundary. Let U be an open cover of M and let U|∂M denote
the restriction of U to ∂M , i.e., U|∂M := {U ∩ ∂M | U ∈ U}. Suppose that the following
hold:

(i) mult(U) ≤ n;

(ii) mult(U|∂M ) ≤ n− 1;

(iii) The open covers U of M and U|∂M of ∂M are amenable.

Then ‖M,∂M‖ = 0.

We emphasise that (contrary to our convention) here the restricted cover U|∂M of ∂M
may consist of disconnected subsets.

Since this result neither assumes that the manifoldM is triangulable, nor that the bound-
ary inclusion is π1-injective (in the sense of Section 3.1), while our Corollary 3.80 does
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so, we cannot recover Theorem 3.82 in full generality. However, in the special situation
of triangulable manifolds with π1-injective boundary, we can provide a simplified proof
that does not make use of Gromov’s theory of diffusion of chains:

Proof of Theorem 3.82 for triangulable manifolds with π1-injective boundary.
We show that there exists a weakly convex relative AME-cover V of (M,∂M) such
that mult∂M (V) ≤ n = dim(M). This implies that multAME(M,∂M) ≤ n and thus by
Corollary 3.80 the thesis.

Let m := {mult(U),mult(U|∂M )+1}. By conditions (i) and (ii), we have m ≤ n. From U
we will construct a new cover V of (M,∂M) that is a weakly convex relative AME-
cover with mult∂M (V) ≤ m. To this end, we follow a classical strategy for modifying
open covers (while controlling the multiplicity) in the case of compact manifolds with
boundary [FM, proof of Theorem 11.2.3][LS09a, proof of Theorem 5.3].

By compactness, we may assume that U is finite, say U = {U1, . . . , Uk}. Since ∂M is
collared in M , we have the following identification:

(M,∂M) ∼= (M ′, ∂M ′) :=
(
M ∪∂M∼=(∂M×{0}) (∂M × [0, 1]), ∂M × {1}

)
.

Let ε := 1/3(k + 1) and ti := i/(k + 1). Moreover, for i ∈ {1, . . . , k}, let U(i) denote
the set of connected components of Ui ∩ ∂M . We set for every i ∈ {1, . . . , k} such that
Ui ∩ ∂M 6= ∅

U ′i := Ui ∪
(
(Ui ∩ ∂M)× [0, ti + ε)

)
⊂M ′

and
U ′(i) :=

{
U × (ti − ε, 1]

∣∣ U ∈ U(i)
}
.

When Ui ∩ ∂M = ∅, we just set U ′i := Ui and U ′(i) := ∅. This produces a new open
amenable cover

U ′ :=
{
U ′1, . . . , U

′
k

}
∪ U ′(1) ∪ · · · ∪ U ′(k)

of M ′.

Finally, we obtain V from U ′ by discarding all sets of the form U × (ti − ε, 1] with
U ∈ U(j) for some j > i. Then V is an amenable open cover of M ′ and a straightfor-
ward case analysis shows that mult(V) ≤ m. In particular, this implies that V satisfies
mult∂M ′(V) ≤ mult(V) ≤ m ≤ n by assumptions (i) and (ii).

We are left to show that V satisfies all the conditions in Definition 3.41. The key obser-
vation is the following: Only sets V ∈ V of the form V = U × (ti − ε, 1] with U ∈ U(i)

intersect ∂M ′. In particular, if V ∈ V satisfies V ∩ ∂M ′ 6= ∅, then V ∩ ∂M ′ is connected.
Thus, (RC1) is satisfied. Moreover, for the same reason every V ∈ V with V ∩ ∂M ′ 6= ∅
deformation retracts onto V ∩ ∂M ′, whence (RC2) holds. It remains to show that the
relative cover V is weakly convex. If V1, . . . , Vj ∈ V satisfy V1 ∩ · · · ∩ Vj ∩ ∂M ′ 6= ∅, then
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V1 ∩ · · · ∩Vj is of the form (V1 ∩ · · · ∩Vj ∩ ∂M ′)× (r, 1] for some r ∈ (0, 1). In particular,
each component of V1 ∩ · · · ∩ Vj intersects ∂M ′. Hence, V is weakly convex.

We conclude that V is a weakly convex relative AME-cover of (M ′, ∂M ′) satisfying
mult∂M ′(V) ≤ n. Using the identification of (M ′, ∂M ′) with (M,∂M), we get the thesis.

We conclude this section by showing that for general CW-pairs (X,A) such that the
inclusion of A into X is π1-injective the hypotheses of Corollary 3.80 are weaker than
the ones of Theorem 3.82:

Example 3.83. Let n ≥ 3. Let M be an oriented closed connected hyperbolic (n− 1)-
manifold and denote I = [0, 1]. We consider the CW-pair (M × I,M × {1}). Since
M × {1} ∼= M is hyperbolic, we have ‖M × {1}‖ > 0 [Thu, Gro82]. Hence, M × {1}
cannot admit an open amenable cover with multiplicity at most n− 1. This shows that
there is no open amenable cover of M whose restriction to M × {1} is both amenable
and with multiplicity at most n− 1.

On the other hand, it is easy to construct a weakly convex relative AME-cover V of
(M × I,M ×{1}) with multM×{1}(V) ≤ n. Let U be the open star cover of M ×{1} and
let V be the cover of M × I defined as follows:

V := {U × I | U ∈ U} .

Since by construction V consists of contractible sets, V is an amenable open cover. More-
over, each member of V intersectsM×{1} in a contractible, whence connected, set. The
same argument also applies to multiple intersections. Finally, since each element V in V is
a product U×I with U ∈ U , it follows that V retracts by deformation onto V ∩(M×{1}).
This shows that V is a weakly convex relative AME-cover of (M × I,M × {1}).

Since by construction the relative multiplicity of V is zero, we have obtained our desired
cover.

We do not know whether the previous example can be improved to the situation of
compact manifolds with π1-injective boundary.

3.7 A vanishing theorem for relative `2-Betti numbers

We prove a vanishing theorem for the relative `2-Betti numbers of aspherical CW-pairs
with small relative amenable multiplicity using equivariant nerve pairs. In the absolute
case for `2-Betti numbers, more sophisticated arguments involving nerves have previously
been used by Sauer [Sau09]. For further background on `2-Betti numbers we refer to the
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literature [Lüc02, Kam19]. The results of this section are not used in the rest of the
article.

We use the following (non-standard) notation:

Definition 3.84 (`2-Homology and `2-Betti numbers). Let Y be a G-space. The `2-
homology H(2)

∗ (Gy Y ) is defined as the singular homology of Y with twisted coefficients
in the group von Neumann algebra NG, that is the NG-module

H
(2)
∗ (Gy Y ) := HG

∗ (Y ;NG) .

The n-th `2-Betti number b(2)
n (Gy Y ) ∈ R≥0 ∪ {∞} is

b(2)
n (Gy Y ) := dimNG

(
H(2)
n (Gy Y )

)
,

where dimNG is the von Neumann dimension function. For a pair (Y,B) of G-spaces,
one similarly defines H(2)

∗ (Gy (Y,B)) and b(2)
∗ (Gy (Y,B)).

The `2-Betti numbers b(2)
∗ (G) of a group G are defined as

b
(2)
∗ (G) := b

(2)
∗ (Gy EG) .

We say that G is `2-acyclic if b(2)
k (G) = 0 for all k > 0.

For example, amenable groups are `2-acyclic [Lüc02, Corollary 6.75]. The following shows
that `2-Betti numbers can be computed using classifying spaces for families consisting of
`2-acyclic subgroups.

Proposition 3.85 ([Kam19, Theorem 4.14]). Let G be a group and F be a (conjugation-
closed) family of subgroups of G that consists of `2-acyclic groups and contains the trivial
subgroup. Then the canonical G-map EG → EFG induces a dimension-isomorphism in
`2-homology

H
(2)
∗ (Gy EG)

∼=dim−−−→ H
(2)
∗ (Gy EFG) .

In particular, b(2)
∗ (G) = b

(2)
∗ (Gy EFG).

Proof. Since F contains the trivial subgroup, EG × EFG equipped with the diagonal
G-action is a model for EG. The projection EG×EFG→ EFG onto the second factor
induces a dimension-isomorphism

H
(2)
∗ (Gy EG) ∼= H

(2)
∗ (Gy EG× EFG)

∼=dim−−−→ H
(2)
∗ (Gy EFG) ,

because all members of F are `2-acyclic [Lüc02, proof of Theorem 6.54 (2)].

For the vanishing theorem, we consider the following situation: Let (X,A) be a CW-pair
with X path-connected. Suppose that A has only finitely many connected components
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and let A =
∐
i∈I Ai be a decomposition into connected components. Assume that

each Ai is π1-injective in X and let (G,H) be a fundamental group pair for (X,A)

(Example 3.17). Let F be a family of subgroups of G that contains the trivial subgroup.
Denote by p : X̃ → X the universal covering.

Moreover, let U be a relative F-cover of (X,A) (Definition 3.41) with relative multiplic-
ity multA(U) (Definition 3.35). Let Ũ be the lifted G-invariant cover of X̃ (Example 3.40)
and (|N(Ũ)|, |Np−1(A)(Ũ)|) be its equivariant nerve pair (Proposition 3.42). We will also
use the notion of weakly convex relative covers (Definition 3.41).

Theorem 3.86 (Relative vanishing theorem for `2-Betti numbers). In the above situa-
tion, if X and all the (Ai)i∈I are aspherical and F consists of `2-acyclic groups, then we
have

b
(2)
∗
(
Gy (X̃, p−1(A))

)
≤ b(2)
∗
(
Gy (|N(Ũ)|, |Np−1(A)(Ũ)|)

)
.

In particular, if U is weakly convex, then

b
(2)
k

(
Gy (X̃, p−1(A))

)
= 0

for all k ≥ multA(U).

Proof. By Proposition 3.42, the equivariant nerve pair (|N(Ũ)|, |Np−1(A)(Ũ)|) is a (G,H)-
CW-pair with isotropy in F . By the universal property of the classifying space EF (G,H),
the canonical G-map f : (X̃, p−1(A)) → EF (G,H) factors (up to G-homotopy) through
the equivariant nerve map ν̃:

(
X̃, p−1(A)

) ν̃−→
(
|N(Ũ)|, |Np−1(A)(Ũ)|

)
→ EF (G,H) .

Since X and all the (Ai)i∈I are aspherical by assumption, Proposition 3.85 and a five
lemma for dimension-isomorphisms [Sau05, Section 2] imply that f induces a dimension-
isomorphism

H
(2)
∗
(
Gy (X̃, p−1(A))

) ∼=dim−−−→ H
(2)
∗
(
Gy EF (G,H)

)
.

Thus, the above factorisation of the G-map f shows

b
(2)
∗
(
Gy (X̃, p−1(A))

)
≤ b(2)
∗
(
Gy (|N(Ũ)|, |Np−1(A)(Ũ)|)

)
,

as claimed.

To conclude the vanishing result, suppose that the relative cover U is weakly convex with
multA(U) = n. Then we have dim(|N(Ũ)|, |Np−1(A)(Ũ)|) = n− 1 by Proposition 3.42 (i)
and hence b(2)

k (Gy (|N(Ũ)|, |Np−1(A)(Ũ)|)) = 0 for all degrees k ≥ n.

In the absolute case for the familyAME , we recover a result of Sauer [Sau09, Theorem C]:
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Corollary 3.87. Let X be a path-connected aspherical CW-complex. Then we have
b
(2)
k (π1(X) y X̃) = 0 for all k ≥ catAME(X).

3.8 Glueing estimates for relative simplicial volume

The classical glueing estimates for simplicial volume [Gro82, BBF+14, Kue15] require
that the boundary components used in the glueing have amenable fundamental groups.
Replacing amenability with bounded acyclicity and the uniform boundary condition also
leads to (albeit weaker) glueing estimates for simplicial volume (Theorem 3.88). The
uniform boundary condition also has been used for versions of simplicial volume where
the strong glueing formulae are unknown and no suitable dual theory is available [FL21,
FFL19].

Theorem 3.88 (Vanishing inheritance for boundedly acyclic glueings). Let n ≥ 3 and
(Mi, ∂Mi)i∈I be a finite collection of oriented compact connected n-manifolds. Assume
that every connected component of every boundary component ∂Mi has boundedly acyclic
fundamental group. Let N be a set of π1-injective boundary components of the (Mi)i∈I

and let (M,∂M) be obtained from (Mi, ∂Mi)i∈I by a pairwise glueing of the boundary
components in N (along orientation-reversing homeomorphisms).

If N , viewed as a set of subsets of M , is uniformly boundedly acyclic of order n in M

(Definition 3.67) then the following are equivalent:

(i) We have ‖M,∂M‖ = 0;

(ii) For all i ∈ I, we have ‖Mi, ∂Mi‖ = 0.

The implication (ii) ⇒ (i) is proved in Section 3.8.1. The implication (i) ⇒ (ii) is
established in Section 3.8.2.

Remark 3.89. More generally, the conclusion of Theorem 3.88 holds for compatible glue-
ings [BBF+14], where the boundary components in N need not be π1-injective. On the
other hand, it remains unclear whether the assumption of bounded acyclicity on the
boundary components that are not in N can be dropped.

Remark 3.90. In the situation of Theorem 3.88, if the collection of fundamental groups
of all members of N is malnormal in π1(M), then the uniform bounded acyclicity con-
dition is automatically satisfied as soon as all members of N have boundedly acyclic
fundamental group.

3.8.1 Upper glueing estimates via the uniform boundary condition

We begin with the, easier, upper glueing estimate; this estimate works over all normed
rings and also gives rough estimates in the non-vanishing case:
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Proposition 3.91. Let R be a normed ring, let K ∈ R>0, let I be a finite set, and let
(Mi, ∂Mi)i∈I be a finite collection of oriented compact connected manifolds of the same
dimension n. Moreover, let (M,∂M) be obtained from (Mi, ∂Mi)i∈I by a pairwise glueing
(along orientation-reversing homeomorphisms) of a set N of boundary components such
that K is a UBCn−1-constant of C∗(

⋃
N ;R). Then

‖M,∂M‖R ≤
(
1 +K · (n+ 1)

)
·
∑
i∈I
‖Mi, ∂Mi‖R .

In particular, if ‖Mi, ∂Mi‖R = 0 for all i ∈ I, then ‖M,∂M‖R = 0.

Proof. This is the standard filling argument [Löh, Example 6.18][BBF+14, Remark 6.2],
adapted to the general UBC-setting; for the sake of completeness, we give the argument:

For notational simplicity, we view the (Mi)i∈I as subspaces of the glued manifold M .
Moreover, we write N ⊂ M for the (disjoint) union of the glueing loci. Hence, K is a
UBCn−1-constant for N . Let (zi ∈ Cn(Mi;R))i∈I be a collection of relative fundamental
cycles of (Mi, ∂Mi)i∈I . As we glue along orientation-reversing homeomorphisms, the
chain

b :=
∑
i∈I

∂zi|N ∈ Cn−1(N ;R)

is null-homologous. By UBCn−1 for C∗(N ;R), there exists a chain c ∈ Cn(N ;R) with

∂c = b and |c|1 ≤ K · |b|1 ≤ K ·
∑
i∈I
|∂zi|1 ≤ K · (n+ 1) ·

∑
i∈I
|zi|1 .

Then z :=
∑

i∈I zi − c ∈ Cn(M ;R) is a relative cycle on (M,∂M); checking the local
contributions on the components (Mi, ∂Mi) shows that z is a relative R-fundamental
cycle of (M,∂M). Therefore, we obtain

‖M,∂M‖R ≤ |z|1 ≤
∑
i∈I
|zi|1 + |c|1

≤
∑
i∈I
|zi|1 +K · (n+ 1) ·

∑
i∈I
|zi|1 .

Taking the infimum over all relative fundamental cycles (zi)i∈I proves the claim.

Proof of Theorem 3.88, (ii) ⇒ (i).
All boundedly acyclic groups satisfy the uniform boundary condition in all degrees
(Theorem 3.105). As only finitely many components are involved, we also find a joint
UBCn−1-constant for C∗(

⋃
N ;R). Applying Proposition 3.91 thus proves the implica-

tion (ii) ⇒ (i).

In the same way, we also obtain the following estimate for the locally finite simplicial
volume [Gro82, Löh] for interiors of compact manifolds with UBC-boundary; similar
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results have been obtained previously for amenable boundaries (or other more restrictive
conditions on the boundary) via the uniform boundary condition [LS09b, Löh] or bounded
cohomology [KK15].

Proposition 3.92. Let R be a normed ring and let M be an oriented connected compact
n-manifold with boundary satisfying the following properties:

• We have ‖∂M‖R = 0;

• The boundary ∂M satisfies UBCn−1 over R. Let K be a UBCn−1-constant for
C∗(∂M ;R).

Then
‖M◦‖R,lf ≤

(
K · (n+ 1) + 1

)
· ‖M,∂M‖R .

Proof. We will follow the previously known UBC-arguments: Let c ∈ Cn(M ;R) be a
relative fundamental cycle of (M,∂M) and let ε ∈ R>0.

Because of ‖∂M‖R = 0, there exists a sequence (zk)k∈N in Cn−1(∂M ;R) of fundamental
cycles of ∂M with |zk|1 ≤ ε · 1/2k for all k ∈ N. From this sequence, we can con-
struct a locally finite relative fundamental cycle z ∈ C lf

n (∂M × R≥0;R) of the half-open
cylinder ∂M × R≥0 with ∂z = −∂c and

|z|1 ≤ K ·
(
|∂c|1 + |z0|1

)
+ n · |z0|1 +

∞∑
k=0

(
K ·

(
|zk|1 + |zk+1|1

)
+ n · |zk+1|1

)
≤ K · |∂c|1 + n · ε · 2 +K · 2 · ε · 2

≤ K · (n+ 1) · |c|1 + 2 · ε · (n+ 2 ·K)

by UBC-filling the differences between subsequent zk with “small” chains and then spread-
ing out the result over the half-open cylinder [Löh, proof of Theorem 6.1]. Here we filled
the “cylinders” by using the canonical triangulation of ∆n−1 × [0, 1] into n simplices of
dimension n.

Moreover, c + z is a locally finite fundamental cycle of M ∪∂M (∂M × R≥0) ∼= M◦ (via
the topological collar theorem) and so

‖M◦‖R,lf ≤ |c+ z|1 ≤ |c|1 +K · (n+ 1) · |c|1 + 2 · ε · (n+ 2 ·K) .

Taking the infimum over ε → 0 and then over all relative fundamental cycles c thus
shows that

‖M◦‖R,lf ≤ ‖M,∂M‖R +K · (n+ 1) · ‖M,∂M‖R ,

as claimed.
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Corollary 3.93. Let M be an oriented connected compact n-manifold with boundary
satisfying the following properties:

• We have ‖M,∂M‖ = 0;

• The boundary ∂M satisfies UBCn−1.

Then ‖M◦‖lf = 0.

Proof. Since ‖∂M‖ ≤ (n+ 1) · ‖M,∂M‖ = 0, we can apply Proposition 3.92.

In particular, the conditions on the boundary in Proposition 3.92 (over R) and Corol-
lary 3.93 are satisfied if the boundary has vanishing bounded cohomology in positive
degrees.

Remark 3.94 (Group-theoretic Dehn fillings). A classical application of upper glueing
estimates are (generalised) Dehn fillings of manifolds [FM11, BBF+14]. The simplicial
volume of group-theoretic Dehn fillings was recently investigated [PS]. In particular, the
simplicial volume does not increase when performing a group-theoretic Dehn filling with
resulting peripheral subgroups that are amenable and of small cohomological dimen-
sion [PS, Theorem 6.3]. One obtains an analogous result for the vanishing behaviour of
simplicial volume if amenability is replaced by bounded acyclicity.

3.8.2 Lower glueing estimates via bounded acyclicity

We prove the lower glueing estimate (i)⇒ (ii) of Theorem 3.88, adapting the argument in
the amenable case by Bucher, Burger, Frigerio, Iozzi, Pagliantini, and Pozzetti [BBF+14].

In this section, all [bounded] cohomology groups are taken with trivial coefficients in R.

Proof of Theorem 3.88, (i) ⇒ (ii). We proceed by contraposition, i.e., we assume that
one of the building blocks satisfies ‖Mi, ∂Mi‖ > 0 and show that ‖M,∂M‖ > 0.
By the duality principle (Proposition 3.53), it suffices to show that the comparison
map Hn

b (M,∂M)→ Hn(M,∂M) is non-zero.

Let N ⊂ M be the union of the glueing loci. We consider the following diagram. Here,
all unlabelled arrows are induced by inclusions (and direct sums) and the maps labelled
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by ev are given by evaluation on the fundamental class.

Hn
b (M) Hn

b (M,∂M) Hn(M,∂M) R

Hn
b (M,N ∪ ∂M) Hn(M,N ∪ ∂M)

⊕
i∈I H

n
b (Mi)

⊕
i∈I H

n
b (Mi, ∂Mi)

⊕
i∈I H

n(Mi, ∂Mi)
⊕

I R

(∗∗)

∼=
compn

(M,∂M)

∼=
ev

∼=

compn
(M,N∪∂M)

(∗∗∗)
(∗)⊕

i∈I compn
(Mi,∂Mi)

∼= ∼=
ev

sum

This diagram is commutative: The leftmost and middle squares are commutative by
functoriality of bounded cohomology and naturality of the comparison map. The right-
most square is commutative because one can construct a relative fundamental cycle
of (M,∂M) out of relative fundamental cycles of the (Mi, ∂Mi) plus a chain on N (see
proof of Proposition 3.91).

By the duality principle and the hypothesis that one of the ‖Mi, ∂Mi‖ is non-zero, the
arrow (∗) is non-zero; isolating the corresponding index shows that also the composi-
tion sum ◦ ev ◦(∗) is non-zero.

In the leftmost square, both horizontal arrows and the upper right vertical arrow are
isomorphisms by bounded acyclicity of all boundary components (and the long exact
sequence of pairs in bounded cohomology). In Section 3.8.3, using graphs of groups
(Theorem 3.98 and Example 3.99), we will show that the left vertical arrow (∗∗) induced
by the inclusions Mi ↪→M is surjective.

Therefore, the leftmost square shows that (∗ ∗ ∗) is surjective. Together with the
non-triviality of the composition sum ◦ ev ◦(∗), we thus obtain that the comparison
map Hn

b (M,∂M)→ Hn(M,∂M) must be non-zero, as desired.

3.8.3 Graphs of groups with boundedly acyclic edge groups

We consider the bounded cohomology of finite graphs of groups with boundedly acyclic
edge groups in relation to the bounded cohomology of the vertex groups. We adapt the
proof in the amenable case by Bucher et al. [BBF+14] to the boundedly acyclic situation
by using uniformly boundedly acyclic actions instead of amenable actions.

We first fix basic notation.

Definition 3.95 (Graph). A graph is a tuple Γ = (V,E, o, t, · ), consisting of a set V , a
set E, a map (o, t) : E → V 2, and a fixed point-free involution · : E → E with

o(e) = t(e)
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for all e ∈ E. The elements of V are called vertices, the elements of E are called edges.
The set of geometric edges is defined by

E :=
{

(e, e)
∣∣ e ∈ E} .

Definition 3.96 (Graph of groups). Let Γ = (V,E, o, t, · ) be a finite graph (i.e., V
and E are finite). A graph of groups G over Γ is a Γ-shaped diagram in the category of
groups and injective group homomorphisms, i.e., G consists of the following data:

• A map that associates a group Gv to each v ∈ V ;

• A map that associates a group Ge to each e ∈ E such that Ge = Ge;

• A map that associates to each edge e ∈ E an injective group homomorphism
he : Ge → Gt(e).

If G is the fundamental group of a graph of groups, then the vertex and edge groups
admit canonical inclusions into G [Ser03, Chapter 5] and we will identify these groups
with their image inside of G.

We consider finite graphs of groups with boundedly acyclic edge groups, in analogy with
the amenable case [BBF+14, Theorem 1.1]; more precisely:

Setup 3.97.

• Let n ≥ 1;

• Let Γ = (V,E, o, t, · ) be a finite graph;

• Let G be a graph of groups over Γ;

• Let G be the fundamental group of G; for v ∈ V , we denote the corresponding
inclusion by iv : Gv ↪→ G;

• The edge groups (Ge)e∈E are uniformly boundedly acyclic of order n in G, i.e., the
set { n⋂

i=1

giGeig
−1
i

∣∣∣∣ g1, . . . , gn ∈ G, e1, . . . , en ∈ E
}

of subgroups of G is uniformly boundedly acyclic.

Theorem 3.98. In the situation of Setup 3.97, let n ≥ 3 and k ∈ {3, . . . , n}. Then the
map ⊕

v∈V
Hk
b (iv) : Hk

b (G)→
⊕
v∈V

Hk
b (Gv)

induced by the inclusions is surjective.
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For the proof, we describe the bounded cohomology of G and the vertex groups via
suitable uniformly boundedly acyclic actions. In the situation of Setup 3.97, we consider
the set

S := (G× V ) t
∐
e∈E

G/Ge

with the G-action

• given on G× V by left translation on the first factor;

• given on each G/Ge by left translation of cosets.

In particular, for k ∈ {0, . . . , n−1}, the diagonal action of G on Sk+1 is uniformly bound-
edly acyclic, since we assumed uniform bounded acyclicity of order n for the collection of
edge groups. By Remark 3.64, the bounded cohomology of G is canonically isomorphic
to the cohomology of the complex `∞alt(S

∗+1,R)G in degrees ≤ n.

Similarly, for each vertex v ∈ V , we consider the Gv-set

Sv := Gv t
∐

e∈E,t(e)=v

Gv/Ge .

with the left translation action. In the situation of Setup 3.97, the diagonal action
on Sk+1

v is uniformly boundedly acyclic for k ∈ {0, . . . , n−1} and thus the bounded coho-
mology of Gv is canonically isomorphic to the cohomology of the complex `∞alt(S

∗+1
v ,R)Gv

in degrees ≤ n (Remark 3.64).

For each vertex v ∈ V , there is a canonical inclusion ϕv : Sv → S; on the first summand,
this is given by ϕv(g) := (g, v) for all g ∈ Gv, on the other summands, we use the
canonical maps induced by the canonical inclusions iv : Gv ↪→ G. By construction, ϕv is
Gv-equivariant with respect to the inclusion iv.

With this preparation, we give the proof of Theorem 3.98:

Proof of Theorem 3.98. We write

ϕ∗ :=
⊕
v∈V

ϕ∗v : `∞alt(S
∗+1,R)G →

⊕
v∈V

`∞alt(S
∗+1
v ,R)Gv

for the combination of the ϕ∗v. Bucher et al. [BBF+14, Theorem 4.1] provide a construc-
tion of a cochain map ψ∗ :

⊕
v∈V `

∞
alt(S

∗+1
v ,R)Gv → `∞alt(S

∗+1,R)G in degrees ≥ 2 that
is right-inverse to ϕ∗. Then also Hk(ϕ∗) has a right inverse in degrees ≥ 2.
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Let k ∈ {3, . . . , n}. By Lemma 3.65 (applied to iv and ϕv for each vertex v ∈ V ) and
using that V is finite, we obtain the following commutative diagram:

Hk
(
`∞alt(S

∗+1,R)G
)

Hk
b (G;R)

Hk
(⊕

v∈V `
∞
alt(S

∗+1
v ,R)Gv

) ⊕
v∈V H

k
(
`∞alt(S

∗+1
v ,R)Gv

) ⊕
v∈V H

k
b (Gv;R) .

Hk(ϕ∗)
⊕
v∈V H

k
b (iv)

∼=

Here the horizontal maps are the canonical maps. As k ∈ {3, . . . , n}, these horizontal
maps are isomorphism and the left vertical arrow admits a right inverse (given by ψ∗).
Therefore, also the right vertical arrow has a right inverse. In particular, the right vertical
arrow

⊕
v∈V H

k
b (iv) is surjective.

In particular, Theorem 3.98 applies to the glueing situation of Theorem 3.88:

Example 3.99. In the situation of Theorem 3.98, the fundamental group π1(M) is iso-
morphic to the fundamental group of a finite graph of groups that satisfies the conditions
of Setup 3.97. More specifically, the vertex groups are isomorphic to the fundamental
groups of the (Mi)i∈I and the edge groups are isomorphic to the fundamental groups of
the boundary components in N along which we glue.

This concludes the proof of Theorem 3.88.

3.A Appendix A. The uniform boundary condition

We recall the uniform boundary condition and its basic properties and consequences
in the context of bounded cohomology. Moreover, we introduce the uniform uniform
boundary condition and use it to compute the bounded cohomology of bounded products.

3.A.1 Normed chain complexes

We begin with basic terminology for normed chain complexes. A normed chain complex
over a normed ring R is a chain complex in the category of normed R-modules with
bounded linear maps; i.e., the boundary operators in normed chain complexes are degree-
wise bounded linear operators. A Banach chain complex is a normed chain complex
over R consisting of Banach spaces. Similarly, one has normed [resp. Banach] cochain
complexes.

Let C∗ be a normed chain complex over a normed ring R with boundary operator
∂∗ : C∗ → C∗−1.
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• We write B(C∗, R) for the normed cochain complex whose cochain modules are the
bounded duals of the chain modules of C∗ and whose coboundary operators are
the duals of the boundary operators ∂∗.

• We write C∗ for the degree-wise completion of C∗ with the degree-wise continuous
extension ∂∗ of the boundary operator ∂∗.

Over R, both B(C∗,R) and C∗ are Banach [co]chain complexes.

If C∗ is a normed chain complex, then we obtain an induced seminorm on H∗(C∗) via

‖α‖ := inf
{
|c|
∣∣ c ∈ C∗ is a cycle representing α

}
for all α ∈ H∗(C∗). Similarly, this also works for normed cochain complexes.

3.A.2 The uniform boundary condition

The uniform boundary condition asks for uniform control on fillings of null-homologous
[co]cycles in normed [co]chain complexes. In some contexts, similar properties are en-
coded in the language of isoperimetric inequalities. In the following, we will stick to the
terminology of Matsumoto and Morita [MM85].

Definition 3.100 (Uniform boundary condition). Let C∗ be a normed chain complex
over a normed ring and let k ∈ N. Then C∗ satisfies the uniform boundary condition in
degree k if there exists a constant K ∈ R>0 with

∀b∈im ∂k+1⊂Ck ∃c∈Ck+1
∂k+1(c) = b and |c| ≤ K · |b| .

We abbreviate the uniform boundary condition in degree k by UBCk.

Remark 3.101. Through re-indexing, we can translate the notion of uniform boundary
condition also to normed cochain complexes. In this case, we use the notation UBCk for
the uniform boundary condition in degree k. Moreover, all of the results below apply
both to chain and cochain complexes (with appropriate re-indexing).

We recall basic inheritance properties of UBC:

Proposition 3.102 (Homotopy inheritance of UBC). Let k ∈ N and let C∗, D∗ be
normed chain complexes over a normed ring R that are chain homotopic in the category
of normed R-chain complexes. Then C∗ satisfies UBCk if and only if D∗ satisfies UBCk.

More precisely, let f∗ : C∗ → D∗ and g∗ : D∗ → C∗ be chain maps that are bounded in each
degree and let h∗ : D∗ → D∗+1 be a corresponding degree-wise bounded chain homotopy
between f∗ ◦ g∗ and idD∗ . If K ∈ R>0 is a UBCk-constant for C∗, then

‖fk+1‖ · ‖gk‖ ·K + ‖hk‖
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is a UBCk-constant for D∗.

Proof. Let x ∈ im ∂Dk+1. Then gk(x) ∈ im ∂Ck+1. As K is a UBCk-constant for C∗, there
exists ỹ ∈ Ck+1 with ∂Ck+1(ỹ) = gk(x) and |ỹ| ≤ K ·

∣∣gk(x)
∣∣. Then

y := fk+1(ỹ)− hk(x)

satisfies ∂Dk+1(y) = x and |y| ≤
(
‖fk+1‖ · ‖gk‖ ·K + ‖hk‖

)
· |x|, as desired.

Proposition 3.103 (Dense subcomplexes and UBC). Let R be a normed ring, let D∗
be a normed chain complex over R, and let C∗ ⊂ D∗ be a dense subcomplex. Let k ∈ N.
Then the following are equivalent:

(i) C∗ satisfies UBCk;

(ii) D∗ satisfies UBCk and ker ∂Ck+1 is dense in ker ∂Dk+1;

(iii) D∗ satisfies UBCk and ker ∂Ck+1 is dense in ker ∂Dk+1.

Proof. Because C∗ is dense in D∗, the completion D∗ of D∗ is also a completion of C∗.
The argument by Matsumoto and Morita [MM85, Theorem 2.8] applies to all normed
chain complexes and their completions; this shows the equivalence of (i) and (ii).

We may apply this to D∗ and its completion D∗, since with ker ∂Ck+1 also ker ∂Dk+1 is
dense in ker ∂Dk+1. Hence (ii) implies that D∗ satisfies UBCk; whence (ii) implies (iii),
because ker ∂Ck+1 being dense in ker ∂Dk+1 also implies density of ker ∂Ck+1 in ker ∂Dk+1.

Also, the argument by Matsumoto and Morita shows that (iii) implies (i), as this impli-
cation does not rely on completeness of the ambient complex.

The following characterisations of UBC apply to normed [resp. Banach] chain complexes
over R.

Theorem 3.104 ([MM85, Theorem 2.8]). Let C∗ be a normed chain complex over R
and let k ∈ N. Then the following are equivalent:

(i) C∗ satisfies UBCk;

(ii) C∗ satisfies UBCk and ker ∂k+1 is dense in ker ∂k+1;

(iii) The comparison map Hk+1(B(C∗,R))→ Hk+1(HomR(C∗,R)) is injective.

Proof. The equivalence of the first two items is contained in Proposition 3.103. The
argument by Matsumoto and Morita [MM85, Theorem 2.8] for the remaining implications
applies to all normed chain complexes over R.
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Theorem 3.105 ([MM85, Theorem 2.3]). Let C∗ be a Banach chain complex over R
and let k ∈ N. Then the following are equivalent:

(i) C∗ satisfies UBCk;

(ii) im ∂k+1 is closed in Ck;

(iii) Hk(C∗) is a Banach space with respect to the induced seminorm;

(iv) Hk+1(B(C∗,R)) is a Banach space with respect to the induced seminorm.

Proof. The argument by Matsumoto and Morita [MM85, Theorem 2.3] applies to all
Banach chain complexes.

Example 3.106. Let X be a space or a group with H∗b (X;R) ∼= H∗b (1;R). In particular,
this bounded cohomology is Banach in all degrees. Then the cochain complex version
of Theorem 3.105 (Remark 3.101) shows that C∗b (X;R) satisfies UBCk for all k ∈ N.
Moreover, Theorem 3.104 shows that C∗(X;R) satisfies UBCk for all k ∈ N.

This applies to all path-connected spaces with amenable fundamental group, to all
amenable groups, and to the known boundedly acyclic groups [MM85, Löh17, FFLMb,
FFLMa, MN, Mon]. In particular, there exist finitely presented non-amenable groups G
such that C∗b (G;R) satisfies UBCk for all k ∈ N [FFLMb, Corollary 5.2][Mon].

Remark 3.107. For the free group F2 of rank 2 it is well known that H2
b (F2;R) and

H3
b (F2;R) are infinite-dimensional. But it is unknown whether the higher bounded co-

homology of F2 is trivial or not. We outline an approach through the uniform boundary
condition: Let k ∈ N≥4. Then the following are equivalent:

(i) Hk
b (F2;R) ∼= 0;

(ii) C∗(F2;R) satisfies UBCk−1;

(iii) C∗(F2;Q) satisfies UBCk−1;

Indeed, the first two items are equivalent by Theorem 3.104 and the fact thatHk(F2;R) is
trivial. The equivalence of the last two items follows from Proposition 3.103, the fact that
C∗(F2;Q) ↪→ C∗(F2;R) induces an isometric embedding on the level of homology [Löh,
Proposition 1.7], and a small computation using the universal coefficient theorem.

Moreover, the last condition can be reformulated as follows:

∃K∈R>0 ∀c∈Ck(F2;Z) ∃c′∈Ck(F2;Q) ∂k(c
′) = ∂k(c) and |c′|1 ≤ K · |∂k(c)|1 .

In principle, this allows for experimental testing whetherHk
b (F2;R) is trivial or not [Lan].

Of course, the main challenge is to efficiently generate large amounts of “interesting”
chains in Ck(F2;Z).
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The uniform boundary condition is useful, e.g., in glueing estimates for simplicial volume
(Section 3.8.1), in vanishing results for bounded cohomology of certain groups [MM85,
Löh17, FFLMb, FFLMa], and in vanishing results for `1-homology [MM85, FL21].

3.A.3 The uniform uniform boundary condition

We introduce a uniform version of the uniform boundary condition for collections of
normed cochain complexes.

Definition 3.108 (Uniform uniform boundary condition). Let R be a normed ring and
let k ∈ N. A collection (C∗i )i∈I of normed cochain complexes over R satisfies the uniform
uniform boundary condition in degree k (UUBCk for short) if there exists K ∈ R>0 that
is a UBCk-constant for all C∗i with i ∈ I.

Example 3.109 ([FFLMa, Example 4.11]). We consider a collection (Hi)i∈I of amenable
groups. Then (C∗b (Hi;R))i∈I satisfies UUBCk for all k ∈ N. Indeed, if H is amenable,
then 1 is a UBCk-constant for C∗b (H;R): There exists a contracting cochain homotopy s
for C∗b (H;R) with ‖s‖ ≤ 1 [Fri17, Theorem 3.6]; thus, for every cocycle b, the cochain
c := s(b) satisfies

b = δ ◦ s(b) + s ◦ δ(b) = δ(c) and |c|∞ ≤ ‖s‖ · |b|∞ ≤ |b|∞ .

Example 3.110. Every finite collection of cochain complexes whose members all sat-
isfy UBCk satisfies UUBCk.

In particular, from Example 3.106, we obtain: If (Hi)i∈I is a finite collection of boundedly
acyclic groups, then (C∗b (Hi;R))i∈I satisfies UUBCk for all k ∈ N.

It is unknown whether all collections of boundedly acyclic groups satisfy UUBC in all
degrees (as the open mapping theorem used in the proof of Theorem 3.105 does not give
a priori estimates on the norms of the partial inverses). Every collection of boundedly
acyclic groups satisfies UUBC in degree 2 [FFLMa, Proposition 4.15].

3.A.4 Bounded products

Finite degree-wise products are compatible with taking cohomology of bounded cochain
complexes. For infinite degree-wise products, in general, one needs to impose bounded-
ness conditions in a uniform way. To this end, we introduce bounded products and prove
a compatibility statement for cohomology of certain degree-wise bounded products.

Definition 3.111 (Bounded product). Let R be a normed ring. Let (Vi)i∈I be a collec-
tion of normed modules over R. The bounded product of (Vi)i∈I is the normed R-module

∏b

i∈I
Vi :=

{
x ∈

∏
i∈I

Vi

∣∣∣ sup
i∈I
|xi| <∞

}
⊂
∏
i∈I

Vi
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with respect to the supremum norm | · |∞.

Example 3.112. Let (Si)i∈I be a collection of sets and let R be a normed ring. Then
the canonical inclusions (Sj ↪→

∐
i∈I Si)j∈I induce a natural isometry

`∞
(∐
i∈I

Si, R
)
→
∏b

i∈I
`∞(Si, R)

of normed R-modules.

Remark 3.113 (Bounded product of normed cochain complexes). Let R be a normed
ring. A collection (C∗i )i∈I of normed cochain complexes over R is called uniform if
for each k ∈ N, the supremum supi∈I ‖δki ‖ is finite. For example, all collections of
normed cochain complexes built using simplicial coboundary operators are uniform (such
as bounded cochain complexes of groups or spaces).

If (C∗i )i∈I is a uniform collection of normed cochain complexes over R, then the degree-
wise bounded product (

∏b
i∈I C

k
i )k∈N is a normed cochain complex over R with respect

to the supremum norm and the degree-wise product coboundary operator∏b

i∈I
C∗i →

∏b

i∈I
C∗+1
i

(xi)i∈I 7→ (δ∗i (xi))i∈I .

Theorem 3.114 (Cohomology of bounded products). Let k ∈ N. Let (C∗i )i∈I be a uni-
form collection of normed cochain complexes over a normed ring R that satisfies UUBCk.
Then the map

Φ: Hk
(∏b

i∈I
C∗i

)
→
∏b

i∈I
Hk(C∗i )

induced by the canonical projections is a continuous isomorphism of R-modules with
continuous inverse. Here, we equip Hk(C∗i ) with the seminorm induced by the given
norm on C∗i .

Proof. Clearly, the map Φ is well-defined and continuous.

We construct an explicit inverse: Let ε ∈ R>0. Let (ϕi)i∈I ∈
∏b
i∈I H

k(C∗i ); for each i ∈ I,
there exists a cocycle fi ∈ Cki representing ϕi in Hk(C∗i ) with

|fi| ≤ ‖ϕi‖+ ε .

Because (ϕi)i∈I lies in the bounded product, the norms (|fi|)i∈I are a bounded collection,
and so f := (fi)i∈I ∈

∏b
i∈I C

k
i ; moreover, δ(f) = (δi(fi))i∈I = 0. Therefore, we obtain a

cohomology class
ϕ := [f ] ∈ Hk

(∏b

i∈I
C∗i

)
.
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By construction, Φ(ϕ) = (ϕi)i∈I .

If this construction is independent of the chosen collection (fi)i∈I , then it provides an
R-linear inverse of Φ; moreover, as we can take ε → 0, we also see that this inverse is
bounded.

Thus, it remains to show that ϕ is independent of the choice of the collection (fi)i∈I . To
show this, we use the uniform uniform boundary condition: Let (f ′i)i∈I ∈

∏
i∈I C

k
i be a

collection of cocycles with

[f ′i ] = ϕi ∈ Hk(C∗i ) and |f ′i | ≤ ‖ϕi‖+ 1

for all i ∈ I. Let K be a UUBCk-constant for (C∗i )i∈I . Then, for each i ∈ I, there is a
cochain ci ∈ Ck−1

i with

δi(ci) = fi − f ′i and |ci| ≤ K · |fi − f ′i | ≤ K · 2 ·
(
‖ϕi‖+ 1

)
.

Thus, c := (ci)i∈I lies in
∏b
i∈I C

k−1
i and δ(c) = f − f ′.
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Chapter 4

Amenable covers of right-angled
Artin groups

This chapter is the article [Lia].

Abstract. Let AL be the right-angled Artin group associated to a finite flag complex L.
We show that the amenable category of AL equals the virtual cohomological dimension
of the right-angled Coxeter group WL. In particular, right-angled Artin groups satisfy
a question of Capovilla–Löh–Moraschini proposing an inequality between the amenable
category and Farber’s topological complexity.

4.1 Introduction

A classical approach to study a topological space X is to cover it by open subsets
U0, . . . , Un that are simpler or small in an appropriate sense and to analyse how these
overlap. The minimal possible cardinality n of such a cover yields a measure of com-
plexity of the space X. When the subsets (Ui)i are required to be contractible in X, we
obtain the Lusternik–Schnirelmann category (LS-category for short) LS-cat(X) which
is a well-studied homotopy invariant originating from critical point theory [CLOT03].
We will relax the contractibility assumption and instead require the subsets (Ui)i to be
amenable in X, in the sense that the group

im
(
π1(Ui ↪→ X,x)

)
is amenable for every basepoint x ∈ Ui. Then the amenable category catAME(X) of X
is the minimal n ∈ N≥0 for which there exists an open cover X =

⋃n
i=0 Ui by n+ 1 many

amenable subsets. Clearly, we have catAME(X) ≤ LS-cat(X).

Amenable groups (such as finite or abelian groups) and hence amenable subsets can be
considered as small for many purposes in geometry, topology, and dynamics. Therefore
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the amenable category is a meaningful threshold, especially for aspherical spaces. For
instance, there are vanishing results in all degrees larger than the amenable category for
the comparison map from bounded cohomology to singular cohomology [Gro82, Iva85],
for `2-Betti numbers [Sau09], and for homology growth [Sau16, HS]. The amenable cate-
gory was systematically studied as an invariant of 3-manifolds in [GLGAH13, GLGAH14]
and for arbitrary spaces recently in [CLM, LM].

The focus of this note is on the amenable category of aspherical spaces. Since the
amenable category is a homotopy invariant, it yields an invariant of discrete groups G
by setting catAME(G) := catAME(BG). Here BG is an Eilenberg–MacLane space. By
the classical work of [EG57, Sta68, Swa69], the LS-category LS-cat(BG) coincides with
the cohomological dimension cd(G). In particular, we always have catAME(G) ≤ cd(G).
The amenable category is difficult to compute in general, the usual strategy being to
exhibit an explicit open cover by amenable subsets and to prove its minimality using
(co)homological obstructions. The precise value of catAME(G) is known, e.g., for the
following classes of groups:

• catAME(G) = 0 if and only if G is amenable;

• catAME(G) = 1 if and only if G is a non-amenable fundamental group of a graph
of amenable groups [CLM, Corollary 5.4];

• catAME(G) = cd(G) if G is torsion-free non-elementary hyperbolic [Min01][CLM,
Example 7.8].

The main result of the present note is a computation of the amenable category for all
right-angled Artin groups. These form an important class of groups in geometric group
theory, interpolating between free groups and free abelian groups. Let L be a finite flag
complex (i.e., a simplicial complex in which every clique spans a simplex) with vertex
set V . The right-angled Artin group AL has as generators vertices v ∈ V , subject to the
relation that v1 and v2 commute if and only if they are connected by an edge in L. The
right-angled Coxeter group WL is the quotient of AL obtained by adding the relations
that each generator v ∈ V is of order 2. Since WL is virtually torsion-free, its virtual
cohomological dimension vcd(WL) is well-defined as the cohomological dimension of a
finite index torsion-free subgroup.

Theorem 4.1 (Corollary 4.17). Let AL be the right-angled Artin group associated to a
finite flag complex L. Then we have

catAME(AL) = vcd(WL) .

Theorem 4.1 provides many examples of groups for which the amenable category is
not extremal, in the sense that 1 < catAME(G) < cd(G). Furthermore, it follows
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from Theorem 4.1 and [Dra97] that there are right-angled Artin groups AL1 and AL2

satisfying catAME(AL1 ×AL2) < catAME(AL1) + catAME(AL2).

Another invariant of a similar spirit is Farber’s topological complexity TC which is mo-
tivated by the motion planning problem in robotics [Far03]. In [CLM, Question 8.1] it
is asked for which topological spaces X the following inequality holds:

catAME(X ×X) ≤ TC(X) .

Examples of spaces and groups satisfying this inequality can be found in [CLM, Section 8],
and no counter-example seems to be known at the time of writing. We show that all
right-angled Artin groups are positive examples.

Theorem 4.2 (Proposition 4.18). Let AL be the right-angled Artin group associated to
a finite flag complex L. Then we have catAME(AL ×AL) ≤ TC(AL).

We also obtain a complete characterisation of right-angled Artin groups with (non-)
vanishing minimal volume entropy (Theorem 4.20), resolving the cases that were not
covered by recent work in [HS, BC21].

Our proofs rely on combining upper and lower bounds (Lemma 4.4) with existing results
on generalised LS-category, classifying spaces for families of subgroups, and homology
growth from [CLM, HS, LM, OS, PP, Sau16].

Acknowledgements. The present note is part of the author’s PhD project. He thanks
his advisors Ian Leary for extremely helpful discussions and Nansen Petrosyan for his sup-
port. We are grateful to Mark Grant, Sam Hughes, Wolfgang Lück, and Irakli Patchkoria
for stimulating conversations. We thank Kevin Schreve for explanations about the pa-
per [HS].

4.2 Preliminaries

4.2.1 Generalised LS-category

Let G be a group. A family F of subgroups of G is a non-empty set of subgroups of G
that is closed under conjugation and under taking subgroups. Important examples are
the families T R consisting only of the trivial subgroup, FIN consisting of all finite
subgroups, and AME consisting of all amenable subgroups. For a set H of subgroups
of G, the family F〈H〉 generated by H is defined as the smallest family containing H.
For a family F and a subgroup H of G, we can form the family F|H = {F ⊂ H | F ∈ F}
of subgroups of H.
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Definition 4.3 ([CLM, Definition 2.16]). Let X be a path-connected space with fun-
damental group G and let F be a family of subgroups of G. A (not necessarily path-
connected) open subset U of X is an F-set if

im
(
π1(U ↪→ X,x)

)
∈ F

for all x ∈ U . The generalised LS-category with respect to F (also F-category) catF (X)

is the minimal n ∈ N≥0 for which there exists an open cover X =
⋃n
i=0 Ui by n + 1

many F-sets. If no such finite cover of X exists, we set catF (X) =∞.

The F-category of the group G is defined as catF (G) := catF (BG).

We point out that we use a different normalisation than in [CLM], our value for catF (X)

is smaller by 1. In the literature similar invariants are sometimes defined in terms of the
multiplicity of open covers rather than the cardinality. However, for CW-complexes there
is no difference [CLM, Remark 3.13]. From here onwards, we will study the generalised
LS-category for groups, that is for aspherical spaces (even though some results hold more
generally for not necessarily aspherical spaces).

It is a classical result [EG57, Sta68, Swa69] that the T R-category catT R(G) coincides
with the cohomological dimension cd(G). The following upper and lower bounds for
the F-category are immediate.

Lemma 4.4. Let G be a group and let F be a family of subgroups of G.

(i) For a subfamily E ⊂ F , we have catF (G) ≤ catE(G).
In particular, catF (G) ≤ cd(G);

(ii) For a subgroup H ⊂ G, we have catF|H (H) ≤ catF (G).
In particular, if F|H = T R then cd(H) ≤ catF (G).

Our main object of interest is the AME-category (also amenable category) catAME(G).
A lower bound for the amenable category is given by homology growth. Recall that a
group G is of type F if there exists a finite model for BG. A group G is residually finite
if it admits a residual chain (Γi)i∈N, i.e., a nested sequence G = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · ·
such that each Γi is a finite index normal subgroup of G and

⋂
i∈N Γi = {1}. We denote

by bk(Γi;Fp) the k-th Betti number of BΓi with coefficients in Fp.

Theorem 4.5 ([HS, Theorem 3.2][Sau16, Theorem 1.6]). Let G be a residually finite
group of type F and let (Γi)i be a residual chain. Then we have

lim
i→∞

bk(Γi;Fp)
[G : Γi]

= 0

for all k > catAME(G) and all primes p.
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4.2.2 Classifying spaces for families of subgroups

Let G be a group and let F be a family of subgroups of G. A classifying space EFG
for G with respect to the family F is a terminal object in the G-homotopy category of
G-CW-complexes whose isotropy groups lie in F [Lüc05]. For the trivial family T R, a
model for ET RG is given by the universal covering space EG of BG. In particular, for
every family F there is a unique (up to G-homotopy) G-map EG→ EFG.

The F-category of groups can be characterised via classifying spaces for families.

Theorem 4.6 ([CLM, Proposition 7.5]). Let G be a group and let F be a family of
subgroups of G. Then catF (G) equals the infimum of n ∈ N≥0 for which the canonical
G-map EG→ EFG is G-homotopic to a G-map with values in the n-skeleton of EFG.

The usual notions of geometric and cohomological dimension of groups admit generalisa-
tions to the setting of families. The geometric dimension gdF (G) of G with respect to F
is the smallest possible dimension of a model for EFG. The cohomological dimension
cdF (G) of G with respect to F is the supremum of degrees in which the G-equivariant
Bredon cohomology of EFG is non-trivial for some Bredon coefficient module [Bre67].

Corollary 4.7. Let G be a group and let F be a family of subgroups of G. Then we have
catF (G) ≤ gdF (G).

Moreover, if cdF (G) = 1 implies gdF (G) = 1, then catF (G) ≤ cdF (G).

Proof. The inequality catF (G) ≤ gdF (G) is an immediate consequence of Theorem 4.6.
Since gdF (G) ≤ max{cdF (G), 3} [LM00], it remains to treat the case that cdF (G) = 2

and gdF (G) = 3. We follow a standard argument using equivariant obstruction theory
(see e.g., [GMP, Theorem 3.6]). Let EFG be a 3-dimensional model and consider the
identity map id2 : (EFG)2 → (EFG)2 on its 2-skeleton. The obstruction to extending
the restriction id2 |(EFG)1

to a G-map EFG → (EFG)2 lies in the Bredon cohomology
of EFG in degree 3. This cohomology group is trivial by the assumption that cdF (G) = 2

and hence there exists a G-map ϕ : EFG→ (EFG)2. By considering the composition

EG→ EFG
ϕ−→ (EFG)2 ↪→ EFG ,

it follows from Theorem 4.6 that catF (G) ≤ 2.

It is conjectured that cdF (G) = 1 implies gdF (G) = 1 for every family F , see [GMP] for
a recent account. While the conjecture is open in general, it is known to hold, e.g., for
the family FIN [Dun79].
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4.2.3 Graph products of groups

Let L be a flag complex, which shall always mean a finite flag complex, with vertex
set V . Let G be a group and for all v ∈ V let Gv = G. The graph product GL [Gre] is
the group

GL = ∗v∈VGv/〈[Gv1 , Gv2 ] for v1, v2 ∈ V spanning an edge in L〉 .

The right-angled Artin group (RAAG for short) associated to L is AL = ZL. The right-
angled Coxeter group (RACG for short) associated to L is WL = (Z/2Z)L.

Remark 4.8. The results of this note hold, when suitably modified, also for graph prod-
ucts with varying vertex groups (Gv)v∈V . However, we restrict ourselves to the case of
identical vertex groups for ease of notation.

For every full subcomplex K of L, the graph product GL retracts onto GK by mapping
the factors (Gv)v corresponding to vertices in L \K to the trivial element in GK .

Consider the obvious projection q : GL →
∏
v∈V Gv. If G is abelian, then the kernel of q

is the commutator subgroup G′L. Moreover, since the restriction of q to Gσ is injective
for every simplex σ ⊂ L, the intersection of G′L with conjugates of Gσ in GL is trivial.

By functoriality of the graph product construction (−)L in the group variable, the pro-
jection Z → Z/2Z induces a map p : AL → WL which restricts to the commutator
subgroups p′ : A′L → W ′L. Since W ′L ⊂ WL is of finite index and torsion-free, the virtual
cohomological dimension vcd(WL) equals cd(W ′L).

Lemma 4.9. Let L be a flag complex. The group homomorphism p′ : A′L → W ′L admits
a right-inverse. In particular, vcd(WL) ≤ cd(A′L).

Proof. We argue on the level of topological spaces using the polyhedral product con-
struction (see e.g., [PV16]). Models for B(A′L) and B(W ′L) are given by the polyhedral
products (R,Z)L and ([0, 1], {0, 1})L, respectively. Consider the map

f : (R,Z)→ ([0, 1], {0, 1}) , x 7→

x− bxc if bxc is even;

1− (x− bxc) if bxc is odd

that “folds” the real line onto the unit interval. The map f induces a map on polyhedral
products and on their fundamental groups the map p′ : A′L → W ′L. A right-inverse to f
is given by the inclusion ([0, 1], {0, 1}) ↪→ (R,Z). It follows that W ′L is a retract of A′L
and in particular cd(W ′L) ≤ cd(A′L).

We recall an explicit formula for the virtual cohomological dimension of RACGs [Dav08,
Corollary 8.5.5]. For the right-angled Coxeter group WL associated to a flag complex L,
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we have

vcd(WL) = max{n | H̃n−1(L \ σ;Z) 6= 0 for some simplex σ ⊂ L or σ = ∅} . (4.1)

Here H̃∗ denotes reduced cohomology. The virtual cohomological dimension of RACGs
will play a key role due to its interpretation as the cohomological dimension of graph
products with respect to the following family.

Let GL be a graph product and let F〈S〉 be the family of subgroups of GL that is
generated by the set of spherical subgroups

S = {Gσ ⊂ GL | σ ⊂ L simplex} .

In the case of RACGs, we have F〈S〉 = FIN . In the case of RAAGs, the family F〈S〉
consists of free abelian groups and in particular, F〈S〉 ⊂ AME .

Theorem 4.10 ([PP, Corollaries 8.3 and 1.10]). Let GL be the graph product associated
to a non-trivial group G and a flag complex L. Then cdF〈S〉(GL) = vcd(WL).

Moreover, cdF〈S〉(GL) = 1 implies gdF〈S〉(GL) = 1.

In view of Theorem 4.5, we recall a computation of homology growth for graph products
(using that residually finite amenable groups of type F are Fp-`2-acyclic by Theorem 4.5).
Graph products of residually finite groups are residually finite [Gre].

Theorem 4.11 ([OS, Theorem 5.1]). Let G be a non-trivial residually finite amenable
group of type F and let GL be the graph product associated to a flag complex L. Then,
for any residual chain (Γi)i in GL, we have

lim
i→∞

bk(Γi;Fp)
[GL : Γi]

= b̃k−1(L;Fp)

for all k > 0 and all primes p.

Here b̃k−1(L;Fp) denotes the reduced Betti number of L with coefficients in Fp. Our
formulations of Theorem 4.10 and Theorem 4.11 for graph products are special cases of
the results in [PP, OS] which apply to the more general context of group actions with a
strict fundamental domain.

4.3 Generalised LS-category of right-angled Artin groups

We investigate the generalised LS-category of RAAGs with respect to several interesting
families. Throughout, let L be a finite flag complex. The T R-category catT R(AL) equals
the cohomological dimension cd(AL) which is dim(L)+1. The following lemma provides
an upper bound for various families and will be used frequently.
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Lemma 4.12. Let GL be the graph product associated to a group G and a flag complex L.
Let F be a family of subgroups of GL satisfying F〈S〉 ⊂ F . Then catF (GL) ≤ vcd(WL).

Proof. Combining Lemma 4.4 (i), Corollary 4.7, and Theorem 4.10 yields the claim.

4.3.1 Spherical category

We compute the generalised LS-category with respect to the family F〈S〉 for RAAGs
and RACGs.

Proposition 4.13 (Spherical category of RAAGs). Let AL be the right-angled Artin
group associated to a flag complex L. Then we have catF〈S〉(AL) = vcd(WL).

In particular, cd(A′L) = vcd(WL).

Proof. Lemma 4.12 provides the upper bound catF〈S〉(AL) ≤ vcd(WL). For the lower
bound, consider the commutator subgroup A′L which satisfies F〈S〉|A′L = T R. Then
Lemma 4.4 (ii) applied to A′L together with Lemma 4.9 yields

catF〈S〉(AL) ≥ catF〈S〉|A′
L

(A′L) = cd(A′L) ≥ vcd(WL) ,

concluding the proof.

An alternative proof for the lower bound catF〈S〉(AL) ≥ vcd(WL) will be provided by
Theorem 4.16 below.

A virtually torsion-free group G satisfies cdFIN (G) ≥ vcd(G), which follows from the
Shapiro lemma for Bredon cohomology. This inequality can be strict, but it is in fact
an equality for right-angled Coxeter groups (Theorem 4.10), as well as for many other
examples [DMP16].

Proposition 4.14. Let G be a virtually torsion-free group satisfying cdFIN (G) = vcd(G).
Then we have catFIN (G) = vcd(G).

Proof. By Corollary 4.7, we have catFIN (G) ≤ cdFIN (G) = vcd(G). The opposite
inequality vcd(G) ≤ catFIN (G) follows from Lemma 4.4 (ii) by restricting to a finite
index torsion-free subgroup of G.

Corollary 4.15 (Finite category of RACGs). Let WL be the right-angled Coxeter group
associated to a flag complex L. Then we have catFIN (WL) = vcd(WL).
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4.3.2 Amenable category

We prove the main result of this note.

Theorem 4.16. Let G be a non-trivial residually finite amenable group of type F and
let GL be the graph product associated to a flag complex L. Let F be a family of subgroups
of GL satisfying F〈S〉 ⊂ F ⊂ AME. Then we have

catF (GL) = vcd(WL) .

Proof. On the one hand, since F〈S〉 ⊂ F we have catF (GL) ≤ vcd(WL) by Lemma 4.12.
On the other hand, since F ⊂ AME we have catF (GL) ≥ catAME(GL) by Lemma 4.4 (i)
and it remains to prove that catAME(GL) ≥ vcd(WL).

Let n = vcd(WL). By (4.1) there exists a (possibly empty) simplex σ ⊂ L such
that H̃n−1(L \ σ;Z) 6= 0. Let K be the full subcomplex of L spanned by the ver-
tices in L \ σ. Then the graph product GK associated to K is a subgroup of GL.
Hence catAME(GL) ≥ catAME(GK) by Lemma 4.4 (ii) and it suffices to prove that
catAME(GK) ≥ n.

Indeed, since K is homotopy equivalent to L\σ, we have H̃n−1(K;Z) 6= 0. The universal
coefficient theorem implies that H̃n−1(K;Fp) 6= 0 for some prime p. By Theorem 4.11
we have

lim
i→∞

bn(Γi;Fp)
[GK : Γi]

= b̃n−1(K;Fp) 6= 0 ,

where (Γi)i is any residual chain in GK . Thus we conclude from Theorem 4.5 that
catAME(GK) ≥ n. This finishes the proof.

Applying Theorem 4.16 to G = Z and F = AME yields the following.

Corollary 4.17 (Amenable category of RAAGs). Let AL be the right-angled Artin group
associated to a flag complex L. Then we have catAME(AL) = vcd(WL).

4.3.3 Topological complexity

Another important generalised LS-category is Farber’s topological complexity [Far03].
Let G be a torsion-free group and consider the product G×G. Let F〈∆〉 be the family
of subgroups of G × G generated by the diagonal subgroup ∆ ⊂ G × G. The topo-
logical complexity TC(G) coincides with the F〈∆〉-category catF〈∆〉(G × G) of G × G
by [FGLO19], which might as well be taken as the definition of TC(G).

The topological complexity of RAAGs has been computed [CP08, GGG+15]. We recall
the precise result for completeness, even though we will not need it in the sequel. For
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the right-angled Artin group AL associated to a flag complex L with vertex set V , we
have

TC(AL) = max{|V1 ∪ V2| | V1, V2 ⊂ V each spanning a simplex in L} .

The topological complexity and amenable category of RAAGs are related by the following
inequality, providing positive examples to [CLM, Question 8.1].

Proposition 4.18. Let AL be the right-angled Artin group associated to a flag complex L.
Then we have catAME(AL ×AL) ≤ TC(AL).

Proof. We prove the inequalities catAME(AL × AL) ≤ 2 vcd(WL) ≤ TC(AL). Since
the product AL × AL is a right-angled Artin group (associated to the join L ∗ L), by
Lemma 4.12 we have catAME(AL ×AL) ≤ vcd(WL ×WL) ≤ 2 vcd(WL).

To prove the remaining inequality, let σ ⊂ L be a simplex of maximal dimension. Con-
sider the subgroup Aσ × A′L of AL × AL which satisfies F〈∆〉|Aσ×A′L = T R. It follows
from Lemma 4.4 (ii) that TC(AL) ≥ cd(Aσ × A′L). Since Aσ is free abelian and using
Lemma 4.9, we obtain

cd(Aσ ×A′L) = cd(Aσ) + cd(A′L) ≥ 2 vcd(WL) .

This concludes the proof.

Remark 4.19. The analogous inequality holds for all higher topological complexities
[Rud10], i.e., we have catAME((AL)r) ≤ TCr(AL) for all r ∈ N≥2.

4.3.4 Minimal volume entropy

The generalised LS-category with respect to families of subgroups with controlled growth
is closely related to the (non-)vanishing of minimal volume entropy. The arguments in
this section follow [HS] to which we refer for the precise definitions.

Let G be a group of type F with gd(G) = n. The minimal volume entropy ω(G) is
defined as the minimal exponential growth rate of balls in cocompact models for EG of
dimension n. There are sufficient conditions for the (non-)vanishing of minimal volume
entropy, called the fiber (non-)collapsing assumption (F(N)CA for short) [BS]. More
precisely,

• if there exists a finite model for BG of dimension n satisfying FCA, then ω(G) = 0;

• if every finite model for BG of dimension n satisfies FNCA and G has uniform
uniform exponential growth, then ω(G) > 0.
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The conditions FCA and FNCA are not complementary in general.

We will use a reformulation of condition FCA in the language of generalised LS-category
[BS, LM]. Let G be a group as above. For δ ∈ R>0, let Subexp<δ denote the family of
subgroups H of G such that every finitely generated subgroup of H has subexponential
growth with subexponential growth rate < δ. It follows from [LM, Corollary 5.9] that
there exists a finite model for BG of dimension n satisfying FCA if and only if

catSubexp<(n−k)/n
(G) < k + 1

for some k ∈ {0, . . . , n−1}. (Our values for the generalised LS-category are smaller by 1

than in [LM] because we use a different normalisation.)

The following is a complete characterisation of RAAGs with (non-)vanishing minimal
volume entropy.

Theorem 4.20 (Minimal volume entropy of RAAGs). Let AL be the right-angled Artin
group associated to a flag complex L of dimension d. Then H̃d(L;Z) 6= 0 if and only
if ω(AL) > 0.

Proof. Using (4.1) we observe that H̃d(L;Z) 6= 0 is equivalent to vcd(WL) = d+ 1. For
all δ > 0 we have F〈S〉 ⊂ Subexp<δ ⊂ AME and hence Theorem 4.16 implies

catSubexp<δ(AL) = vcd(WL) .

By the above, we have vcd(WL) < d + 1 if and only if there exists a finite model
for B(AL) of dimension d + 1 satisfying FCA. In this case ω(AL) = 0. On the other
hand, the conditions FCA and FNCA are in fact complementary for B(AL) [BC21].
Thus, we have vcd(WL) = d+ 1 if and only if every finite model for B(AL) of dimension
d+ 1 satisfies FNCA. In this case ω(AL) > 0, using that RAAGs have uniform uniform
exponential growth.

Most cases of Theorem 4.20 appeared in [HS, Theorem 1.1], which however left open if
H̃d(L;Z) = 0 implies ω(AL) = 0 in the case when d = 2. Our resolution of this case
goes back to the obstruction theoretical argument in the proof of Corollary 4.7.

4.4 Graph products of hyperbolic groups

We provide examples of graph products whose amenable category is maximal, i.e., it
equals the cohomological dimension. For a group G and a flag complex L of dimension d,
we have cd(GL) = cd(Gd+1) ≤ (d+ 1) · cd(G).
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Lemma 4.21. Let G be a group and let L be a flag complex of dimension d. Let F be a
family of subgroups of the graph product GL. If there is a simplex σ ⊂ L of dimension d
such that catF|Gσ (Gσ) = cd(Gσ), then catF (GL) = cd(Gd+1).

Proof. The claim follows at once from Lemma 4.4 (ii) by restricting to the subgroup Gσ
of GL.

In the following proof we use the notion of simplicial volume of manifolds and some of
its standard properties [Gro82, Fri17].

Proposition 4.22. Let G be the fundamental group of an oriented closed connected
hyperbolic manifold and let GL be the graph product associated to a flag complex L.
Let F be a family of subgroups of GL satisfying F ⊂ AME. Then we have

catF (GL) = (dim(L) + 1) · cd(G) .

Proof. Let d = dim(L) and let M be an oriented closed connected hyperbolic manifold
with π1(M) ∼= G. Since F ⊂ AME , by Lemma 4.4 (i) we have

catAME(GL) ≤ catF (GL) ≤ cd(GL) ≤ (d+ 1) · cd(G) .

Since M is a model for BG, the product Md+1 is a model for BGd+1 and we have
cd(Gd+1) = (d + 1) · cd(G). Hence by Lemma 4.21 it suffices to show that we have
catAME(M

d+1) = dim(Md+1). Indeed, the hyperbolic manifoldM has positive simplicial
volume and by the product inequality for simplicial volume so does Md+1. Finally, the
amenable category of manifolds with positive simplicial volume is maximal, i.e., it equals
the dimension of the manifold.

Remark 4.23. More generally, Proposition 4.22 holds by the same proof for every group G
that is the fundamental group of an oriented closed connected aspherical manifold with
positive simplicial volume. For a recent list of manifolds known to have positive simplicial
volume, see e.g., [LMR, Example 3.1].
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Chapter 5

On the topological complexity of
toral relatively hyperbolic groups

This chapter is the article [Li22] which has been published in the journal Proceedings of
the American Mathematical Society.

Abstract. We prove that the topological complexity TC(π) equals cd(π × π) for certain
toral relatively hyperbolic groups π.

5.1 Introduction

The (reduced) topological complexity TC(X) of a space X is defined as the minimal
integer n for which there exists a cover of X × X by n + 1 open subsets U0, . . . , Un

such that the path fibration X [0,1] → X ×X admits a local section over each Ui. This
quantity, which is similar in spirit to the classical Lusternik–Schnirelmann category, was
introduced by Farber [Far03] in the context of robot motion planning. In fact, TC(−)

is a homotopy invariant and hence one can define the topological complexity TC(π) of
a group π to be TC(Bπ), where Bπ is a classifying space for π. There are bounds (see
e.g., [FGLO19, FM20, Dra20])

cd(π) ≤ TC(π) ≤ cd(π × π) , (5.1)

where cd(−) denotes the cohomological dimension. However, the precise value of TC(π)

is known only for a small class of groups, which contains for instance the abelian groups,
hyperbolic groups, free products of the formH∗H forH geometrically finite, right-angled
Artin groups, and certain subgroups of braid groups. We refer to [FM20] and [Dra20]
for a more thorough account on this topic.
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It is the decisive insight of [FGLO19] that the topological complexity of groups can
be expressed in terms of classifying spaces for families of subgroups, which are well-
studied objects in equivariant topology. For a family F of subgroups of a group G,
a classifying space EFG is a terminal object in the G-homotopy category of G-CW-
complexes with stabilisers in F . Farber, Grant, Lupton, and Oprea showed that TC(π)

equals the minimal integer n for which the canonical (π×π)-map E(π×π)→ ED(π×π)

is equivariantly homotopic to a map with values in the n-skeleton ED(π×π)(n). Here D is
the family of subgroups of π×π consisting of all conjugates of the diagonal subgroup ∆(π)

and their subgroups. Using this characterisation of TC(π), in a recent breakthrough
Dranishnikov [Dra20] has computed the topological complexity of torsion-free hyperbolic
groups and more generally, of geometrically finite groups with cyclic centralisers.

Theorem 5.1 (Dranishnikov). Let π be a geometrically finite group with cd(π) ≥ 2 such
that the centraliser Zπ(b) is cyclic for every b ∈ π\{e}. Then we have TC(π) = cd(π×π).

Recall that a group π is called geometrically finite if it admits a finite model for Bπ.
Note that for geometrically finite groups π we have cd(π × π) = 2 cd(π), see [Dra19].
Previously, Farber and Mescher [FM20] had shown for groups π as in Theorem 5.1 that
TC(π) equals either cd(π × π) or cd(π × π) − 1. The main contribution of the present
note is the following generalisation of Theorem 5.1.

Theorem 5.2. Let π be a torsion-free group with cd(π) ≥ 2 admitting a malnormal
collection of abelian subgroups P = {Pi | i ∈ I} that satisfy cd(Pi × Pi) < cd(π × π).
Suppose that the centraliser Zπ(b) is cyclic for every b ∈ π that is not conjugate into any
of the Pi. Then TC(π) = cd(π × π).

Recall that a set P = {Pi | i ∈ I} of subgroups of π is called a malnormal collection
if for all Pi, Pj ∈ P and g ∈ π we have gPig−1 ∩ Pj = {e}, unless i = j and g ∈ Pi.
Our main examples of groups satisfying the assumptions of Theorem 5.2 are torsion-free
relatively hyperbolic groups π with cd(π) ≥ 2 and finitely generated abelian peripheral
subgroups P1, . . . , Pk satisfying cd(Pi) < cd(π). Note that Theorem 5.2 recovers The-
orem 5.1 as a special case when P consists only of the trivial subgroup and that the
assumption of geometric finiteness has been dropped.

In light of the upper bound TC(π) ≤ cd(π × π), Theorem 5.1 and Theorem 5.2 are
statements about the maximality of topological complexity. They share a common
strategy of proof based on the characterisation of TC(π) in terms of classifying spaces
from [FGLO19]. Namely, we construct a “small” model for ED(π × π) from E(π × π)

allowing us to show that the map E(π × π) → ED(π × π) induces a non-trivial map
on cohomology in degree cd(π × π). Hence one has equality TC(π) = cd(π × π). Nev-
ertheless, even for the case when P consists only of the trivial subgroup, our proof is
different from Dranishnikov’s. He constructed a specific model for ED(π × π) and used
cohomology with compact support, while we employ a general construction due to Lück
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and Weiermann and use equivariant Bredon cohomology. Lück and Weiermann’s con-
struction (Theorem 5.3) is a general recipe to efficiently construct EFG from EEG for
two families of subgroups E ⊂ F of a group G satisfying a certain maximality condition.
While for the group π × π this condition is not satisfied for the families {{e}} ⊂ D, we
define an intermediate family {{e}} ⊂ F1 ⊂ D such that we can apply two iterations of
the construction.
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supervision of Nansen Petrosyan and Ian Leary, who we thank for their support. We are
grateful to Pietro Capovilla for interesting discussions about the paper [CLM] and his
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5.2 Preliminaries on classifying spaces for families

We briefly review the notion of classifying spaces for families of subgroups due to tom
Dieck and their equivariant Bredon cohomology. For a survey on classifying spaces for
families we refer to [Lüc05] and for an introduction to Bredon cohomology to [Flu]. Let G
be a group, which shall always mean a discrete group.

A family of subgroups F is a non-empty set of subgroups of G that is closed un-
der conjugation by elements of G and under taking subgroups. Typical examples are
T R = {{e}}, FIN = {finite subgroups}, VCY = {virtually cyclic subgroups}, and
ALL = {all subgroups}. For a set H of subgroups of G, one can consider the family
F〈H〉 = {conjugates of subgroups in H and their subgroups} which is the smallest fam-
ily containing H and called the family generated by H. When H = {H} consists of a
single subgroup, we denote F〈{H}〉 instead by F〈H〉 and call it the family generated
by H. Note that for two families E and F of subgroups of G, the union E ∪F is again a
family. For a family F of subgroups of G and any subgroup H ⊂ G, we denote by F|H
the family {K∩H |K ∈ F} of subgroups ofH. (In the literature this family is sometimes
denoted by F ∩H instead.)

A classifying space EFG for the family F is a terminal object in theG-homotopy category
of G-CW-complexes with stabilisers in F . It can be shown that EFG always exists and
that a G-CW-complex X is a model for EFG if and only if the fixed-point set XH

is contractible for H ∈ F and empty otherwise. In particular, there exists a G-map
EG→ EFG which is unique up to G-homotopy.

The orbit category OFG has as objects G-sets of the form G/H for H ∈ F and as
morphisms G-maps. Let OFG-Mod denote the category of contravariant functors
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M : OFG → Z-Mod with values in the category of Z-modules, which are called OFG-
modules. For a G-CW-complex X with stabilisers in F , the G-equivariant Bredon co-
homology H∗G(X;M) with coefficients in an OFG-module M is the cohomology of the
cochain complex HomOFG-Mod(C∗(X

?),M), where C∗(X?)(G/H) = C∗(X
H) is the cel-

lular chain complex.

Passage to larger families. LetG be a group and E ⊂ F be two families of subgroups.

We say that G satisfies condition (ME⊂F ) if every element H ∈ F \ E is contained in
a unique element M ∈ F \ E which is maximal in F \ E (with respect to inclusion).
We say that G satisfies condition (NME⊂F ) if every maximal element M ∈ F \ E is
self-normalising, i.e., M equals its normaliser NGM in G. Let M = {Mi | i ∈ I} be a
complete set of representatives for the conjugacy classes of maximal elements in F \ E ,
i.e., each Mi is maximal in F \ E and every maximal element in F \ E is conjugate to
precisely one of the Mi. The following [LW12, Corollary 2.8] is a special case of a more
general construction due to Lück and Weiermann.

Theorem 5.3 (Lück–Weiermann). Let G be a group satisfying condition (ME⊂F ) for
two families of subgroups E ⊂ F . Consider a cellular G-pushout of the form

∐
i∈I G×NGMi EE|NGMi

(NGMi) EEG

∐
i∈I G×NGMi EALL|Mi∪E|NGMi

(NGMi) X

ϕ

∐
i∈I idG×NGMifi

such that each fi is a cellular NGMi-map and ϕ is an inclusion of G-CW-complexes,
or such that each fi is an inclusion of NGMi-CW-complexes and ϕ is a cellular G-map.
Then X is a model for EFG.

Note that a G-pushout as in Theorem 5.3 with maps fi and ϕ as required always exists
by using equivariant cellular approximation and mapping cylinders.

Corollary 5.4. Let G be a group and E ⊂ F be two families of subgroups.

(i) If G satisfies condition (MT R⊂F ), then a model for EFG can be constructed as a
G-pushout of the form

∐
i∈I G×NGMi E(NGMi) EG

∐
i∈I G×NGMi E(NGMi/Mi) EFG ;
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(ii) If G satisfies conditions (ME⊂F ) and (NME⊂F ), then a model for EFG can be
constructed as a G-pushout of the form

∐
i∈I G×Mi EE|Mi

Mi EEG

∐
i∈I G/Mi EFG .

Proof. This follows from Theorem 5.3 by observing that if E|NGMi ⊂ ALL|Mi , then a
model for EALL|Mi∪E|NGMi (NGMi) is given by E(NGMi/Mi) regarded as a NGMi-CW-
complex.

Topological complexity via classifying spaces for families. Let G be a group
and E ⊂ F be two families of subgroups. The following notation is not standard.

We denote by hdimE⊂F (G) the infimum of integers n for which the canonical G-map
EEG → EFG is G-homotopic to a G-map with values in the n-skeleton (EFG)(n). We
denote by cdE⊂F (G) the supremum of integers k for which the induced map on Bredon
cohomology Hk

G(EFG;M)→ Hk
G(EEG;M) is non-trivial for some OFG-moduleM . One

clearly has the inequality
cdE⊂F (G) ≤ hdimE⊂F (G) . (5.2)

Let π be a group and ∆(π) ⊂ π × π be the diagonal subgroup. Consider the family
D := F〈∆(π)〉 of subgroups of π × π that is generated by ∆(π). The following is the
main result of [FGLO19, Theorem 3.3].

Theorem 5.5 (Farber–Grant–Lupton–Oprea). Let π be a group. Then we have

TC(π) = hdimT R⊂D(π × π) .

Theorem 5.5 was recently generalised to families generated by a single subgroup in
[BCVEB22, Theorem 1.1] and to arbitrary families in [CLM, Proposition 7.5].

5.3 Structure of the diagonal family of π × π

Let π be a group and ∆: π → π × π be the diagonal map. For a subset S ⊂ π, denote
by Zπ(S) the centraliser of S in π. The following notation is adopted from [FGLO19]
and [Dra20].

For γ ∈ π and a subset S ⊂ π, define the subgroup Hγ,S of π × π to be

Hγ,S := (γ, e) ·∆(Zπ(S)) · (γ−1, e) .
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When S is a singleton set {b}, we write Hγ,b instead of Hγ,{b}. Note that we have
He,e = ∆(π). The proof of the following identities is elementary and left to the reader.

Lemma 5.6. Let γ, δ ∈ π and S, T ⊂ π be subsets. Then the following hold:

(i) (g, h) ·Hγ,S · (g−1, h−1) = Hgγh−1,hSh−1 for all (g, h) ∈ π × π;

(ii) Hγ,S ∩Hδ,T = Hγ,S∪T∪{δ−1γ};

(iii) Nπ×πHγ,S = {(γkhγ−1, h) ∈ π × π | h ∈ Nπ(Zπ(S)), k ∈ Zπ(Zπ(S))}.

We define the families F1 ⊂ D of subgroups of π × π to be

D := F〈∆(π)〉 ;

F1 := F〈{Hγ,b | γ ∈ π, b ∈ π \ {e}}〉 .
(5.3)

In view of Lemma 5.6 (i) and (ii), the family F1 is generated by the intersections of
conjugates of the diagonal subgroup ∆(π).

Lemma 5.7. Let π be a group. Then condition (MF1⊂D) holds for the group π × π.
Moreover, if the centre Zπ(π) of π is trivial, then condition (NMF1⊂D) holds.

Proof. If F1 equals D, then the statement is vacuous, so we may assume that F1 is
strictly contained in D. For γ ∈ π, conjugates of Hγ,e are of the form Hδ,e for some δ ∈ π
by Lemma 5.6 (i). If γ 6= δ, then Hγ,e ∩ Hδ,e ∈ F1 by Lemma 5.6 (ii). Hence the
{Hγ,e | γ ∈ π} are precisely the maximal elements in D\F1 and condition (MF1⊂D) holds.
Moreover, given that Zπ(π) is trivial, we have Nπ×π(Hγ,e) = Hγ,e by Lemma 5.6 (iii).

From now on and for the remainder of this note, we specialise to the following situation.

Setup 5.8. Let π be a torsion-free group admitting a malnormal collection of abelian
subgroups P = {Pi | i ∈ I} such that the centraliser Zπ(b) is cyclic for every b ∈ π that
is not conjugate into any of the Pi.

Note that in the situation of Setup 5.8, we have Nπ(Zπ(Pi)) = Zπ(Pi) = Pi for ev-
ery Pi ∈ P. Our main examples are torsion-free relatively hyperbolic groups with finitely
generated abelian peripheral subgroups, so-called toral relatively hyperbolic groups,
which satisfy Setup 5.8 by [Osi06, Theorem 1.14].

The following Lemma 5.9 for the case when P = {{e}} can be found in [FGLO19, Lemma
8.0.4] from where the first part of the proof is recalled.

Lemma 5.9. Let π be a group as in Setup 5.8. Then for b, c ∈ π \ {e}, we have either
Zπ(b) = Zπ(c) or Zπ(b) ∩ Zπ(c) = {e}.
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Proof. Let b, c ∈ π \{e} be two elements. Suppose neither b nor c are conjugate into any
of the Pi and that Zπ(b) ∩ Zπ(c) is non-trivial. Let Zπ(b), Zπ(c) and Zπ(b) ∩ Zπ(c) be
generated by x, y and z, respectively. Then xn = z = ym for some n,m ∈ Z. Observe
that z is not conjugate into any of the Pi. Thus its centraliser Zπ(z) is infinite cyclic and
contains both x and y. Therefore, x and y commute and it follows that Zπ(b) = Zπ(c).

Suppose b ∈ π \ {e} and c ∈ gPig−1 for some g ∈ π, Pi ∈ P. Note that Zπ(c) = gPig
−1.

If Zπ(b) ∩ gPig−1 is non-trivial, then b ∈ gPig
−1 by malnormality of P and hence we

have Zπ(b) = Zπ(c).

Lemma 5.10. Let π be a group as in Setup 5.8. Then we have the following:

(i) Condition (MT R⊂F1) holds for the group π×π. Moreover, for γ ∈ π and b ∈ π\{e}
there is an isomorphism Nπ×πHγ,b

∼= Zπ(b)× Zπ(b);

(ii) Conditions (MT R⊂F1|He,e ) and (NMT R⊂F1|He,e ) hold for the group He,e.

Proof. (i) For γ ∈ π and b ∈ π\{e}, conjugates ofHγ,b are of the formHδ,c for some δ ∈ π,
c ∈ π \ {e} by Lemma 5.6 (i). We have either Hγ,b = Hδ,c or Hγ,b ∩Hδ,c = {(e, e)} by
Lemma 5.6 (ii) and Lemma 5.9. Hence the {Hγ,b | γ ∈ π, b ∈ π \ {e}} are precisely
the maximal elements in F1 \ T R and condition (MT R⊂F1) holds. Moreover, for b ∈ π
that is not conjugate into any of the Pi, observe that Nπ(Zπ(b)) is torsion-free virtually
cyclic and hence infinite cyclic. It follows that Nπ(Zπ(b)) = Zπ(b) ∼= Z. If b ∈ gPig−1

for some g ∈ π and Pi ∈ P, we have Nπ(Zπ(b)) = gPig
−1 which is abelian and coincides

with Zπ(b). Thus, for every b ∈ π \ {e} we have

Nπ×πHγ,b = {(γkhγ−1, h) | h, k ∈ Zπ(b)} ∼= Zπ(b)× Zπ(b)

by Lemma 5.6 (iii).

(ii) Under the isomorphism He,e
∼= π, the family F1|He,e is identified with the fam-

ily F〈{Zπ(b) | b ∈ π \ {e}}〉. The claim follows as before by Lemma 5.9 and the obser-
vation that Zπ(b) is self-normalising for every b ∈ π \ {e}.

5.4 Maximality of topological complexity

The following is the main technical result of this note and will immediately imply The-
orem 5.2.

Theorem 5.11. Let π be a torsion-free group with cd(π) ≥ 2 admitting a malnormal
collection of abelian subgroups P = {Pi | i ∈ I} that satisfy cd(Pi × Pi) < cd(π × π).
Suppose that the centraliser Zπ(b) is cyclic for every b ∈ π that is not conjugate into any
of the Pi. Then cdT R⊂D(π × π) = cd(π × π).
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Proof. If cd(π × π) is infinite, then so is cd(π). One observes that cd(π) coincides with
cdT R⊂D|π×{e}(π × {e}) which is a lower bound for cdT R⊂D(π × π) by Shapiro’s Lemma
for Bredon cohomology (see e.g., [Flu, Proposition 3.31]). We may assume that cd(π×π)

is finite and denote it by n. Note that n ≥ cd(π × Z) = cd(π) + 1 ≥ 3. Consider the
families T R ⊂ F1 ⊂ D of subgroups of π × π as defined in (5.3).

First, condition (MT R⊂F1) holds by Lemma 5.10 (i) and hence Corollary 5.4 (i) yields a
(π × π)-pushout

∐
Hγ,b∈M(π × π)×Nπ×πHγ,b E(Nπ×πHγ,b) E(π × π)

∐
Hγ,b∈M(π × π)×Nπ×πHγ,b E(Nπ×πHγ,b/Hγ,b) EF1(π × π) ,

(5.4)

whereM is a complete set of representatives of conjugacy classes of maximal elements
in F1 \ T R. Moreover, in Lemma 5.10 (i) we identified Nπ×πHγ,b with Zπ(b) × Zπ(b)

which is isomorphic to Z × Z or Pi × Pi for some Pi ∈ P and hence has cohomological
dimension strictly less than n. Thus, for every OD(π × π)-module M , we have

Hn
π×π((π × π)×Nπ×πHγ,b E(Nπ×πHγ,b);M) = 0 .

Applying the Mayer–Vietoris sequence for H∗π×π(−;M) to the pushout (5.4) yields that
the map

Hn
π×π(EF1(π × π);M)→ Hn

π×π(E(π × π);M)

is surjective.

Second, conditions (MF1⊂D) and (NMF1⊂D) hold by Lemma 5.7 and hence Corol-
lary 5.4 (ii) yields a (π × π)-pushout

(π × π)×He,e EF1|He,e (He,e) EF1(π × π)

(π × π)/He,e ED(π × π) .

(5.5)

Applying the Mayer–Vietoris sequence for H∗π×π(−;M) to the pushout (5.5) yields that
the map

Hn
π×π(ED(π × π);M)→ Hn

π×π(EF1(π × π);M)

is surjective provided that

Hn
π×π((π × π)×He,e EF1|He,e (He,e);M) = 0 . (5.6)

The latter is true by another application of Corollary 5.4 (ii) using that conditions
(MT R⊂F1|He,e ) and (NMT R⊂F1|He,e ) hold for the group He,e by Lemma 5.10 (ii). It
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yields an He,e-pushout∐
He,b∈M′ He,e ×He,b E(He,b) E(He,e)

∐
He,b∈M′ He,e/He,b EF1|He,e (He,e) ,

(5.7)

where M′ is a complete set of representatives of conjugacy classes of maximal ele-
ments in F1|He,e \ T R. The Mayer–Vietoris sequence for H∗He,e(−;M) applied to the
pushout (5.7) shows that (5.6) indeed holds, using that cd(He,e) < n and cd(He,b) < n−1

for b ∈ π \ {e}.

Together, the map

Hn
π×π(ED(π × π);M)→ Hn

π×π(E(π × π);M)

is surjective for every OD(π × π)-module M . Finally, the coefficients M can be chosen
such that Hn

π×π(E(π × π);M) is non-trivial. This concludes the proof.

Proof of Theorem 5.2. It follows from Theorem 5.11 that the inequalities

cdT R⊂D(π × π) ≤ TC(π) ≤ cd(π × π)

given by (5.1) and (5.2) are in fact equalities.
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Chapter 6

Conclusion

The mathematical part of this thesis has ended with Chapter 5.

We draw a conclusion by explaining how our articles demonstrate an original contribution
to the subject and by examining their strengths and weaknesses. As is customary in
pure mathematics, these aspects are addressed in the introductions of our papers. For
the convenience of the reader, we repeat here shortened versions of the introductions
from Sections 2.1, 3.1, 4.1, and 5.1. Some questions for future directions of research were
posed in Section 1.3.4.

Bounded cohomology of classifying spaces for families

In Chapter 2, we introduce and study a bounded version of Bredon cohomology for
groups with respect to a family of subgroups. The bounded cohomology Hn

b (G;V )

of a (discrete) group G with coefficients in a normed G-module V is the cohomology
of the cochain complex of bounded G-maps Gn+1 → V . The inclusion of bounded
G-maps into (not necessarily bounded) G-maps induces the so-called comparison map
Hn
b (G;V ) → Hn(G;V ). On the one hand, the bounded cohomology groups are very

difficult to compute in general. On the other hand, they characterise interesting group-
theoretic properties such as amenability [Joh72] and hyperbolicity [Min01, Min02].

Theorem 6.1 (Johnson). Let G be a group. The following are equivalent:

(i) G is amenable;

(ii) Hn
b (G;V #) = 0 for all dual normed RG-modules V # and all n ≥ 1;

(iii) H1
b (G;V #) = 0 for all dual normed RG-modules V #.

Theorem 6.2 (Mineyev). Let G be a finitely presented group. The following are equiv-
alent:
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(i) G is hyperbolic;

(ii) The comparison map Hn
b (G;V ) → Hn(G;V ) is surjective for all normed QG-

modules V and all n ≥ 2;

(iii) The comparison map H2
b (G;V ) → H2(G;V ) is surjective for all normed RG-

modules V .

There are well-studied notions of relative amenability and relative hyperbolicity in the
literature [JOR12, Hru10]. In Chapter 2 we introduce a new “relative bounded coho-
mology theory” characterising these relative group-theoretic properties as a bounded
version of Bredon cohomology. For a group G, a family of subgroups F is a non-empty
set of subgroups which is closed under conjugation and taking subgroups. For a set of
subgroups H of G, we denote by F〈H〉 the smallest family containing H. The Bredon
cohomology Hn

F (G;V ) with coefficients in a G-module V (or more general coefficient
systems) is a generalisation of group cohomology, which is recovered when F consists
only of the trivial subgroup. A fundamental feature of Bredon cohomology is that for a
normal subgroup N of G there is an isomorphism Hn

F〈N〉(G;V ) ∼= Hn(G/N ;V N ). From
a topological point of view, the Bredon cohomology of G can be identified with the equi-
variant cohomology of the classifying space EFG for the family F , which is a terminal
object in the G-homotopy category of G-CW-complexes with stabilisers in F .

We introduce the bounded Bredon cohomology Hn
F ,b(G;V ) of G with coefficients in a

normed G-module V , which generalises bounded cohomology (Definition 2.7). Our the-
ory still is well-behaved with respect to normal subgroups (Corollary 2.17) and admits
a topological interpretation in terms of classifying spaces for families (Theorem 2.16).
We obtain the following generalisations of Theorems 6.1 and 6.2. A group G is called
amenable relative to a set of subgroups H if there exists a G-invariant mean on the
G-set

∐
H∈HG/H.

Theorem 6.3. Let G be a group and H be a set of subgroups. The following are equiv-
alent:

(i) G is amenable relative to H;

(ii) Hn
F〈H〉,b(G;V #) = 0 for all dual normed RG-modules V # and all n ≥ 1;

(iii) H1
F〈H〉,b(G;V #) = 0 for all dual normed RG-modules V #.

Theorem 6.3 is a special case of the more general Theorem 2.23. We also provide a
characterisation of relative amenability in terms of relatively injective modules (Propo-
sition 2.26). Recall that a finite set of subgroups H is called a malnormal (resp. almost
malnormal) collection if for all Hi, Hj ∈ H and g ∈ G we have Hi ∩ gHjg

−1 is trivial
(resp. finite), unless i = j and g ∈ Hi. A group G is said to be of type Fn,F for a family



conclusion 133

of subgroups F , if there exists a model for the classifying space EFG with cocompact
n-skeleton.

Theorem 6.4 (Theorem 2.31). Let G be a finitely generated torsion-free group and H
be a finite malnormal collection of subgroups. Suppose that G is of type F2,F〈H〉 (e.g., G
and all subgroups in H are finitely presented). Then the following are equivalent:

(i) G is hyperbolic relative to H;

(ii) The comparison map Hn
F〈H〉,b(G;V ) → Hn

F〈H〉(G;V ) is surjective for all normed
QG-modules V and all n ≥ 2;

(iii) The comparison map H2
F〈H〉,b(G;V ) → H2

F〈H〉(G;V ) is surjective for all normed
RG-modules V .

In Theorem 6.4 the equivalence of (i) and (iii) still holds if the group G contains torsion
andH is almost malnormal, see Remark 2.32. Note that condition (iii) is trivially satisfied
for groups of Bredon cohomological dimension cdF〈H〉 equal to 1.

The topological interpretation of bounded Bredon cohomology via classifying spaces for
families was used by Löh–Sauer [LS20] to give a new proof of the Nerve Theorem and
Vanishing Theorem for amenable covers. We prove a converse of [LS20, Proposition 5.2],
generalising a recent result of [MR, Theorem 3.1.3] where the case of a normal subgroup
is treated.

Theorem 6.5. Let G be a group and F be a family of subgroups. The following are
equivalent:

(i) All subgroups in F are amenable;

(ii) The canonical map Hn
F ,b(G;V #) → Hn

b (G;V #) is an isomorphism for all dual
normed RG-modules V # and all n ≥ 0;

(iii) The canonical map H1
F ,b(G;V #) → H1

b (G;V #) is an isomorphism for all dual
normed RG-modules V #.

Theorems 6.5 is a special case of the more general Theorem 2.23. As an application
of Theorem 6.5, the comparison map vanishes for groups which admit a “small” model
for EFG, where F is any family consisting of amenable subgroups (Corollary 2.24).
Examples are graph products of amenable groups (e.g., right-angled Artin groups) and
fundamental groups of graphs of amenable groups.

There is another natural relative cohomology theory given by the relative cohomol-
ogy of a pair of spaces. For a set of subgroups H, it gives rise to the cohomology
Hn(G,H;V ) of the group pair (G,H) introduced by Bieri–Eckmann [BE78]. A bounded
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version Hn
b (G,H;V ) was defined by Mineyev–Yaman [MY] to give a characterisation

of relative hyperbolicity (see also [Fra18]). A characterisation of relative amenability
in terms of this relative theory was obtained in [JOR12]. There is a canonical map
Hn
F〈H〉(G;V )→ Hn(G,H;V ) for n ≥ 2 which is an isomorphism if H is malnormal (see

Remark 2.6). Similarly, there is a map for the bounded versions but we do not know
when it is an isomorphism due to the failure of the excision axiom for bounded coho-
mology (see Remark 2.18). We also mention that Mineyev–Yaman’s relative bounded
cohomology was extended to pairs of groupoids in [Bla16].

Bounded acyclicity and relative simplicial volume

In Chapter 3, joint with Clara Löh and Marco Moraschini, we provide new vanishing
results for relative simplicial volume, following up on two current themes in bounded
cohomology:

• The passage from amenable groups to boundedly acyclic groups;

• The use of equivariant topology, most notably of classifying spaces for families of
subgroups.

A technical difficulty in the passage from amenable to boundedly acyclic groups is that
the class of amenable groups possesses a large degree of uniformity when it comes to
bounded cohomology. This includes the fact that the class of amenable groups is closed
under subgroups and quotients and the fact that amenable groups are not only bound-
edly acyclic, but uniformly boundedly acyclic. Therefore, in the setting of boundedly
acyclic groups, generalised vanishing results for simplicial volume come with additional
uniformity and closure hypotheses.

As we aim at results for relative bounded cohomology and relative simplicial volume, we
adapt tools from equivariant topology to this relative setting.

Uniform bounded acyclicity. Group actions with amenable stabilisers have proved
to be a valuable tool to compute bounded cohomology [Mon01, BM02, BI09]. Similarly,
also uniformly boundedly acyclic actions allow us to compute bounded cohomology, where
the uniformity refers to a uniform bound on the norms of primitives. Recently, uniformly
boundedly acyclic actions have been used to compute the bounded cohomology of geo-
metrically relevant groups [FFLMa, MN].

Let X be a path-connected space. We say that a set of path-connected subspaces A of X
is uniformly boundedly acyclic [of order n] in X if the collection of all finite [resp. n-fold]
intersections of conjugates of the subgroups

(
im(π1(A ↪→ X))

)
A∈A
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in π1(X) is uniformly boundedly acyclic (Definition 3.58). In the special case when
the above groups are amenable, we also speak of an amenable set of subspaces. We
have two geometric situations in which uniformly boundedly acyclic sets of subspaces
lead to interesting uniformly boundedly acyclic actions: Open covers and glueing loci of
manifolds obtained by glueing manifolds with boundary.

Vanishing via relative open covers. Gromov [Gro82] and Ivanov [Iva85] established
vanishing results for the comparison map (and thus for simplicial volume) in the presence
of amenable open covers with small multiplicity.

Following the approach by Löh and Sauer [LS20] through equivariant nerves and classi-
fying spaces for families, we generalise these vanishing results in two directions. First, we
allow more general covers: A cover U of X by path-connected open subsets is uniformly
boundedly acyclic if the underlying set of subsets of X is uniformly boundedly acyclic
in X. Second, we adapt the setting to pairs of CW-complexes (X,A), where A is π1-
injective in X (Theorem 3.76). To this end, we introduce the notion of [weakly convex ]
relative covers (Definition 3.41). Using equivariant nerve pairs and classifying spaces of
group pairs for families, we obtain:

Theorem 6.6 (Corollary 3.78). Let (X,A) be a CW-pair with path-connected ambient
space X. Assume that A has only finitely many connected components, each of which is
π1-injective in X. Let U be a relative cover of (X,A) that is uniformly boundedly acyclic.

(i) If U is weakly convex, then the comparison map

compk : Hk
b (X,A;R)→ Hk(X,A;R)

vanishes in all degrees k ≥ multA(U).

(ii) Let ν : (X,A) → (|N(U)|, |NA(U)|) be a nerve map. If U is convex, then the com-
parison map comp∗ factors through ν:

H∗b (X,A;R) H∗(X,A;R)

H∗(|N(U)|, |NA(U)|;R) .

comp∗

H∗(ν;R)

Here multA(U) denotes the relative multiplicity of U with respect to A (Definition 3.35)
and the simplicial complex NA(U) is a suitable subcomplex of the nerve N(U) (Defini-
tion 3.36).

In the absolute case, Ivanov proved a similar vanishing theorem for weakly boundedly
acyclic covers using spectral sequences [Iva]. Our notion of uniformly boundedly acyclic
covers is similar, but the relation between the two is unclear (Remark 3.69).
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Theorem 6.6 applies in particular to relative covers that are amenable. We introduce the
relative amenable multiplicity multAME(X,A) (Definition 3.45) as the minimal relative
multiplicity of weakly convex relative amenable covers of (X,A) by path-connected open
subsets.

Theorem 6.7 (Corollary 3.80). Let (X,A) be a CW-pair with path-connected ambient
space X. Assume that A consists of finitely many connected components, each of which
is π1-injective in X. Then the comparison map

compk : Hk
b (X,A;R)→ Hk(X,A;R)

vanishes in all degrees k ≥ multAME(X,A).

In particular, if (M,∂M) is an oriented compact connected triangulable manifold with
π1-injective boundary components and multAME(M,∂M) ≤ dim(M), then the relative
simplicial volume ‖M,∂M‖ vanishes.

As an application of Theorem 6.7, we give an alternative proof of a relative vanishing the-
orem, which is a consequence of Gromov’s vanishing theorem for non-compact manifolds
(Theorem 3.82).

Our methods for equivariant nerve pairs and relative classifying spaces also lead to van-
ishing results for `2-Betti numbers of aspherical CW-pairs with small relative amenable
multiplicity (Theorem 3.86). In the absolute case (Corollary 3.87), this recovers a result
by Sauer [Sau09, Theorem C].

Glueings. We adapt the additivity of relative simplicial volume for glueings along
amenable boundaries [Gro82, BBF+14, Kue15] to situations with boundedly acyclic
boundaries. As we move away from amenability, we lose control on the norm, and
thus only retain control on the vanishing behaviour.

Theorem 6.8 (Theorem 3.88). Let n ≥ 3 and (Mi, ∂Mi)i∈I be a finite collection of
oriented compact connected n-manifolds. Assume that every connected component of
every boundary component ∂Mi has boundedly acyclic fundamental group. Let N be
a set of π1-injective boundary components of the (Mi)i∈I and let (M,∂M) be obtained
from (Mi, ∂Mi)i∈I by a pairwise glueing of the boundary components in N .

If N , viewed as a set of subsets of M , is uniformly boundedly acyclic of order n in M ,
then the following are equivalent:

(i) We have ‖M,∂M‖ = 0;

(ii) For all i ∈ I, we have ‖Mi, ∂Mi‖ = 0.
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Mapping degrees. We use equivariant and group cohomological methods to estab-
lish the following relative version (and a simplified proof) of a monotonicity result by
Dranishnikov and Rudyak for closed manifolds [DR09]:

Theorem 6.9 (Corollary 3.29). Let f : (M,∂M) → (N, ∂N) be a map between ori-
ented compact connected manifolds of the same dimension with π1-injective boundary
components. Let ∂M =

∐m
i=1Mi and ∂N =

∐n
i=1Ni be decompositions into connected

components. If deg(f) = ±1 and there exists a free group FM such that

π1(M) ∼= FM ∗ ∗mi=1π1(Mi) ,

then there exists a free group FN such that π1(N) ∼= FN ∗ ∗ni=1π1(Ni).

For closed manifolds our approach also yields inheritance properties for virtual freeness:

Theorem 6.10 (Corollary 3.31). Let f : M → N be a map between oriented closed
connected manifolds of the same dimension. If deg(f) 6= 0 and π1(M) is virtually free,
then also π1(N) is virtually free.

Amenable covers of right-angled Artin groups

In Chapter 4, we compute the amenable category for all right-angled Artin groups. A
subset U of a topological space X is said to be amenable in X if the group

im
(
π1(U ↪→ X,x)

)
is amenable for every basepoint x ∈ U . The amenable category catAME(X) of X is the
minimal n ∈ N≥0 for which there exists an open cover X =

⋃n
i=0 Ui by n + 1 many

amenable subsets. Clearly, we have catAME(X) ≤ LS-cat(X).

The focus of Chapter 4 is on the amenable category of aspherical spaces. Since the
amenable category is a homotopy invariant, it yields an invariant of discrete groups G
by setting catAME(G) := catAME(BG). Here BG is an Eilenberg–MacLane space. By
the classical work of [EG57, Sta68, Swa69], the LS-category LS-cat(BG) coincides with
the cohomological dimension cd(G). In particular, we always have catAME(G) ≤ cd(G).
The amenable category is difficult to compute in general, the usual strategy being to
exhibit an explicit open cover by amenable subsets and to prove its minimality using
(co)homological obstructions. The precise value of catAME(G) is known, e.g., for the
following classes of groups:

• catAME(G) = 0 if and only if G is amenable;

• catAME(G) = 1 if and only if G is a non-amenable fundamental group of a graph
of amenable groups [CLM, Corollary 5.4];



138 kevin li

• catAME(G) = cd(G) if G is torsion-free non-elementary hyperbolic [Min01][CLM,
Example 7.8].

The main result of Chapter 4 is a computation of the amenable category for all right-
angled Artin groups. These form an important class of groups in geometric group theory,
interpolating between free groups and free abelian groups. Let L be a finite flag complex
(i.e., a simplicial complex in which every clique spans a simplex) with vertex set V . The
right-angled Artin group AL has as generators vertices v ∈ V , subject to the relation
that v1 and v2 commute if and only if they are connected by an edge in L. The right-
angled Coxeter group WL is the quotient of AL obtained by adding the relations that
each generator v ∈ V is of order 2. Since WL is virtually torsion-free, its virtual coho-
mological dimension vcd(WL) is well-defined as the cohomological dimension of a finite
index torsion-free subgroup.

Theorem 6.11 (Corollary 4.17). Let AL be the right-angled Artin group associated to a
finite flag complex L. Then we have

catAME(AL) = vcd(WL) .

Theorem 6.11 provides many examples of groups for which the amenable category is
not extremal, in the sense that 1 < catAME(G) < cd(G). Furthermore, it follows
from Theorem 6.11 and [Dra97] that there are right-angled Artin groups AL1 and AL2

satisfying catAME(AL1 ×AL2) < catAME(AL1) + catAME(AL2).

Another invariant of a similar spirit is Farber’s topological complexity TC which is mo-
tivated by the motion planning problem in robotics [Far03]. In [CLM, Question 8.1] it
is asked for which topological spaces X the following inequality holds:

catAME(X ×X) ≤ TC(X) .

Examples of spaces and groups satisfying this inequality can be found in [CLM, Section 8],
and no counter-example seems to be known at the time of writing. We show that all
right-angled Artin groups are positive examples.

Theorem 6.12 (Proposition 4.18). Let AL be the right-angled Artin group associated to
a finite flag complex L. Then we have catAME(AL ×AL) ≤ TC(AL).

We also obtain a complete characterisation of right-angled Artin groups with (non-)
vanishing minimal volume entropy (Theorem 4.20), resolving the cases that were not
covered by recent work in [HS, BC21].

Our proofs rely on combining upper and lower bounds (Lemma 4.4) with existing results
on generalised LS-category, classifying spaces for families of subgroups, and homology
growth from [CLM, HS, LM, OS, PP, Sau16].
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Topological complexity of relatively hyperbolic groups

In Chapter 5, we compute the topological complexity for certain toral relatively hyper-
bolic groups. The (reduced) topological complexity TC(X) of a space X is defined as the
minimal integer n for which there exists a cover ofX×X by n+1 open subsets U0, . . . , Un

such that the path fibration X [0,1] → X ×X admits a local section over each Ui. This
quantity, which is similar in spirit to the classical Lusternik–Schnirelmann category, was
introduced by Farber [Far03] in the context of robot motion planning. In fact, TC(−)

is a homotopy invariant and hence one can define the topological complexity TC(π) of
a group π to be TC(Bπ), where Bπ is a classifying space for π. There are bounds (see
e.g., [FGLO19, FM20, Dra20])

cd(π) ≤ TC(π) ≤ cd(π × π) , (6.1)

where cd(−) denotes the cohomological dimension. However, the precise value of TC(π)

is known only for a relatively small class of groups.

Farber, Grant, Lupton, and Oprea [FGLO19] showed that TC(π) equals the minimal
integer n for which the canonical (π × π)-map E(π × π) → ED(π × π) is equivariantly
homotopic to a map with values in the n-skeleton ED(π × π)(n). Here D is the family
of subgroups of π × π consisting of all conjugates of the diagonal subgroup ∆(π) and
their subgroups. Using this characterisation of TC(π), in a recent breakthrough Dranish-
nikov [Dra20] has computed the topological complexity of torsion-free hyperbolic groups
and more generally, of geometrically finite groups with cyclic centralisers.

Theorem 6.13 (Dranishnikov). Let π be a geometrically finite group with cd(π) ≥ 2 such
that the centraliser Zπ(b) is cyclic for every b ∈ π\{e}. Then we have TC(π) = cd(π×π).

Recall that a group π is called geometrically finite if it admits a finite model for Bπ.
Note that for geometrically finite groups π we have cd(π × π) = 2 cd(π), see [Dra19].
Previously, Farber and Mescher [FM20] had shown for groups π as in Theorem 6.13 that
TC(π) equals either cd(π × π) or cd(π × π)− 1. The main contribution of Chapter 5 is
the following generalisation of Theorem 6.13.

Theorem 6.14. Let π be a torsion-free group with cd(π) ≥ 2 admitting a malnormal
collection of abelian subgroups P = {Pi | i ∈ I} that satisfy cd(Pi × Pi) < cd(π × π).
Suppose that the centraliser Zπ(b) is cyclic for every b ∈ π that is not conjugate into any
of the Pi. Then TC(π) = cd(π × π).

Our main examples of groups satisfying the assumptions of Theorem 6.14 are torsion-free
relatively hyperbolic groups π with cd(π) ≥ 2 and finitely generated abelian peripheral
subgroups P1, . . . , Pk satisfying cd(Pi) < cd(π). Note that Theorem 6.14 recovers The-
orem 6.13 as a special case when P consists only of the trivial subgroup and that the
assumption of geometric finiteness has been dropped.
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In light of the upper bound TC(π) ≤ cd(π × π), Theorem 6.13 and Theorem 6.14
are statements about the maximality of topological complexity. They share a common
strategy of proof based on the characterisation of TC(π) in terms of classifying spaces
from [FGLO19]. Namely, we construct a “small” model for ED(π × π) from E(π × π)

allowing us to show that the map E(π × π) → ED(π × π) induces a non-trivial map
on cohomology in degree cd(π × π). Hence one has equality TC(π) = cd(π × π). Nev-
ertheless, even for the case when P consists only of the trivial subgroup, our proof is
different from Dranishnikov’s. He constructed a specific model for ED(π × π) and used
cohomology with compact support, while we employ a general construction due to Lück
and Weiermann and use equivariant Bredon cohomology.
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