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Originating from string theory, the holographic correspondence provides a dictionary to
convert a quantum theory on the boundary of the Anti-deSitter space (AdS) into a the-
ory of gravity in the bulk AdS space. In this thesis we will study the intersection of
quantum information and quantum gravity, focusing on methods of quantifying quantum
entanglement and chaos in gravity via the AdS/CFT holographic correspondence.

Entanglement entropy of a bipartite quantum system on the boundary is equivalent to
the area of a minimal surface in the bulk. In both the boundary and bulk pictures, entan-
glement entropy is divergent, meaning it equals to infinity. Hence we need to renormalise
the entanglement entropy to obtain a finite quantity. The variation of the entanglement
entropy is related to the dynamics of the bulk spacetime via the first law of entanglement
entropy. We will first present a way to express the renormalised entanglement entropy in
terms of the Euler invariant of the bulk entangling surface and other renormalised curva-
ture invariants. Then we use this expression and independently derived the renormalised
version of the first law of entanglement entropy. In particular, we use the Hamiltonian
formalism of holographic renormalisation to derive the integral form of the first law of
entanglement entropy.

Quantum chaos is characterised by the scrambling of information that increases expo-
nentially in time. The rate of the exponential growth, known as the Lyapunov exponent,
can be measured via the out-of-time-ordered correlation function (OTOC). In holography,
the OTOC becomes the gravitational scattering amplitude of high energy particles. We
investigate a possible correction to the Lyapunov exponent by considering the classical
stringy effect in the bulk gravitational scattering. Following the semi-classical shock wave
calculation of gravitational eikonal scattering, we obtain the classical string transverse
oscillation contribution to the eikonal phase. We conclude such correction is negligible in
the high energy eikonal limit, hence satisfying the chaos bound.
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CHAPTER 1

Introduction

A theory in Physics is a way of quantifying information in physical systems. The two foun-
dational theories in mordern physics are, the theory of general relativity that describes
gravity in large scale in terms of geometrical quantities, and the theory of quantum me-
chanics that describe particles dynamics in small scale in terms of probabilistic quantities.
The quest of quantum gravity is to find a microscopic description of gravity that is con-
sistent with quantum mechanics. One of the theory of quantum gravity is the holographic
correspondence that provides a duality between gravitational systems and quantum me-
chanical systems.

But before going into the details of holography and quantum information, let us see an
illustrative example of equivalent descriptions between the macroscopic theory of thermo-
dynamics and the microscopic theory of statistical physics. The laws of thermodynamics
are so general that it withstands the bizarre development the quantum mechanics, and
even reincarnate itself in the theory of gravity. Classical thermodynamics is a powerful
framework allowing us to describe the physics of systems with quantities like energy, tem-
perature and entropy. These thermodynamics quantities give a macroscopic description
of the systems in the sense that the nature of its constituents is neglected. Credit to
Boltzmann and others, thermodynamics can be explained via statistical behaviour of mi-
croscopic theories. Most notably, the Boltzmann entropy SB formula relates the thermal
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2 Chapter 1. Introduction

entropy to the size of the ensemble of microscopic configurations Ω,

SB = kB log Ω (1.0.1)

where kB is the Boltzmann constant. This later led to the discovery of Shannon entropy
in information theory and entanglement entropy in quantum information which we will
review in section 2.3. Often entropy is called the measure of disorder because large entropy
means many microscopic configurations are allowed.

Our focus will be on the equivalent descriptions between the macroscopic theory of grav-
ity and the microscopic quantum theory. This duality is called gauge/gravity duality or
holography for reason explained below. The first evidence of holography is the discov-
ery of black holes thermodynamics that is only characterised by the black hole’s energy,
temperature and entropy [3]. Particularly insightful is the Bekenstein-Hawking black hole
entropy formula [4],

SBH = A(H)
4GN

, (1.0.2)

where A is the area of the black hole horizon H and GN is the Netwon’s constant. The fact
that black hole has finite entropy suggests there are finite number of possible microscopic
configurations given a fixed horizon area. This means information of the whole black hole
is stored on the horizon, hence the black hole interior can be viewed as the hologram of
the horizon. The current holographic correspondence states a gravitational theory of a
spacetime is equivalent to a quantum theory on the boundary of that spacetime, which
we will review in section 2.2. Hence via holography one can relate gravity in the bulk to
quantum mechanical system living on the boundary. If this duality holds in general, this
strongly suggests gravity in spacetime is an emergent property of some quantum system.
So all gravitational description in the bulk is simply the average description of the quantum
ensemble.

As information theory was inspired by the formulation of statistical physics and thermo-
dynamics. The interest in the study of quantum information theory within holography
is growing rapidly. The realisation of quantum information quantities and phenomena
in the bulk theory of gravity not only provides us additional methods of computation,
it also gives us great insights into the quantum nature of spacetime itself. There have
been holographic realisation of entanglement entropy [5, 6, 7, 8], quantum chaos [9, 10],
quantum complexity [11, 12, 13, 14, 15] and quantum computing code [16]. We are go-
ing to investigate methods of utilising this duality to describe entanglement entropy and
quantum chaos in the bulk.

Quantum mechanics is intrinsically probabilistic and a key enhancement from classical
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statistical system is the property of entanglement. Entanglement makes a system not
separable, so an individual subsystem cannot be fully described as a pure quantum state.
Heuristically entangled quantum system means from the sole perspective of an individual
subsystem, it forms a classical ensemble of quantum states instead of one single quantum
state. This property of entanglement allow us to quantify the amount of entanglement
using entropy. In holographic system, the entanglement entropy, SEE , is equal to the area
of a surface, Σ, partitioning the bulk systems which given by the Ryu-Takayangi formula
[5, 6]

SEE = A(Σ)
4GN

, (1.0.3)

where SEE is the entanglement entropy, A(Σ) is the area of the entangling surface Σ and
GN is the gravitational constant. This should remind you of the Bekenstein-Hawking
black hole entropy formula. The Ryu-Takayangi prescription of entanglement entropy in
gravity teaches us that spacetime itself is related to entanglement. Entanglement entropy
plays an important role in our quest to understand quantum gravity, that includes recent
development on reconstruction of spacetime from entanglement [17, 18, 19] and the black
hole information paradox [20, 21, 22].

Quantum chaos is quantified by the growth of certain correlation function of operators
in the quantum system that measures how the interference between operators increases
with time. On the gravity side of the holographic duality, this correlation function is
realised in the form of high energy scattering amplitude of two particles [23]. A more
chaotic system will induce more interference between the two particles in the scattering
process. Since the gauge/gravity duality originated from string theory, we can probe
the correction to quantum chaos effect coming from stringy scattering i.e. replacing the
particles with strings. We will show addition correction will only make the system less
chaotic. There is a proposed bound on chaos for quantum system dual to gravity [24].
Analogous to the principle of maximum entropy which states the most likely macroscopic
state has maximum entropy. The fact classical gravity or general relativity is the most
chaotic theory of gravity may indicate why our universe is governed by general relativity
instead of other theory of gravity in the low energy limit.

Renormalisation is an essential procedure if we want our quantity of interest to be finite.
In essense, renormalisation in quantum field theory is a procedure that removes the diver-
gences coming from higher order interactions. One introduces counterterms to cancel the
divegences, the famous infinity minus infinity "trick", ∞ − ∞. However, it is important to
know counterterm renormalisation does have its root in the elegant Wilsonian renormal-
isation. The major obstacle to quantising gravity is due to its non-renormalisability. In
the direct quantization of gravity, after applying the perturbative renormalisation proce-
dure, one finds the coupling increases as the energy scale increases. This means one would



4 Chapter 1. Introduction

need infinite amount of counterterms to remove all the divergences. However, there are
renormalisable theory of gravity.

We have motivated the topics of interest of the thesis, namely, holography, entanglement
entropy, chaos and renormalisation. Now we will go through the developments in past
few decades leading up to the current stage of research. After the success of the standard
model, the quantum field theory description of all interactions except gravity, people tried
to incorporate quantum mechanics into quantum gravity. The early attempts of semi-
classical gravity that introduced relativistic quantum mechanics into curved spacetime
produced extraordinary results such as Hawking radiation [25], black holes thermodynam-
ics [3] and Regge behaviour in high energy gravitational scattering [26, 27]. From the
former results, Hawking developed the black holes information paradox that until now
still intrigues physicists. The form of Regge behaviour in quantum field theory and grav-
ity set the point of reference for the full theory of quantum gravity. Remarkably, string
theory was able to reproduce the Regge behaviour of the high energy gravitational scat-
tering amplitude [28, 29]. By going to the two dimensional worldsheet, string theory is
renormlisable. Not only that, the vanishing of beta functions give the equations of motion
to classical gravity. Subsequently, with the formulation of D-brane, string theory is now
able to describe both gauge theory and black hole physics. In a specific set up, a string
theory with D-branes related gauge theory and gravity in curved background, this was
the birth of the holographic correspondence [30, 31]. On top of opening the door for us
to investigate the quantum nature of gravity. Holographic principle, began from the black
holes thermodynamics and through the success of string theory, transforms into a powerful
technique that can be applied to many physical systems. The applications of holography
range from the fundamentals in high energy physics like the form of entanglement entropy
in CFT to beyond high energy physics like cosmology [32], condensed matter systems and
hydrodynamics [33]. The field of holography is growing rapidly, by combining techniques
from quantum information and computing, many fascinating holographic models were
developed. Among most models, entanglement entropy and chaotic behaviour are key
quantities and features to study. For example, entanglement entropy plays an important
role in the new proposals on the resolution of black holes information paradox [20, 21, 22].

In this thesis, we are going to highlight the recent development of renormalised entan-
glement entropy, its application to the dynamics of gravity and the chaotic behaviour of
holographic system in the present of classical string. As a starter, in chapter 2, we are
going to review the background materials. We will show the origin of holography and
elaborate on the holographic renormalisation procedure that will be used extensively in
chapter 3 and 4. We will learn about entanglement entropy, from the definition to the cal-
culation in quantum field theory and eventually in holography. Since correlation function
and scattering amplitude play important roles in the way of quantifying chaotic behaviour
in quantum system and gravity, we will review the key results and techniques in quantum
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and gravitational scatterings. Finally, we will describe how to quantify chaos using the
out-of-time-order correlation function in quantum system and in holography.

In chapter 3, we present a new way of expressing the renormalised entanglement entropy
in even spacetime dimension by writing the renormalised area of the bulk entangling
surface in terms of Euler characteristic of the bulk entangling surface and other curvature
invariants defined with respect to the bulk entangling surface. In chapter 4, we will discuss
about the first law entanglement entropy and its application in gravity. Then we will
present three methods of obtaining the renormalised version of the first law of entanglement
entropy, first by direct renormalisation of the infinitesimal first law, second by applying the
renormalised entanglement entropy formula developed in chapter 3 and lastly by applying
holographic renormalisation in the Hamiltonian formalism to renormlise the integral first
law in terms of charges. In chapter 5, we will be investigating a possible correction to the
holographic chaos by introducing classical string dynamics in the bulk. We will proceed
to calculate subleading and next-to-subleading contributions to the Lyapunov exponent
induced by the classical string oscillation. In chapter 6, we will end with the conclusion
and outlook from the methodologies and results developed in the previous chapters.
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CHAPTER 2

Background

In this chapter we are going to review the background on holographic entanglement en-
tropy and holographic quantum chaos. Since these two subjects relate concepts in quantum
information to dynamics in gravity, for each subject we will establish the relevant funda-
mentals on the quantum side then move to the related topics on the gravity side and finally
present the holographic version. But first let us review the basics of Anti deSitter space
and holographic duality.

2.1 Anti deSitter space

The following three chapters will mainly be in the Anti deSitter space. So in this section we
will provide some background on the techniques used in the later chapters. Anti deSitter
space is a Lorentzian space with constant negative curvature; it is a solution to the Einstein
equation with negative cosmological constant. In particular, the d + 1 dimensional AdS
geometry is a submanifold of R2,d with coordinates Xm satisfying the equation

−
(
X0
)2

−
(
X1
)2

+ · · · +
(
Xd+1

)2
= −l2AdS . (2.1.1)

where lAdS is the AdS radius. From (2.1.1) we can immediately deduced by setting a
timelike coordinate to constant, this spacelike hypersurface is the hyperbolic space. Both
AdS and hyperbolic space can be thought of as spheres with different signatures. The
important fact is the volume diverges as one approach the boundary. The intuition is as

7
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the timelike coordinates increase, the spacelike coordinates need to increase so that the
radius in (2.1.1) remains the same. It is apparent, in the embedded coordinates, that
SO(2, d) and SO(1, d) are isometries in AdSd+1 and Hd respectively.

The metric Gµν in the global coordinates can be expressed as

ds2 = − l2AdS + r2

l2AdS
dt2 + l2AdS

l2AdS + r2dr
2 + r2dΩd−1. (2.1.2)

where r is the radial coordinate and r = ∞ hypersurface is the boundary. In the Poincare
coordinates, we can express the metric in the Poincare patch of AdS as

ds2 = l2AdS
z2 (dz2 + gµνdx

µdxν), (2.1.3)

where gµν = ηµν . We will be calling z as the radial coordinate and z = 0 hypersurface is
the boundary of the AdS space in the Poincare patch. These metrics satisfy the Einstein
equation. Setting the cosmological constant Λ = −d(d+1)

2 the Einstein equation becomes

Rab − R

2
Gab = d(d+ 1)

2
Gab, (2.1.4)

where Rab is the Ricci tensor with respect to the d+ 1 dimensional spacetime metric Gab.
Then we can obtain the Ricci tensor and Ricci scalar as

Rab = −dGab, R = −d(d− 1). (2.1.5)

For asymptotically locally AdS, gµν can differ from the Minkowski metric. In general the
Ricci tensor for metric Gab in (2.1.3) is

Rµν = − d

z2 gµν +Rµν − 1
2
g′′
µν + 1

2
(
g′g−1g′)

µν

− 1
4
Tr
(
g−1g′)g′

µν + 1
2z

[
Tr
(
g−1g′)gµν + (d− 1)g′

µν

]
(2.1.6)

Rµz = −1
2

∇µTr
(
g−1g′)+ 1

2
∇σg′

µσ (2.1.7)

Rzz = − d

z2 − 1
2
Tr
(
g−1g′′)+ 1

4
Tr
(
g−1g′g−1g′)+ 1

2z
Tr
(
g−1g′). (2.1.8)

where ′ = ∂z, Rµν and ∇µ is the Ricci tensor and covariant derivative for gµν . Explicitly,
the Einstein equations are

Rµν + 1
2

[
−g′′ +

(
g′g−1g′)− 1

2
Tr
(
g−1g′)g′ + 1

z
Tr
(
g−1g′)g + (d− 1)

z
g′
]
µν

= 0 (2.1.9)

−1
2

∇µTr
(
g−1g′)+ 1

2
∇σg′

µσ = 0 (2.1.10)

−1
2
Tr
(
g−1g′′)+ 1

4
Tr
(
g−1g′g−1g′)+ 1

2z
Tr
(
g−1g′) = 0. (2.1.11)
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One can use a series expansion of gµν(z, xσ) in z to solve the above Einstein equations.
We use the Fefferman-Graham expansion of gµν(z, xσ) [34],

gµν(z, x) = g(0)
µν (x) + z2g(2)

µν (x) + · · · + zdg(d)
µν (x) + z2 log z2g̃(d)

µν (x) + · · · (2.1.12)

where the logarithm is present for even d. g(0)
µν and g

(d)
µν are the only independent terms.

The higher order terms like g(k)
µν for 0 < k < n and g̃

(d)
µν are functions of g(0)

µν . This near
boundary expansion can be derived from solving the Einstein equation order by order in
z.

Since the AdS space has a boundary, the gravitational action needs to include the Gibbon-
Hawking boundary term for the validity of the variational problem with Dirichlet boundary
condition. The full action is

I = − 1
16πGN

∫
M
dd+1x

√
G(R− 2Λ) − 1

8πGN

∫
∂M

ddx
√
γK (2.1.13)

where K is the trace of the extrinsic curvature of the boundary,

Kµν = 1
2

Lnhµν . (2.1.14)

where Ln is the Lie derivative with respect to the unit normal n and hµν is the boundary
induced metric. The onshell action then becomes a multiple of the volume of the spacetime.
Since we know the volume diverges, even within just the Poincare patch, the onshell action
is divergent too. We will discuss about the treatment of this infinity in section 2.2.3 on
holographic renormalisation. In fact, as the metric diverges as one approach the boundary,
we can deduce geodesics or more generally minimal surfaces have to be perpendicular to
boundary. Only by moving away from the boundary perpendicularly can one minimise its
length or area.

2.2 Holographic duality

In this section we are going to state the holographic duality and do a lightning review on
the most well know example of holographic duality, AdS/CFT . The holographic corre-
spondence states that a gravitational theory in d+ 1 dimensional spacetime is equivalent
to the a quantum theory without gravity in d dimensional spacetime. As mentioned in the
introduction, the earlier hint of holographic principle was the Bekenstein-Hawking black
hole entropy formula. The laws of black hole thermodynamic, including the area law of
black hole entropy, were derived by introducing quantum fluctuation to a black hole. The
entropy would tell us the number of quantum microstates of the black hole interior. Hence
suggesting the information lives on the horizon. Holography is not limited to black holes
or string theory which we will discuss shortly; there are alternate theories that display the
property of holographic duality.
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2.2.1 Maldacena Conjecture

The famous Maldacena conjecture states a theory of quantum gravity, the full Type IIB
string theory in 10 dimensional spacetime asymptotic to AdS5 × S5 with 5-form field
strength F5 sourced by N coincident D3-branes, is equivalent to a quantum field theory,
the N = 4 super-Yang-Mill theory with gauge group SU(N) in 4 dimensional Minkowski
spacetime [30]. Although we will only be interested in the low energy limit of this duality, it
is insightful to see the top-down string theory construction of the original correspondence.
Detail explanations and further discussion can be found in [35, 36]

The 10 dimensional Type IIB superstring theory contains closed oriented strings with left
and right movers matching chirality. The Ramond sector (R-sector) fermions have periodic
boundary condition and are tachyon free; R-sector ground states are therefore spacetime
fermions that transform under SO(8) spinor representation 8s or 8c depending on their
chirality. In IIB, the massless modes in R-R sector are spacetime bosons with matching
spinor representation that decompose into

8c ⊗ 8c = 1 ⊕ 28 ⊕ 35+, (2.2.1)

C(0) 0-form, C(2) 2-form and C(4) 4-form bosonic potentials in 10 dimensions. The 5-form
field strength F5 = dC(4) is self dual and is sourced by the 4 dimension D3-brane. From
self duality and Dirac quantisation, N coincident D3-branes have charge

N
√

2π =
∫
S5
F5. (2.2.2)

The tension of a D3-brane, T3, is the mass per volume of the brane and it determines how
strongly the brane is couple to gravity. For N coincident D3-branes, the tension is

T3 = N

8π2gsα′ , (2.2.3)

where gs is the closed string coupling and α′ is related to the reciprocal of the string
tension. Since D3-branes have both mass and charge, it will backreact with the 10 dimen-
sional target space and effectively curving the spacetime. However the full string theoretic
backreaction is hard to compute. Therefore we go down in energy scale to look for hint of
the duality.

Considering the following limits, first α′ → 0, the string tension becomes large and sup-
pressing massive excitation, second gs → 0, coupling decreases means string loop effect
is suppressed. Hence the low energy effective field is governed by the massless modes.
Since the 2D wordsheet theory is conformal, the beta functions will vanish. In the α′ → 0
limit, the beta functions equate to the equations of motion in IIB supergravity. Hence IIB
supergravity is the low energy effective field theory for Type IIB superstring theory. One
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can equally obtain the IIB supergravity effective action through integrating out modes
in the string path integral after neglecting subleading terms in the expansion of massive
excitation and worldsheet topology.

Similar to Reissner-Nordstrom black hole created by a point source of mass and charge, the
geometry created by the massive and charged N coincident D3-branes are black 3-branes.
Black p-brane are higher dimensional generalisation of black hole or black 0-brane where
there are p longitudinal directions. One can write an ansatz for the supergravity solution
with N D3-branes as source by separating the metric into parts respecting the symmetry
group Poincare(1, 3) × SO(6). This is the unbroken subgroup of the original symmetry
Poincare(1, 9); the symmetry is broken by the D3-branes as a 4D defect. The backreacted
metric is

ds2 = H(r)− 1
2 ηµνdx

µdxν +H(r)
1
2 (dr2 + r2dΩ5) (2.2.4)

where

H(r) = 1 + R4

r4 R4 = 4πgsN. (2.2.5)

The location of the D-branes is at r = 0. Note that the N D3-branes preserve 16 out of
32 supercharges, which is called half BPS. Using black hole language, N D3-branes are
extremal, saturating the mass and charge bound. More details can be found in [37, 38,
39, 40, 41].

In the r � R region, the metric is flat 10D Minkowski spacetime, same as RN black hole
which is also asymptotically flat. The intuition is very far from the source the spacetime
should have minimal deformation. In the r � R region, the metric becomes AdS5 × S5,

ds2 = R2

r2 dr
2 + r2

R2 ηµνdx
µdxν +R2dΩ5. (2.2.6)

Using coordinate z = R
r we can see it is the product of the Poincare patch of the AdS5

and S5 both having radius R,

ds2 = R2

z2 (dz2 + ηµνdx
µdxν) +R2dΩ5. (2.2.7)

Note the radius of the S5 is constant in this region and the proper radial distance diverges
as z → ∞ or r → 0 approaching the N D3-branes. This is a geometry of infinite throat
with constant radius. The N D3-branes are nowhere to be seen, only the F5 flux reminds.
The constant negative curvature or cosmological constant pulls fields inwards, outgoing
fields will be redshifted. We can define the horizon to be location at which the redshift
is infinite i.e. z = ∞ or r = 0. In the near horizon limit, we can consider the quantum
theory to be the full Type IIB superstring theory with F5 field strength. In fact the
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asymptotically flat region will decouple from the strings in the throat due to the redshift.
Now we see z or r is acting as the energy scale, this will become important later.

In the low energy/near horizon limit z → ∞ or r → 0, we can neglect the asymptotically
flat region. The target space for the Type IIB superstring theory then becomes AdS5 ×S5.
Also since the position of the N D3-branes is at z = ∞ or r = 0, it is infinite proper distance
away from even the near horizon region. Hence we do not have open strings dynamics
in this region, the only effect is the charge of the N D3-branes is still carried by the F5

flux. The isometry of AdS5 enhances another 16 conformal supercharges. Giving 32 total
supercharges, maximal in 10D with spin less than or equal to two.

Our focus is mainly on the gravity side therefore here we will only layout some key aspects
on the quantum field theory side of the duality. Massless excitation of open strings ending
on N coincident D3-branes can be separated into brane’s world-volume vector gauge fields
and scalar fields. Both fields carry the Chan-Paton factors and transform under adjoint
representation of U(N). Since U(N) = SU(N)×U(1), we can separate out the U(1) gauge
field. The adjoint representation of U(1) is trivial; the U(1) gauge field does not interact
and is decoupled. The final gauge group is SU(N). D-branes are half BPS object which
brings the total number of supercharges of the Type IIB superstring from 32 to 16. But
in the conformal phase, when the scalar field have vanishing vacuum expectation value,
there are extra 16 enhanced conformal supersymmetry. Hence the number of supercharges
is 32, in 4D they are from the maximal massless non-gravitational representation N = 4
vector multiplet plus conformal supercharges. The low energy limit of the world volume
effective field theory then becomes 4D N = 4 super-Yang-Mill with gauge group SU(N).
Note we are taking the large N limit so string coupling gs is small for fix t’Hooft coupling
then taking the large t’Hooft coupling limit so α′ is small. With these limit, we arrives at
strongly coupled CFT limit and the weakly coupled gravity limit.

One of the evidence of duality is the matching of symmetries between the two side of the
duality. Also one observes the super-Yang-Mill theory lives on the 4D flat Minokowski
spacetime which is also the boundary of AdS5, the non-compact part of the quantum
gravity theory. Hence this led to the holographic correspondence; the conformal super-
Yang-Mill theory living on the boundary of the bulk AdS is described by a quantum
gravity theory in the bulk AdS. In particular, there is a UV-IR duality between the two
theories; z → 0 or r → ∞ represents the UV behaviour of the quantum field theory and
IR behaviour of the gravity theory.

The duality needs to match the fields and operator between the two theories. The partition
function of the conformal super-Yang-Mill theory with sources ϕ for operator O is equal to
the partition function of the Type IIB superstring theory containing fields with boundary
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condition Φ∂M = ϕ,

ZSYM [ϕ] = Zstring|Φ∂M=ϕ, (2.2.8)

the source ϕ is sometime called the external field coupled to operator O.

Since S5 is a compacted space, the propagating gravitons and other massless fields will
receive a mass from the quantized momentum along the compact direction. In the weak
gravity limit, the zero mode in S5 dominates and the Type IIB superstring on AdS5 × S5

can be effectively written as a classical gravity theory on AdS5 with a dual conformal field
theory living on the boundary of AdS5.

2.2.2 AdS/CFT

With the evidence and motivation given above, we can state the duality as the equality of
partition functions of the bulk classical/onshell gravity theory and the boundary conformal
field theory,

ZCFT = Zgrav, (2.2.9)

so any expectation values in the CFT side can be calculated using the gravity partition
function. More precisely, we can express the partition function as Euclidean path integral
with source,

ZCFT [ϕ] =
∫

DOe−ICF T (O)−
∫
ϕO (2.2.10)

where ϕ is the source that couples to operator O. By the external field method, we can
take functional derivative with respect to ϕ to generator expectation value of O,

− 1
ZCFT [ϕ]

δZCFT [ϕ]
δϕ

= 〈O〉ϕ . (2.2.11)

In the weak coupling limit, the Newton’s constant on the gravity side is small. Hence,
similar to the classical limit of quantum theory where ℏ → 0 , the gravitation path integral
with GN → 0 is given by the saddle point approximation. The classical/onshell fields
satisfying the equations of motion are extrema of the action which dominate the path
integral. The onshell gravity partition function is simply the exponential of the onshell
action,

Zgrav =
∫
onshell

DgµνDΦe−IE(g,Φ)

≈ e−Ionshell
E (g,Φ). (2.2.12)
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Hence the −IonshellE is equal to the generating functional of connected diagrams in the
conformal field theory,

〈O〉ϕ = δIonshellE (g,Φ)
δΦ

|Φ→ϕ. (2.2.13)

The equations of motion of bulk fields Φ are obtained via the usual variational problem
with Dirichlet boundary condition Φ|∂M = ϕ. The bulk fields are onshell hence satisfy
the equations of motion of the bulk classical theory with gravity. In fact, there are two
independent solutions for each bulk field’s equation of motion called, normalisable and
non-normalisable modes. The two modes have different scaling behaviour with respect to
the radial coordinate z. The origin of their names came from the normalisable condition
in some relativistic inner product of the Hilbert space. Similar to the Fefferman-Graham
expansion of the boundary metric gµν that solves the Einsteins equation order by order,
in general bulk fields can be expanded in z in the near boundary region [42],

Φ(z, x) = zm
(
ϕ0(x) + z2ϕ2(x) + · · · + znϕn(x) + zn log z2ϕ̃n(x) + · · ·

)
(2.2.14)

where n,m > 0 are constant related to the dimension of the spacetime and the scaling di-
mension of the dual oprerator, ϕ0 is the non-normalisable mode and ϕn is the normalisable
mode. The non-normalisable modes are divergent in the Klein-Gordon inner production
defined by,

(Φ1,Φ2) = −i
∫

C
ϵµ(Φ∗

1∂µΦ2 − Φ∗
2∂µΦ1), (2.2.15)

where C is a spacelike hypersurface. The higher order terms like ϕk for 0 < k < n and ϕ̃n

are functions of ϕ0 as they need to solve Φ equation of motion order by order.

This is a remarkable result, the duality relates a quantum many-body system, uncount-
ably many as we are in the continuum, to a deterministic gravitation system governs by
geometry. Analogous to relationship of statistical mechanics and thermodynamics, the ex-
pectation values of the microscopic quantum system are given by functions of parametrised
by the macroscopic gravitation system. Since quantum mechanics is intrinsically proba-
bilistic, the generating functional of connected diagrams is the functional form of moment
generating function in classical probability theory.

To our interest, the AdS/CFT holographic duality is stated as the duality between the
onshell fields of the classical gravity in the Poincare patch of AdSd+1 and operators of
conformal field theory lives on the d dimensional boundary ∂AdSd+1. We will take the
holographic duality to be true or treat it as our ansatz for the remaining part of the thesis.
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2.2.3 Holographic renormalisation

We now know that the partition function of the boundary CFT is equivalent to the saddle
point approximation of the gravitational path integral. To evaluate the classical partition
function, we need to compute the onshell action of the AdS spacetime. As mentioned
before, since the onshell Ricci scalar is a constant, the onshell action is proportional to
the volume of the AdS. However we have seen the volume of AdS diverges, so the action
and the expectation of the operators on the CFT are also divergent, for example the
expectation value of the CFT stress tensor

〈Tµν〉 = 2
√
γ

δIgrav
δγµν

, (2.2.16)

where γµν is the induced metric of boundary. It is easy to see why the CFT stress tensor
is sourced by the boundary metric by considering the variation of CFT action,

ICFT [γ + δγ] = ICFT [γ] +
∫
∂M

δγµνT
µν . (2.2.17)

Then the last term is essentially the source term. Therefore we need to renormalise the
onshell action by adding covariant counterterms. This is analogous to the counterterms
renormalisation in quantum field theory that removes UV divergences coming from higher
loops Feynman diagrams by introducing counterterm interactions with the same divergence
behaviour.

In conventional QFT renormalisation, we would regulate the divergent diagrams by setting
a UV cutoff. Just as we have seen in the Maldacena conjecture, the radial coordinate acts
as the energy scale of the bulk gravity theory. Through the IR-UV duality, we can see as
we approach the boundary, z → 0, the IR volume divergence in the bulk is related to the
UV divergence in the boundary quantum theory. So to regulate the bulk theory, we set a
radial cutoff z ≥ ϵ such that metric at the regulated boundary z = ϵ is finite. By analysing
the dependence on ϵ in the near boundary region, one can construct covariant boundary
counterterms on the regulated boundary to cancel out all the divergences. With all the
divergences cancelled out, the limit of ϵ → 0 pushes the regulated boundary to the real
boundary of the spacetime. Finally one can define renormalised quantity in this limit. In
fact, we only need to obtain the renormalised action; other quantities like n-points function
and entanglement entropy are derivatives and functions of the renormalised action.

The outline of the holographic renormalisation procedure to obtain the renormalised action
is as follow [42],

1. Find the equations of motion of the gravity theory with Dirichlet boundary condition.

2. Solve the equations of motion by series expansion of the bulk fields in the radial
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coordinate z.

3. Identify the normalisable and non-normalisable modes of the bulk fields.

4. Substitute the bulk fields series expansion into the regularised action with radial
cutoff .

5. Separate the divergences as a function of non-normalisable modes and radial cutoff.

6. Invert the bulk fields radial expansion to write the non-normalisable modes in terms
of the bulk fields.

7. Construct the covariant counterterms as the divergences of the regularised action in
terms of bulk fields but with an overall opposite sign.

8. Equate the renormalised action as the limit of vanishing radial cutoff of the sum of
regularised action and the covariant counterterms.

The emphasis on covariant counterterms is to ensure the general covariance of the renor-
malised action. The finite quantities like one-point function will be a function of the nor-
malisable and non-normalisable modes. The part related to the non-normalisable modes
is called scheme dependent as this can be altered by finite counterterms. The part related
to the normalisable modes is called scheme independent as it is universal in all renormal-
isation scheme and it captures the dynamics of the system as it is dual to the operator in
the CFT.

As an example, we will demonstrate the holographic renormalisation in bulk theory with
pure gravity. The regularised action is the Einstein-Hilbert action with negative cosmo-
logical constant and Hawking-Gibbon boundary term for z > ϵ,

Ireg = − 1
16πGN

∫
Mϵ

dd+1x
√
G(R[G] − Λ) − 1

8πGN

∫
∂Mϵ

ddx
√
γK (2.2.18)

where we can set the cosmological constant to Λ = −d(d−1)
2l2

AdS
. The Hawking-Gibbon bound-

ary term is necessary for the action to remain invariant under infinitesimal variation around
the classical solution with Dirichlet boundary condition,

lim
z→0

z2γµν = g(0)
µν (2.2.19)

where g
(0)
µν is the metric of the boundary CFT. Shown in section 2.1, we can express

the solution to the Einstein equation in the Fefferman-Graham gauge [34] where we only
need two independent terms, namely g

(0)
µν and g

(d)
µν . The other terms in the Fefferman-

Graham expansion with order lower than O(zd−2) can be expressed as a function of the
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non-normalisable mode g
(0)
µν . To obtain a covariant expression, one can perturbatively

invert the Fefferman-Graham expansion to express g(0)
µν and it’s function in terms of γµν .

In particular, from (2.1.9) one can write g(n<d)
µν and g̃(d)

µν as contractions, combinations and
derivatives of the Riemann curvature tensor R̄µνρσ with respect to the boundary metric
γµν .

The divergences of the regularised action in the expansion of ϵ is [43],

Idivreg = 1
16πGN

∫
∂Mϵ

ddx
√
g(0)

(
ϵ−da(0) + · · · + ϵ−2a(d−2) − log ϵ2a(d)

)
(2.2.20)

where the logarithm term is only present in even d. By construction the counterterms
action is equal but opposite to the regularised divergences,

Ict = −Idivreg (2.2.21)

But the covariant expression in terms of γµν is [43],

Ict = − 1
16πGN

∫
∂Mϵ

ddx
√
γ

2(1 − d) − R

d− 2
−
RµνRµν − d

4(d−1)R
2

(d− 4)(d− 2)
− log ϵ2a(d)

 .
(2.2.22)

Finally the renormalised action is defined to be the limit of ϵ → 0 the sum of regularised
and counterterms actions.

Iren = lim
ϵ→0

[Ireg + Ict] . (2.2.23)

The renormalised stress tensor can be obtain via the variation of the onshell renormalised
action. Hence the it is separable into the regularised and counterterms parts,

T renµν = lim
ϵ→0

[
T regµν + T ctµν

]
. (2.2.24)

Since the action is onshell, the variation of the action with respect to the metric should
vanish under Dirichlet boundary condition. However, when we take the functional deriva-
tive with respect to the boundary metric, this will pick up the boundary piece that would
have vanished due to the Dirichlet boundary condition. The regularised part is actually
the Brown-York stress tensor of the regularised spacetime,

T regµν = 2
√
γ

δIreg
δγµν

= 2
√
γ

δIMϵ

δγµν
+ 2

√
γ

δI∂Mϵ

δγµν

= − 1
8πGN

(Kµν −Kγµν)|z=ϵ. (2.2.25)
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Taking the functional derivative of the counterterms action in (2.2.22), one finds the
divergence of T regµν is cancelled out. Finally we have the renormalised stress tensor of the
boundary CFT as

T renµν = d

16πGN
g(d)
µν + Aµν + f̃µν (2.2.26)

where Aµν is the trace/Weyl anomaly component and f̃µν is the traceless scheme de-
pendent compnent of the stress tensor. The last two terms are only present in even d.
By trace/Weyl anomaly, it means the contribution of the stress tensor that violate the
tracelessness condition from the Ward identity of the Weyl transformation’s conserved
current,

∇ν 〈xµTµν〉 = A (2.2.27)〈
Tµµ

〉
= A (2.2.28)

where A is the Weyl anomaly in the CFT. Scheme dependent terms are contribution
from finite counterterm introduced in a particular renormalisation scheme. For example
in d = 2, the Weyl anomaly is proportional to the central charge of the CFT. From
[44, 45, 46], we also know that A takes the form,

A ∼ E + I + ∇ · J , (2.2.29)

where E is proportional to the Euler density, I is a conformal invariant, ∇ is the covariant
derivative of g(0)µν and J is a tensor constructed from curvature tensors. Using similar
technique in section 3, these terms can be written as combination of Weyl tensors and
extrinsic curvatures.

Now we see that g(d)
µν provides the information for the one point function of the CFT stress

tensor. Hence bulk field g
(d)
µν is dual to boundary operator Tµν . Also g

(0)
µν provides the

Dirichlet boundary condition for the metric gµν . In the absence of Weyl anomaly, the
Dirichlet boundary condition can be lifted to conformal Dirichlet boundary condition. So
any boundary metric in the conformal class [g(0)

µν ] is valid. These two facts extend beyond
pure gravity theory, so the non-normalisable modes define the boundary value of the bulk
fields and the normalisable modes govern the one point function of the dual operators.

Note this is the holographic renormalisation in Lagrangian formalism. There is a more
direct method of doing holographic renormalisation that avoids inversion of the radial
expansion. The holographic renormalisation in the Hamiltonian formalism utilises the
scaling behaviour of the bulk fields to construct appropriate counter terms. With our pre-
vious emphasis on covariant counterterms, we need to use covariant phase space formalism
to define the conserved currents and charges. We will review and apply both formalisms
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extensively in chapter 4.

2.2.4 Holographic correlation function

Although we will only see a limited use of holographic propagators in the following sections,
we briefly introduce the two propagators in holography. The bulk-to-bulk propagator
G(z, x; z′, x′) or sometimes expressed as

G(z, x; z′, x′) =
〈
Φ(z, x)Φ(z′, x′)

〉
(2.2.30)

they satisfy the differential equation

D2G(z, x; z′, x′) = δ(z, x; z′, x′) (2.2.31)

where D2 is a second order linear differential operator in the equation of motion of bulk
field derived from the action. So the G(z, x; z′, x′) is the Green’s function of the differential
operator D2. The bulk field Φ(z, x) is then

Φ(z, x) =
∫
dzddx′G(z, x; z′, x′)J(z′, x′) (2.2.32)

where J(z, x) is the bulk source of bulk field Φ(z, x) such that the bulk field satisfies
the bulk equation of motion. Similarly, the boundary-to-bulk propagator K(z, x;x′) or
sometimes expressed as

K(z, x;x′) =
〈
Φ(z, x)O(x′)

〉
(2.2.33)

where O(x) is the dual operator of bulk field Φ(z, x). The boundary-to-bulk propagator
satisfies the differential equation

D2K(z, x;x′) = 0 (2.2.34)

So K(z, x;x′) is the homogeneous solution to differential operator D2. The bulk field
Φ(z, x) is related to the boundary source ϕ(x) by

Φ(z, x) =
∫
ddx′K(z, x;x′)ϕ(x′). (2.2.35)

2.3 Entanglement entropy

To begin, let us understand what is quantum entanglement and what entanglement entropy
measures. Entanglement is the quantum correlation between systems. Contrasting to
classical correlation, measurement on a quantum state will change the complementary
quantum state in the entangled system. For entangled system, the overall quantum state
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cannot be written as a product state,

|ψ〉AB =
∑
n,m

Cnm |n〉A |m〉B 6= |ϕ〉A |ϕ〉B , (2.3.1)

because for product state, measurement on system A will not change the quantum state of
system B. An entangle state viewed from the perspective of system B, where no information
about system A is given, it forms a classical statistical ensemble of quantum state. In terms
of density matrix, the reduced density matrix of system B ρB, the partial trace of system
A TrA of the total density matrix ρ,

ρB = TrA(ρ)

=
∑
i

pi |i〉B 〈i|B , (2.3.2)

is mixed with pm is the probability of the system B being in quantum state |i〉B. An
example is the thermofield double (TFD) state,

|TFD〉 = 1√
Z

∑
n

e− βEn
2 |n〉 |n〉 , (2.3.3)

the states of the subsystems are entangled such that the reduced density matrix,

ρr = 1
Z

∑
n

e−βEn |n〉 〈n| , (2.3.4)

is in a thermal canonical ensemble with inverse temperature β and normalised by the
partition function Z. The statistical ensemble of the reduced density matrix represents
our ignorance on the system B alone. Hence, the more entangled the overall system is,
the more system B is dependent on system A and the less we know about system B
alone. Therefore we can measure entanglement by the entropy for this ensemble, similar
to Boltzmann entropy that counts the microstates or Shannon entropy that measure the
average uncertainty on the possible outcomes.

In a quantum system, the quantum entanglement between a bipartite region can be mea-
sured by the entanglement entropy which is the von Neumann entropy of the reduced
density matrix,

SB = −Tr(ρB log ρB). (2.3.5)

The modular Hamiltonian is defined as the exponent of the density matrix; for the reduced
density matrix of region B it is,

ρB = e−HB . (2.3.6)
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In general the modular Hamiltonian is not local and hard to compute, the exception is when
the density matrix is thermal. As the terminologies hinted, the entanglement entropy and
modular Hamiltonian has similar structure as thermal entropy and thermal Hamiltonian.
Since the thermal entropy of a thermal state is also given by the von Neumann entropy,
if the reduced density matrix is thermally mixed, the entanglement entropy is identical to
the thermal entropy. Similarly the thermal Hamiltonian is the exponent of the thermal
density matrix in the rest frame,

ρth = 1
Z
e−βHth (2.3.7)

where β is the inverse temperature and Z is the partition function. Then the modular
Hamiltonian can be expressed simply as

HB = βHth − logZ = β(Hth − F ) (2.3.8)

where the second equality follows from the definition of the free energy. For conformal
field theory in flat space and B is a ball region, the modular Hamiltonian can be calculated
directly from the energy momentum tensor, see section 4.2.3.

From now on we will be studying relativistic continuous quantum systems, namely quan-
tum field theory. Since the Hilbert space is continuous we need to replace the sum of
states to the path integral. The wavefunction can be expressed in path integral as

Ψ(ψn) |ψn〉 =
√
N

∫ ψ(x,0−)=ψn

ψ(x,−∞)
Dψ e−S[ψ] |ψn〉 (2.3.9)

Similarly, entanglement entropy can be calculated in quantum field theory using path
integral to generate the density matrix.

ρnm = N

∫ ψ′(x,0−)=ψ′
n

ψ′(x,−∞)
Dψ′ e−S[ψ′]

∫ ψ(x,+∞)

ψ(x,0+)=ψm

Dψ e−S[ψ] (2.3.10)

= N

∫
Dψ δ(ψ(x, 0−) − ψn) δ(ψ(x, 0+) − ψm)e−S[ψ] (2.3.11)

Bipartition the fields into ψ = {ψA, ψB} then the reduce density matrix is

ρBij =
∫

DψA
〈
ψA, ψBi

∣∣∣ρ∣∣∣ψA, ψBj 〉 . (2.3.12)

In general, the logarithm of the reduced density matrix is hard to compute. We can use
another entropy measure, called Renyi Entropy, defined by

Sn(B) = − 1
n− 1

log TrρnB. (2.3.13)

Using L’Hopital’s rule, we see Renyi entropy tends to Von Neumann entropy in the limit



22 Chapter 2. Background

ψBi

ψBj 0+

0−

A B A
x

τ

Figure 2.3.1: This is a diagram of the path integral representation of reduced density
matrix with the shaded region being integrated over. The whole space is integrated except
a thin slit in region B with infinitesimally width. The ψBi and ψBj mark the boundary
value of the field at the two sides of the slit.

ψB1

ψB2

ψB2

ψB3
· · ·

ψBn

ψB1

Figure 2.3.2: The n replica density partition function is made up of n identical density
matrix. Each boxes represent a reduced density matrix in the product ρnB. The dashed
line indicate the identification of boundary value between slits. Since all insertions are
identified in pairs, this represent the overall trace TrB(ρnB).

of n → 1 where we assume analyticity in n. Hence to calculate the entanglement entropy
we need to work out the trace of reduced density matrix to the nth power and analytically
continue n → 1.

2.3.1 Replica trick

We now introduce the replica trick in quantum field theory to help us to obtain the Renyi
entropy. We need to generate the trace of the nth power of the reduced density matrix in
the terms of path integral,

TrB(ρnB) =
∫ n∏

i

DψBi
〈
ψBi

∣∣∣ρB∣∣∣ψBi+1

〉
, (2.3.14)

where ψBn+1 = ψB1 . Diagrammatically, the QFT reduced density matrix of B where A is
traced out is shown in figure 2.3.1 and the replica trick in quantum field theory is shown
in figure 2.3.2.

Since the partition function equals to the trace of the density matrix,

Z = Trρ, (2.3.15)
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equally we can define a partition function associates with the nth power of the density
matrix

Z(n) = Trρn (2.3.16)

From the definition of Renyi entropy in (2.3.13) and its relation to the von Neumann
entropy we can deduced the entanglement entropy is the limit of Renyi entropy as follow,

S = −n∂n[logZ(n) − n logZ(1)]n=1. (2.3.17)

Similar to the thermal entropy, the entanglement can be obtained purely from the partition
function. This expression will be helpful in the later sections.

In quantum field theory, fields are continuous in space so one would expect there are
entanglement between neighbouring fields. In bipartite system, no matter how small,
there will be uncountably many neighbouring fields separated by the boundary shared
between the two subregions, called entangling surface. This suggests there are infinite
amount of entanglement between any bipartite system in quantum field theory. We can
regularised the entanglement entropy by putting the field theory on lattice and using
the lattice spacing, ϵ, as UV cutoff. Then the divergence behaviour of the entanglement
entropy can be capture in series expansion of the UV cutoff,

S = Sdiv[ϵ] + Sfinite (2.3.18)

In general, the entanglement entropy also follows an area law where the coefficient of
the leading divergent term is equal to the area of the entangling surface [47]. For CFT
in even dimensions, the divergent term is a logarithm of the length scale of the region
over the UV cutoff [48]. Some coefficients in the ϵ expansion of the entanglement can have
physical interpretations, like the coefficient of the universal logarithm term is related to the
central charge. There are interesting theorem relating the coefficients in different energy
scale, from UV to IR, like the c-theorem [49]. In this thesis, we will mainly be focusing
on the finite term of the entanglement entropy which can be obtained via systematic
renormalisation procedure.

2.4 Holographic entanglement entropy

As we have showed above, entanglement entropy measures the information shared between
the entanglement pair. This is an purely quantum mechanical quantity as there is no clas-
sical analogue of entanglement. However, in the holographic correspondence, we are able
to represent the entanglement entropy of the boundary quantum theory as a geometrical
quantity in the bulk. From (2.3.13) we see can obtain the entanglement entropy via the
replica partition function. In the field theory calculation, one would need to perform the
path integral in order to obtain the partition function and hence the entanglement en-
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tropy. For free theory, one can still perform Gaussian path integral. But the calculation
get very non-trivial for complicated theory. However, as we will discover, if we use the
gravity partition function in (2.3.13), we can see the area of a bulk minimal surface is the
dual of the entanglement entropy.

2.4.1 Ryu-Takayanagi prescription

The Ryu-Takayanagi prescription is the bulk holographic description of entanglement en-
tropy on the boundary quantum field theory [6, 5]. Since the bulk interior is dual to the
boundary theory, the bulk holographic entanglement entropy also measures the entangle-
ment between two bulk systems separated by a bulk entangling surface. The entanglement
entropy S of the d dimensional boundary quantum field theory with boundary entangling
surface ∂Σ is related to a minimal surface extending into the bulk spacetime M with the
boundary entangling surface as its boundary. The bulk extending co-dimension 2 minimal
surface is defined to be the bulk entangling surface Σ or the Ryu-Takayangi surface. The
entanglement entropy is then equal to the area of the bulk entangling surface,

S = A(Σ)
4GN

(2.4.1)

where A(Σ) is the area of Σ and GN is the gravitational constant. Since the AdS met-
ric diverges near the boundary, the area of the minimal surface Σ suspending from the
boundary also diverges. But we will save the discussion of renormalisation in section 2.4.3

This minimal surface description can be extended in multiple entangling surfaces where
the combination of bulk extending surfaces that have the minimal overall area are chosen
to be the bulk entangling surface. For thermal boundary CFT dual to gravity in AdS black
hole background, certain configurations of entanglement entropy captures the entropy of
the black hole. In those configurations, the set of entangling surface contains a surface
wrapping around the black hole horizon. This analysis is a way to study the black hole
microstates in holography [50].

2.4.2 Replica trick in gravity

The Ryu-Takayangi formula for holographic entanglement entropy can be derive using the
replica trick on the gravity partition function as in (2.3.17). To apply the replica trick on
the gravity side we first define the nth replica partition function by replacing the manifold
M with the nth replica geometry M(n) such that M(1) = M. There are many methods
of deriving the Ryu-Takayangi formula [5, 51, 52], we will be following the more straight
forward approach in [53]. All the methods utilise the conical singularity in the replica
geometry to relate the entanglement entropy to the area of a minimal surface.

The replica geometry is constructed by gluing the n identical copy of manifold M, similar



2.4. Holographic entanglement entropy 25

to figure 2.3.2. First, for each copy of M a co-dimension one cut is made along the bulk
entangling region enclosed by the co-dimension two bulk entangling surface Σ and spatial
boundary ∂M|t=const. The geometry M(n) is the overall geometry after identification or
gluing along the cuts of n replica together in the Euclidean time direction.

The gravity partition function is given by the exponential of the gravity action. Hence we
need to obtain the gravity action on the n replica geometry M(n)

− logZ(n) = Igrav[M(n)]. (2.4.2)

The gluing procedure of more than one replica creates a conical singularity in the boundary
of the cut, i.e. Σ, in M(n). The terms in our gravitational action that are sensible to the
conical singularity are terms related to the Ricci tensor.

We now sketch out the procedure for obtaining the conical singularity terms in curvature
invariants as distribution, i.e. delta function. From the original metric gµν , here assumed
to be static,

ds2 = B(x)dt2 + hij(x)dxidxj (2.4.3)

to construction the replica geometry we need to separate the orthogonal directions of the
bulk entangling surface Σ. Since we are interested in the tip of the cone, near the bulk
entangling surface Σ we can do a coordinates transformation to a Rinder frame that locally
looks like,

ds2 = −r2dτ2 + dr2 + (γab + 2r cosh τKab)dyadyb (2.4.4)

followed by a Wick rotation to,

ds2 = r2dτ2 + dr2 + (γab + 2r cos τKab)dyadyb (2.4.5)

where γab is the metric for Σ, τ and r are the orthogonal coordinates to Σ and Kab is the
extrinsic curvature. The metric is periodic in τ hence we define the nth replica geometry
by extending the domain of from 0 ≤ τ < 2π to 0 ≤ τ < 2πn. For n > 1 there are n sheets
of identical geometries. Since the period exceeds 2π there is a conical singularity at r = 0.
To capture the behaviour of the curvatures near the singularity, we first regularized the
replica metric by smoothening the conical singularity or squashing the tip of the conical
replica geometry and look at the limit as n → 1. For example, the metric of the regularized
replica geometry for Sd−1 entangling surface is [53],

ds2 = r2dτ2 +
√
r2 + n2β2

r2 + β2 dr2 + (λ+ rnA1−n cos τ)2dΩ2
d−2 (2.4.6)

where β is the regularization parameter and A is an arbitrary constant. As r → 0, the
extra factor of n2 in the radial component of the metric resolves the conical singularity.
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In the limit of β → 0 and n → 1 one recovers the original geometry.

To see the distributional property we need to analyse the replica curvatures invariants
integrals, ∫

M(n)
reg

dd+1x
√
g O(R(n)

µνρσ) (2.4.7)

where O(R(n)
µνρσ) are integrands like R(n),R(n)2

,R(n)
µν R(n)µν etc. The limiting behaviour of

the replica curvature integral must depend only on the intrinsic curvature of the original
manifold M, extrinsic curvature of the extended entangling surface Σ and their derivatives.
For a quadratic curvature integral, by dimensional and parity reason it can only depend
on the extrinsic curvature in this form,

(n− 1)
∫

Σ
dd−1x

√
γ
[
c1(TrK)2 + c2Tr(K ·K)

]
. (2.4.8)

Since this combination of extrinsic curvatures is general and independent of the choice of
Σ, one can deduce the coefficient c1 and c2 by doing explicit calculation with two different
Σ and solving the simultaneous equations for c1 and c2.

The relevant replica curvature integrals up to first order in 1 − n are the following [53],∫
Mn

dd+1x
√
gR(n) = n

∫
M
dd+1x

√
gR + 4π(1 − n)

∫
Σ
dd−1x

√
γ (2.4.9)∫

Mn

dd+1x
√
gR(n)2 = n

∫
M
dd+1x

√
gR2 + 8π(1 − n)

∫
Σ
dd−1x

√
γR (2.4.10)∫

Mn

dd+1x
√
gR(n)

µνR(n)µν = n

∫
M
dd+1x

√
gRµνRµν (2.4.11)

+ 4π(1 − n)
∫

Σ
dd−1x

√
γ
(
Rµνn

µ · nν − 1
2

(TrK)2)
Note the integrals on the left hand side diverge as the regulator β → 0. From these integral
we can write the replica curvature invariants as distribution

R(n) = nR + 4π(1 − n)δΣ (2.4.12)

R(n)2 = nR2 + 8π(1 − n)δΣR (2.4.13)

R(n)
µνR(n)µν = nRµνRµν + 4π(1 − n)δΣ

(
Rµνn

µ · nν − 1
2

(TrK)2). (2.4.14)

where δΣ is the delta function in Σ, indicating the conical singularity is at Σ. Now we
have all the ingredients for the derivation of the holographic entanglement entropy and its
counterterms

2.4.3 Holographic renormalised entanglement entropy

Having established the holographic renormalisation procedure and replica trick in gravity,
we can proceed to derive the holographic renormalised entanglement entropy directly from
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the renormalised action. This is a systematic way of renormalising the entanglement en-
tropy which is conceptually different from the direct removal of the divergences. Although
in some dimensions the end results of the two methods are identical, we still need to
use proper renormalisation procedure if we want to relate the renormalised entanglement
entropy to other renormalised quantity.

The renormalised action can be written as [54],

Iren = lim
ϵ→0

[Ireg − Ict] (2.4.15)

and explicitly,

Iren = 1
16πGN

∫
M
dd+1x

√
g(R + Λ) (2.4.16)

− 1
16πGN

∫
∂M

ddx
√
γ

[
2(1 − d)R + 1

2 − d
R

− 1
(d− 4)(d− 2)2 (RµνRµν − d

4(d− 1)
R2)

− log ϵa(d) + · · ·
]
.

The explicit expression of the renormalised entanglement entropy as the limit of Renyi
entropy is

Sren = −n∂n[logZ(n) − n logZ(1)]n=1

Sren = n∂n[Iren(n) − nIren(1)]n=1. (2.4.17)

Applying the replica curvature integrals and distribution from (2.4.9 − 2.4.14) we can
obtain the holographic renormalised entanglement entropy [54],

Sren = 1
4GN

∫
Σ
dd−1x

√
h− 1

4(d− 2)GN

∫
∂Σ
dd−2x

√
h̃

− 1
4(d− 2)(d− 4)GN

∫
∂Σ
dd−2x

√
h̃

(
Rµνn

µ · nν − 1
2

(TrK)2 − d

2(d− 1)
R
)

(2.4.18)

where the third integral only arises for d ≥ 4 and at d = 4 the coefficient changes to
logarithm of the regulator. Cubic and higher order replica curvature integrals are relevant
for higher dimensional entanglement entropy and can be calculated following the same
procedure as above. As in the renormalised action, we obtained the covariant boundary
counterterms for the entanglement entropy. In chapter 3 we will express the renormalised
entanglement entropy in another set of curvature invariant that allow us to understand
property of this finite quantity.

Holographic entanglement entropy is a rich topic to study and has proved to be a useful
tool in quantum gravity. The area law of bulk entanglement entropy is directly related to
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the black hole thermal entropy. There are rapid development on the application of holo-
graphic entanglement entropy to the black hole information paradox [20, 21, 22]. Another
fundamental application of holographic entanglement entropy is on the emergent prop-
erty of dynamical spacetime or gravity [55, 56, 57]. In chapter 4 we will be investigating
the first law of entanglement entropy. There we will review how the linearised Einstein
equation is related to the variation of entanglement entropy.

2.5 Quantum scattering

In this section, we will be reviewing the past development in high energy scattering, further
details can be found in [58, 59]. To begin, let us briefly go over the basics of potential
scattering in 3 + 1D quantum mechnaics. In the traditional non-relativistic scattering
theory of quantum mechanics, incoming plane wavefunction is scattered by a spherically
symmetric potential and becomes an outgoing wavefunction. The Schrodinger equation
with potential V (r) can be rearranged as

(∇2 + k2)ψ(r) = U(r)ψ(r) (2.5.1)

where k2 = 2mE and U(r) = 2mV (r). At a steady state, the overall wavefunction is a
superposition of the incoming and outgoing wave. The coefficient of the outgoing spherical
wave at infinity is known as the scattering amplitude,

A(k,k′) = − 1
4π

∫
d3re−ik·rU(r)ψ(r) (2.5.2)

and the scattering matrix or S-matrix is defined by

S(k,k′) = 1 + 2ikA(k,k′), (2.5.3)

where k is the non-relativistic momentum vector. Since the wavefunction satisfies the
Schrodinger equation with spherically symmetric potential, one can separate the radial
and angular solutions. They can be express as partial waves

ψ(r) =
∞∑
l=0

ϕl(r)
r

Pl(cos θ) (2.5.4)

where Pl(cos θ) are the Legendre polynomials and l is the angular momentum quantum
number. Similarly, the radial wavefunction can be separated into incoming and outgoing
parts and the coefficient of the outgoing part is the partial wave S-matrix Sl and is related
to the partial wave scattering amplitude by

Al(k) = Sl(k) − 1
2ik

. (2.5.5)
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We can also define the Sl as a phase shift by

Sl(k) = e2iδl(k). (2.5.6)

For elastic scattering δl(k) is real. Partial wave analysis is useful in low energy regime when
the high angular momentum modes are suppressed. Although the application of partial
waves in high energy scattering is limited, we will use it to define the Regge behaviour in
QFT.

At high energy forward scattering regime, where the energy is large compare to the po-
tential and backscattering is low, we can use the eikonal approximation for the scattering
amplitude

A(k,k′) = ik

2π

∫
d2b′eik·b′(1 − eiχ(b)). (2.5.7)

where b is the impact parameter that is the fourier transform of the transverse momentum.
So the S-matrix in the impact parameter space is given by the eikonal phase factor eiχ(b).
A more insightful expression of the eikonal phase is to write it as the Fourier transform of
the Born amplitude

χ(b) = 1
2πk′

∫
d2keik·b′

AB(k,k′) (2.5.8)

where Born amplitude is

AB(k,k′) = − 1
4π

∫
d3re−i(k−k′)·rU(r). (2.5.9)

The Born approximation is valid for weak potential.

The interpretation of the eikonal approximation give us insight into how high energy
scattering works. Since the eikonal amplitude is related to the exponential of the Born
amplitude, we can think of the eikonal amplitude of as the infinite sum of Born amplitudes.
Also the form of the eikonal S-matrix in parameter space can be interpreted as picking up
the contribution from partial waves with largest angular momentum. In the relativistic
case, there are normalisation factor difference but the conceptual framework is the same.
In fact using Feynman diagrams, the above interpretation of eikonal scattering is more
apparent.

2.5.1 Regge scattering

In the partial waves expansion (2.5.4), the wavefunction is separated into the radial and
angular parts. Since the each angular part is an eigenfunction of the angular Laplacian,
this modifies potential by the eigenvalue which is related to angular momentum. For
each partial wave labelled by its angular momentum, there are bound states or resonances
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�p2

p1

p4

p3

Figure 2.5.1: The 2-2 scattering with the external legs labelled by the incoming momenta
p1, p2 and outgoing momenta p3, p4.

associate with the modified potential. We know that by analytical continuation of the
linear momentum, complex poles in the scattering amplitude represent bound states or
resonances. Regge showed it is also possible to write angular momentum as a complex
variable and physical solutions have poles at real integer angular momentum. More im-
portantly, bound states or resonances made from composite particles will also have poles
in the complex angular momentum plane as well. Poles of the partial waves are called
Regge poles representing Reggeons which can be composite particles.

For relativistic 2-2 scattering, the standard kinematic parameters are the Mandelstam
variables,

s = (p1 + p2)2 t = (p1 − p3)2 u = (p1 − p4)2. (2.5.10)

We will mainly be focusing on the scattering process where s denotes the square of centre
of mass energy and momentum transfer is in the t-channel. At the centre of mass frame,
the partial waves expansion of the scattering amplitude takes similar form as the non-
relativistic quantum mechanics case,

A(s, t) =
∑
l

(2l + 1)Al(s)Pl(cos θ). (2.5.11)

Then one notices the sum of integer l can be reformulated as a contour integral in the
complex l plane as

A(s, t) = 1
2i

∮
C
dl(2l + 1)A(l, t)

sin πl
P (l, 1 + 2s/t) (2.5.12)

where the contour C encircles the infinitesimal region above and below the positive real
axis. In analytical continuation, it is very important to keep track of the poles within the
contour. Restricting our contour to C, the contour integral (2.5.12) by itself reproduces
the standard partial waves expansion. However, in contour C the domain for l is restricted
to essentially the real line. To fully explore the complex plane, we would like to extend
the contour to larger part of the complex l plane. Now one can deform the contour to C ′

which encircles the Re(l) > −1
2 region. Poles and branch cuts within this region will need

to be subtracted from main contour integral. For simplicity we will assume there is no
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Figure 2.5.2: The 1, 2 → 3, 4 scattering is represented by the tree level diagram with
Reggeon transfer in the t-channel carrying momentum k.

branch cut and the scattering amplitude becomes

A(s, t) = 1
2i

∫ − 1
2 +i∞

− 1
2 −i∞

dl(2l + 1)A(l, t)
sin πl

P (l, 1 + 2s/t) (2.5.13)

+
∑
i

(2αi(t) + 1)βi(t)
P (αi(t), 1 + 2s/t)

sin παi(t)

where βi(t) is the residue of A(l, t) at l = αi(t) and αi(t) are called the Regge poles. In
the limit s � |t| the analytic continuation of the Legendre polynomial behaves like

lim
s�|t|

P (l, 1 + 2s/t) → Γ(2l + 1)
Γ2(l + 1)

(
s

2l

)l
. (2.5.14)

Hence the first term in (2.5.13) vanishes by construction as the real part of l is negative.
The Regge pole with the largest real part will dominate the sum. We are then left with
the famous Regge power law behaviour

A(s, t) ∼ sα(t). (2.5.15)

This can be thought of as an exchange of a Reggeon with angular momentum α(t) which
is also called the Regge trajectory. This is diagrammatically represented in figure 2.5.2.
An example of Regge behaviour is in the Veneziano amplitude, in string theory it is the
tree level four open strings tachyon amplitude, with linear Regge trajectory

α(t) = 1 + α′t. (2.5.16)

So the Regge intercept is 1 and the Regge slope is α′.

2.6 Gravitational scattering

The behaviour of eikonal 2-2 scattering in gravity can be derived in various methods
[26, 27, 29, 60]. We will consider the semi-classical shock wave interpretation where the
highly energetic particles backreact on the spacetime, creating shock waves and altering
the trajectory of the other particles [27, 29, 61, 62]. This is an analogue of the potential
scattering in quantum mechanics with gravitational potential induced by the particles.
The other interpretation is the perturbative linear quantum gravity where the sum of
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ladder diagrams from linearized gravity interaction reproduces the eikonal amplitude [63].

2.6.1 Shock wave

The shock wave geometry is a solution to the Einstein equation with the energy momentum
tensor being sourced by the high energy particle [62, 61, 64]. To begin, we write the metric
as

ds2 = −a(u, v′)dudv′ + r2(u, v′)hij(xk)dxidxj . (2.6.1)

Since we expect the shock wave to shift the position of the spacetime after the high energy
particle passes by, we introduce the shift in coordinate by a Heaviside function

v′ 7→ v = v′ + θ(u)f(xk). (2.6.2)

After the coordinate transformation, one arrives at the shock wave metric,

ds2 = −a(u, v)dudv + r2(u, v)hij(xk)dxidxj + a(u, v)f(xk)δ(u)du2. (2.6.3)

Shock wave geometry was also introduced to joining of two Einstein solutions, so each
sides of the shock wave satisfy the Einstein equation individually.

An alternate approach to deriving a shock wave metric is by considering the massless limit
of Schwarzchild metric has a discontinuity at u = 0. Then the 2-2 scattering becomes
just the scattering of one moving particle by the gravitational potential created by the
stationary particle. In the massless limit and taking the centre of mass frame, this arrives
at the shock wave graviational scattering.

In general, the total energy momentum tensor is of two parts, one associates with the
background geometry in the absent of shock wave and the other associates to the source
of the shock wave induced by the high energy particle,

Tµν = T (b)
µν + T (p)

µν . (2.6.4)

For high energy particle located at the u = 0 null surface, the energy momentum tensor
takes the form,

T (p)
uu = J(xk)δ(u). (2.6.5)

Then the Einstein equations give following conditions at u = 0

a,v = 0 2rr,v = 0,
(
a∇2

(D−2) − ar2Λ − 2rr,uv
)
f = J. (2.6.6)

In the semi-classical picture, the high energy 2-2 scattering process is considered as the
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wavefunction of the one particle being scattered off a shock wave geometry created by the
other ultra-energetic particle.

For simplicity, let us focus on the flat background example. In the flat space coordinates,
the plane wavefunction is

ψ = eip·x′
. (2.6.7)

The wavefunctions before and after the shock wave are different by a shift in the null
coordinate,

ψ− = eipix
i+ipuu+ipvv (2.6.8)

ψ+ = eipix
i+ipuu+ipv(v−f) (2.6.9)

where shift function for flat space shock wave in D = 4 is

f(xk) = −2GNpu1 log
(
µxixi

)
. (2.6.10)

We can expand the wavefunction after the shock wave in momentum eigenstates with
momentum conservation condition

ψ+(p, x) =
∫
dDkδ

(
ku − kik

i −m2

kv

)
(1 − S(p, k))eik·x (2.6.11)

where S(p, k) is the S-matrix element. So by doing the inverse Fourier transform one
arrives at the scattering amplitude as

A(s, t) = GN
s

t

Γ(1 − iGNs)
Γ(1 + iGNs)

(−t)iGNs (2.6.12)

One obtain the same result if consider Klein-Gordon equation of ultra-energetic particle in
a static spherically symmetric background generated by the other massive particle. This
would give Schrodinger equation with gravitation potential that has the same form as
Coulomb potential.

For the holographic quantum chaos, we will mainly being using the shock wave approach
to high energy gravitational scattering.

2.6.2 Perturbative quantum gravity

To get a better understand and to see direct relation with quantum gravity, we will demon-
strate the perturbative quantum gravity approach to high energy graviational scattering.
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Figure 2.6.1: These are the dominant 1-loop diagrams for high energy forward scattering.
The solid lines are the incoming and outgoing particles which are the scalars in our case.
The dash lines represents the higher spin particles which are the gravitons in our case.
Note that there is no four point gravitons vertex in the diagram on the right.

First, let us write the action for linearized gravity with massless scalar

I = 1
16πGN

∫
dDx h · D2(h) + 1

2
ϕ∇2ϕ+ 1

2
h(∂ϕ, ∂ϕ) − 1

4
h∂ϕ · ∂ϕ (2.6.13)

where kinetic term for the graviton or metric perturbation is expressed by the differential
operator D2 defined by

h · D2(h) = 1
8
hµν

(
ηµληνσ + ηµσηνλ − ηµνηλσ

)
∇2hλσ. (2.6.14)

With this action, we have directly apply the Feynman rule to Feynman diagrams and
obtain the amplitudes. The ingredients for the Feynman rules are scalar propagator

i∆(p) = − i

p2 − iϵ
, (2.6.15)

the graviton propagator

iDµνρσ(k) = −16πGN
k2 − iϵ

(ηµρηνσ + ηµσηνρ − ηµνηρσ) (2.6.16)

and the scalar-graviton vertex

Vµν(p, p′) = i

2

(
pµp

′
ν + pνp

′
µ − ηµνp · p′

)
(2.6.17)

where p and p′ are the scalar momenta and k is graviton momentum. At large energy, the
tree level diagram then gives the amplitude analogous to the Born amplitude

A0(s, t) ∼ −8πGN
s2

t
(2.6.18)

where the s2 originated from the fact the intermediate particle is spin-2. In general the
power of s is determined by the spin of the intermediate particle because of the momentum
dependence of the vertex. For large s and at each loop order, the forward scattering is
dominated by diagrams with intermediated by graviton only. So in one loop diagrams like
figure 2.6.1 dominate. We approximate the intermediate scalar propagator as
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Figure 2.6.2: This is a schematic representation of the ladder diagrams with only gravitons
intermediating between the large momentum scalar lines. Crossing of the gravitons are
permitted.

i∆(p+ k) = − i

(p+ k)2 − iϵ

i∆(p+ k) ∼ − i

2p · k − iϵ
. (2.6.19)

then we obtain the 1-loop amplitude as

A1(s, t) = 2s
∫
dD−2be−iq·b (iχ(b, s))2

2!
(2.6.20)

where

χ(b, s) = 1
2s

∫
dD−2q

(2π)D−2 e
iq·bA0(s,−q2). (2.6.21)

The factor of s infront is due to the normalisation factor when changing basis between
transverse momentum space to impact parameter space [65]. This can be interpreted
as the products of the tree level amplitudes. Also we scaled the IR regulator/(graviton
mass) µ to 1. One can show, see [66], the infinite sum of ladder diagrams like figure 2.6.2
reproduces the eikonal scattering amplitude,

iAeik(s, t) = 2s
∫
dD−2be−iq·b

(
eiχ(b,s) − 1

)
. (2.6.22)

We can evaluating the integral and get

Aeik(s, t) = 8πGN
s2

−t
Γ(1 − iGNs)
Γ(1 + iGNs)

( 4
−t

)−iGNs

(2.6.23)

which is equal to (2.6.12) up to some kinetic normalisation factor. From the form of
(2.6.22), the S-matrix in impact parameter space is again a phase shift,

S(s,b) = eiχ(s,b). (2.6.24)

In fact the eikonal phase can be represented as the classical action,

χ(s,b) = Icl(s,b). (2.6.25)
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�
Figure 2.6.3: This is a diagram representing the scalar sourcing linearised graviton as it
propagates.

Here is a sketch of the argument, we can calculate the connected amputated Green’s func-
tion for the scalar in space with linear metric perturbation, representing all the connected
diagrams in the 2-2 scattering between four scalars. The path integral of the Green’s
function is

G(x1, x2;x3, x4) =
∫

DhµνDϕ1Dϕ2ϕ1(x1)ϕ1(x3)ϕ2(x2)ϕ2(x4)ei(Igrav+Iϕ+Iint). (2.6.26)

We then integrate out the scalar fields

G(x1, x2;x3, x4) =
∫

DhµνGc1(x1, x3|hµν)Gc2(x2, x4|hµν)eiI
(2)
grav (2.6.27)

where Gc1(x1, x3|hµν) and Gc2(x2, x4|hµν) are connected amputated Green’s function in
linearly perturbed metric, see figure 2.6.3. These two point Green’s functions are the
source term for the linearised graviton, i.e.

Gceik(pu1 ,x1; pu3 ,x3|hµν) ∼ exp

[
i

2

∫
dDx

√
−GT1 · h

]
. (2.6.28)

Combining everything together we get the S-matrix to be

S(s,b) ∼
∫

Dhµν exp
[
i

∫
dDx

√
−G

(
h · D2(h) + 1

2
T1 · h+ 1

2
T2 · h

)]
(2.6.29)

S(s,b) ∼ exp
[
iI(2)
grav + iIsource

]
(2.6.30)

To go to second line, one can compute the Gaussian path integral by change of variable
or use saddle point approximation.

2.7 Quantum chaos

In this section we will review Quantum Chaos base on [9, 10, 23, 67, 68, 69]. Classical
chaos is the phenomenon of classical system being very sensitive to perturbation of initial
condition. More precisely, the distance between the perturbed phase space trajectory and
the unperturbed trajectory grow exponentially in time

δx ∼ eλLt (2.7.1)
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where λL is the Lyapunov exponent that governs the rate of growth. A system with
larger λL is more chaotic. There are quantum analogues of chaos in terms of phase space
trajectory governs by the Schrodinger equation. However, we will focus on the formalism
of quantum chaos measured by the expectation value of the commutator between two
operators at different time [68],

C(t) =
〈
− [W (t, x), V (0, 0)]2

〉
β
. (2.7.2)

where β is the inverse temperature of the system. Generically, operators W (0, x) and
V (0, 0) at time equal to zero should commute with each other as they act on different
position and the size of the operator is not large. As time increases, in chaotic system
the operator size of W (t, x) increases, eventually covering the site that V (0, 0) acts on.
As a result the commutator increases, the exponential grows in the onset of chaos is also
governed by the Lyapunov exponent,

C(t) ∼ eλLt, (2.7.3)

for t be greater than the thermal dissipation time but smaller than the scrambling time
when the size of the operator W (t, x) reach the size of the system.

2.7.1 Out-of-time-order correlation function

Let W and V be unitary and Hermitian operators. The commutator in C(t) can be
expanded, the only term that behaves differently in chaotic system is the out of time
order correlator (OTOC) [9, 10, 23, 67, 68, 69],

〈W (t, x)V (0, 0)W (t, x)V (0, 0)〉β. (2.7.4)

The only requirement on these operators are they have vanishing thermal expectation
value and their time ordered two point function decay normally,

〈W 〉 = 〈V 〉 = 0 (2.7.5)

〈W (t, x)W (0, 0)〉, 〈V (t, x)V (0, 0)〉 ∼ e−t/td (2.7.6)

where td is the thermal dissipation time, the time scale that the operator evolves to be
significantly different from the initial operator.

To explore the operator evolution with time, we use the BCH formula to write the operator
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as

W (t, x) = eiHtW (0, x)e−iHt

W (t, x) = Ad[eiHt]W (0, x)

W (t, x) =
∑
n=0

(−it)n

n!
Ad[H]nW (0, x) (2.7.7)

whereH is the Hamiltonian of the theory and Ad[ ] is the adjoint representation, Ad[H] =
[H, ]. The growth of the operator W (0, x) can be thought of as the scramble of W in
the system by commuting with the Hamiltonian. Ad[H]nW (0, x) can be written as a
product of operators and typically this operator product increases in size with respect
to n. The relationship between operator growth and scrambling can be demonstrated in
simple discrete one dimensional quantum system with qubits and Hamiltonian that include
nearest neighbour interaction, see [68].

For integrable system the time evolution can be solved analytically hence late time be-
haviour can be determined. The operator decreases in size and ’unscramble’ at later time
or rather it was never properly scramble in the system. In chaotic systems the opera-
tor becomes thoroughly scrambled in the system after passing the scrambling time and
remains large.

The late time behaviour of the OTOC depends on the Hamiltonian of the system, if the
system is integrable then OTOC tends to,

〈W (t, x)W (t, x)〉β〈V (0, 0)V (0, 0)〉β (2.7.8)

but, for our interest, in chaotic systems the normalised OTOC vanishes like [9, 10, 23, 67,
68, 69],

〈W (t, x)V (0, 0)W (t, x)V (0, 0)〉β
〈W (t, x)W (t, x)〉β〈V (0, 0)V (0, 0)〉β

∼ 1 − exp

[
λL

(
t− t∗ − |x|

vB

)]
(2.7.9)

where λL is the Lyapunov exponent, t∗ is the scrambling time, vB is the butterfly velocity
and the coefficient are schematically hidden. As mentioned before the physical interpre-
tation of the scrambling time is the time needed for a whole system to become properly
scrambled. And the butterfly velocity is the speed for which the scrambling is spread
through the system. The Lyapunov exponent is the decay rate of the OTOC after the
system is properly scrambled.

This manifests the same chaotic growth behaviour of the expectation value of the com-
mutator,

C(t) ∼ exp

[
λL

(
t− t∗ − |x|

vB

)]
. (2.7.10)
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To better understand the relationship of OTOC and chaos, consider the OTOC as an
overlap of these two states [10],

|in〉 = W (t, x)V (0, 0) |β〉 , |out〉 = V (0, 0)W (t, x) |β〉 (2.7.11)

The construction of the out state is to evolve the thermal state |β〉 in time then per-
turb by the operator W , We−iHt |β〉. The state is evolved back in time such that the
system thermalized and feature of the W perturbation is dissipated out. Following by a
V perturbation to the state, V eiHtWe−iHt |β〉, the state now only has feature of the V
perturbation.

Similarly, the construction of the in state is to first perturb the thermal state |β〉 by the
operator V then evolve the state in time, e−iHtV |β〉, such that the system is thermalized
and feature of the V perturbation is dissipated out. Followed by a W perturbation to the
state and evolve back in time, eiHtWe−iHtV |β〉.

In ordinary non-chaotic cases, the information about the W and V operators acting on the
state does not scramble or mix with each other. So the perturbations can be independent
evolve forward and backward in time. So for large enough t the in state will appear to
have only the V perturbation and the information about W is thermalised. The out state
only sees the V perturbation as the W perturbation is thermalised. Hence the in and out
overlap and OTOC is non-vanishing even at large t.

A chaotic system would scramble the information of both operators even when acted on
different time. The in state would lose the feature of the V perturbation when evolved
back in time due to the thermalisation of the scrambled information. Again the out state
only show features of the V perturbation. Therefore the in and out overlap, 〈out|in〉, and
OTOC is small. The size of the overlap decay with respect to the time passed proper
scrambling because the smearing of the V perturbation intensifies.

2.8 Holographic chaos

Holographic conformal field theory that possesses chaotic behaviour [10] and can be de-
scribe by black hole physics in the bulk [9]. The holographic dual to a d dimensional
conformal field theory with inverse temperature β is the theory of Einstein gravity in
AdSd+1 black hole geometry with the same temperature.

We have seen the thermofield double state in section 2.3 as an example of entangled state.
But let us further elaborate the thermal property of this state. Analogous to the use of
Boltzmann factor in statistical physics to describe the proportion of microstate being in
a certain energy level, we can use the same logic to express the thermal quantum state.
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The density matrix of a thermal mixed state at inverse temperature β is,

ρ(β) = 1
Z

∑
n

e−βEn |n〉〈n| (2.8.1)

which is a ensemble of energy eigenstates with probability proportional to the Boltzmann
factor. The purification of this state is called thermofield double state,

|TFD〉 = 1
Z

1
2

∑
n

e
−βEn

2 |n〉L |n〉R (2.8.2)

where |n〉L and |n〉R are the energy eigenstates in the CFTL and CFTR. The holographic
dual to the TFD is the two-sdied eternal black hole in AdS. So taking the partial trace is
identical to considering only one side of the black hole exterior. As an example, a metric
written in null coordinates is [23],

ds2 = −a(uv)dudv + r2(uv)dxidxi (2.8.3)

where the horizons locate at u = 0 and v = 0.

The holographic description of the OTOC is given by bulk scattering with insertion of
boundary operators W and V . A useful convention to use is to switch the sign of the time
t → −t and the bulk in and out states are,

|Ψin〉 = W (−t)V (0) |TFD〉 , |Ψout〉 = V (0)W (−t) |TFD〉 (2.8.4)

To write the bulk states in momentum space we first Fourier transform the boundary-to-
bulk propagators along the horizons to get the wavefunctions,

ψV (pu, x) =
∫
dve

ia0puv

2 〈ϕV (u, v, x)V (0)〉|u=0 (2.8.5)

ψW (pv, x) =
∫
due

ia0pvu

2 〈ϕW (u, v, x)W (−t)〉|v=0 (2.8.6)

where ϕV and ϕW are the bulk fields dual to V and W .

The in state written in the null momentum space is,

|Ψin〉 =
∫
ψV (pu4 , x4)ψW (pv3, x3) |pv3, x3; pu4 , x4〉in , (2.8.7)

similarly the out state is,

|Ψout〉 =
∫
ψV (pu2 , x2)ψW (pv1, x1) |pv1, x1; pu2 , x2〉out , (2.8.8)

where the in and out label the states that are defined on different Cauchy slices and |pu, x,〉
and |pv, x,〉 are defined on u = 0 horizon and v = 0 horizon. The overlap of the bulk in
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and out states defines the bulk OTOC,∫
ψ∗
V (pu2 , x2)ψ∗

W (pv1, x2)ψV (pu4 , x4)ψW (pv3, x3)out 〈pv1, x1; pu2 , x2|pv3, x3; pu4 , x4〉in (2.8.9)

The S-matrix element out 〈pv1, x1; pu2 , x2|pv3, x3; pu4 , x4〉in in the high energy regime where
the centre of mass energy s is large and fixed t, the forward scattering dominates with
pv3 ≈ pv1 and pu4 ≈ pu2 . Then we can use the eikonal approximation we discussed in section
2.6. The caveat in here is the S-matrix formalism is formally defined for asymptotically
flat spacetime with in and out states defined at the past and future infinity. However,
for large lAdS and t we can approximate the amplitude to be similar to the usual eikonal
scattering. So the out state is related to the in state by a phase factor,

|pu2 , x2; pv1, x1〉out ≈ eiδ |pu2 , x2; pv1, x1〉in (2.8.10)

This eikonal phase δ in our gravity setting can be approximated by the classical action,

δ ∼ I
(2)
cl (2.8.11)

where I(2)
cl is the quadratic perturbation of the classical action with metric perturbation

sourced by the highly boosted particles inserted from the boundary along the horizons.
This metric perturbation can be obtained by calculating the back reaction of the parti-
cle. For t large enough, the particles are highly boosted along the horizons, the energy
momentum tensors are,

Tuu = a0

2rd−1
0

pv1δ(u)δd−1(x− x1) (2.8.12)

Tvv = a0

2rd−1
0

pu2δ(v)δd−1(x− x2). (2.8.13)

These can be inserted in the linearized Einstein equation to obtain the back reaction
perturbations huu and hvv. The action up to second order in perturbation is,

Icl = I0 + δI + δIpv
1

+ δIpu
2

Icl = I0 +
∫
dd+1xδg · δI

δg
+ δg ·

δIpv
1

δg
+ δg ·

δIpu
2

δg

I
(2)
cl = 1

2

∫
dd+1x

√
−gh · D2h+ huuT

uu + hvvT
vv (2.8.14)

where D2 is a differential operator in terms of g and I0 factor is absorbed by the path
integral normalisation. Since the metric perturbations satisfied the linearized Einstein
equation, the first term is equal but opposite to the last two terms. So the eikonal phase
is

δ = 1
2

∫
dd+1x

√
−ghuuT uu. (2.8.15)
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The shock wave perturbation induced by particle 2 is,

huu = 8πGNa0

rd−3
0

pv2δ(u)f(x− x1) (2.8.16)

where f satisfy the following equation derived from linearized Einstein equation,

(−∂2
x + µ2)f(x) = δd−1(x) (2.8.17)

where f(x) is then Green’s function for the transverse part of linearised Einstein equation.
We will calculation the exact form of this Green’s function in chapter 5. At large argument
f(x) has the asymptotic form,

f(|x|) = µ
d−4

2

2(2π|x|)
d−2

2
e−µ|x| (2.8.18)

and µ2 = 2π(d−1)r0
β . Using (2.8.15) and combining all the terms, we obtain the eikonal

phase,
δ = 4πGN

rd−3
0

sf(b) (2.8.19)

where s = a0p
v
1p
u
2 and b = x1 − x2 is the impact parameter of the 2-2 scattering. In

the Kruskal null coordinate u and v, we can see the bulk particle sourced by W (−t) are
highly boosted along one of the horizon by a factor of e

2πt
β . So we can see both the metric

perturbation and eikonal phase is proportional to the boost factor

huu ∼ e
2πt
β (2.8.20)

in the other frame along the other horizon particle sourced by V (0) is boosted. The boost
factor originates from the change of variable from t, r to u, v. It is related to the inverse
temperature by the gtt component near the horizon. Hence the eikonal phase also have
the exponential behaviour

δ ∼ GNe
2πt
β e−µb (2.8.21)

This is the first indication of the chaotic exponential growth behaviour, suggesting the
Lyapunov exponent λL is

λL = 2π
β
. (2.8.22)

The eikonal phase becomes of order one, δ ∼ 1, when at t = t∗ so the scrambling time
equals to

t∗ = β

2π
log 1

GN
(2.8.23)
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From (2.8.21)the butterfly velocity vB is

vB = λL
µ

(2.8.24)

The exact behaviour can be obtained by the OTOC, see examples in [23].

The interpretation of the bulk OTOC is similar to the one used for the quantum system.
We will look at the case for all the one sided boundary operators insertions. First we
construct the in state by inserting V (0) on the CFT as a boundary condition for the bulk
field. Then we insert W (−t) and for large enough t the W particle generates a shock wave
along the past horizon and it shift the trajectory of the V after crossing the shock wave.
Hence the position of V on the boundary changes.

For the out state we insert the W (−t) first and produced a shock wave. Then we insert
V (0), now the boundary position of V is unchanged, only its past before crossing the shock
wave is shifted. The boundary positions of V is different between the in and out state.
Therefore the overlap is small for large t.

In the two sided perspective is we can define the in state on a past Cauchy slice with W

and V insertions on opposite boundary. Then we have two particles on the same Cauchy
slice with momenta along different horizons. Similarly we can define the out state on a
future Cauchy slice with W and V insertions on opposite boundary. Again we have two
particles on the same Cauchy slice with momenta along different horizon. So the out

state can be thought of as the final state of a scattering in the past and the in state is
pre-scattering state. The OTOC is then the high energy scattering S-matrix element of
these boosted particles along the horizons.

Both the explicit examples of OTOC calculation and heuristic argument point towards the
eikonal phase being the key to diagnose the chaotic behaviour of a system. The eikonal
phase is essentially the Fourier transform of tree level amplitude in transverse momentum
bases to impact parameter bases. In the Regge limit, it has a power law behaviour,

δ(s, b) ∼ sj−1, (2.8.25)

where j is the spin of the intermediate particle. In the gravitational scattering processes,
the spin-2 graviton will dominate at high s regime.

2.8.1 Stringy correction

There has been a conjecture for the bound on chaos which set the upper bound of the
Lyapunov exponent,

λL ≤ 2π
β
. (2.8.26)
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This proposed bound is saturated by Einstein gravity [67].

One of the way to introduce stringy correction is simulate the OTOC using the four point
function of closed string tachyon vertex operators

A =
∫
d2z 〈V4(0, 0)V2(z, z̄)V3(1, 1)V1(∞,∞)〉 (2.8.27)

where the worldsheet positions of three out of four vertex operators are fixed by conformal
symmetry and the remaining position is integrated over the worldsheet. The scale we need
to be aware of are the string length scale ls and the string coupling gs. From the coefficient
of the effective action one can deduce the gravitational constant is related to the string
scales by

GN ∼ g2
s l
D−2
s . (2.8.28)

The standard procedure of calculating the string amplitude is by operator product expan-
sion (OPE) of the vertex operators. The indexing of the vertex operators hinted that we
are taking the OPE as z → 0 so intermediate string imitate the t-channel intermediate
particle in the 2-2 forward scattering. In flat target space, the result is the two tachyons
merge to form a excited closed string which leads to the flat space Regge behaviour

A ∼ s
2+ α′t

2r2
0 (2.8.29)

where t < 0 and α′ = l2s being the standard Regge slope in string theory. In curved
spacetime, particularly in AdS, we see the transverse part of linearised Einstein equation
in (2.8.17) has a term µ2. By change of variable, one can absorb the µ2 term into the
momentum. Using this analogy, we can see the shift in the Regge behaviour as

A ∼ s
2+ α′(t−µ2)

2r2
0 . (2.8.30)

This shift in momentum changes the Regge intercept from 2 to

α(t = 0) = 2 − α′µ2

2r2
0

(2.8.31)

so the spin of the Reggeon decreases to be below spin-2. This also indicates the Lyapunov
exponent becomes

2π
β

(1 − α′µ2

2r2
0

) (2.8.32)

falling below the conjectured chaos bound. We have provided an heuristic justification of
the stringy correction to chaos. The precise calculation can be found in [23].
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Renormalized Entanglement Entropy and Curvature Invariants

3.1 Introduction and summary

Viewed from the perspective of quantum field theory, entanglement entropy is an unusual
quantity. Entanglement entropy is usually expressed as a regulated quantity, with the
regulator being a short distance cutoff but the regulated power law divergences depend
on the details of the regulation scheme. Accordingly the main focus is on the so-called
universal terms, the coefficients of logarithmic divergences, as these are related to the
coefficients of the Weyl anomaly of the stress energy tensor.

For condensed matter and quantum information applications, quantum field theory is
used as an intermediate tool to describe a system with an inherent lattice cutoff. In such
contexts the short distance regulator has a physical interpretation as the lattice spacing.
If quantum field theory is used to describe a continuum system, there is no inherent
physical cutoff: in quantum field theory we work with renormalized quantities, rather
than regulated quantities. Renormalized entanglement entropy has been developed in
[54, 70, 71, 72, 73, 74, 75].

The focus in this chapter will be on the holographic definition of renormalized entangle-
ment entropy in terms of the renormalized area of entangling surfaces, as shown in (3.2.1)
and (3.3.2). Renormalized entanglement entropy can however be defined in generality us-
ing the replica approach, which is in practice almost always used for explicit computations

45
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of entanglement entropy in quantum field theory, see for example [76, 77, 78]. The bare
entanglement entropy is expressed as

S = −Limn→1 (∂n [Tr(ρn)]) (3.1.1)

where ρ is the density matrix of the (reduced) state. This expression can be written in
terms of partition functions as

S = −Limn→1 (∂n [Z(n) − nZ(1)]) (3.1.2)

where Z(1) denotes the partition function and Z(n) denotes the partition function on the
replica space (n copies of the original space joined together cyclically). The renormalized
entanglement entropy can then be defined as

Sren = −Limn→1 (∂n [Zren(n) − nZren(1)]) . (3.1.3)

Here the partition function Zren(1) is renormalized using any method of renormalization.
The partition function on the replica space inherits the same UV divergence structure
and thus the renormalized Zren(n) can be defined without ambiguities from the original
renormalization scheme.

In [79] Page characterised information recovery from black holes in terms of the time
dependence of the entanglement entropy of the Hawking radiation. A number of recent
works, such as [21, 80, 22], have discussed how the Page curve for Hawking radiation can
be recovered from semiclassical geometry. It is interesting to note that these discussions
inherently rely on a finite (renormalized) notion of entanglement entropy, as defined above.

The UV divergences in the bare entanglement entropy are associated physically with local
entanglement at the boundary of the entangling region. The renormalized entanglement
entropy is instead associated with non-local entanglement between the entangling region
and its complement. The behaviour of renormalized entanglement entropy in various
phases of holographically realised quantum field theories was explored in [70].

Renormalized entanglement entropy is computed holographically in terms of the renor-
malized area of minimal surfaces. The latter topics has been explored right from the very
early days of the AdS/CFT correspondence [81, 82], as it is also relevant to the holographic
computation of Wilson loops. Within the mathematics community, there has been con-
siderable study of renormalized areas of surfaces, see for example [83, 84, 85, 86, 87, 88].
Connections between renormalized areas, entanglement and the Willmore functional have
been explored within both the mathematics and the physics communities [89, 90].
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The main goal of this chapter is to demonstrate how the renormalized entanglement en-
tropy can be expressed in terms of the Euler characteristic and other conformal invariants
in odd-dimensional UV conformal field theories dual to gravity in even dimensions. The
restriction to even dimensions is for the usual reason: conformal field theories in even
dimensions have conformal anomalies, and accordingly the renormalized entanglement en-
tropy is not a conformal invariant. For AdS4/CFT3, the required geometric analysis is
already contained in [83]; here we interpret these mathematics results physically, particu-
larly in terms of the F quantity. We then generalize the approach of [83] to AdS6/CFT5

dualities.

We show that the renormalized entropy S(Σ) for a static entangling surface Σ in an
asymptotically AdS2n spacetime has the following structure:

S(Σ) ∼ (−1)n+1Fn χ(Σ) −
∑
r

Wr(Σ) −
∑
p

Hp(Σ)−
∑
q

Iq(B̃). (3.1.4)

In this and all subsequent expressions S refers to the renormalized entanglement entropy
i.e. for notational brevity we drop the subscript. The Euler invariant of the entangling
surface is denoted χ(Σ) and Fn is a numerical coefficient. In everything that follows we
implicitly work with spacetimes with constant negative Ricci curvature, i.e. no matter
or gauge fields, but the generalization of our results to include bulk stress energy tensors
would be straightforward.

The contributions Wr are expressed in terms of the pullback of the Weyl curvature to the
surface. Each such contribution is individually finite and conformally invariant; finiteness
generically requires that appropriate boundary terms are included. For n = 2 there is one
single such contribution, linear in the Weyl tensor while for n = 3, there are two terms,
linear and quadratic in the Weyl tensor. For general n terms up to and including order
(n− 1) arise.

The contributions Hp are expressed in terms of scalar invariants built from the extrinsic
curvature. Again, each such contribution is individually finite and conformally invariant,
with boundary terms generically being required. For AdS2n there are contributions up
to and including order 2(n − 1) in the extrinsic curvature; all such contributions involve
an even number of extrinsic curvatures. For d > 5 there are Iq renormalized integrals
containing products of Weyl and extrinsic curvature.

The general structure of the renormalized entropy/area and the decomposition using
Gauss-Codazzi relation will apply in all even dimensions. The explicit terms that arise
would need to be calculated for dimensions greater than or equal to eight, and the asso-
ciated positivity properties proven.
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While the gravity calculation can be carried out in all even dimensions, we should note
however that the quantum field theory interpretation of the results in AdS2n with n ≥ 4
is unclear and there are no conformal field theories in dimension n ≥ 7.

We note that relations between a renormalized entanglement entropy, the Euler invariant
and curvature invariants has been considered in earlier works [71, 72, 73, 74, 75]. However,
the underlying approach of these works is somewhat different: the renormalized entan-
glement entropy is not defined by using the boundary terms induced by the variational
problem at the conformal boundary [91] as in [54, 70], following the standard approach
to holographic renormalization [43, 92], but instead by adding Chern forms as boundary
terms. However, the results coincide for AAdS4; the Chern form and counterterm for the
codimension two minimal surface renormalized area are identical as illustrated in [71, 83].
When the bulk entangling surface is a codimension two asymptotically hyperbolic slice of
AAdS6, Σ = AH4, by discarding all quantity extrinsic to Σ, the renormalized area formula
(4.2.11) reproduces Anderson’s four dimensional renormalized volume formula [93]

χ(Σ) = 3
4π2 A(Σ) + 1

32π2

∫
Σ

|W (4)|2 (3.1.5)

where A(Σ) is the renormalized area and W (4) is the Weyl tensor intrinsic to the four
dimensional hyperbolic space Σ. In this case our results should coincide with [72, 73, 74,
75].

More generally, as pointed out by [94], the Kounterterm approach differs from the holo-
graphic renormalization procedure when the boundary Weyl tensor of the asymptotically
locally AdS spacetime is non-vanishing. Using the Gauss-Codazzi relations, the boundary
Weyl tensor is related to projections of the bulk Weyl tensor. In (4.2.11), the projections of
the bulk Weyl contributes to the renormalized area. Hence, we anticipate that our results
could differ from the Kounterterm approach and it would be interesting to compare the
results in higher dimensions.

The expression (3.1.4) has several immediate physical applications. Firstly, for entangling
surfaces in AdS2n all Wr contributions are zero, due to the vanishing of the Weyl ten-
sor. Umbilic minimal surfaces have zero extrinsic curvature, and thus the renormalized
entanglement entropy reduces to the Euler invariant term. Entangling surfaces associated
with spherical entangling regions (discussed extensively in [51]) are indeed umbilic and
thus their renormalized entanglement entropies are proportional to their Euler invariants
(which are one for all n).

In [51] it was shown that the finite contributions to the entanglement entropy of spherical
regions compute the F quantities [95] in odd dimensional conformal field theories. Renor-
malized entanglement entropy enables these finite contributions to be extracted elegantly,
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in a manifestly scheme independent manner [54, 96]. By expressing the renormalized en-
tanglement entropy in the form (3.1.4), it is manifest that the coefficients of proportionality
Fn of the Euler invariants directly compute the F quantities.

The second immediate application of (3.1.4) is to variations of the entanglement entropy
under changes in the background geometry (state of quantum field theory) and changes in
the shape of the entangling region. The expression (3.1.4) can be used to give an elegant
proof of the first law of entanglement entropy, generalizing the work of [57] as one no
longer needs to restrict to normalizable metric perturbations.

The first variation of the entanglement entropy around spherical entangling regions in
AdS takes a particularly simple and elegant form. Since such variations do not change the
topology of the entangling surface, the Euler invariant contribution does not change. All
contributions from the extrinsic curvature are quadratic or higher order; since the extrinsic
curvature vanishes to leading order, this means the contributions Hp do not contribute to
first variations (but do contribute to the second variations). By analogous reasoning, the
only contribution from the Weyl terms Wr comes from the term that is linear in the Weyl
tensor. Thus we arrive at

δS ∝ −1
4G2n

δW (3.1.6)

where G2n is the Newton constant and

δW =
∫

Σ
d2(n−1)x

√
g δW̃1212 −

∫
∂Σ
d2n−3x

√
hδW1212 + · · · (3.1.7)

where δW̃1212 is the pullback of the normal components of the bulk linearized Weyl curva-
ture in an orthonormal frame and δW1212 is the pullback of the normal components of the
boundary linearized Weyl curvature in an orthonormal frame. The boundary terms are
such that δW is a finite conformal invariant for a generic non-normalizable metric pertur-
bation. Note that the boundary term vanishes for AdS4. The ellipses denote additional
boundary terms expressed in terms of higher powers of the boundary Weyl curvature that
are required for n > 3.

In a future work [2] we will show in detail how δW can be related to the renormalized stress
tensor defined in [43] and hence to the variation in the energy; this gives a generalized
proof of the first law [57] in a simple and elegant way.

The plan of this chapter is as follows. In section 3.2 we consider static entangling surfaces
in asymptotically locally AdS4 spacetimes; the relevant mathematical results were derived
in [83]. In section 3.3 we analyse static entangling surfaces in asymptotically locally AdS6

spacetimes; the main result of this section is the explicit form of the renormalized area
in terms of finite conformal invariants (4.2.11). Details of the asymptotic analysis are
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contained within the appendix. In section 3.4 we express the renormalized entanglement
entropy for spherical entangling regions in terms of the Euler invariant and show that
linearized variations can be expressed in terms of the conformal invariant that is linear in
the Weyl tensor. We conclude in section 3.5.

3.2 Asymptotically AdS4

Consider a codimension two static minimal surface Σ with boundary ∂Σ in an asymptot-
ically locally AdS4 spacetime. The renormalized entanglement entropy S(Σ) is expressed
in terms of the renormalized area A(Σ) as

S(Σ) = A(Σ)
4G4

(3.2.1)

where G4 is the four-dimensional Newton constant. The renormalized area is [54]

A(Σ) =
∫

Σ
d2x

√
g −

∫
∂Σ
dx

√
h. (3.2.2)

Here g is the metric on the minimal surface and h is the metric at the boundary of the
minimal surface.

It was shown in [83] that the renormalized area can be expressed in terms of the Euler
characteristic of the surface and an integral of local invariants. The analysis of [83] was for
two dimensional minimal surfaces in (d+1)-dimensional asymptotically locally hyperbolic
Einstein spaces i.e. Euclidean signature. This analysis demonstrated that

A(Σ) = −2πχ(Σ) − 1
2

∫
Σ
d2x

√
g|Ks|2 +

∫
Σ
d2x

√
gW̃3434 (3.2.3)

where W̃3434 is the Weyl curvature of the bulk metric evaluated on any orthonormal basis
for the tangent space of the entangling surface and the bulk curvature is normalised to
satisfy Rµν = −dGµν . Here Ks

ij are the components of the second fundamental form; the
index s runs over the directions orthogonal to the surface i.e. s = 1, 2 in the case of a
four-dimensional bulk geometry. Note that the minimal condition implies that Ks is trace
free. Each term in (3.2.3) is individually finite: the integrands in the last two terms fall off
sufficiently quickly near the conformal boundary that the integrals do not have divergent
contributions [83].

In the case of a static Ryu-Takayanagi entangling surface, the extrinsic curvature in the
time direction is zero and by tracelessness of the Weyl curvature the renormalized area
reduces to

A(Σ) = −2πχ(Σ) − 1
2

∫
Σ
d2x

√
g|K|2 −

∫
Σ
d2x

√
gW̃1212 (3.2.4)

where Kij is the extrinsic curvature of the surface along a spatial section and W̃1212 is the
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Weyl curvature evaluated on an orthonormal basis for the normal space of Σ. Writing the
Weyl tensor in this way is to match with our higher dimensional result shown in the later
section.

3.2.1 Disk entangling region

Let us now consider the renormalized entanglement entropy in particular contexts. In
pure AdS4 the Weyl tensor vanishes and therefore

S(Σ) = − π

2G4
χ(Σ) − 1

8G4

∫
Σ
d2x

√
g|K|2 (3.2.5)

Consider a single entangling region in the boundary, which is topologically a disk. The
corresponding Ryu-Takayanagi surface has the same topology and accordingly its Euler
characteristic χ(Σ) = 1. The renormalized entanglement entropy for such surfaces there-
fore satisfies

S(Σ) ≤ − π

2G4
(3.2.6)

with equality in the case of Kij = 0. Minimal surfaces satisfy K = 0; surfaces that
in addition satisfy Kij = 0, i.e. the traceless part of the extrinsic curvature vanishes,
are called umbilic. Umbilic surfaces are locally spherical; the normal curvatures in all
directions are equal.

In the specific case of a disk entangling region, the entangling surface indeed has zero
extrinsic curvature and is umbilic. This can be seen by changing from Poincaré coordinates:

ds2 = 1
ρ2

(
−dt2 + dρ2 + dr2 + r2dϕ2

)
(3.2.7)

to new coordinates adapted to the entangling surface:

ρ = R sin θ r = R cos θ (3.2.8)

so that
ds2 = 1

R2 sin2 θ

(
−dt2 + dR2 +R2(dθ2 + cos2 θdϕ2)

)
. (3.2.9)

The induced metric on an entangling surface of constant t and R can thus be written as

ds2 = 1
sin2 θ

(
dθ2 + cos2 θdϕ2

)
, (3.2.10)

which is independent of both t and R, demonstrating that the extrinsic curvatures are
zero.

For a disk entangling region D, the renormalized entropy is thus directly proportional to
the Euler characteristic of the entangling surface. As discussed in [54, 96], the renormalized
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entropy is also related to the F quantity of the corresponding 3d CFT and hence

F = −S(D) = π

2G4
χ(D) (3.2.11)

and the representation of the entanglement entropy in terms of a topological invariant
emphasises that this quantity does not depend on any choice of renormalization scheme.

Now let us consider linearized perturbations around the disk entangling surface in AdS4.
Linear and quadratic perturbations around generic minimal surfaces in asymptotically
hyperbolic manifolds were discussed in detail in [83]. The analysis of [83] however simplifies
considerably for perturbations around the disk entangling surface as both the Weyl and
extrinsic curvatures vanish at leading order. Accordingly the only term in the linearized
variation is

δS = −1
4G4

∫
d2x

√
g δW̃1212 (3.2.12)

In a subsequent work [2] we will show how δW̃1212 can be related to the renormalized stress
tensor constructed in [43] and hence to the variation in the energy; this gives a generalized
proof of the first law [57].

3.2.2 Strip entangling region

Consider now a strip entangling region S in pure AdS4. Using the following Poincaré
coordinates

ds2 = 1
ρ2

(
−dt2 + dρ2 + dx2 + dy2

)
, (3.2.13)

the entangling surface for a strip entangling region along the y direction can be expressed
as

dρ

dx
= ∓

√
ρ4
c − ρ4

ρ2 (3.2.14)

where ρc is the turning point of the surface and − for 0 ≤ x ≤ Lx
2 and + for −Lx

2 ≤ x ≤ 0.
The width of the strip Lx along the x direction is related to ρc as

Lx = 2
∫ ρc

0

ρ2√
ρ4
c − ρ4dρ = 2

√
π

Γ(3
4)

Γ(1
4)
ρc. (3.2.15)

Here implicitly we assume that Lx � Ly, where Ly is the length of the strip, so that
contributions from the corners and short sides are negligible. The renormalized area A(S)
is then given by

A(S) = −2Ly
ρc

√
π

Γ(3
4)

Γ(1
4)

= −LyLx
ρ2
c

. (3.2.16)

Since for large Ly the Euler characteristic is negligible and in the limit of the infinite strip
χ(S) = 0, and the Weyl curvature vanishes for pure AdS, the renormalized area (4.2.10)
is given in terms of the integral of the extrinsic curvature over the surface.
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Using (3.2.14) we can pullback the AdS4 metric onto S to give:

ds2 = 1
ρ(x)2

(
ρ4
c

ρ(x)4dx
2 + dy2

)
, (3.2.17)

where implicitly ρ is expressed in terms of x. The push forward of the unit spatial normal
vector is

n2 = ρ3

ρ2
c

(
∂

∂ρ
±
√
ρ4
c − ρ4

ρ4
∂

∂x

)
. (3.2.18)

The interpretation of the two signs is as follows. Let the strip extend from x = −1
2Lx

to x = 1
2Lx. For x > 0, the normal to the entangling surface points in the direction of

increasing x (positive sign) while for x < 0 the normal points in the direction of decreasing
x (negative sign). Accordingly the induced metric can be written as

GS
µνdx

µdxν =
(
Gµν − n2µn2ν

)
dxµdxν (3.2.19)

= 1
ρ2

(
ρ4
c − ρ4

ρ4
c

dρ2 − 2ρ
2√ρ4

c − ρ4

ρ4
c

dρdx+ ρ4

ρ4
c

dx2 + dy2
)
.

The temporal extrinsic curvature vanishes and the spatial extrinsic curvature is given by

Kµνdx
µdxν = ρ4

c − ρ4

ρ4
c

dρ2 ∓ 2ρ
2√ρ4

c − ρ4

ρ6
c

dρdx+ ρ4

ρ6
c

dx2 − 1
ρ2
c

dy2, (3.2.20)

The trace of the extrinsic curvature can be easily read off and satisfies the required mini-
mality condition, K = 0. From (4.2.10), the only non vanishing term of the renormalized
area is

A(S) = −1
2

∫
S
d2x

√
gKµνKµν = −1

2

∫ Ly
2

− Ly
2

dy

∫ Lx
2

− Lx
2

dx
ρ2
c

ρ4

(
2ρ4

ρ4
c

)
= −LyLx

ρ2
c

. (3.2.21)

Note that KµνKµν takes the same value for either sign in (3.2.20). This matches with
the explicit result for the renormalized area of the minimal surface extends from the strip
entangling region in (3.2.16).

3.3 Asymptotically AdS6

Consider a codimension two static minimal surface Σ with boundary ∂Σ in an asymptot-
ically locally AdS6 spacetime. The renormalized entanglement entropy S(Σ) is expressed
in terms of the renormalized area A(Σ) as

S(Σ) = A(Σ)
4G6

(3.3.1)
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where G6 is the six-dimensional Newton constant. The renormalized area is [54]

A(Σ) =
∫

Σ
d4x

√
g − 1

3

∫
∂Σ
d3x

√
h (3.3.2)

−1
9

∫
∂Σ
d3x

√
h

(
R̂aa − 1

2
k2 − 5

8
R̂

)
.

Here g is the metric on the minimal surface and h is the metric at the boundary of the
minimal surface. R̂aa is the curvature of the metric on the boundary of the asymptotically
locally AdS6 spacetime, projected to the subspace orthogonal to ∂Σ. R̂ is the Ricci scalar
of the boundary curvature and k2 is the square of the extrinsic curvature of ∂Σ embedded
into ∂M , the boundary of the asymptotically locally AdS6 spacetime M . The counterterms
are sufficient for bulk dimension less than or equal to six; additional divergences arise in
higher dimensions [54].

Using the Chern-Gauss-Bonnet theorem, the Euler invariant for a four-dimensional man-
ifold with boundary consists of a bulk contribution

χ(Σ) = 1
32π2

∫
Σ
d4x

√
g
(
RijklRijkl − 4RijRij + R2

)
(3.3.3)

(where R refers to the intrinsic curvature of the manifold) with boundary contributions
that may be expressed as in [97]:

+ 1
4π2

∫
∂Σ
d3x

√
h

(
RijklKiknjnk − RijKij − KRijn

inj + 1
2

KR (3.3.4)

+ 1
3

K3 − KTr(K2) + 2
3

Tr(K3)
)
.

The above formulae used different sign convention to [97] and are further explained in the
appendix. Note that this form for the boundary contributions was derived in the context
of analysing conformal anomalies on manifolds with boundary.

By construction both functionals (3.3.2) and (3.3.3) are finite. However, there are clear
conceptual differences between the boundary terms. In the case of the renormalised area,
the boundary terms are counterterms, expressed covariantly in terms of Dirichlet data at
the conformal boundary. This implies that the boundary terms have to be expressed only
in terms of the intrinsic curvature of the conformal boundary, and the extrinsic curvature
of the boundary of the entangling surface, embedded into the conformal boundary.

By contrast, the Euler invariant is expressed entirely in terms of quantities that are intrinsic
to the entangling surface itself, with no reference to the embedding of the surface into the
six-dimensional bulk manifold. Here the boundary terms are not expressed in terms of
Dirichlet data at the boundary of the surface, but involve the extrinsic curvature of the



3.3. Asymptotically AdS6 55

z = 0

z = ϵ

m, n3

n̄, n2

n3

n2

n̄

m

Figure 3.3.1: In this diagram the temporal direction, n1, is suppressed. We can identify
two distinct sets of normal directions: n2 is the normal of the Σ and n3 is the normal of
∂Σ within Σ, while n̄ is the normal of ∂Σ on ∂M and m is the normal of ∂M in M . On the
regulated boundary ∂M |z=ϵ, n2 and n3 are not equal to n̄ and m respectively. However
the normal space is manifestly spanned by both {ns, s = 1, 2, 3} and {n1, n̄,m}.
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boundary.

The goal of this section is to relate the renormalised area to the Euler invariant, through the
use of Gauss-Codazzi relations and asymptotic analysis. Related analysis was carried out
in the mathematics literature in [86, 89] but these works did not use explicit counterterms
to define the renormalized area.

3.3.1 Geometric preliminaries

The extrinsic curvatures of the entangling surface Σ are defined by

Ks
µν = gρµg

σ
ν∇ρn

s
σ (3.3.5)

where the normals to Σ are ns with s = 1, 2; we will denote by n1 the normal in the
time direction. Similarly, the extrinsic curvature of the boundary entangling surface ∂Σ
embedded into Σ is defined by

Kij = −hki hlj∇kn
3
l (3.3.6)

where n3 is the associated inward pointing normal, as shown in Figure 3.3.1.

We can define a second set of normals to ∂Σ, (n1, n̄,m), where n̄ is the normal of ∂Σ lying
within ∂M and m is the normal of ∂M in M . The extrinsic curvatures corresponding to
this second set of normals are defined as

kij = hki h
l
j∇kn̄l k⊥

ij = hki h
l
j∇kml (3.3.7)

The two sets of normal vectors (n1, n2, n3) and (n1, n̄,m) can be related by coordinate
transformations.

n2 = An̄+A⊥m (3.3.8)

n3 = −A⊥n̄+Am

where A2 +A⊥2 = 1 and A,A⊥ ∈ R. The induced metric on ∂Σ can also be obtained from
either set of normal

hµν = Gµν + n1
µn

1
ν − n2

µn
2
ν − n3

µn
3
ν = Gµν + n1

µn
1
ν − n̄µn̄ν −mµmν. (3.3.9)

Note that it is often convenient to work in an orthonormal basis, Gµνe µMe νN = ηMN ,
such that the induced metric on Σ is eAeA = n3n3 + eaea = gµνdx

µdxν and on ∂Σ is
eaea = hijdx

idxj .

As in [83], we will work in Fefferman-Graham coordinate systems for asymptotically locally
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AdS metrics:

ds2 = Gµνdx
µdxν = dz2

z2 + γαβdx
αdxβ (3.3.10)

and the metric γ admits the expansion

γαβ = z−2
(
γ̄

(0)
αβ + z2γ̄

(2)
αβ + · · ·

)
(3.3.11)

Note that this implicitly assumes that the entangling surface is contained within the
Fefferman-Graham coordinate patch.

For static manifolds Σ and ∂Σ in AdS we can then express the normals as

n1 = dt

z
, m = dz

z
, n̄ = ᾱdf̄

z
. (3.3.12)

(For non-static surfaces one would need to parameterise the timelike normal as n1 = ατdτ̄
z .)

The corresponding normal vector fields are

n1 = e1 = z
∂

∂t
, em = z

∂

∂z
, en̄ = z

ᾱ

∂

∂f̄
(3.3.13)

where ᾱ is a function of (z, f̄) only. Using these relations one can decompose bulk
curvatures into quantities that are intrinsic and extrinsic to the surface. For exam-
ple, the Lie bracket for the normal vector fields has structure constant FPMN such that
[eM , eN ] = FPMNeP . Only the following components are non-vanishing

F 1
m1 = −F 1

1m = 1, F n̄mn̄ = −F n̄n̄m = 1 − β̄ (3.3.14)

where β̄ = z∂zᾱ
ᾱ . From these expressions we can then work out the connections and

curvature tensors in terms of quantities defined on Σ.

3.3.2 Gauss-Codazzi relations

In this section we collect together identities relating the bulk curvature with the intrinsic
and and extrinsic curvatures of the entangling surface. First let us note the following
relation for the bulk curvature: since the manifold is Einstein with negative cosmological
constant, we can express the Riemann curvature in terms of the Weyl curvature as

Wµνρσ = Rµνρσ +GµρGνσ −GµσGνρ (3.3.15)

where Gµν is the metric on M. In particular, the Weyl curvature vanishes for anti-de
Sitter spacetime itself.

In this section we will implement Gauss-Codazzi relations for the codimension two surface,
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taking into account both (unit) normals to the entangling surface by nsµ with s = 1, 2.
In the context of Ryu-Takayanagi surfaces the extrinsic curvatures in time directions are
trivial, but the analysis carried out in this section is more general and does not pick out
a distinguished coordinate system for the normal directions.

The Gauss-Codazzi relations then state that:

gκµg
λ
ν g

τ
ρg

η
σ Rκλτη = Rµνρσ +

2∑
s=1

(−1)s(Ks
µσK

s
νρ −Ks

µρK
s
νσ) (3.3.16)

where the extrinsic curvatures are defined above in (3.3.5). (Note that it is often convenient
to choose adapted coordinates for the hypersurface.)

The pullback of the bulk curvature can be expressed as

gκµg
λ
ν g

τ
ρg

η
σ Rκλτη = gκµg

λ
ν g

τ
ρg

η
σ Wκλτη + gµσgνρ − gµρgνσ, (3.3.17)

using gµνnsµ = 0. In what follows it is convenient to use a compressed notation to denote
the pulled back Weyl curvature as

W̃µνρσ ≡ gκµg
λ
ν g

τ
ρg

η
σ Wκλτη. (3.3.18)

Contraction of the Gauss-Codazzi relations gives

gκµg
λ
νRκλ + gκµg

λ
νRκτλη

2∑
s=1

(−1)s−1nτsn
η
s = Rµν +

2∑
s=1

(−1)sKs
µρK

s ρ
ν , (3.3.19)

where here and in the rest of this sectoin we show the normal index s as a subscript to
improve the clarity of equations. Contracting further gives

R+ 2gκµgλνRκλ
2∑
s=1

(−1)s−1nµsn
ν
s − 2Rµνρσnµ1n

ν
2n

ρ
1n

σ
2 = R +

2∑
s=1

(−1)sKs
µρK

s µρ (3.3.20)

where we use the fact that the surface is minimal so Ks = 0. In our case, the background
manifold is Einstein, for which the Ricci curvature can conveniently be normalised as

Rµν = −dGµν (3.3.21)

for asymptotically locally AdS(d+1) spacetimes. Using the fact that gµνnνs = 0, we can
thus write

Rµν +
2∑
s=1

(−1)sKs
µρK

s ρ
ν = −(d− 2)gµν − gλµg

τ
νWλρτσ

2∑
s=1

(−1)snρsnσs , (3.3.22)
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and

R +
2∑
s=1

(−1)sKs
µνK

sµν = −(d− 2)(d− 1) − 2Wµνρσn
µ
1n

ν
2n

ρ
1n

σ
2 , (3.3.23)

where we use the fact that the dimension of the entangling surface is (d− 1).

For notational convenience we will define the combinations

Hµνρσ =
2∑
s=1

(−1)s(Ks
µσK

s
νρ −Ks

µρK
s
νσ), (3.3.24)

as well as

W̃µnνn = gλµg
τ
νWλρτσ

2∑
s=1

(−1)snµsnνs (3.3.25)

and
W̃1212 = Wµνρσn

µ
1n

ν
2n

ρ
1n

σ
2 . (3.3.26)

The Gauss-Codazzi relations can then be used to rewrite the bulk term in the Euler
invariant as follows. The Riemann curvature terms give

RµνρσRµνρσ = 2(d− 1)(d− 2) + 4H +HµνρσH
µνρσ (3.3.27)

−4W̃ + W̃µνρσW̃
µνρσ − 2W̃µνρσH

µνρσ.

The Ricci curvature terms give

RµνRµν = (d− 2)2(d− 1) + 2(d− 2)H +HµνH
µν (3.3.28)

+2(d− 2)W̃nn + W̃µnνnW̃
µnνn + 2W̃µnνnH

µν

while the Ricci scalar terms give

R2 = (d− 2)2(d− 1)2 + 2(d− 2)(d− 1)H +H2 (3.3.29)

+4(d− 2)(d− 1)W̃1212 + 4W̃ 2
1212 + 4HW̃1212.

Here H and Hµν can be expressed as

Hµν =
2∑
s=1

(−1)sKs
µσK

s σ
ν H =

2∑
s=1

(−1)sKs
µνK

sµν . (3.3.30)

Combining these terms for the case of d = 5 (AdS6), we obtain an expression for the Euler
invariant of the form:

χ(Σ) = 1
32π2

∫
Σ
d4x

√
g
(
24 + ∆χ(Ks, W̃ )

)
+ 1

4π2

∫
∂Σ
d3x

√
h∂E4 (3.3.31)
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where the functional appearing in the volume term takes the form

∆χ =4H + 8W̃1212 +H2 − 4HµνH
µν +HµνρσH

µνρσ (3.3.32)

+ 4W̃ 2
1212 − 4W̃µnνnW̃

µnνn + W̃µνρσW̃
µνρσ

+ 4HW̃1212 − 8HµνW̃µnνn − 2HµνρσW̃µνρσ

The notation chosen for the volume term reflects the fact that ∆χ vanishes for spherical
entangling surfaces (Ks

µν = 0) in pure AdS (Wµνρσ), as we discuss in the next section.

To simplify this expression we have used the following expressions for the projected and
contracted Weyl tensor

W̃ = W̃AB
AB = WAB

AB W̃22 = WA
2A2 (3.3.33)

W̃1212 = W1212 W̃11 = WA
1A1.

Since Weyl tensor is traceless, we can write the curvatures in (3.3.33) in terms of each
other as

WAB
AB = WMN

MN − 2
(
WA1

A1 +WA2
A2 +W 12

12

)
(3.3.34)

W̃ = 2W̃11 − 2W̃22 + 2W̃1212

and thus
W̃ = −W̃nn = −2W̃1212 (3.3.35)

Therefore the contributions linear in the Weyl tensor can be written in terms of the
projection of the Weyl tensor onto NΣ, W̃1212.

We now need to express the boundary contributions to the Euler density integral in terms
of extrinsic curvatures and the Weyl tensor. We first define the extrinsic curvature, K ,
of ∂M embedded into M ,

Kµν = (δρµ −mρ
µ)(δσν −mσ

ν )∇ρmσ. (3.3.36)

Using the definition of the extrinsic curvature of ∂Σ pointing out of the boundary k⊥
µν :=

hρµh
σ
ν∇ρmσ, one can show that

Kµν = k⊥
µν − (1 − β̄)n̄µn̄ν + n1

µn
1
ν . (3.3.37)

The trace of K is

K = k⊥ − 2 + β̄ (3.3.38)
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and the trace of the product is

KµνK
µν = k⊥

µνk
⊥ µν + 2 − 2β̄ + β̄2 (3.3.39)

The intrinsic curvature of the boundary ∂M , R̂µνρσ, is related to the projection and
contraction of Weyl tensor and K by the Gauss-Codazzi equation, giving the following
relations

R̂1n̄1n̄ = 1 +W1n̄1n̄ − K1n̄Kn̄1 + K11Kn̄n̄

R̂11 = d− 1 −W1m1m − K ρ
1 Kρ1 + K11K

R̂n̄n̄ = −d+ 1 −Wn̄mn̄m − K ρ
n̄ Kρn̄ + Kn̄n̄K

R̂ = −d(d− 1) − KµνK
µν + K 2 (3.3.40)

R̂ij = −(d− 1)hij −Wimjm − K ρ
i Kρj + KijK

R̂in̄jn̄ = −hij +Win̄jn̄ − Kin̄Kn̄j + KijKn̄n̄

R̂i1j1 = hij +Wi1j1 − Ki1K1j + KijK11.

Substituting K terms using (3.3.37), (3.3.38) and (3.3.39) we obtain

R̂1n̄1n̄ = W1n̄1n̄ + β̄

R̂11 = d− 2 + k⊥ −W1m1m + β̄

R̂n̄n̄ = −d+ 2 − k⊥ −Wn̄mn̄m + (k⊥ − 1)β̄

R̂ = −d(d− 1) + 2 − 4k⊥ + k⊥2 − k⊥
ijk

⊥ ij + 2(k⊥ − 1)β̄ (3.3.41)

R̂ij = −(d− 1)hij − 2k⊥
ij − k⊥ k

i k⊥
kj + k⊥

ijk
⊥ −Wimjm + k⊥

ij β̄

R̂in̄jn̄ = −hij − k⊥
ij +Win̄jn̄ + k⊥

ij β̄

R̂i1j1 = hij + k⊥
ij +Wi1j1.

The intrinsic curvature R terms on the surface given in (3.3.4) are related to the curvatures
of the boundary of the entangling surface ∂Σ, R, by additional Gauss-Codazzi relations:

K
(1

2
R − Rµνn

3 µn3 ν
)

= 1
2

K
(
R− K2 + KijKij

)
(3.3.42)

and

−KijRµiνj(gµν − n3 µn3 ν) = −Kij
(
Rij + KikKk

j − KijK
)
. (3.3.43)

We can again use Gauss-Codazzi relations to transform relate quantities on ∂Σ to quan-
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tities in ∂M :

R = R̂+ 2R̂11 − 2R̂n̄n̄ − 2R̂1n̄1n̄ + k2 − kijk
ij (3.3.44)

Rij = R̂ij − R̂in̄jn̄ + R̂i1j1 + kijk − k ki kkj .

Expressing Riemann tensors in terms of Weyl tensors gives

R = −(d− 1)(d− 4) + k2 − kijk
ij + k⊥

ijk
⊥ ij − 2 (W1m1m +W1n̄1n̄ −Wn̄mn̄m) (3.3.45)

Rij = −(d− 1)hij + kijk − kki kkj + k⊥
ijk − k⊥ k

i k⊥
kj +Wi1j1 −Win̄jn̄ −Wimjm.

Specialising to d = 5 these expressions reduce to:

R = −4 + k2 − kijk
ij + k⊥

ijk
⊥ ij − 2 (W1m1m +W1n̄1n̄ −Wn̄mn̄m) (3.3.46)

Rij = −4hij + kijk − kki kkj + k⊥
ijk − k⊥ k

i k⊥
kj +Wi1j1 −Win̄jn̄ −Wimjm.

The decomposition of K into k, k⊥ is straightforward:

Kij = +A⊥kij −Ak⊥
ij . (3.3.47)

Our final expression for the boundary contributions to the Euler density can be written in
terms of projections of the Weyl tensor and extrinsic curvatures of ∂Σ tangent and normal
to ∂M ,

∂E4 = −(A⊥k −Ak⊥) (W1n̄1n̄ +W1m1m −Wn̄mn̄m)

+ (A⊥kij −Ak⊥ ij) (−Wi1j1 +Wimjm +Win̄jn̄)

+Ak⊥ −
(
A

2
− A3

6

)
k⊥3 −

(
A− A3

3

)
k⊥
ijk

⊥ jkk⊥ i
k −

(
−3A

2
+ A3

2

)
k⊥k⊥

ijk
⊥ ij

−A⊥k −
(

−A⊥

2
− A2A⊥

2

)
kk⊥2 −

(
A⊥

2
− A2A⊥

2

)
kk⊥

ijk
⊥ ij

−
(
−A⊥ +A2A⊥

)
kijk

⊥ jkk⊥ i
k −

(
A⊥ −A2A⊥

)
k⊥kijk

⊥ ij (3.3.48)

−
(
A

2
− AA⊥2

2

)
k2k⊥ −

(
−A

2
+ AA⊥2

2

)
kijk

ijk⊥

−
(
A−AA⊥2)

kijk
jkk⊥ i

k −
(
−A+AA⊥2)

kkijk
⊥ ij

−
(

−A⊥

2
+ A⊥3

6

)
k3 −

(
−A⊥ + A⊥3

3

)
kijk

jkk ik −
(

3A⊥

2
− A⊥3

2

)
kkijk

ij .

We will use this expression in what follows, comparing the boundary terms in the Euler
characteristic with those in the renormalized area.
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3.3.3 Asymptotic analysis

The ultimate goal is to express the Euler characteristic as a linear combination of the
renormalized area A(Σ) and other finite contributions i.e.

χ(Σ) = 3
4π2 A(Σ) + · · · (3.3.49)

where the ellipses denote contributions that are finite term by term. In this section we
will show that the finite contributions are such that

A(Σ) = 4π2

3
χ(Σ) − 1

6
H(Σ) − 1

3
W(Σ) (3.3.50)

− 1
24

∫
Σ
d4x

√
g
(
H2 − 4HµνH

µν +HµνρσH
µνρσ

+4W̃ 2
1212 − 4W̃µnνnW̃

µnνn + W̃µνρσW̃
µνρσ

)
,

where the finite terms H(Σ) and W(Σ) are defined in (3.3.68) and (3.3.69), respec-
tively, This formula is the direct generalisation of the corresponding expression for two-
dimensional surfaces given in (3.2.3).

To determine the terms arising in this expression, we need to consider the asymptotic
analysis of the bulk and boundary terms in the Euler characteristic and the renormalized
area. To compare terms between the Euler characteristic and the renormalized area, it
is convenient to convert quantities written with respect to quantities intrinsic to Σ into
quantities expressed with respect to ∂M and ∂Σ. Intuitively, it is apparent that the
extrinsic curvature K(2) of Σ and K of ∂Σ can be expressed in terms of the two extrinsic
curvatures k, k⊥. Indeed, by decomposing the metric and normal of Σ into boundary
components we can write K(2) as a combination of k, k⊥ plus additional terms.

The integration in the M is regulated by restricting integration up to the regulated bound-
ary ∂Mϵ := M |z=ϵ. The regulated divergences in Euler characteristic integral

χ(Σϵ) = 1
32π2

∫
Σϵ

d4x
√
g (24 + ∆χ) + 1

4π2

∫
∂Σϵ

d3x
√
h ∂E4 (3.3.51)

come from the bulk terms up to order z4 and boundary terms up to order z3. Clearly
by construction all such divergences cancel, as the Euler characteristic is finite, but to
compare with the renormalized area we need to identify which terms are finite and which
include regulated divergences. In what follows we will show that each term in∫

Σϵ

d4x
√
g
(
H2 − 4HµνH

µν +HµνρσH
µνρσ + 4W̃ 2

1212 (3.3.52)

−4W̃µnνnW̃
µnνn + W̃µνρσW̃

µνρσ
)
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is individually finite, while the other bulk contributions

1
32π2

∫
Σϵ

d4x
√
g
(
24 + 4H + 8W̃1212

)
(3.3.53)

each have regulated divergences. As we will be comparing regulated divergences of the
Euler characteristic with those in the renormalised area, and the latter assumes static
embedding, we will set K(1)

µν = 0 for the rest of this section.

We need to calculate the asymptotic expansions of the geometric quantities appearing
in the Euler characteristic. We begin with the normal vectors defined in (3.3.8). If we
expand A⊥ in z and apply the boundary condition of A⊥(z = 0) = 0 we obtain the leading
term in the z power series to be A⊥ = zA⊥

(0) + · · · . Similarly, the leading term in the A
asymptotic series is A = 1 + · · · . From the relation A2 + A⊥2 = 1 we can thus conclude
that the asymptotic expansion for A and A⊥ is

A = 1 − 1
2
z2A⊥

(0)
2 +O(z4)

A⊥ = zA⊥
(0) + z3A⊥

(2) +O(z5)
(3.3.54)

Hence A,A⊥ have even and odd power series of z respectively.

The asymptotic analysis for extrinsic curvatures is worked out in the appendix. The trace
of the extrinsic curvature behaves as

K(2) ∼ O(z) (3.3.55)

while the trace of the product of extrinsic curvature

K(2)
µν K

(2)µν ∼ O(z2). (3.3.56)

Accordingly H is of order z2 but terms quadratic in H are of order z4 so do not contribute
to the regulated divergences. We can write explicit expansions

(K(2))2 = z2
(
k̄2

(0) + 9A⊥
(0)

2 − 6A⊥
(0)k̄(0)

)
+O(z4) (3.3.57)

and

K
(2)
ij K

(2)ij = z2
(
k̄(0)ij k̄

ij
(0) + 3A⊥

(0)
2 − 2A⊥

(0)k̄(0)
)

+O(z6) (3.3.58)

where
k = k̄(0)z + · · · , (3.3.59)

and
kijk

ij = z2k̄(0)ij k̄
ij
(0) + · · · (3.3.60)
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According the regulated divergences from the term linear in H gives∫
Σϵ

d4x
√
gH →

∫
∂Σϵ

d3x
√
h
(
ϵ2
(
k̄(0)ij k̄

ij
(0) − k̄2

(0) + 4A⊥
(0)k̄(0) − 6A⊥

(0)
2)+ · · ·

)
(3.3.61)

where the ellipses denote terms that do not contribute in the limit ϵ → 0.

Let us now consider the asymptotic behaviour of the projections and contractions of the
Weyl tensors. In our gauge choice W̃ , W̃11, W̃22 and W̃1212 are of order O(z2) and hence
only terms linear in the Weyl tensor contribute to the regulated divergences. If the Weyl
tensor admits an expansion

W̃1212 = z2W 1212 + · · · , (3.3.62)

leading to regulated divergences∫
Σϵ

d4x
√
gW̃1212 →

∫
∂Σϵ

d3x
√
h ϵ2W 1212 (3.3.63)

The regulated divergences (3.3.53) are obtained from combining (3.3.61) and (3.3.63)

2
3π2

∫
Σϵ

d4x
√
g (3.3.64)

+ 1
8π2

∫
∂Σϵ

d3x
√
hϵ2

([
k̄(0)ij k̄

ij
(0) − k̄2

(0) + 4A⊥
(0)k̄(0) − 6A⊥

(0)
2]+ 2W 1212

)
.

Here we do not explicitly analyse the regulated divergences of the first (area) term, as this
was already done in [54], as we will use below. The expression above can be simplified
using the minimal condition for the surface: as explained in the appendix, K(2) = 0 implies
that

A⊥
(0) = 1

3
k̄(0) (3.3.65)

and therefore A⊥
(0) can be eliminated.

Let us now consider the regulated divergences of the boundary terms in the Euler char-
acteristic. As mentioned in the beginning of the section, only terms of order O(z3) in
∂E4 contribute to divergences. These terms are analysed in the appendix; the regulated
divergences take the form∫

∂Σϵ

d3x
√
h∂E4 → −

∫
∂Σϵ

d3x
√
h

(
1 + ϵ2(W 1212 − 1

3
k̄2

(0) + 1
2
k̄(0)ij k̄

ij
(0))
)
. (3.3.66)

By construction the regulated divergences of the boundary terms in the Euler characteristic
cancel those from the bulk terms.

We can now express the regulated contributions in (3.3.64) and (3.3.66) in terms of the
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renormalized area

A(Σϵ) =
∫

Σϵ

d4x
√
g + 1

3

∫
∂Σϵ

d3x
√
h

(
− 1 + 1

6
k2
)
, (3.3.67)

and two other integrals that are finite in the limit of ϵ → 0:

H(Σϵ) :=
∫

Σϵ

d4x
√
gH −

∫
∂Σϵ

d3x
√
h

(
kijk

ij − 1
3
k2
)

; (3.3.68)

and
W(Σϵ) :=

∫
Σϵ

d4x
√
gW̃1212 −

∫
∂Σϵ

d3x
√
hW1212. (3.3.69)

The regulated terms in the Euler characteristic then combine to give

3
4π2 A(Σϵ) + 1

8π2 H(Σϵ) + 1
4π2 W(Σϵ), (3.3.70)

and thus, reinstating the bulk contributions to the Euler characteristic that are individually
finite, we obtain the final expression for the renormalized area (4.2.11).

Note that the extra counterterms for the renormalized area integral (3.3.2) vanishes in the
limit z → 0. It can be seen from (3.3.41). As W1m1m,Wn̄mn̄m ∼ O(z4) the individual
Ricci terms are

R̂ = −8β̄ +O(z4)

R̂11 = β̄ +O(z4)

R̂n̄n̄ = −4β̄ +O(z4)

(3.3.71)

Since the definition of the projected Ricci curvature R̂aa is

R̂aa := −R̂11 + R̂n̄n̄ (3.3.72)

R̂aa := −5β̄ +O(z4),

the Ricci counterterms R̂aa − 5
8R̂ is

−R̂11 + R̂n̄n̄ − 5
8
R̂ = 0 +O(z4). (3.3.73)

The order of this term is great than z3 therefore it vanishes in the boundary integral as
z → 0.
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3.4 Spherical entangling surface in AdS6 and linear perturbations

Consider AdS6 written in Poincaré coordinates as:

ds2 = 1
ρ2

(
−dt2 + dρ2 + dr2 + r2dΩ2

)
(3.4.1)

We can introduce new coordinates adapted to the entangling surface S associated with a
spherical entangling region

ρ = R sin θ r = R cos θ (3.4.2)

so that
ds2 = 1

R2 sin2 θ

(
−dt2 + dR2 +R2(dθ2 + cos2 θdΩ2)

)
. (3.4.3)

The induced metric on the entangling surface S of constant t and R can thus be written
as

ds2 = 1
sin2 θ

(
dθ2 + cos2 θdΩ2

)
. (3.4.4)

This parameterisation makes manifest that the extrinsic curvatures of S within M are
zero: the induced metric is independent of the coordinates t and R. One can then change
coordinates as u = − log(tan(θ/2)) to write the induced metric as

ds2 = du2 + sinh2 udΩ2, (3.4.5)

i.e. making manifest that the metric on the entangling surface is global AdS with unit
radius.

The bulk contribution to the Euler invariant is thus

Ω3
32π2

(
16 + e3ū − 9eū + · · ·

)
(3.4.6)

where we have regulated the boundary at u = ū � 1, and dropped terms that are zero
when ū → ∞. Here Ω3 = 2π2 is the volume of a three sphere of unit radius.

Calculation of the boundary contributions to the Euler invariant (3.3.4) is more compli-
cated. We need the following expressions:

RijklKjlnink = −3cosh(u)
sinh(u)

; K = 3cosh(u)
sinh(u)

; (3.4.7)

RijKij = −9cosh(u)
sinh(u)

; Rijn
inj = −3;

Tr(K2) = 3cosh2(u)
sinh2(u)

; Tr(K3) = 3cosh3(u)
sinh3(u)

.
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Combining these we obtain the following contribution from (3.3.4)

− Ω3
4π2

(
cosh3(ū) − 3 cosh(ū)

)
= − Ω3

32π2

(
e3ū − 9eū + · · ·

)
(3.4.8)

where in the second expression we have dropped all terms that go to zero as ū → ∞.

Combining bulk and boundary terms we obtain

χ(S) = 1, (3.4.9)

which is indeed the Euler invariant for a half ball.

Let us now turn to the computation of the renormalized entanglement entropy. The
regulated bulk contribution is proportional to the regulated volume of the entangling
surface

Ω3
4G6

(2
3

+ 1
24
e3ū − 3

8
eū + · · ·

)
(3.4.10)

where the ellipses denote terms that vanish as ū → ∞. The first counterterm gives

− Ω3
4G6

( 1
24
e3ū − 1

8
eū + · · ·

)
(3.4.11)

while the second counterterm gives

Ω3
4G6

(1
4
eū + · · ·

)
. (3.4.12)

The counterterms, as expected, remove divergent contributions while not adding further
finite contributions and thus

S(S) = π2

3G6
≡ π2

3G6
χ(Σ), (3.4.13)

i.e. the renormalized entanglement entropy is proportional to the Euler invariant, as shown
in (3.1.4), with the coefficient of proportionality being the F quantity in the dual CFT5.

Next let us consider the variation of the entanglement entropy under linear perturbations
around the spherical entangling surface in AdS. Since the Weyl curvature and the extrinsic
curvatures are zero at leading order, only terms linear in the curvatures can contribute to
the first variation of the entropy. From (4.2.11) we obtain

δS = − 1
12G6

δW (3.4.14)

where W is linear in the Weyl curvature and is defined in (3.3.69).
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As we will show in a future work [2], this expression allows for an elegant derivation of the
first law of entanglement entropy, generalizing the discussions in [57]. Since we work with
renormalized quantities, we do not need to assume specific fall off conditions for metric
perturbations; the perturbations can be non-normalizable as well as normalizable. It is
straightforward to relate δW to the renormalized stress tensor defined in [43] and hence
to the variation in the energy.

3.5 Conclusions and outlook

In this chapter we have shown that the renormalized area of static minimal surfaces in
asymptotically locally AdS2n spacetimes can be expressed in terms of the Euler invari-
ant and renormalized curvature invariants. It is perhaps unsurprising that renormalized
integrals of extrinsic and intrinsic curvature invariants arise. Indeed, renormalized curva-
ture integrals on asymptotically locally hyperbolic manifolds have been considered in the
mathematics literature; see for example [98].

There is however a key difference between our definitions of renormalized curvature in-
variants and those in the mathematics literature. Here we follow the standard holographic
renormalization approach, identifying explicit boundary counterterms. By contrast, the
mathematics literature identifies the “renormalized” integrals as the finite terms in a regu-
lated expansion around the conformal boundary. While the latter gives equivalent results
when counterterms do not make finite contributions, there will generically be finite con-
tributions from counterterms (for example, if we add matter or gauge fields in the bulk).

Our results can be used to infer certain bounds on the renormalized entanglement entropy
for given topology. Earlier discussions on bounds on renormalized entanglement entropy
in asymptotically locally AdS4 spacetimes using inverse mean curvature flow techniques
can be found in [99]. For entangling surfaces of disk topology in AdS4, the bound is given
in (3.2.5): the entanglement entropy is negative and the absolute value of the renormalized
entanglement entropy is minimised for the disk, which has zero extrinsic curvature.

Note that the expression (3.2.5) is closely analogous to the Willmore energy Ew, which
measures how much a closed two surface Σ embedded into R3 deviates from the round
two sphere:

Ew =
∫

Σ
d2x|K|2 − 2πχ(Σ) (3.5.1)

The Willmore energy is positive semi-definite and zero for a round two sphere.

For entangling surfaces that are topologically disks in asymptotically locally AdS4 mani-
folds (cf pure AdS4), there is no such bound: from (4.2.10), the Weyl curvature term is
not negative definite. Indeed, if one considers linearized perturbations around AdS4, one
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can show that this term is positive for all metric perturbations that give rise to positive
energy [2].

Now let us turn to the renormalized entanglement entropy for asymptotically locally AdS6

spacetimes. From (4.2.11), this reduces in AdS6 to

S(Σ) = π2

3G6
χ(Σ) − 1

24G6
H(Σ) (3.5.2)

− 1
96G6

∫
Σ
d4x

√
g
(
H2 − 4HµνH

µν +HµνρσH
µνρσ

)
.

Even restricting to entangling surfaces of fixed topology, this expression does not seem to
have bounds, in accordance with the discussions of higher dimensional Willmore function-
als in [86, 89].

For example, consider perturbations around a spherical entangling surface in AdS6; the
change in the renormalized entanglement entropy is

δS = − 1
24G6

δH = − 1
24G6

∫
Σ
d4x

√
gδH+ 1

24G6

∫
∂Σ
d3x

√
h

(
δkijδk

ij − 1
3

(δk)2
)
, (3.5.3)

i.e. it is quadratic in the extrinsic curvature. The bulk curvature integrand is non-positive
but the renormalized curvature invariant does not manifestly have any negativity bounds.
Hence, in 3d holographic CFTs, disk regions minimise the magnitude of the renormalized
entanglement entropy in the conformal vacuum while in 5d holographic CFTs spherical
regions do not necessarily do so. It would be interesting to understand the implications
of this directly from field theory.

Throughout this chapter we have been considering static RT entangling surfaces [7] al-
though our analysis of the Chern-Gauss-Bonnet integrals is applicable to generic asymptot-
ically locally AdS manifolds. It would be interesting to extend our analysis of renormalized
entanglement entropy to HRT surfaces [8].

While we have focussed on connected entangling regions, our expressions for renormalized
entanglement entropy are equally applicable to disconnected regions. If we consider n
widely separated disk/spherical entangling regions in pure AdS then from (3.2.5) and
(3.5.2) the entanglement entropy is proportional to n/G. It would be interesting to explore
how the renormalized entanglement entropy changes as these regions approach each other
and intersect. In AdS4 the extremum once all regions intersect would be a single disk
region with entropy proportional to 1/G and the renormalized entanglement entropy may
satisfy monotonicity properties under deformations of disconnected regions into a single
connected region.
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3.A Notation and terminology

In this appendix we collect together notation and terminology.

We denote the curvature of the asymptotically locally AdS manifold M (metric Gµν) with
boundary ∂M (metric γαβ) as Rµνρσ. The intrinsic curvature of the boundary of ∂M is
denoted by R̂αβγδ. The entangling surface Σ with metric g has boundary ∂Σ with metric
h. The intrinsic curvature of the surface Σ is denoted Rijkl. The intrinsic curvature of
the surface ∂Σ is denoted R̄ijkl.

We also need to distinguish between four distinct extrinsic curvatures: the extrinsic curva-
tures of Σ embedded into M (Ks), of ∂Σ embedded into Σ (K), of ∂Σ embedded into ∂M
(ks), of ∂Σ embedded into M (k⊥) orthogonal to ∂M and of ∂M embedded into M (K ),
where s = 1, 2 denote the normals to the entangling surface with the boundary condition
Ks = ks on ∂Σ. Note that we write k(2) = k and in the static case K(1) = k(1) = 0.

3.B Asymptotic analysis

The boundary metric γ has a Fefferman-Graham expansion therefore the metrics g and h
on Σ and ∂Σ have their own Fefferman-Graham expansion,

gij = 1
z2 ḡij = 1

z2

(
ḡ

(0)
ij + z2ḡ

(2)
ij + · · ·

)
(3.B.1)

and

hij = 1
z2 h̄ij = 1

z2

(
h̄

(0)
ij + z2h̄

(2)
ij + · · ·

)
. (3.B.2)

Hence ᾱ has an even power series of z,

ᾱ = ᾱ(0) + z2ᾱ(2) +O(z4). (3.B.3)

Then

β̄ = 2z2ᾱ(2)

ᾱ(0) +O(z4). (3.B.4)

Similarly, for eai has an even power series of z,

eai = 1
z
ēai = 1

z

(
ē

(0)a
i + z2ē

(2)a
i + · · ·

)
(3.B.5)
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The extrinsic curvature k⊥ of ∂Σ pointing out of ∂M ,

k⊥
ab = (∇m)ab

= −Γmab
= e k

(b m · ∂ea)k

= z∂z

(1
z

)
e k

(b ēa)k + e k
(b ∂z ēa)k

= −δab + 2ē(0) k
(b ē

(2)
a)k +O(z4)

k⊥
ab = −δab +O(z4) (3.B.6)

where we used the fact ē k(bēa)k = δab which implies ē(0) k
b ē

(2)
ak+ē(2) k

b ē
(0)
ak = 0. Transforming

back to coordinate basis,

k⊥
ij = −hij +O(z2) (3.B.7)

The other extrinsic curvature k of ∂Σ lying within ∂M ,

kab = e k
(b n̄ · ∂ea)k ∼ O(z). (3.B.8)

In coordinate basis,

kij ∼ O(z−1) (3.B.9)

3.B.1 Asymptotic analysis for bulk Euler density

Starting from the definition of the extrinsic curvature

K(2)
µν = (hρµ + n3

µn
3 ρ)(hσν + n3

νn
3 σ)∇ρ(An̄σ +A⊥mσ). (3.B.10)

Expanding the bracket and grouping the terms tangent and normal to ∂Σ

K(2)
µν = Akµν +A⊥k⊥

µν + hρµn
3
ν

(
−A⊥∂ρA+A∂ρA

⊥ +mσ∇ρn̄σ (3.B.11)

−AA⊥(n̄σ∇σn̄ρ −mσ∇σmρ) −A⊥2[n̄,m]ρ
)

+ n3
µn

3
νn

3
σ[n3, n2]σ.

As mentioned before, ∂iA = 0 and [n̄,m] ∈ N∂Σ so the terms with one index tangent
and one index normal to ∂Σ vanish. Then expand the Lie bracket of n2, n3 and use the
relation ∂ρA

⊥ = − A
A⊥∂ρA, the expression simplifies to

K(2)
µν = Ak(2)

µν +A⊥k⊥
µν + n3

µn
3
ν

[
∂ρA

(
n̄ρ +mρ(− A

A⊥ +A2 −AA⊥)
)

−
(
1 − β̄

)
A⊥
]
.

(3.B.12)
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Finally defining the coefficient in the n3
µn

3
ν component in K

(2)
µν

L := ∂ρA
(
n̄ρ +mρ(− A

A⊥ +A2 −AA⊥)
)

−
(
1 − β̄

)
A⊥, (3.B.13)

the extrinsic curvature has tangent components,

K
(2)
ij = Akij +A⊥k⊥

ij (3.B.14)

and normal components,

K
(2)
n̄m = −AA⊥L, K

(2)
n̄n̄ = −A⊥2

L, K(2)
mm = −A2L. (3.B.15)

Using (3.3.54), expanding L in z,

L = −
z3A⊥

(0)∂f̄A
⊥
(0)

ᾱ0
− z2A⊥

(0)
2
− 1

zA⊥
(0)

+ z

1 +
A⊥

(2)

A⊥
(0)

2 −
A⊥

(0)
2

2

 (3.B.16)

− zA⊥
(0) − z3A⊥

(2) +
2z3ᾱ2A

⊥
(0)

ᾱ0
+O(z5)

L = −z3

A⊥
(0)∂f̄A

⊥
(0)

ᾱ0
+A⊥

(0)
2 + 2A⊥

(2) −
A⊥

(0)
4

2
−

2ᾱ2A
⊥
(0)

ᾱ0

+O(z5).

Therefore trace of the extrinsic curvature,

K(2) = Ak +A⊥k⊥ + L ∼ O(z) (3.B.17)

and trace of the product of extrinsic curvature,

K(2)
µν K

(2)µν = A2kµνk
µν +A⊥2

k⊥
µνk

⊥µν + 2AA⊥kµνk
⊥µν + L2 (3.B.18)

K(2)
µν K

(2)µν = kµνk
µν + 3A⊥2 − 2A⊥k +O(z4) ∼ O(z2).

From (3.B.17) and (3.B.18) we observed that up to O(z4) only H contains divergent
integrals. Further expanding in z,

K(2)2 = k2 + 9z2A⊥
(0)

2 − 6zA⊥
(0)k +O(z4) (3.B.19)

K(2)2 = z2
(
k̄2

0 + 9A⊥
(0)

2 − 6A⊥
(0)k̄0

)
+O(z4)

and

K
(2)
ij K

(2)ij = kijk
ij + 3z2A⊥

(0)
2 − 2zA⊥

(0)k +O(z6) (3.B.20)

K
(2)
ij K

(2)ij = z2
(
k̄0ij k̄

ij
0 + 3A⊥

(0)
2 − 2A⊥

(0)k̄0
)

+O(z6).



74 Chapter 3. Renormalized Entanglement Entropy and Curvature Invariants

The leading order term in the Taylor expansion of the extrinsic curvature k̄(0) can be
written in terms of the leading order term in the Fefferman-Graham expansion of boundary
induced metric h̄(0)

ij

k̄(0) =
[
z−1k

]
z=0

= 1
ᾱ(0)2 h̄

(0)ij∂f̄ h̄
(0)
ij (3.B.21)

and

k̄(0)ij k̄
ij
(0) =

[
z−2kijk

ij
]
z=0

= 1
ᾱ(0)2 h̄

(0)ik∂f̄ h̄
(0)
ij h̄

(0)jl∂f̄ h̄
(0)
kl . (3.B.22)

3.B.2 Asymptotic analysis for boundary Euler density

Now consider the regulated divergences in the boundary terms in the Euler characteristic.
From power counting the dominant order of each term in (3.3.48), only the following terms
contain divergent integral

∂E4 = Ak⊥ (W1n̄1n̄ +W1m1m −Wn̄mn̄m) (3.B.23)

−Ak⊥ ij (−Wi1j1 +Wimjm +Win̄jn̄)

+Ak⊥ −
(
A

2
− A3

6

)
k⊥3 −

(
A− A3

3

)
k⊥
ijk

⊥ jkk⊥ i
k

−
(

−3A
2

+ A3

2

)
k⊥k⊥

ijk
⊥ ij

−A⊥k −
(

−A⊥

2
+ A2A⊥

2

)
kk⊥2 −

(
A⊥

2
− A2A⊥

2

)
kk⊥

ijk
⊥ ij

−
(
−A⊥ +A2A⊥

)
kijk

⊥ jkk⊥ i
k −

(
A⊥ −A2A⊥

)
k⊥kijk

⊥ ij

− A

2
k2k⊥ + A

2
kijk

ijk⊥ +Akijk
jkk⊥ i

k +Akkijk
⊥ ij .

Simplifying by substituting the leading order term of k⊥
ij = −hij ,

∂Ediv4 = −3 (W1n̄1n̄ +W1m1m −Wn̄mn̄m) (3.B.24)

+ hij (−Wi1j1 +Wimjm +Win̄jn̄)

− 3A+ 27A
2

− 9A3

2
+ 3A−A3 + 27A

2
+ 9A3

2

−A⊥k + 9A⊥

2
k − 9A2A⊥

2
k − 3A⊥

2
k + 3A2A⊥

2
k

+A⊥k −A2A⊥k − 3A⊥k + 3A2A⊥k

+ 3
2
k2 − 3

2
kijk

ij + kijk
ij −Ak2.
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Expanding the induced metric and using tracelessness of the Weyl tensor,

∂Ediv4 = −
(
W1n̄1n̄ +W1m1m −Wn̄mn̄m +A3 +A⊥k − 1

2
k2 + 1

2
kijk

ij
)
. (3.B.25)

To look at the detail asymptotic behaviour of the Weyl tensor we need the expression of
Riemann tensor in Fefferman-Graham gauge. Particularly for W1n̄1n̄,W1m1m,Wn̄mn̄m

Rtztz = − 1
z4 γ̄tt + 1

4z2

(
−2γ̄′′

tt + γ̄′
tµγ̄

µν γ̄′
νt

)
+ 1

2z3 γ̄
′
tt (3.B.26)

Rf̄zf̄z = − 1
z4 γ̄f̄ f̄ + 1

4z2

(
−2γ̄′′

f̄ f̄
+ γ̄′

f̄µ
γ̄µν γ̄′

νf̄

)
+ 1

2z3 γ̄
′
f̄ f̄

(3.B.27)

Rtf̄ tf̄ = 1
z4

(
γ̄2
tf̄

− γ̄ttγ̄f̄ f̄

)
+ R̂tf̄ tf̄ [γ] + 1

4z2

(
γ̄′2
tf̄

− γ̄′
ttγ̄

′
f̄ f̄

)
(3.B.28)

+ 1
2z3

(
γ̄′
ttγ̄f̄ f̄ + γ̄ttγ̄

′
f̄ f̄

− 2γ̄tf̄ γ̄
′
tf̄

)
Rtf̄ tz = 1

2z2

(
Dtγ̄

′
tf̄

−Df̄ γ̄
′
tt

)
(3.B.29)

where ′ = ∂z and D is the covariant derivative on ∂M . Note in Fefferman-Graham gauge,
the derivatives of the metric scale as γ̄′

µν ∼ O(z) and γ̄′′
µν ∼ O(1). In our gauge

W1212 = z4A⊥2
Rtztz + z4A2

ᾱ2 Rtf̄ tf̄ + 2AA⊥

ᾱ
Rtf̄ tz (3.B.30)

W1212 = z2
(
z2

ᾱ2
0
R̂tf̄ tf̄ − 2ᾱ2

ᾱ0

)
+O(z4)

and

W1n̄1n̄ = z4

ᾱ2Rtf̄ tf̄ − 1 (3.B.31)

W1n̄1n̄ = z2
(
z2

ᾱ2
0
R̂tf̄ tf̄ − 2ᾱ2

ᾱ0

)
+O(z4)

W1n̄1n̄ ∼ W1212

where the equivalence is up to order O(z4). Similarly,

Wn̄mn̄m = z4

ᾱ2Rf̄zf̄z + 1 (3.B.32)

Wn̄mn̄m = 1 + z4

ᾱ2
0

(
− ᾱ2

0
z4 − 2ᾱ0ᾱ2

2z2 + 2ᾱ0ᾱ2
z3

)
+O(z4)

Wn̄mn̄m ∼ 0
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and

W1m1m = z4Rtztz − 1 (3.B.33)

W1m1m ∼ 0.

Although for our gauge γ̄′
tt = 0, in non-static boundary one can replace the normaliza-

tion constant of the spacelike unit normal, ᾱ, to the normalization constant of timelike
orthonormal basis, ατ , and W1m1m should also vanish up to O(z4).

The minimal condition for Σ is equivalent to having a vanishing trace for the extrinsic
curvature K(2) = 0; the vanishing of Lie derivative of the volume form of Σ with respect
to the normal n2, (3.B.17) implies

A⊥ = −Ak − L

k⊥ (3.B.34)

A⊥
(0) =

k̄(0)
3
.

3.C Chern Gauss Bonnet Formula

The construction of the Chern Gauss Bonnet Formula follows from [100, 97, 101]. The
connection 1-form ωab is defined by

ωab = Γabcec, dea = −ωab ∧ eb, deb = ωabea (3.C.1)

and the curvature 2-form Ωab is defined by

Ωa
b = 1

2
Ra

bcde
c ∧ ed, Ωa

b = dωab + ωac ∧ ωcb. (3.C.2)

Consider a vector field X of a d dimensional manifold M with zeros of the vector field
I ⊂ M . For a d − 1 sphere bundle π : SM → M , one can identify a map, by the
normalized vector field, from the M \ I to SM such that X̂ ∈ Γ (M \ I, SM). The d form
Ωp ∈ ∧dT ∗

pM ,

Ωp = 1
2dπ

d
2
(
d
2

)
!
ϵa1···ad

Ωa1a2 ∧ · · · ∧ Ωad−1ad , (3.C.3)

is exact when pullback to SM

π∗Ω = −dΠ. (3.C.4)
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The exact form on SM is

Π = 1
π

d
2

d
2 −1∑
k=0

1
1 · 3 · · · (d− 2k − 1)k!2

d
2 +k

Φk (3.C.5)

The Φk are d− 1 forms on SM

Φk = ϵa1···ad
ua1θa2 ∧ · · · ∧ θad−2k ∧ π∗Ωad−2k+1ad−2k+2 ∧ · · · ∧ π∗Ωad−1ad (3.C.6)

where u is an unit tangent vector of M pullback to SM and the 1-form θ is defined by

θa = dua + ubπ∗ωab. (3.C.7)

Then using Stoke’s theorem and the fact X̂∗π∗ = idM∫
M

Ω =
∫
X̂(M)

π∗Ω = −
∫
X̂(M)

dΠ (3.C.8)

= −
∫
X̂(M\∪x∈IBx)

dΠ −
∫
X̂(∪x∈IBx)

dΠ

= −
∫
X̂(∂M)

Π +
∫
X̂(∪x∈I∂B̄x)

Π −
∫

∪x∈IBx

Ω

lim
r→0= −

∫
X̂(∂M)

Π +
∫
X̂(∪x∈I∂B̄x)

Π

= −
∫
∂M

X̂∗Π +
∫

∪x∈I∂B̄x

X̂∗Π

= −
∫
∂M

X̂∗Π +
∑
x∈I

degx(X̂)
∫
∂B̄x

Π

= −
∫
∂M

X̂∗Π +
∑
x∈I

indexx(X̂),

rearranging the above equation and apply the Poincare-Hopf theorem we get the Chern-
Gauss-Bonnet formula ∫

M
Ω +

∫
∂M

X̂∗Π = χ(M). (3.C.9)
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3.C.1 d=4 Riemannian manifold with boundary

Our entangling surface is a 4 dimensional Riemannian manifold.

Ω = 1
32π2 ϵabcdΩ

ab ∧ Ωcd (3.C.10)

Ω = 1
128π2 ϵabcdR

ab
efRcd

ghe
eefegeh

Ω = 1
128π2 ϵabcdϵ

efghRab
efRcd

ghe
1e2e3e4

Ω = 1
32π2

(
Rab

cdRcd
ab − 4Ra

bRb
a + R2

)
dV (3.C.11)

We can choose the vector field X̂ to be the inward pointing unit normal of the boundary
n = e4 then

n∗Π = 1
π2

( 1
12
n∗Φ0 + 1

8
n∗Φ1

)
. (3.C.12)

The 3-form Φ0 is explicitly written in terms of extrinsic curvature of the boundary ∂M

as,

n∗Φ0 = ϵ4ijkω
i
4 ∧ ωj4 ∧ ωk4 (3.C.13)

n∗Φ0 = ϵijkϵ
lpqKi

lKj
pKk

qe
1e2e3

n∗Φ0 =
(
K3 − 3KTr(K2) + 2Tr(K3)

)
dS (3.C.14)

to get to the second line we used ωi4 on the boundary is related to the extrinsic curvature

ωi4 = −Ki
je
j . (3.C.15)

Similarly the 3-form Φ1 is written in terms of the intrinsic curvature of M and the extrinsic
curvature of ∂M ,

n∗Φ1 = ϵ4ijkω
i
4 ∧ Ωjk (3.C.16)

n∗Φ1 = 1
2
ϵijkϵ

lpqKi
lRjk

pqe
1e2e3

n∗Φ1 = KR − 2KRabn
anb − 2KabRab + 2RabcdKacnbnd (3.C.17)

Combining the (3.C.14) and (3.C.17) and using the coordinate on Σ, xi, i = 1, 2, 3, 4, we
recover (3.3.3) ∫

Σ
Ω = 1

32π2

∫
Σ
d4x

(
RijklRijkl − 4RijRij + R2

)
(3.C.18)
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and (3.3.4)

∫
∂Σ
n∗Π = 1

4π2

∫
∂Σ
d3x

√
h

(
RijklKiknjnk − RijKij − KRijn

inj + 1
2

KR (3.C.19)

+ 1
3

K3 − KTr(K2) + 2
3

Tr(K3)
)
.

Note that (3.3.4) is independent of the orientation of the normal n because the extrinsic
curvature is only defined by the outward pointing normal.
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CHAPTER 4

Renormalized First Law of Entanglement Entropy

4.1 Introduction

The first law of entanglement entropy states that the variation of the entanglement entropy
SB is equal to the variation of the modular energy 〈HB〉,

δSB = δ 〈HB〉 . (4.1.1)

The holographic first law of entanglement entropy first demonstrated in [57] is applicable to
field theories that admit a holographic description. In the analysis of [57] the righthandside
of (4.1.1) is by construction finite, as it derives from the standard holographic renormaliza-
tion expressions for energy [43]. The authors of [57] work with a regulated entanglement
entropy and restrict variations such that the left hand side of (4.1.1) has no ultraviolet
divergences. The goal of this paper is to demonstrate the holographic first law in gen-
eral situations, without imposing restrictions on variations, making use of the consistent
renormalization procedure for the entanglement entropy developed in [54]. Holographic
renormalization of entanglement entropy has been discussed in a number of other works,
including [70, 73, 102, 74, 75].

Entanglement entropy in quantum field theory is divergent due to the correlations across
the boundary of the entangling region. Holographically, the entanglement entropy is cap-
tured by the area of the Ryu-Takayangi surface [7], which is also divergent due to the
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infinite volume of the entangling surface in the bulk spacetime. In both situations the
entropy can be systematically renormalized, inheriting its renormalization scheme from
that for the partition function of the theory. The renormalized holographic entanglement
entropy in [54] can be derived from the holographically renormalized action [43] using the
replica trick. We will show it is necessary to use the renormalized entanglement entropy on
the left hand side of (4.1.1) to obtain the correct finite contributions when one considers
general linear perturbations.

The covariant charge formalism can be used to give an elegant discussion of the holo-
graphic first law [57]. In the covariant formalism both sides of (4.1.1) can be expressed as
integrals of charge densities over entangling surfaces. We will review this approach in the
following section. The charge associated with the change in modular energy used in [57]
was renormalized, following the earlier works of [92, 91]. However, the charge associated
with the change in entropy was not renormalized; its variation was finite in [57] due to
constraints on the asymptotic falloff of metric perturbations. In this paper we construct a
renormalized charge corresponding to the change in entropy such that the integral version
of the holographic first law applies to generic metric perturbations.

At a technical level, one can understand the construction of this charge as follows. Onshell,
the density of the conserved charge is defined in terms of the current density as

J = dQ (4.1.2)

where J and Q are differential forms. The charge density clearly has an intrinsic ambi-
guity: additional exact terms in Q will not change the current. In our context, the exact
term ambiguity in the density of the conserved charge contributes to the entanglement
entropy (and modular energy) at the boundary of the entangling surface. The holographic
counterterms fix the ambiguity in the density of the conserved charges, with the match-
ing of renormalization schemes for energy and entropy ensuring that the first law holds.
Relative to the expressions given for the entropy in [57], our expressions have additional
boundary terms. Our general expressions are applicable to variations of the entanglement
entropy associated with generic variations of the bulk metric i.e. perturbations of the
non-normalizable terms in the metric.

Boundary terms in the construction of charges using the covariant phase space formal-
ism have been discussed recently in [103]. The boundary counterterms associated with
holographic charges were constructed using Hamiltonian renormalisation methods in [91].
There are key conceptual differences in the entropy variation that require us to generalize
relative to both of these works. The vector used to construct the entropy variation is
no longer Killing. In [91] the goal was to compute conserved charges for black holes and
accordingly any variations considered would preserve the non-normalizable modes of the
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background. In our case the non-normalizable modes are not held fixed: the metric per-
turbations can be such that the non-normalizable modes vary, corresponding to deforming
not just the state of the dual field theory, but the theory itself. This different physical
setup leads to differences in the counterterms arising in the analysis of the covariant phase
space construction, which are explained in detail in Appendix C.

The structure of the paper is the following. In section 4.2.1 we review the holographic
renormalized entanglement entropy, introducing the notion of renormalized area integral
for codimension two minimal surfaces in AlAdS that allows us to express the renormal-
ized entanglement entropy functional in terms of certain conformal invariants. In section
4.2.2 we summarise the covariant formalism or Hamiltonian formalism for holographic
renormalization and conserved charges and explain in 4.2.3 the first law of holographic
entanglement entropy, explaining the constraints imposed on variations in previous works.
In section 4.3 we explore the infinitesimal version of the first law i.e. the radius of the
entangling region is infinitesimal, for general variations, explaining the differences between
odd and even dimensions. In odd dimensions the variation of the renormalized entropy
can be expressed elegantly in terms of the pullback of the Weyl tensor variation.

We demonstrate the integral version of the renormalized first law in section 4.4. We
first need to introduce in 4.4.1 the proper definition of the conserved charges and their
integrals: we demonstrate how the equivalence relations between conserved charges need to
be generalized to include appropriate counterterms once one allows for generic variations.
In section 4.4.2, we use these conserved charges and their equivalence relations to derive
the renormalized first law of entanglement entropy. This general proof is illustrated using
two examples in d = 3, 4 and 5. We end the paper with discussion of implications and
applications of our results.

4.2 Review of renormalized entanglement entropy, holographic charges
and first law

In this section we briefly review the definition of renormalized entanglement entropy and
holographic charges, and describe the first law of entanglement entropy.

4.2.1 Renormalized entanglement entropy

One of the main goals of this work is to generalise first laws for holographic entanglement
entropy, relaxing assumptions on boundary conditions for bulk metric perturbations. One
of the tools that will be used in our analysis is renormalized entanglement entropy; this is
relevant as general boundary conditions for bulk metric perturbations are associated with
UV divergences in the regulated entanglement entropy. Working with quantities that are
consistently renormalized allows us to work systematically with such setups.
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Renormalized entanglement entropy was discussed extensively in [54], with explicit formu-
lae for holographic renormalized entanglement entropy being derived. A convenient way
to construct expressions for renormalized entanglement entropy is via the replica trick.
Using the replica trick, entanglement entropy can be derived as the limit of Rényi entropy

S = −α∂α[log Z(α) − α log Z(1)]α=1 (4.2.1)

where Z(α) is the partition function on the α fold cover manifold. In much of the con-
densed matter literature this approach is applied to UV regulated quantities, with the UV
regulator being interpreted in terms of the lattice scale of the discrete condensed matter
system of interest. However, from a quantum field theory perspective, it is much more
natural to work directly with renormalized quantities, ie.e. Z is the renormalized partition
function.

In holography the partition function is computed to leading order from the onshell bulk
action i.e.

Zgrav = e−Igrav , (4.2.2)

where Igrav denotes the onshell gravitational action. Applying the holographic dictionary
and the replica trick to the renormalized gravity action one obtains a formal definition of
the renormalized holographic entanglement entropy.

S = α∂α[Iren(α) − αIren(1)]α=1 (4.2.3)

This approach thus directly relates the renormalization scheme for the partition function
(gravitational action) to the scheme for the entanglement entropy.

To obtain a finite value for the gravitational action, one needs to use holographic renormal-
ization. The renormalized action can then be obtained by the procedure of regularization
and the introduction of appropriate covariant boundary counterterms

Iren = Ireg − Ict (4.2.4)

For pure gravity with negative cosmological constant, the renormalized action in (d + 1)
dimensions takes the form [43]

Iren = 1
16πGd+1

∫
Mz≥ϵ

dd+1x
√
g(R+ d(d− 1)) (4.2.5)

− 1
16πGd+1

∫
M̃ϵ

ddx
√
g̃
[
K + 2(1 − d)R + 1

2 − d
R

− 1
(d− 4)(d− 2)2 (RµνRµν − d

4(d− 1)
R2) − log ϵa(d) + · · ·

]
In these expressions the bulk manifold is regulated using a radial coordinate z ≥ ϵ; R
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denotes the curvature of the bulk manifold while K and R refer to the extrinsic and
intrinsic curvature of the boundary manifold respectively. Here the given counterterms
suffice for d ≤ 5; expressions for the additional counterterms required for d > 5 can be
found in [43]. Logarithmic counterterms associated with conformal anomalies arise for d
even, and explicit expressions for these can also be found in [43].

One can then derive the renormalized entanglement entropy from the renormalized action,
making use of the following expressions for the integrals of curvature invariants, expressed
as series in powers of (1 − α) [104, 105]:∫

Mα

dd+1x
√
gRα = α

∫
M
dd+1x

√
gR + 4π(1 − α)

∫
B̃
dd−1x

√
γ (4.2.6)∫

Mα

dd+1x
√
gR2

α = α

∫
M
dd+1x

√
gR2 + 8π(1 − α)

∫
B̃
dd−1x

√
γR∫

Mα

dd+1x
√
gRαµνRµν

α = α

∫
M
dd+1x

√
gRµνRµν

+ 4π(1 − α)
∫
B̃
dd−1x

√
γ
(
Rµνn

µ · nν − 1
2

(TrK)2)

Using these replica curvature integrals the explicit expression for the holographic renor-
malized entanglement entropy becomes [54]

Sren = 1
4Gd+1

∫
B̃
dd−1x

√
γ − 1

4(d− 2)Gd+1

∫
∂B̃
dd−2x

√
γ̃ (4.2.7)

− 1
4(d− 2)(d− 4)Gd+1

∫
∂B̃
dd−2x

√
γ̃

(
Rµνn

µ · nν − 1
2

(TrK)2 − d

2(d− 1)
R
)

where R is the Ricci scalar of the metric gµν , Raa =
∑
a(−1)aRµνn

µ
an

ν
a is the projection

of the Ricci tensor on the subspace orthogonal to ∂B̃ with temporal and spatial normals
nµa , a = 1, 2, γ̃ is the determinant of the induced metric on ∂B̃ and k2 =

∑
aKaKa with

Ka trace of the extrinsic curvature corresponding to the two normals nµa . Here B̃ denotes
the entangling surface with boundary ∂B̃. The counterterms given here are sufficient for
d < 6, but can straightforwardly be computed for d ≥ 6. For d even there are logarithmic
counterterms related to conformal anomalies, see [54] for details.

When the CFT dimension d is odd, the renormalized entanglement entropy can be written
in terms of the Euler characteristic and other renormalized curvature invariants of the bulk
entangling surface, see chapter 3, in particular (3.1.4),

Sren(B̃) ∼ (−1)n+1Fn χ(B̃) −
∑
r

Wr(B̃) −
∑
p

Hp(B̃) −
∑
q

Iq(B̃). (4.2.8)

where Wr are renormalized integral of projections of the Weyl curvature, Hp are renor-
malized integral of even powers of the extrinsic curvature and for d > 5 there are Iq
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renormalized integrals containing products of Weyl and extrinsic curvature. More explic-
itly the renormalized entanglement entropy proportional to the renormalized area of the
bulk entangling surface B̃

Sren(B̃) = A(B̃)
4Gd+1

(4.2.9)

and renormalized area integral in d = 3 is

A(B̃) = −2πχ(B̃) − 1
2

∫
B̃
d2x

√
g|K|2 −

∫
B̃
d2x

√
gW1212, (4.2.10)

and in d = 5 is

A(B̃) = 4π2

3
χ(B̃) − 1

6
H(B̃) − 1

3
W(B̃) (4.2.11)

− 1
24

∫
B̃
d4x

√
g
(
H2 − 4HµνH

µν +HµνρσH
µνρσ

+4W 2
1212 − 4WµnνnW̃

µnνn +WµνρσW
µνρσ

)
.

In what follows we will find these geometric expressions for renormalized entanglement
entropy useful. Note in particular that these will simplify considerably in the context of
first variations around AdS backgrounds.

4.2.2 Hamiltonian formalism and charges in AdS

In this section we review the description of Wald Hamiltonians [106, 107, 108, 109, 110]
and charges in anti-de Sitter spacetimes. Our review follows closely the work of [92, 91],
and more details may be found in these references. The Wald approach assumes that the
gravitational theory is described by a diffeomorphism covariant Lagrangian d-form L(ψ),
where L(ψ) will depend both on the metric and other fields, denoted collectively as ψ. In
the anti-de Sitter context we work with a renormalized Lagrangian

Lren = L − dB (4.2.12)

where L is the bulk Lagrangian form and B may be viewed as the combination of the
Gibbon-Hawking term and boundary counterterms. The onshell regular Lagrangian is
exact i.e.

Lonshell = −d(εanaλ)
16πGd+1

. (4.2.13)

where na is the outward normal in the asymptotic radial direction,

n = −dz

z
, (4.2.14)
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ε is the volume form and εa1...an is a (d− n+ 1) form

εa1...an = 1
(d− n+ 1)!

εa1...anb1...bd−n+1dx
b1 ∧ · · · ∧ dxbd−n+1 , (4.2.15)

with the orientation

εztx1··· = +
√

−g. (4.2.16)

In the Hamiltonian formalism, fields can be expanded asymptotically near the conformal
boundary in series of dilatation eigenfunctions with ascending weight, see appendix 4.B.1
for more detailed explanation. The general structure of the boundary term is then

B = BGH − Bct

= − εan
a

8πGd+1
(K − (Kct − λct))

= −εan
a

8πGd+1

(
K(d) + λct

)
. (4.2.17)

where typically counterterms contribute up to terms at the dth order i.e.

Oct ∼
∑
i<d

O(i). (4.2.18)

Variations can then be expressed as

δLren = δL − dδB (4.2.19)

= Eψδψ + dΘ[δψ] − dδB (4.2.20)

where Eψ denotes the equations of motion and Θ is the symplectic potential. This ex-
pression can be rewritten as

δLren = Eψδψ + dΘren[δψ] (4.2.21)

where the renormalized symplectic potential form can be expressed as

Θren[δψ] = εan
aπµν(d)δγµν (4.2.22)

The canonical momentum πµν can be expressed in terms of the extrinsic curvature as

πµν = − 1
16πGd+1

√
γ (Kµν −Kγµν) . (4.2.23)
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If we expand both sides of the equality in the dilatation eigenfunction expansion, we can
match the dilatation weights and obtain,

πµν(n) = − 1
16πGd+1

(
Kµν

(n) −K(n)γ
µν
)
. (4.2.24)

In (4.2.22) πµν(d) is the dth-term in the dilatation eigenfunction series of the conjugate
momentum with respect to the metric and this is in turn related to the renormalized CFT
stress tensor as

2πµν(d) = − 1
16πGd+1

Tµνren, (4.2.25)

i.e. the first variation of the renormalized action is

δIonshellren = −1
32πGd+1

∫
∂M

ddx
√

−γTµνrenδγµν . (4.2.26)

Now let us consider the asymptotic behaviour of metric perturbations. Expressing the
AdSd+1 metric as

ds2 = dz2

z2 + 1
z2 ηµνdx

µν (4.2.27)

where η is the Minkowski metric, only the normalizable mode is allowed to vary under a
Dirichlet condition and

δγµν = zd−2δγ(d) µν +O(zd−1), z → 0. (4.2.28)

For d odd, using the tracelessness of the stress tensor and absence of trace anomaly, the
Dirichlet boundary condition can be automatically generalized to a conformal Dirichlet
boundary condition which fixes the conformal class only. In the present of a conformal
anomaly, for the onshell action to be stationary under perturbations a representative of
the conformal class has to be fixed.

Now let us turn to Noether charges. If the field variation is induced by a vector field ξ,
we can define the Noether current form as

J [ξ] = Θ[δξψ] − ιξL (4.2.29)

where ιξ contracts ξ with the first index of L. The exterior derivative of the Noether
current is proportional to the equation of motion

dJ [ξ] = −Eψδξψ, (4.2.30)

and thus vanishes onshell. Hence we can define the Noether charge form Q[ξ] as the exact
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term in the Noether current

J [ξ] = dQ[ξ] − N [ξ] (4.2.31)

where

dN [ξ] = Eψδξψ. (4.2.32)

There is another conserved charge in AlAdS induced by ξ called the holographic charge.
Using (4.2.25) and the fact that the renormalized CFT stress tensor is conserved, we
can construct the total relativistic momentum of the boundary system. The holographic
charge form Q[ξ] is defined by

Q[ξ] = −εabn
a2πbc(d)ξc. (4.2.33)

and this form is integrated over a timeslice at the boundary to obtain the holographic
charge. This can be interpreted as the renormalized relativistic momentum along the ξ
direction.

In Lemma 4.1 in [91] it was proved that for any asymptotically locally anti-de Sitter space
M the two definitions of charges corresponding to asymptotic conformal Killing vector, ξ,
on a spatial slice on the conformal boundary, ∂M ∩ C, are equivalent i.e.

−
∫
∂M∩C

Q[ξ] =
∫
∂M∩C

Qfull[ξ]. (4.2.34)

where

Qfull[ξ] = Q[ξ] − ιξB. (4.2.35)

Note that this equivalence is defined up to exact terms since ∂M ∩ C is a cycle and the
asymptotic conformal Killing vector ξ has the following fall off condition:

ξz = O(zd), ξµ = ζµ(1 +O(zd+2)) (4.2.36)

where ζ is a boundary conformal Killing vector. We will later need to generalise this
equivalence to less restrictive fall off conditions on the vector field.

4.2.3 Holographic first law of entanglement entropy

In this section we briefly review the first law of entanglement entropy. Given a reduced
density matrix ρB the modular Hamiltonian HB is given by

ρB = e−HB (4.2.37)
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Under a small variation of the entanglement entropy, we obtain the relation

δSB = δ 〈HB〉 (4.2.38)

and the equivalence between δ 〈HB〉 and the change in energy δE gives the first law of
entanglement entropy.

Following [51], we now review relevant properties of the modular Hamiltonian and modular
flow for CFTs on Minkowski space. There is a symmetry group associated with the modular
Hamiltonian: the modular group, a group of one-parameter transformations of the form

UB(s) = e−isHB (4.2.39)

where ∂s is called the modular flow. For QFTs on Minkowski space, the modular flow
generates a boost. In null coordinates X± this is given by

X±(s) = X±e±2πs. (4.2.40)

For an accelerated observer in Rindler coordinates, the state is thermal in τ where the
longitudinal part of the metric is given by

dX+dX− = − ρ2

R2dτ
2 + dρ2, (4.2.41)

where R relates to the imaginary time periodicity i.e. β = 2πR. The thermal density
matrix of the state is

ρR = eβHτ

Tr(eβHτ )
. (4.2.42)

The modular flow generator is 2πR∂τ and the modular Hamiltonian is given by 2πRHτ +
log Tr(eβHτ ).

For a spatial ball B of radius R centred at xi = 0, t = 0 on d-dimensional Minkowski
space, we can conformally map the causal development of the spatial ball D(B) to the
Rindler wedge. This conformal map Xµ → xµ can also map the modular flow (4.2.40) to

x±(s) = R
(R+ x±) − e∓2πs(R− x±)
(R+ x±) + e∓2πs(R− x±)

(4.2.43)

and hence the modular flow generator ∂s as ζB

∂s = π

R

(
(R2 − t2 − x⃗2)∂t − 2txi∂i

)
(4.2.44)

ζB = iπ

R
(R2Pt +Kt) (4.2.45)
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where Pt and Kt are the time translation and special conformal transformation generators,
respectively.

Since the modular Hamiltonian is the translation operator in s, on B we get

HB =
∫
B
dd−1xT ts. (4.2.46)

We can write (4.2.46) in covariant form as

HB =
∫
B
dσµTµνζ

ν
B (4.2.47)

and the modular energy as

EB =
∫
B
dσµ 〈Tµν〉 ζνB. (4.2.48)

The entanglement entropy of region B can be calculated holographically by the area of
the corresponding bulk entangling surface B̃.

A CFT in the vacuum state on the causal wedge D(B) can also be mapped conformally to
a CFT in a thermal state on the hyperbolic cylinder. This can be easily seen from writing
the Rindler metric as:

ds2 = ρ2

R2

(
−dτ2 + R2

ρ2 (dρ2 + dXidXi)
)

= ρ2

R2ds
2
R×Hd−1 . (4.2.49)

As discussed in [57], the first law of entanglement entropy of the CFT thermal state on
hyperbolic cylinder can be related to the first law of black hole dynamics via holography.
Essentially, the CFT on hyperbolic cylinder R×Hd−1 is dual to the Rindler AdSd+1 black
hole exterior and the bulk entangling surface B̃ can be viewed as the black hole horizon.
The perturbation of entanglement entropy δSB is equal to the perturbation of black hole
entropy calculated from the Wald functional δSWald where

SWald = −2π
∫

H
dσ

δL
δRabcd

nabncd. (4.2.50)

Changing back to the interpretation in terms of a Minkowski boundary, we label Σ as the
bulk region enclosed by B and B̃ and the bulk causal wedge of Σ as D(Σ). We extend the
boundary modular flow to the bulk as the Killing vector

ξB = −2π
R

(t− t0)[z∂z + (xi − xi0)∂i] + π

R
[R2 − z2 − (t− t0)2 − (x⃗− x⃗0)2]∂t. (4.2.51)

Note that this Killing vector does not satisfy (4.2.36) but instead has the weaker fall-off
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behaviour

ξzB = O(z), ξµB = ζµB(1 +O(z2)). (4.2.52)

One can check ξB vanishes on B̃.

It was shown in [57] that for metric perturbations limited to normalizable modes, δgµν =
zd−2h

(d)
µν , one get the infinitesimal first law of entanglement entropy as

δ 〈Ttt 〉 = d2 − 1
2πΩd−2

lim
R→0

( 1
Rd

δSB

)
δ 〈Ttt〉 = d

16πGd+1
h

(d)
tt (4.2.53)

δ 〈Tµν〉 = d

16πGd+1
h(d)
µν

where the tracelessness condition of h(d)
µν is used to go from the second line to the final

covariant expression. The final expression matches the holographic dictionary between
stress tensor and normalizable metric coefficient found in [43].

The covariant first law of entanglement entropy utilises the charges associated with with
energy and entropy corresponding to the bulk Killing vector ξB introduced in section 4.2.2.
The entanglement entropy is

SgravB =
∫
B̃

Qfull[ξB] (4.2.54)

and the modular energy is

EgravB = −
∫
B

Q[ξB]. (4.2.55)

Limiting to the variation involving only the normalizable mode with no boundary variation
on ∂B = ∂B̃ and using (4.2.34),

−
∫
B
δQ[ξB] =

∫
B
δQfull[ξB]. (4.2.56)

The off-shell difference is expressed in terms of the Einstein equations

δEgrav
B − δSgravB =

∫
B
δQfull[ξB] −

∫
B̃
δQfull[ξB] (4.2.57)

=
∫

Σ
dδQfull[ξB] =

∫
Σ
δJfull[ξB] =

∫
Σ

−2εaδEabξ
a
B,

hence recovering the first law of entanglement entropy onshell. We also obtain the version
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of (4.2.34)

−
∫
B
δQ[ξB] =

∫
B̃
δQfull[ξB]. (4.2.58)

Note there are many caveats regarding boundary terms and fall-off condition when we
allow the variation of the non-normalizable modes. We shall address them in the following
sections.

4.3 Infinitesimal renormalized first law

In this section we will discuss the renormalized version of the first law of entanglement
entropy in the infinitesimal limit, for M = AdSd+1 with spherical boundary entangling sur-
faces ∂B̃ = Sd−2 in d ≤ 6. We begin by collecting together expressions for the renormalized
entanglement entropy of such spherical regions. We derive the infinitesimal renormalized
first law of entanglement entropy in AlAdSd+1 for odd d and explain its connection with
the variation of the renormalized integral of a curvature invariant. Since the renormalized
entanglement entropy in even dimensions is scheme dependent, we postpone the proof of
the generalized first law in even d to section 4.4.3.2 to avoid repetitions.

4.3.1 Spherical entangling region in AdS

The metric of AdSd+1 on the Poincare patch may be parameterized as

ds2 = dz2

z2 + 1
z2 gµνdx

µdxν , (4.3.1)

where gµν = ηµν is flat Minkowski metric with signature (−,+,· · · ,+). In the case of
spherical entangling regions, the (d− 1)-dimensional bulk extending entangling surface B̃
with boundary ∂B̃ as the entangling surface of the boundary CFT can be described by

r2 + z2 = R2 (4.3.2)

where r is the radial coordinate on the boundary and R is the radius of the spherical
entangling region. The induced metric on the entangling surface in AdSd+1 is then

ds2 = R2

z2r2dz
2 + r2

z2dΩ2
d−2. (4.3.3)

where dΩ2
d−2 is the standard unit sphere metric. Another convenient choice of coordinates

(w, u) are defined by

r = w cosu, z = w sin u (4.3.4)
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so the AdSd+1 metric can be written as

ds2 = 1
w2 sin2 u

(dw2 − dt2) + 1
sin2 u

dz2 + cos2 u

sin2 u
dΩ2

d−2 (4.3.5)

and the induced metric on B̃ becomes

ds2 = 1
sin2 u

dz2 + cos2 u

sin2 u
dΩ2

d−2. (4.3.6)

The regularised bulk contribution to the entanglement entropy for such an entangling
surface is then

SregB = 1
4Gd+1

∫
B̃ϵ

dd−1x
√
γ

= Ωd−2
4Gd+1

∫ R

ϵ
dz

Rrd−3

zd−1 (4.3.7)

= Ωd−2
4Gd+1

∫ π
2

ξ
du

cosd−2 u

sind−1 u
(4.3.8)

where Ωd−2 is the area of (d− 2)-dimensional unit sphere and R sin ξ ≡ ϵ.

The divergent contributions are of the form ϵ−n except in even d where there are extra
logarithmic terms. Focussing first on odd d, from (4.2.7) we know the counterterms for
d < 6 are

SctB = 1
4(d− 2)Gd+1

∫
∂B̃ϵ

dd−2x
√
γ̃

[
1 + 1

(d− 2)(d− 4)
(Raa − 1

2
k2 − d

2(d− 1)
R)
]

(4.3.9)

= Ωd−2
4(d− 2)Gd+1

rd−2

ϵd−2

[
1 − (d− 2)ϵ2

2(d− 4)r2

]
.

Note that the intrinsic curvature terms do not contribute here since the boundary metric
is flat, but they will contribute to the variation of the entanglement entropy under metric
perturbations later. For odd d, using the definition of the entangling surface one obtains
counterterm contributions

SctB = Ωd−2
4Gd+1

[
Rd−2

(d− 2)ϵd−2 − Rd−4

(d− 4)ϵd−4 + · · ·
]
. (4.3.10)

Combing (4.3.10) with (4.3.7) we get

d = 3 : Sren = − π

2G4
(4.3.11)

d = 5 : Sren = π2

3G6
.
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For d = 4, the regularized entanglement entropy from (4.3.7) is

SregB = Ω2
4G5

− lnR
2

+ ln
(
R2)
2

+ R(R2 − ϵ2)
1
2

2ϵ2
+ ln ϵ

2
−

ln
(
R2 +R(R2 − ϵ2)

1
2
)

2

 (4.3.12)

and the corresponding the full set of counterterms, including the logarithmic counterterm,
gives

SctB = 1
8G5

∫
∂B̃
d2x

√
γ̃ − ln ϵ

16G5

∫
∂B̃
d2x

√
γ̃(Raa − 1

2
k2 − 2

3
R)

= Ω2
8G5

[
r2

ϵ2
+ ln ϵ

]
. (4.3.13)

Combining these we obtain the renormalized entanglement entropy in d = 4

SrenB = Ω2
4G5

[
− ln 2R

2
+ 1

4R

]
. (4.3.14)

Since the action in this case has logarithmic counterterms there is an intrinsic scheme
dependence in the renormalised entanglement entropy, which is completely determined by
the scheme chosen for the renormalization of the action.

4.3.2 First law and variation of modular energy

We now consider the variation of the entanglement entropy under a linear perturbation of
the bulk metric. We will express the perturbed metric in radial gauge so that

ds2 = dz2

z2 + 1
z2 (ηµν + hµν)dxµdxν , (4.3.15)

A general perturbation hµν can be expanded near the conformal boundary as

hµν = h(0)
µν + z2h(2)

µν + · · · + zdh(d)
µν + zd log zh̃(d)

µν + · · · (4.3.16)

where the logarithmic terms arise in even d and all coefficients in the expansion can be
expressed in terms of the pair of data (h(0)

µν , h
(d)
µν ) using the Einstein equations.

The goal of this section is to show that the change in the renormalized entropy δSrenB

under such metric perturbations is equal to the change in modular energy i.e.

δEB = δSrenB . (4.3.17)

In the previous literature [57], the first law was derived by restricting the variation of
metric to only normalizable modes i.e. imposing h(0)

µν = 0 with h
(d)
µν 6= 0. Accordingly, the

change in the entanglement entropy δSB is finite even without including the counterterms.
Here we will derive the first law for general perturbations for which h(0)

µν is not necessarily
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zero; from a QFT perspective a general bulk metric perturbation corresponds to changing
the background for the dual QFT as well as the state in the theory.

We will first demonstrate the renormalized first law in the infinitesimal limit where the
radius of the boundary entangling region B tends to zero R → 0. The modular energy
may be approximated by

δEB =
∫
B
dσµδT renµν ξ

ν
B (4.3.18)

δEB
R → 0−→ 2πRdΩd−2

d2 − 1
δT rentt .

From holographic renormalization [43], the variation of the renormalized energy momen-
tum tensor for odd d is

δT renµν = d

16πGd+1
h(d)
µν . (4.3.19)

In even dimensions the relation between the renormalized stress tensor and the coefficients
of the asymptotic expansion is more complicated, capturing the conformal anomalies. For
example, in d = 4

δT renµν = 1
16πG5

(
4h(4)

µν + 6h̃(4)
µν

)
, (4.3.20)

i.e. there is an additional contribution associated with the coefficient of the logarithmic
term h̃(4). At linearized order we can express h̃(4) in terms of the curvature R(0) of the
perturbation of the QFT metric h(0) as

h̃(4)
µν = − 1

48
∂µ∂νR

(0) + 1
16
∂ρ∂ρR

(0)
µν − 1

96
(∂ρ∂ρR(0))ηµν . (4.3.21)

The infinitesimal first law of entanglement entropy for general variation is thus equivalent
to showing that the variation of renormalized entanglement entropy can be expressed in
terms of the renormalized stress tensor as

δSrenB = 2πRdΩd−2
d2 − 1

δT rentt (4.3.22)

4.3.3 Infinitesimal first law for odd d

We shall focus on odd d. The linearized variation of regularized entanglement entropy can
be expressed in Cartesian spatial coordinates as

δSregB = R

8Gd+1

∫
B̃ϵ

dd−1x
1
zd

(hii − x̂ix̂jhij), (4.3.23)

where i runs over the spatial indices of the d-dimensional Minkowski space.
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To obtain the infinitesimal version of the first law, we consider the limit R → 0. To
evaluate the integrals explicitly it is more convenient to use the (w, u) coordinates in
(4.3.4), in terms of which the variation of regularized entanglement entropy is

δSregB = 1
8Gd+1

∫ π/2

ξ
du

∫
Sd−2

dΩd−2
cosd−2 u

sind−1 u
(δij − cos2 ux̂ix̂j)hij . (4.3.24)

For the variation of the counterterms we need the linearized variation of the spatial ex-
trinsic curvature, which can be expressed as

δK2 = −(d− 2)z
2r

x̂ix̂jhij + z

2
∂r(hii − x̂ix̂jhij) (4.3.25)

and the variation of a specific combination of Ricci tensors,

−δRtt + δRrr − d

2(d− 1)
δR = (d− 2)

(
h

(2)
ii − x̂ix̂jh

(2)
ij

)
. (4.3.26)

The latter equality holds at linearized level, see equation (4.3.31) below.

Substituting the above expressions into the variation of (4.3.9) we get the following ex-
pression for the counterterms in general d ≤ 6 to first order:

δSctB = 1
4(d− 2)Gd+1

∫
Sd−2

dΩd−2

[1
2
rd−2

ϵd−2

(
hii − x̂ix̂jhij

)
− (d− 2)

4(d− 4)
rd−4

ϵd−4

(
hii − 3x̂ix̂jhij

)
+ 1

(d− 4)
rd−2

ϵd−4

(
h

(2)
ii − x̂ix̂jh

(2)
ij

)
− 1

2(d− 4)
rd−3

ϵd−4

(
x̂k∂khii − x̂ix̂j x̂k∂khij

)]
. (4.3.27)

In the (w, u) coordinate system, the area integral for the bulk entangling surface B̃ϵ is
expressed in terms of an integral over the asymptotic angular coordinate u and the spatial
angular coordinates. We can thus evaluate the integral up to the upper limit u = π

2 even
when expanding around R = 0.

The Taylor expansion around xi = 0 at each order of the Fefferman-Graham expansion
can be written as:

h(n)
µν (xi) = h(n)

µν (0) +Rx̂i∂ih
(n)
µν (0) + R2x̂ix̂j

2!
∂i∂jh

(n)
µν (0) + R3x̂ix̂j x̂k

3!
∂i∂j∂kh

(n)
µν (0)

+ R4x̂ix̂j x̂kx̂l

4!
∂i∂j∂k∂lh

(n)
µν (0) + . . . (4.3.28)

The Fefferman-Graham expansion also becomes an expansion in R,

hµν = h(0)
µν +R2 sin2 uh(2)

µν + · · · (4.3.29)

We can now expand (4.3.24) using (4.3.29) and (4.3.28) up to Rd. The two angular
integrals du, dΩd−2 can be evaluated independently for each term in the expansion. In the
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appendix we give a general formula (4.A.5) for integrating over products of unit vectors
over Sn. Together with (4.A.8), generic terms in the expansion after the spatial angular
dΩd−2 integral take the form

(∂2)mh(n)
ii , (∂2)m∂i∂jh(n)

ij . (4.3.30)

All the non-normalizable modes are related to the first term in the Fefferman-Graham
expansion h(0) through the Einstein equation [43]. For h(2) we have

h(2)
µν = − 1

d− 2

(
δRµν − 1

2(d− 1)
δRηµν

)
(4.3.31)

The linear variation of the Ricci tensor is,

δRµν = −1
2
∂µ∂νh

(0)σ
σ + ∂σ∂(µh

(0)σ
ν) − 1

2
∂σ∂σh

(0)
µν (4.3.32)

We can use the above information to express h(2) in terms of derivatives of h(0) and h(4)

in terms of derivatives of h(2) as

h
(2)
ii = 1

2(d− 2)

(
∂i∂ih

(0)
jj − ∂i∂jh

(0)
ij

)
. (4.3.33)

In d = 5 we will also require the following relation between h(4) and h(2),

h
(4)
ii = 1

4
∂j∂jh

(2)
ii − 1

4
∂i∂jh

(2)
ij . (4.3.34)

We can follow appendix 4.A.2 and 4.A.3 to obtain

δSrenB = dRdΩd−2
8(d− 1)(d+ 1)Gd+1

h
(d)
ii (4.3.35)

Here by working with the renormalized quantities we recover the first law of entanglement
entropy for general linearized variations of the metric, including both non-normalizable
and normalizable modes.

4.3.4 Curvature invariants formula

The first variation of the entanglement entropy around spherical entangling regions in
AdSd+1 with d odd can be expressed in a particularly simple and elegant geometric form,
using the expression for the renormalized entanglement entropy in terms of curvature
and topological invariants (4.2.8). Since such variations do not change the topology of
the entangling surface, the topological Euler invariant contribution does not change. All
contributions from the extrinsic curvature are quadratic or higher order; since the extrinsic
curvature vanishes to leading order, and this means the contributions Hp do not contribute
to first variations (but do contribute to second variations). By analogous reasoning, the
only contribution from the Weyl terms Wr comes from the term that is linear in the Weyl
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tensor. Thus we arrive at

δSren ∝ − 1
4G2n

δW (4.3.36)

where G2n is the Newton constant (with 2n = d+ 1) and

δW =
∫

Σ
d2(n−1)x

√
g δW1212 −

∫
∂Σ
d2n−3x

√
h δW1212 + · · · (4.3.37)

where δW1212 is the pullback of the normal components of the bulk linearized Weyl curva-
ture in an orthonormal frame and δW1212 is the pullback of the normal components of the
boundary linearized Weyl curvature in an orthonormal frame. The boundary terms are
such that δW is a finite conformal invariant for a generic non-normalizable metric pertur-
bation. Note that the boundary term vanishes for AdS4. The ellipses denote additional
boundary terms expressed in terms of higher powers of the boundary Weyl curvature that
are required for n > 3.

The variation of renormalized entanglement entropy for d = 3, 5 is

d = 3 : δSren(B̃) = − 1
4G4

δW(B̃) (4.3.38)

d = 5 : δSren(B̃) = − 1
12G6

δW(B̃) (4.3.39)

In Poincaré coordinates the linear variation of the Weyl tensor δWabcd is,

δWµνρσ = 1
z2 R[η + h]µνρσ + 1

2z3 (h′
µρηνσ + h′

νσηµρ − h′
µσηνρ − h′

νρηµσ) (4.3.40)

δWµνρz = 1
2z2 [∂µh′

νρ − ∂νh
′
µρ] (4.3.41)

δWµzνz = − 1
2z2h

′′
µν + 1

2z3h
′
µν (4.3.42)

where R[η + h]µνρσ is the Riemann tensor for boundary metric ηµν + hµν . In Poincaré
coordinates, the two unit normals are

n1 = z
∂

∂z
(4.3.43)

n2 = z√
r2 + z2

(
z
∂

∂z
+ rx̂i

∂

∂xi

)
(4.3.44)

Then the projection of Weyl tensor onto NB̃, δW1212, is

δW1212 = z4

r2 + z2

(
z2δWtztz + r2x̂ix̂jδWtitj + 2zrx̂iδWtzti

)
(4.3.45)
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The bulk Weyl integral becomes

∫
B̃
dd−1x

√
γ W1212 =

∫ π
2

ξ
du

∫
Sd−2

dΩd−2
R2 cosd−2 u

sind−5 u

(
z2Wtztz + r2x̂ix̂jWtitj + 2zrx̂iWtzti

)
(4.3.46)

and the boundary Weyl integral is

∫
∂B̃
dd−2x

√
γ̃ W1212 =

∫
Sd−2

dΩd−2
R2 cosd−2 u

sind−6 u

(
z2Wtztz + r2x̂ix̂jWtitj + 2zrx̂iWtzti

)
(4.3.47)

Substituting (4.3.40) − (4.3.42) into the above integrals

∫
B̃
dd−1x

√
γ δW1212 =

∫ π
2

ξ
du

∫
Sd−2

dΩd−2R
2
(cosd−2 u

sind−5 u

[
− 1

2
h′′
tt + 1

2R sin u
h′
tt

]
(4.3.48)

+ cosd u
sind−3 u

x̂ix̂j
[
Rtitj + 1

2R sin u
(h′
ttηij + h′

ijηtt)
]

+ cosd−1 u

sind−4 u
x̂i[∂th′

ti − ∂ih
′
tt]
)

and ∫
B̃
dd−2x

√
γ̃ δW1212 =

∫
Sd−2

dΩd−2R
2
(cosd−2 u

sind−6 u

[
− 1

2
h′′
tt + 1

2R sin u
h′
tt

]
(4.3.49)

+ cosd u
sind−4 u

x̂ix̂j
[
Rtitj + 1

2R sin u
(h′
ttηij + h′

ijηtt)
]

+ cosd−1 u

sind−5 u
x̂i[∂th′

ti − ∂ih
′
tt]
)

where ′ = ∂
∂z Up to order Rd, the relevant components of the integrand are obtained

by Taylor expanding about the origin and eliminating the odd components as the it is
integrated over Sd−2. In appendix 4.A.4, we expand Rtitj into linear perturbation hµν

then further relate the higher order non-normalizable modes h(n<d)
µν to the lower order

non-normalizable modes via the Einstein equation. Finally, we can see all the lower order
non-normalizable modes perturbation are cancelled and the renormalized Weyl integral is

d = 3 : δW = −3R3Ω1
16G4

h
(3)
tt (4.3.50)

d = 5 : δW = −5R5Ω3
16G6

h
(5)
tt . (4.3.51)

Then substituting (4.3.50), (4.3.51) into (4.3.38), (4.3.39) to get the renormalized entangle-
ment entropy. We recovered the infinitesimal first law of entanglement entropy in (4.3.22)
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for variation that includes perturbation of non-normalizable modes,

d = 3 : δSrenB = 3R3Ω1
48G4

h
(3)
tt (4.3.52)

d = 5 : δSrenB = 5R5Ω3
192G6

h
(5)
tt . (4.3.53)

Again the fact that the non-normalizable modes do not contribute indicates the finite
contribution of the entanglement entropy in odd d is universal and scheme independent.

4.3.5 Cancellation of divergences in d = 4

We now turn from odd dimensional boundaries to even dimensions and show how the
cancellation of divergences of the renormalized entanglement entropy works in d = 4. A
general perturbation of the boundary metric hµν can be expanded around the boundary
z = 0

hµν = h(0)
µν (r, θ, ϕ) + z2h(2)

µν (r, θ, ϕ) +· · · (4.3.54)

Since on B̃ the coordinate r is a function of z. The coefficient in the expansion of the
metric perturbation can be further expanded around r = R. For h(0)

µν (r, θ, ϕ) the expansion
is

h(0)
µν (r, θ, ϕ) = h(0)

µν (R, θ, ϕ) + (r −R)∂rh(0)
µν (R, θ, ϕ) + · · · (4.3.55)

= h(0)
µν (R, θ, ϕ) − z2

2R
∂rh

(0)
µν (R, θ, ϕ) + · · · (4.3.56)

So the variation of the regularized entanglement entropy in polar coordinates for d = 4 is,

δSregB = 1
8G5

∫ R

ϵ
dz

∫
S2
dΩ2

[ 1
z3

(
h

(0)
θθ + 1

sin2 θ
h

(0)
ΦΦ

)
+ 1
z

(
− 1

2R2h
(0)
θθ − 1

2R2 sin2 θ
h

(0)
ϕϕ

+ h(0)
rr + 1

R2h
(0)
θθ + 1

R2 sin2 θ
h

(0)
ϕϕ − 1

2R
∂rh

(0)
θθ − 1

2R sin2 θ
∂rh

(0)
ϕϕ + h

(2)
θθ + 1

sin2 θ
h

(2)
ϕϕ

)]
(4.3.57)

Evaluating the z integral and the divergent terms are,

(δSregB )div = 1
8G5

∫
S2
dΩ2

[ 1
2ϵ2

(
h

(0)
θθ + 1

sin2 θ
h

(0)
ΦΦ

)
− ln ϵ

(
− 1

2R2h
(0)
θθ − 1

2R2 sin2 θ
h

(0)
ϕϕ

+ h(0)
rr + 1

R2h
(0)
θθ + 1

R2 sin2 θ
h

(0)
ϕϕ − 1

2R
∂rh

(0)
θθ − 1

2R sin2 θ
∂rh

(0)
ϕϕ + h

(2)
θθ + 1

sin2 θ
h

(2)
ϕϕ

)]
(4.3.58)

We can see that (4.3.58) is identical to (4.A.83) so the divergences of the regularized entan-
glement entropy will be removed by the counterterms in the renormalization procedure.

(δSregB )div = (δSctB )div. (4.3.59)



102 Chapter 4. Renormalized First Law of Entanglement Entropy

More explicitly, in Cartesian coordinate, the set of counterterms from (4.2.7) is

δSctB = 1
16G5

∫
S2
dΩ2

[
(hii − x̂ix̂jhij)(

r2

ϵ2
+ ln ϵ)

+ ln ϵ
(

− δRtt + δRrr − 2
3
δR
)

− ln ϵ
(

− 2hii + 1
r
∂r(r2hii − xixjhij)

)]
. (4.3.60)

Following section 4.A.5 we get

δSctB = 1
16G5

∫
S2
dΩ2

r2

ϵ2
(
hii − x̂ix̂jhij

)
+ ln ϵ

[(
h

(0)
ii − x̂ix̂jh

(0)
ij

)
− 2R2(h(2)

ii − x̂ix̂jh
(2)
ij

)
−
(

− rx̂k∂kh
(0)
ii + 2x̂ix̂jh(0)

ij + rx̂ix̂j x̂k∂kh
(0)
ij

)]
. (4.3.61)

Note that there are finite contributions from the first term in (4.3.61).

4.4 Integral renormalized first law

Under general variations of the boundary metric where both the non-normalizable and
normalizable modes are not fixed, we need to modify the relation between the conserved
charges (4.2.34) and the associated first law. Since the spatial slice Σ where the charges are
defined has a boundary, we cannot neglect the total derivative terms. In fact the boundary
terms capture all the divergent behaviour of the Noether charge and act as counterterms.

As mentioned in the section 4.2.2, the asymptotic conformal Killing vector used to define
the Noether charges in [91] has to follow the fall off condition (4.2.36) which our modular
flow generator ξB in (4.2.51) does not satisfy. We shall see later that all these extra terms
are essential to match the universal divergences of the entanglement entropy.

Charges defined on asymptotic boundary B̃ and entangling surface B have asymptotic
behaviours analogous to the entanglement entropy. In (d+ 1) even spacetime dimensions,
the finite charges are universal. For (d+ 1) odd spacetime dimensions, the finite parts are
scheme dependent, and change covariantly under changes of scheme. Hence, the first law
of entanglement entropy in odd bulk dimensions requires appropriate finite counterterms.

4.4.1 Charges in the entangling region

The Noether charge form Q[ξ] is the exact term in the conserved current form induced by
the vector ξ. For pure Einstein gravity (with or without cosmological constant), it can be
expressed as

Q[ξ] = − 1
16πGN

⋆ dξ

= − 1
16πGN

εab∇aξb, (4.4.1)
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up to exact terms. Since the extra exact terms will introduce boundary terms in the
integral over B and B̃ respectively, we will treat (4.4.1) as the definition of Q[ξ] to avoid
confusion. In asymptotically locally AdS, the full expression for the Noether charge form
is then written as

Qfull[ξ] = Q[ξ] − ιξB (4.4.2)

with B defined as

B = − 1
8πGN

εan
a
(
K(d) + λct

)
(4.4.3)

where n is the radial unit normal pointing outwards from the asymptotic boundary ∂M.

The holographic charge form Q[ξ] is defined in terms of the dth term in the dilatation
eigenfunction expansion of the canonical momentum, πbc(d), through the following expression

Q[ξ] = −εabn
a2πbc(d)ξc. (4.4.4)

In our setup, the full Noether current form Jfull[ξB] is induced by the bulk modular flow
of a bulk Killing vector ξB. The full Noether charge on the spatial slice Σϵ can be thought
of as the charge captured by the surface from the current:

Qfull[ξB] =
∫

Σϵ

Jfull[ξB]

=
∫

Σϵ

Θ[δξB
ϕ] − ιξB

Lonshell

= −
∫

Σϵ

ιξB
Lonshell (4.4.5)

As shown in (4.2.31), the onshell Noether current form is exact.

In (4.2.54, 4.2.55), we defined the bulk entanglement entropy by an integral of the Noether
charge form over B̃ϵ and the modular energy through an integral of the holographic charge
form over Bϵ. In order to relate the two we need to generalize (4.2.34) to∫

Bϵ

Qfull[ξ] − ∆[ξ] = −
∫
Bϵ

Q[ξ]. (4.4.6)

Here ∆ captures the counterterms associated with renormalizing the divergences of Qfull;
this term is needed as the quantity on the righthandside, Q, is renormalized. We could
redefine the Noether charge on the lefthandside to include these counterterms, but in what
follows we keep track of the contributions separately to emphasise how the counterterm
contributions arise.
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The counterterms need to be included here because of our more general falloff conditions
for the perturbations. This contribution vanishes in [91] because of the stricter fall-off
condition of ξ which makes the radial derivative of ξ vanishes and the counterterms inte-
grate to zero as the integral is over a surface with no boundary. In [57] this term vanishes
due to the falloff conditions imposed on the metric perturbations.

The conserved charge forms Qfull and Q can be interpreted as Hamiltonian potentials, as
explained in detail in appendix 4.C. ∆ in this context is the difference of the counterterm
contributions of the two Hamiltonian potentials. In the covariant phase space formalism,
given an action with boundary terms, one can obtain the presymplectic current through
variation of the Lagrangian and boundary terms. The presymplectic current maps the
vector field in the configuration space to the Hamiltonian potential.

We are interested in renormalized quantities and there are two ways to see how the coun-
terterms arise in the Hamiltonian potential. The first approach is to use the renormalized
action that includes the counterterms, and then obtain the presymplectic current and
Hamiltonian potential. We denote this as the full Hamiltonian potential because it is
equal to the full Noether charge form when πµν(d) = 0

Hfull[ξ] = Q[ξ] + bGH [ξ] − bct[ξ] (4.4.7)

= HGH [ξ] − bct[ξ] (4.4.8)

= Qfull[ξ], (4.4.9)

where bGH and bct represent the Gibbon-Hawking boundary term and counterterm contri-
bution. Here HGH is Hamiltonian potential obtained from the action that only includes
the Gibbon-Hawking boundary term.

The second way to see how the counterterms arise is to renormalize the Gibbon-Hawking
Hamiltonian potential HGH directly by subtracting the lower order terms in the dilatation
eigenvalue expansion. The renormalized Gibbon-Hawking Hamiltonian potential is given
in terms of the holographic charge form when πµν(d) = 0

HGH
(d) [ξ] = HGH [ξ] − HGH

ct [ξ] (4.4.10)

= −Q[ξ]. (4.4.11)

Hence we can interpret ∆ as the difference of the two aforementioned Hamiltonian poten-
tials

∆[ξ] = HGH
ct [ξ] − bct[ξ] (4.4.12)

As we will see this term in the perturbed case this is exact and represents the counterterms
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for the entanglement entropy.

On Bϵ, for bulk Killing vector, ξB the full Noether charge form is

Qfull[ξB]|Bϵ = − 1
8πGN

εztn
z
(
−z∂zξtB +Kt

µξ
µ
B −K(d)ξ

t
B − λctξ

t
B

)
(4.4.13)

where the first term on the right hand side was neglected in [91] due to the falloff condition
(4.2.36). The holographic charge form is

Q[ξB]|Bϵ = −εztn
z2πtc(d)ξB c

= 1
8πGN

εztn
z
(
Kta

(d) −K(d)γ
ta
)
ξB a (4.4.14)

where we used (4.2.24) to express the holographic charge in terms of the dth term in the
dilatation eigenfunction expansion of the extrinsic curvature. The difference in the charges
∆[ξB] is

∆[ξB]|Bϵ = − 1
8πGN

εztn
z
(
−z∂zξtB +K t

ct µξ
µ
B − λctξ

t
B

)
. (4.4.15)

It is important to remember that this expression is only valid when ξB is Killing. We
shall see later the perturbed difference of the charges δ∆[ξB] admits an extra term as ξB
is no longer Killing. In appendix 4.B.1, we follow [92] and derive the explicit dilatation
eigenfunction expansion for Kµ

ν and λ. In the unperturbed setting, the boundary metric is
d-dimensional Minkowski metric ηµν . Only the zeroth term in the dilatation eigenfunction
expansion is non-vanishing,

K µ
(0) ν = δµν , λ(0) = 1. (4.4.16)

From (4.4.14) we know the holographic charge is zero

Q[ξB]|Bϵ = 0. (4.4.17)

Then ∆[ξB] simply equals the Noether charge

∆[ξB]|Bϵ = Q[ξB]|Bϵ = − 1
8πGN

εztn
z
(
−z∂zξtB

)
= z3

4GN
εzt (4.4.18)

We can now turn our attention to the Noether charge form on the entangling surface B̃ϵ.
As explained in section 4.2.3, the integral of the Noether charge form over B̃ϵ can be
interpreted as both the entropy of the Rindler black hole and the entanglement entropy
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of boundary region Bϵ. Since ξB vanishes on B̃ϵ,

Qfull[ξB]|B̃ϵ
= Q[ξB]|B̃ϵ

= 1
8πGN

εwt∂
wξtB (4.4.19)

where we used the w coordinate in (4.3.4) and the Killing condition. Integrating over B̃ϵ,∫
Bϵ

Qfull[ξB] = 1
8πGN

∫
Bϵ

du dΩd−2
cosd−2 u

sind−1 u

2π
w

(
z2 + r2

)
= R

4GN

∫
Bϵ

du dΩd−2
cosd−2 u

sind−1 u

= SregB (4.4.20)

where we use (4.3.8) to identify the second line with the regulated entanglement entropy.

4.4.2 Variation of charges

The variations of Qfull and Q differ from the previous literature [57] when we allow
variations of the non-normalizable modes. For general perturbations of γµν , the linear
variation of the Noether charge form is

δQ[ξB] = −1
16πGN

δ
[
εab∇aξbB

]
= −1

16πGN
εab

[
δγ

2
∇aξbB − δgac∇cξ

b
B + gacδΓbdcξdB

]
= −z2

8RGN

[
εti
(
xihkk − xjhij − (R2 − z2 − x⃗2)∂thit

)
(4.4.21)

+ εtz

(
zhkk + (R2 − z2 − x⃗2)(−2

z
htt + ∂zhtt)

)]

Using the coordinates (4.3.4) on B̃ϵ we get the integral∫
B̃ϵ

δQ[ξB] = 1
8RGN

∫
B̃ϵ

dd−1x
1
zd

(R2hkk − xixjhij)

= 1
8RGN

∫
B̃ϵ

dd−1x(R2 − x⃗2)− d
2 (R2hkk − xixjhij) (4.4.22)

which is equal to the linear variation of the holographic entanglement entropy∫
B̃ϵ

δQ[ξB] = δSregB (4.4.23)
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For the variation of the full Noether charge form, we need to evaluate the boundary term
δB. This term is related to the presymplectic form Θ[δϕ] by

Θ[δϕ] = ddx

8πGN
δ (−√

γλ) (4.4.24)

= ddx

[ 1
8πGN

δ (−√
γK) + πµνδγµν

]
= ddx

[ 1
8πGN

δ
(
−√

γ
(
K(d) + λct

))
+ πµν(d)δγµν

]
= δB + ε∂Mϵπ

µν
(d)δγµν .

where the d-form ddx is

ddx = 1
d!
dx0 ∧ · · · ∧ dxd−1. (4.4.25)

The variation of the full Noether charge form is then

δQfull[ξB] = δQ[ξB] − ιξB
δB (4.4.26)

= δQ[ξB] − ιξB
Θ[δϕ] − ιξB

ε∂Mϵπ
µν
(d)δγµν .

The linear variation of the holographic charge is

δQ[ξ]|Bϵ = −εztn
z2δπ t

(d) tξ
t
B. (4.4.27)

This is related to the renormalized boundary energy momentum tensor via

2δπµν(d) = −δTµνren. (4.4.28)

Substituting this expression into (4.4.27) the integral of the variation of holographic charge
form δQ[ξB] on the boundary ball region Bϵ is equal to the variation of modular energy

−
∫
Bϵ

δQ[ξB] = δEB. (4.4.29)

To express the variation of modular energy in terms of dilatation eigenfunction expansion
of extrinsic curvature we vary (4.2.23) to obtain

δπ µ
(d) ν = −1

16πGN

(
δK µ

(d) ν − δK(d)δ
µ
ν

)
(4.4.30)

δπ t
(d) t = 1

16πGN
δK i

(d) i. (4.4.31)

Using the tracelessness of δK µ
(d) ν at the linear level we can write δQ[ξ] on Bϵ as

δQ[ξB]|Bϵ = 1
8πGN

εztn
zδK t

(d) tξ
t
B. (4.4.32)
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(This expression holds for all d, with conformal anomalies present if we write out K t
(d) t in

terms of g(n)
µν and g̃

(d)
µν , see for example (4.4.65).) The variation of the full Noether charge

form δQfull on Bϵ is

δQfull[ξB]|Bϵ = z

8πGN
εzt

[(
δγ

2
(Kt

µξ
µ
B − 1

z
∂zξtB) − 1

2z
∂tξ

z
Bδγ

tt + ξtBδK
t
t

)
(4.4.33)

− ξtB

(
δγ

2
+ δK(d) + δλct

)]
.

By using (4.4.30), we can obtain the relation between δQfull and δQ.

Similarly to (4.4.6), this revised version of (4.2.58) receives a contribution δ∆[ξB]. We get∫
Bϵ

δQfull[ξB] =
∫
Bϵ

−δQ[ξB] + δ∆[ξB]. (4.4.34)

The latter term takes the form

δ∆[ξB] = z

8πGN
εzt

[
− 1

2z
∂zξtBδγ − 1

2z
∂tξ

z
Bδγ

tt + ξtB

(
δKt

t − δλ
)
ct

]
. (4.4.35)

Note that we can understand why this term arises for two reasons. Firstly, ξB is no longer
Killing with respect to the perturbed metric and secondly ξB has a weaker falloff condition
(4.2.52) instead of (4.2.36). Here we use an abbreviated notation:

δγ = γµνδγµν , δKµ
ν = δ (γµσKσν) . (4.4.36)

In terms of Hamiltonian potentials, the δ∆ term is

δ∆[ξB] = δHGH
ct [ξB] − δbct[ξB]. (4.4.37)

We further describe the origin of each term in the appendix 4.C and expressed δ∆ in
(4.C.33) using the formalism of [103].

Substituting the unperturbed flat boundary metric and the bulk Killing vector we obtain

δ∆[ξB] = dd−1x
√

−γ
8πGN

[
πz2

R
(−htt + hii) + πz2

R
htt + π(R2 − z2 − x⃗2)

R

(
δKt

t − δλ
)
ct

]

δ∆[ξB] = dd−1x z−d

8RGN

[
z2hii + (R2 − z2 − x⃗2)

(
δKt

t − δλ
)
ct

]
. (4.4.38)

The variation of the onshell boundary Lagrangian, δλ, is related to the variation of the
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extrinsic curvature, δK, via the canonical momentum in (4.2.23)

− 1
8πGN

δ [√γλ] = − 1
8πGN

δ [√γK] + πµνδγµν (4.4.39)

−
√
γ

8πGN

(
λ

2
δγ + δλ

)
= −

√
γ

8πGN

(
K

2
δγ + δK + Kµν −Kγµν

2
δγµν

)
λ

2
δγ + δλ = δK + Kµν

2
δγµν .

For flat boundary metrics we have

δλ = δK. (4.4.40)

We then get the following simplified expression for all dimension

δ∆[ξB] = z−d

8RGN

[
z2hii + (R2 − z2 − x⃗2)

(
δKt

t − δK
)
ct

]
= z−d

8RGN

[
z2hii − (R2 − z2 − x⃗2)δK i

ct i

]
. (4.4.41)

The extrinsic curvature counterterm means that all the terms appear earlier in the dilata-
tion eigenfunction expansion, i.e.

δKµν = δK(0)µν + δK(2)µν + · · · + log z2δK̃(d)µν + δK(d)µν + · · ·

δKµν = δKct µν + δK(d)µν + · · · (4.4.42)

From (4.4.34) we can deduce that the divergence of the full Noether charge integral is
equal to the divergence of the correction term integral,

(∫
Bϵ

δQfull[ξB]
)div

=
∫
Bϵ

δ∆div[ξB]. (4.4.43)

In order to see how this divergence is equivalent to the divergence in the entanglement
entropy, we need to use the Stoke’s theorem of the full Noether charge form on Σϵ,∫

Bϵ

δQfull[ξB] −
∫
B̃ϵ

δQfull[ξB] =
∫

Σϵ

dδQfull[ξB]. (4.4.44)

The exterior derivative of the variation of Noether charge form can be deduced from
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(4.2.29) and (4.2.31),

dδQ[ξB] = δJ − δN (4.4.45)

= δΘ[δξB
ψ] − ιξB

δL + δN

= δΘ[δξB
ψ] − ιξB

dδΘ[δψ] − ιξB
Eψδψ + δN

= δΘ[δξB
ψ] − LξB

Θ[δξB
ϕ] + dιξB

δΘ[δϕ] − ιξB
Eψδϕ+ δN

= ω(δψ, δξB
ψ) + dιξB

δΘ[δψ] − ιξB
Eϕδψ + δN

= dιξB
δΘ[δψ] − ιξB

Eϕδψ + δN (4.4.46)

where ω(δ1ψ, δ2ψ) is the symplectic form

ω(δ1ψ, δ2ψ) = δ2Θ[δ1ψ] − δ1Θ[δ2ψ] (4.4.47)

and it vanishes when ξB is Killing. Note the last two terms are off-shell terms. We first
write out (4.4.34) as∫

Bϵ

δQ[ξB] − ιξB
Θ[δϕ] =

∫
Bϵ

−δQ[ξB] + δ∆[ξB]. (4.4.48)

Now substitute (4.4.46) and (4.4.48) into (4.4.44),∫
Bϵ

δQfull[ξB] −
∫
B̃ϵ

δQfull[ξB] =
∫

Σϵ

dιξB
δΘ[δϕ] + δN − ιξB

Eϕδϕ− dιξB
δB∫

Bϵ

δQ[ξB] − ιξB
Θ[δϕ] −

∫
B̃ϵ

δQ[ξB] =
∫

Σϵ

−ιξB
Eϕδϕ+ δN∫

Bϵ

−δQ[ξB] + δ∆[ξB] =
∫
B̃ϵ

δQ[ξB] +
∫

Σϵ

−ιξB
Eϕδϕ+ δN . (4.4.49)

Onshell we get ∫
Bϵ

−δQ[ξB] =
∫
B̃ϵ

δQ[ξB] −
∫
Bϵ

δ∆[ξB]. (4.4.50)

Since the left hand side is manifestly finite we have

(∫
B̃ϵ

δQ[ξB]
)div

=
∫
Bϵ

δ∆div[ξB] (4.4.51)

δSdivB =
∫
Bϵ

δ∆div[ξB] (4.4.52)

Therefore the integral of δ∆ on the boundary ball region can be thought of as the coun-
terterm of the entanglement entropy. In the next section we will show that the finite part
of δ∆ matches with the counterterm of the entanglement entropy as well. Hence we get
the integral first law of entanglement entropy:

δEB = δSrenB . (4.4.53)
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Finite counterterms contribute only when the CFT dimension is even. This is an ex-
pected result as the finite part of the entanglement entropy is scheme dependent in even
d. Similarly, the left hand side is related to the renormalized energy momentum tensor
which is also scheme dependent for even d. For odd d, the finite part of the renormalized
entanglement entropy is universal We will see explicit examples in the following section.

The implication of δ∆ acting as the density of the entanglement entropy counterterms is
that δ∆ is exact,

δ∆[ξB] = dδSct
B, (4.4.54)

where δSct
B is the (d − 2)-form that integrates to the entanglement entropy counterterm.

This means the full Hamiltonian potential δHfull and the renormalized Gibbon-Hawking
Hamiltonian potential δHGH

(d) is equal up to an exact term. In the usual context of con-
served quantities, this is attributed to the exact term ambiguity. Since the potential is
integrated over a boundary manifold, which itself does not have boundary, the exact term
ambiguity will not contribute to the conserved charge. For us, both the entanglement
entropy and modular energy is defined as the integral of a manifold that does have bound-
ary, so the exact term difference is no longer an ambiguity. Note the counterterm of the
entanglement entropy is obtained systemically from the renormalized action through the
replica trick, this indicates this exact term difference can be calculated from the renor-
malized action directly. In the Hamiltonian holographic renormalization framework, we
show how to obtain δ∆ from the counterterms contribution of the Hamiltonian potentials
in appendix 4.C.

4.4.3 Examples: generalized first law in AlAdSd+1

We have shown that the variation of the modular energy δEB is equal to the integral of
the holographic charge form over the boundary ball region Bϵ in (4.4.29) and the variation
of the entanglement entropy δSB is equal to the integral of the Noether charge form
over the bulk entangling surface B̃ϵ in (4.4.23). To complete the generalized first law
of entanglement entropy (4.4.53) for generic variations of the boundary metric δγµν in
AlAdSd+1, we only need to check that the integral of the term δ∆[ξB] over Bϵ is the
counterterm of the entanglement entropy,∫

Bϵ

δ∆[ξB] = δSctB . (4.4.55)

In the following subsections, we will demonstrate this equality up to dimension d = 5,
thus implying the renormalized first law (4.4.53), with scheme dependence of renormalized
entropy and energy systematically matched.
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4.4.3.1 d = 3

The terms in the dilatation eigenfunction expansion of the extrinsic curvature variation
are related to the Fefferman-Graham expansion of the boundary metric variation. For
d = 3, we only need to include terms up to O(z4) as higher order terms will not contribute
to calculations in the limit ϵ → 0:

δK µ
(0) ν = 0 (4.4.56)

δK µ
(2) ν = −z2ηµσh(2)σν +O(z4) (4.4.57)

δK µ
(3) ν = −3

2
z3ηµσh(3)σν +O(z4). (4.4.58)

In this case, the counterterm δK µ
ct ν is just the second term in the dilatation eigenfunction

expansion δK µ
(2) ν . Hence the counterterm from (4.4.38) gives

δ∆[ξB] = d2xz−3

8RGN

[
z2hii − (R2 − z2 − x⃗2)

(
−z2h(2) ii

)]
. (4.4.59)

Keeping the terms up to O(z) we have,

δ∆[ξB] = d2x

8RGN

[1
z

(
h(0) ii + (R2 − x⃗2)h(2) ii

)]
. (4.4.60)

We see that for this example in odd dimensions, δ∆[ξB] has no term of order z0 and there
is as expected no finite counterterm contribution to the entanglement entropy.

To see the identification of the integral of δ∆[ξB] over Bϵ with the ordinary entanglement
entropy counterterm in (4.3.27), we need to use (4.B.29) with the result∫

Bϵ

δ∆[ξB] = 1
8RGN

∫
S1
dΩ1

r

ϵ

(
h(0) ii − x̂ix̂jh(0) ij

)
. (4.4.61)

This matches with the variation in the counterterm (4.3.27) exactly. Hence we have sat-
isfied (4.4.55) confirming that the general variation of the modular energy is the variation
of the renormalized entanglement entropy.

4.4.3.2 d = 4

For d = 4, in addition to including the logarithmic term in dilatation eigenfunction expan-
sion, we also have to include terms up to O(z6) to evaluate both the divergent and finite
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contributions:

δK µ
(0) ν = 0 (4.4.62)

δK µ
(2) ν = −z2ηµσh(2)σν − z2ηµσδD(2)σν +O(z6) (4.4.63)

δK̃ µ
(4) ν = −2z4ηµσh̃(4)σν +O(z6) (4.4.64)

δK µ
(4) ν = −2z4ηµσh(4)σν − z4ηµσh̃(4)σν + z4ηµσδD(2)σν +O(z6) (4.4.65)

where we use the notation

δD(n)µν = δ

[∫
g(n)σρ

g(n)µν
g(0)σρ

]
. (4.4.66)

It turns out at linear level that the second order term δD(2)µν is related to the coefficient
of the logarithmic term in the Fefferman-Graham expansion as

δD(2)µν = −2h̃(4)µν , (4.4.67)

and hence it is also traceless. Then the relevant terms in the dilatation eigenfunction
expansion for the extrinsic curvature are

δK µ
(0) ν = 0 (4.4.68)

δK µ
(2) ν = −z2ηµσh(2)σν + 2z4ηµσh̃(4)σν +O(z6) (4.4.69)

δK̃ µ
(4) ν = −2z4ηµσh̃(4)σν +O(z6) (4.4.70)

δK µ
(4) ν = −2z4ηµσh(4)σν − 3z4ηµσh̃(4)σν +O(z6). (4.4.71)

The counterterm from (4.4.38) is then

δ∆[ξB] = d3xz−4

8RGN

[
z2hii − (R2 − z2 − x⃗2)

(
−z2h(2) ii + 2z4h̃(4) ii − 2z4 log z2h̃(4) ii

)]
.

(4.4.72)

Neglecting the O(z) terms as they vanish in the limit ϵ → 0 we have

δ∆[ξB] = d3x

8RGN

[ 1
z2

(
h(0) ii − (R2 − x⃗2)h(2) ii

)
+ 2(R2 − x⃗2)(1 − log z2)h̃(4) ii

]
. (4.4.73)

Finally we need to transform this integral on boundary ball region Bϵ into a surface integral
on the sphere ∂Bϵ via the manipulation of h(n)µν in appendix 4.B.2. First we use (4.B.29)
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to turn the coefficient of ϵ−2 divergences into a surface integral

∫
Bϵ

δ∆[ξB] = 1
8RGN

[(R2 − ϵ2)
3
2

2ϵ2
∫
S2
dΩ2

(
h(0) ii − x̂ix̂jh(0) ij

)
(4.4.74)

+
∫
Bϵ

d3xh(2) ii

− 2(1 − log ϵ2)
∫
Bϵ

d3x (R2 − x⃗2)h̃(4) ii

]
.

For the coefficient of the logarithmic divergence, we use (4.B.33) to turn the h̃(4) ii integral
into integrals of h(2) ii then use (4.B.35) to turn the remaining volume integral into a surface
integral of h(0) ii. The final result is

∫
Bϵ

δ∆[ξB] = 1
8RGN

∫
S2
dΩ2

[
r3

2ϵ2
(
h(0) ii − x̂ix̂jh(0) ij

)
(4.4.75)

+ log ϵ2
(
r3

2
(x̂ix̂jh(2) ij − h(2) ii)

+ r

4
(h(0) ii − 3x̂ix̂jh(0) ij + xj∂jh(0) ii − x̂ix̂jxk∂kh(0) ij)

)
− r3

2
(x̂ix̂jh(2) ij − h(2) ii)

]

Note that there are, as expected, finite contributions. Comparing with (4.3.61) we can see
this term is exactly the counterterm for the entanglement entropy. Therefore in AlAdS5

we have satisfied (4.4.55). The renormalized stress tensor T renµν in (4.3.20) has a scheme
dependent term proportional to h̃(d)µν that originates from the variation of anomaly term
in the counterterm action. Therefore the finite counterterm in the entanglement entropy is
necessary to match the contribution associated with the holographic conformal anomaly.

4.4.3.3 d = 5

The d = 5 case is very similar to the above example but without the logarithmic terms.
The dilatation eigenfunction expansion for the variation of the extrinsic curvature is

δK µ
(0) ν = 0 (4.4.76)

δK µ
(2) ν = −z2ηµσh(2)σν − z2ηµσδD(2)σν +O(z6) (4.4.77)

δK µ
(4) ν = −2z4ηµσh(4)σν + z4ηµσδD(2)σν +O(z6) (4.4.78)

where at linear level we have

δD(2) ii = 2
3
h(4) ii. (4.4.79)
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Then the relevant dilatation eigenfunction expansion terms, up to O(z6), are

δK i
(0) i = 0 (4.4.80)

δK i
(2) i = −z2h(2) ii − 2

3
z2h(4) ii +O(z6) (4.4.81)

δK i
(4) i = −4

3
z4h(4) ii +O(z6). (4.4.82)

The counterterm from (4.4.38) gives

δ∆[ξB] = d4xz−5

8RG6

[
z2hii − (R2 − z2 − x⃗2)

(
−z2h(2) ii − 2z4h(4) ii

)]
. (4.4.83)

Neglecting the O(z) terms as they vanish in the limit ϵ → 0 we have,

δ∆[ξB] = d4x

8RG6

[ 1
z3

(
h(0) ii − (R2 − x⃗2)h(2) ii

)
+ 2
z

(R2 − x⃗2)h(4) ii

]
. (4.4.84)

Now evaluate the integral of the correction following in appendix 4.B.2. We use (4.B.29)
and (4.B.38) to get

∫
Bϵ

δ∆[ξB] = 1
8RG6

[(R2 − ϵ2)2

3ϵ3
∫
S3
dΩ3

(
h(0) ii − x̂ix̂jh(0) ij

)
+ 1
ϵ

∫
Bϵ

d4xh(2) ii (4.4.85)

+ (R2 − ϵ2)2

ϵ

∫
S3
dΩ3

(
h(2) ii − x̂ix̂jh(2) ij

)
− 3
ϵ

∫
Bϵ

d4xh(2) ii

]
.

The remaining volume integral of h(2) ii can be converted to surface integral via (4.B.40),

∫
Bϵ

δ∆[ξB] = 1
8RG6

∫
S3
dΩ3

[
R4

3ϵ3
(
h(0) ii − x̂ix̂jh(0) ij

)
− 2R2

3ϵ

(
h(0) ii − x̂ix̂jh(0) ij

)
(4.4.86)

+ R4

ϵ

(
h(2) ii − x̂ix̂jh(2) ij

)
− R2

3ϵ

(
h(0) ii − 4x̂ix̂jh(0) ij + xj∂jh(0) ii − x̂ix̂jxk∂kh(0) ij

) ]
.

After rearranging we arrive at the final expression of the correction term

∫
Bϵ

δ∆[ξB] = 1
8RG6

∫
S3
dΩ3

[
R4

3ϵ3
(
h(0) ii − x̂ix̂jh(0) ij

)
− R2

ϵ

(
h(0) ii − 2x̂ix̂jh(0) ij

)
(4.4.87)

+ R4

ϵ

(
h(2) ii − x̂ix̂jh(2) ij

)
− R2

3ϵ

(
xj∂jh(0) ii − x̂ix̂jxk∂kh(0) ij

) ]
.

This is in fact identical to the counterterm in (4.3.27) when taking the limit ϵ → 0 and
satisfying (4.4.55). Note that in (4.3.27) one has to expand r =

√
R2 − ϵ2 to arrive at

(4.4.87). Since d is odd, there is no finite counterterm and the renormalized first law is
scheme independent.
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4.5 Conclusions and outlook

In this paper we have proven the renormalized first law of holographic entanglement en-
tropy, in both infinitesimal and covariant versions, for generic variations of the metric.
The original proofs of the first law of holographic entanglement entropy assumed that
only normalisable modes of the metric were varied, corresponding to changing the state in
the dual conformal field theory. Our proof extends to non-normalisable variations of the
metric, corresponding to changing the background metric for the dual conformal theory.

When the boundary dimension d is odd, both the renormalized stressed tensor and renor-
malized area of the entangling surface are scheme independent and the holographic con-
formal anomaly is absent. When the boundary dimension d is even, there are finite contri-
butions from counterterms and one needs to ensure that the same renormalization scheme
is used for the stress tensor and entanglement entropy; this follows immediately from the
approach taken in [54] because the counterterms for the entanglement entropy are derived
from the counterterms for the action given in [43] using the replica trick. In our setup
the background about which we are perturbing is conformally flat and thus there are no
explicit contributions from the conformal anomaly at linear order.

A motivation to include the non-normalisable variations of the metric is that we need
to allow variation of the boundary metric within its conformal class to preserved bulk
diffeomorphism. This is because the PBH tranformation, which is a bulk diffeomorphism
[91], induces a Weyl transformation on the conformal boundary. However in the presence
of the anomaly, we must pick a representative of the conformal class for the variational
problem to be well defined. Hence the above bulk diffeomorphism is required to be broken.
As we discuss below, the first law admits an extra term under the broken diffeomorphism.

The first law can also be derived using the covariant phase space approach, building on [57],
as well discussions of the covariant phase space formalism in the presence of boundaries
[103] and boundary counterterm contributions to conserved charges [91]. The generaliza-
tion to non-normalizable variations of the bulk metric, corresponding to deforming the
background metric for the dual CFT, induces specific counterterms in the covariant phase
space construction. We explain in detail how these relate to the boundary terms in [103].
Note that in the context of the laws of black holes one would fix the non-normalizable
modes and therefore the our analysis differs from the renormalized black hole charge anal-
ysis of [91]. The first law of entanglement entropy takes a similar form as in the first law
of black holes thermodynamics in [91]. In the presence of anomaly and for generic repre-
sentatives, the first law of entanglement entropy will admit an extra term corresponding
to the anomaly. If we consider the variation of the representative, this will induce in-
homogeneous transformation of the dth term of dilatation eigenfunction expansion of the
canonical momentum and induced an explicit conformal anomaly term for δQ. We will
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have this type of first law of entanglement entropy,

δEB = δσEB + δSrenB , (4.5.1)

where δσ is the variation induced by the varying the Weyl factor. This extra term is
analogous to the first law of black hole thermodynamics in AlAdS where

δM = δσM + TδS (4.5.2)

where M, S and T are the mass, entropy and temperature of the black hole. Since we
have the conformal class, [g(0)], with representative as g(0) = η, the holographic conformal
anomaly is zero up to quadratic perturbation. This is the reason, there is no explicit
anomaly term in the renormalized first law.

While the focus of this paper has been on proving the holographic first law of entan-
glement entropy for non-normalisable bulk metric variations, our methodology could be
extended to many analyses within holographic information theory. One could clearly ex-
plore perturbations of the surface itself, following [111, 112, 113, 114]. The extension to
higher derivative gravity theories would be straightforward in principle although one may
need to resolve analogous technical ambiguities to those encountered in [115, 116]. Anal-
yses of local reconstruction in the bulk from boundary entanglement such as [117, 118]
assume normalizable fall offs of metric perturbations (corresponding to CFT states), but
our approach facilitates the discussion of marginal and indeed even irrelevant deforma-
tions. To include the latter, one would simply add in the bulk field corresponding to
the irrelevant operator, and compute renormalized quantities perturbatively in the irrele-
vant deformation. Other analyses where our methodology would be useful to extend the
class of theories/states under consideration include discussions of subregion complexity
and the first law of complexity [119, 120] as well as analyses of the relation of holographic
entanglement entropy to inverse mean curvature flow [121].

Finally, let us consider the expression for the variation of the entanglement entropy in
terms of the Weyl tensor (4.3.36). This relation could have been anticipated from the
known relationship between the Einstein sector of conformal (Weyl) gravity and Einstein
gravity [122, 123]. Up to a topological term the renormalized action for Einstein gravity
is proportional to the Weyl squared term [93, 123, 124]. Accordingly, the Wald entropy
functional for the AdS Rindler black hole on the black hole horizon H̃ϵ gives

SW ald ∝
∫
H̃ϵ

W abcdnabncd (4.5.3)

where nab is the binormal for the codimension two surface H̃ϵ. Using the standard Casini,
Huerta and Myers approach [51] we can then map this entropy to the entanglement entropy
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for a spherical region in a flat background. The computations in this paper relate to the
first variation of this entropy under bulk metric variations and using the CHM map we
immediately obtain the first term of the Weyl integral in (4.3.37)

δSren ∝
∫
B̃ϵ

δW1212. (4.5.4)

This relation holds in all even bulk spacetime dimensions, even though the expressions for
the renormalized entanglement entropy become increasingly complex expressions of the
Euler characteristic and curvature invariants of the entangling surface in higher dimensions
[1]. The variation manifestly simplifies to just this one term for linear variations of a
spherical surface around a background with zero Weyl curvature. Working to higher order
in the variations, and in more general setups, one should make use of the full form of
the renormalized area in terms of Euler characteristic and curvature invariants in [1] to
understand the underlying geometric structure.

4.A Infinitesimal first law

4.A.1 Useful identities

In this appendix, we provide some useful identities that are used in section 4.3. First we
give angular integrals of the unit vectors,∫

Sd
dΩdx̂

odd = 0 (4.A.1)∫
Sd
dΩdx̂

ix̂j = Ωd

d+ 1
δij (4.A.2)∫

Sd
dΩdx̂

ix̂j x̂kx̂l = Ωd

(d+ 3)(d+ 1)
(δijδkl + δikδjl + δilδjk) (4.A.3)∫

Sd
dΩd x̂

ix̂j x̂kx̂lx̂px̂q = 15Ωd

(d+ 5)(d+ 3)(d+ 1)
δ(ijδklδpq) (4.A.4)∫

Sd
dΩd x̂

i1 x̂i2 · · · x̂i2n−1 x̂i2n = Ωd

n∏
r=1

2r − 1
(d+ 2r − 1)

δ(i1i2 · · · δi2n−1i2n). (4.A.5)

Since the angular integral of unit vectors is expressed as symmetrized Kronecker deltas, it
is also useful to have the expression of the symmetrized Kronecker deltas contracted with
derivatives of the metric perturbation:

δ(ijδkl)∂k∂lhij = 1
3
∂k∂khii + 2

3
∂i∂jhij (4.A.6)

δ(ijδklδpq)∂k∂l∂p∂qhij = 1
5
∂k∂k∂l∂lhii + 4

5
∂k∂k∂i∂jhij (4.A.7)

δ(i1i2 · · · δi2n−1i2n)∂i3∂i4 · · · ∂i2n−1∂i2nhi1i2 = (∂2)n−2

2n− 1
[
∂2hi1i1 + (2n− 2)∂i1∂i2hi1i2

]
.

(4.A.8)
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4.A.2 Explicit variation in d = 3

In this section we will show the procedure used to calculate the variation of the variation
of regularized entanglement entropy and variation of the counterterms in d = 3. Here we
continue the calculation from (4.3.24). First we consider the leading order in the Taylor
expansion which has no derivatives and perform the angular integrals (4.A.2) to get

δSregB (∂0) = Ω1
8G4

∫ π/2

ξ
du

cosu
sin2 u

(1 − cos2 u

2
)hii(z, 0, 0), (4.A.9)

where

hii(z) = h
(0)
ii +R2 sin2 uh

(2)
ii +R3 sin3 uh

(3)
ii . (4.A.10)

After performing the u integrals we get

δSregB (∂0) = Ω1
8G4

[1
2

( 1
sin ξ

− sin ξ
)
h

(0)
ii +

(2
3

− sin ξ
2

− sin3 ξ

6

)
R2h

(2)
ii

+
(3

8
− sin2 ξ

4
− sin4 ξ

8

)
R3h

(3)
ii

]
(4.A.11)

We also need to evaluate the higher derivative terms in the Taylor expansion. For our
purposes we need only the Taylor expansion of h(0)

ij (x, y). The contribution of the one
derivative term of the variation is

δSregB (∂1) = R

8G4

∫ π/2

ξ
du

∫ 2π

0
dϕ

cos2 u

sin2 u
(δij − cos2 ux̂ix̂j)x̂k∂kh

(0)
ij . (4.A.12)

Using the angular integrals (4.A.1) we can deduce δSregB (∂1) vanishes.

The contribution of the leading two derivative terms of the variation is

δSregB (∂2) = R2

8G4

∫ π/2

ξ
du

∫ 2π

0
dϕ

cos3 u

sin2 u
(δij − cos2 ux̂ix̂j) x̂

kx̂l

2!
∂k∂lh

(0)
ij . (4.A.13)

We evaluate the angular integrals by substituting the results from (4.A.2) and (4.A.3),

δSregB (∂2) = R2Ω1
8G4

∫ π/2

ξ
du

cos3 u

sin2 u

1
4
∂j∂jh

(0)
ii − cos5 u

sin2 u

1
16

(
∂j∂jh

(0)
ii + 2∂i∂jh(0)

ij

)
. (4.A.14)
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Evaluating the u integral and rearranging the derivatives of metric variation we get

δSregB (∂2) = R2Ω1
8G4

[1
4

(
− 2 + 1

sin ξ
+ sin ξ

)
∂j∂jh

(0)
ii

− 1
16

(
− 8

3
+ 1

sin ξ
+ 2 sin ξ + sin3 ξ

3

)(
∂j∂jh

(0)
ii + 2∂i∂jh(0)

ij

)]
δSrefB (∂2) = R2Ω1

32G4

[(
− 4

3
+ 3

4 sin ξ
+ sin ξ

2
− sin3 ξ

12

)
∂j∂jh

(0)
ii(4

3
− 1

2 sin ξ
− sin ξ − sin3 ξ

6

)
∂i∂jh

(0)
ij

]
(4.A.15)

We would like to take the limit of ξ → 0 so we need to check the divergences are cancelled
out by counterterms in (4.3.27). We first evaluate the leading order terms in the Taylor
series with no derivatives:

δSctB (∂0) = 1
8G4

∫ 2π

0
dzϕ

cos ξ
sin ξ

(hii − x̂ix̂jhij). (4.A.16)

Evaluating the angular integral and expanding around ξ = 0 we get

δSctB (∂0) = − Ω1
16G4

[ 1
sin ξ

− sin ξ
2

]
×
[
h

(0)
ii +R2 sin2 ξh

(2)
ii +R3 sin3 ξh

(3)
ii

]
(4.A.17)

We now evaluate contributions from the subleading one derivative terms in the Taylor
expansion of h(0)

ij (z)

δSctB (∂1) = − R

8G4

∫ 2π

0

cos2 ξ

sin ξ

[
x̂k∂kh

(0)
ii − x̂ix̂j x̂k∂kh

(0)
ij

]
. (4.A.18)

Using the angular integrals (4.A.1) we can deduce δSctB (∂1) vanishes. The next leading
two derivative contribution is

δSctB (∂2) = − R2

8G4

∫ 2π

0

cos3 ξ

sin ξ

[
x̂kx̂l∂k∂lh

(0)
ii − x̂ix̂j x̂kx̂l∂k∂lh

(0)
ij

]
(4.A.19)

After evaluating the angular integrals we obtain

δSctB (∂2) = − R2Ω1
128G4

cos3 ξ

sin ξ

[
3∂j∂jh(0)

ii − 2∂i∂jh(0)
ij

]
. (4.A.20)

Combining the variations of the regularized entanglement entropy and the variation of the
counterterms we get the following. For ∂0 terms we have

δSregB (∂0) + δSctB (∂0) = Ω1
8G4

[ 1
2 sin ξ

h
(0)
ii + 2

3
R2h

(2)
ii + 3

8
R3h

(3)
ii

]
− Ω1

16G4

1
sin ξ

h
(0)
ii , (4.A.21)
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and for ∂2 terms have

δSregB (∂2) + δSctB∂
2) = R2Ω1

32G4

[(
− 4

3
+ 3

4 sin ξ

)
∂j∂jh

(0)
ii +

(4
3

− 1
2 sin ξ

)
∂i∂jh

(0)
ij

]
− R2Ω1

128G4

1
sin ξ

[
3∂j∂jh(0)

ii − 2∂i∂jh(0)
ij

]
. (4.A.22)

Gathering all terms together we obtain the variation of renormalized entanglement entropy,

δSrenB = Ω1
8G4

[
− R2

3
∂j∂jh

(0)
ii + R2

3
∂i∂jh

(0)
ij + 2

3
R2h

(2)
ii + 3

8
R3h

(3)
ii

]
. (4.A.23)

Then from (4.3.33) we can express h(2) in terms of h(0) and the variation of the renormal-
ized entanglement entropy becomes

δSrenB = Ω1
8G4

[
− R2

3
∂j∂jh

(0)
ii + R2

3
∂i∂jh

(0)
ij + 2

3
R2
(1

2
∂j∂jh

(0)
ii − 1

2
∂i∂jh

(0)
ij

)
+ 3

8
R3h

(3)
ii

]
= 3R3Ω1

64G4
h

(3)
ii , (4.A.24)

which is the result stated in (4.3.35) for d = 3.

4.A.3 Explicit variation in d = 5

Following the same approaches as in the section above, we continue the calculation from
(4.3.24) for d = 5. The variation of the regularized entanglement entropy to leading order
of the near boundary approximation, the zero derivative terms in the Taylor expansion
give

δSregB (∂0) = Ω3
8G6

∫ π/2

ξ
du

[cos3 u

sin4 u

(
1 − cos2 u

4

)
hii

]
. (4.A.25)

Using the Fefferman Graham expansion and evaluating the u integral we get

δSregB (∂0) = Ω3
8G6

[( 1
4 sin3 ξ

− 1
2 sin ξ

)
h

(0)
ii +

( 3
4 sin ξ

− 4
3

)
R2h

(2)
ii + 8

15
R4h

(4)
ii + 5

24
R5h

(5)
ii

]
.

(4.A.26)

The two derivative terms give

δSregB (∂2) =R2Ω3
8G6

∫ π/2

ξ
du

cos5 u

2! sin4 u

[1
4
∂k∂khii − cos2 u

24
(
∂k∂khii + 2∂i∂jhij

)]
(4.A.27)

Using the Fefferman Graham expansion and evaluating the u integral we get

δSregB (∂2) = Ω3
8G6

[( 5
144 sin3 ξ

− 3
16 sin ξ

+ 2
9

)
R2∂k∂kh

(0)
ii +

(
− 1

72 sin3 ξ
+ 1

8 sin ξ
− 2

9

)
R2∂i∂jh

(0)
ij

−
( 5

48 sin ξ
− 4

15

)
R4∂k∂kh

(2)
ii +

(
− 1

24 sin ξ
+ 2

15

)
R4∂i∂jh

(2)
ij

]
. (4.A.28)
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The four derivative terms are

δSregB (∂4) =R4Ω3
8G6

∫ π/2

ξ
du

cos7 u

4! sin4 u

[1
8
∂k∂k∂l∂lhii − cos2 u

64
(
∂k∂k∂l∂lhii + 4∂k∂k∂i∂jhij

)]
.

(4.A.29)

Using the Fefferman Graham expansion and evaluating the u integral we get

δSregB (∂4) = Ω3
8G6

[( 7
4608 sin3 ξ

− 5
384 sin ξ

+ 1
45

)
R4∂k∂k∂l∂lh

(0)
ii

+
(

− 1
1152 sin3 ξ

+ 1
96 sin ξ

− 1
45

)
R4∂k∂k∂i∂jh

(0)
ij

]
. (4.A.30)

We have thus obtained all the divergent and finite terms for the variation of regularized
entanglement entropy up to R5. Note that for the δSregB only even derivatives survive the
angular integrals. This is no longer the case for the counterterms δSctB as some terms in
(4.3.27) contain an odd number of directional vectors x̂.

For the variation of the counterterms, (4.3.27), in the near boundary approximation, the
leading order zero derivative terms are

δSctB (∂0) = Ω3
8G6

[(
− 1

4 sin3 ξ
+ 1

2 sin ξ

)
h

(0)
ii − 3

4 sin ξ
R2h

(2)
ii

]
. (4.A.31)

The one derivative terms comes from the variation of the extrinsic curvature, corresponding
to the last terms in (4.3.27). Note that one derivative means up to and including the first
derivative terms in the Taylor expansion:

δSctB (∂1) = 1
24G6

∫
S3
dΩ3

r3

z

[
x̂kx̂l∂k∂lhii − x̂ix̂j x̂kx̂l∂k∂lhij

]
. (4.A.32)

After the integration only the following terms remain

δSctB (∂1) = Ω3
8G6

[ 5
72 sin ξ

R2∂k∂kh
(0)
ii − 1

36 sin ξ
R2∂i∂jh

(0)
ij

]
. (4.A.33)

Similar procedures are used for higher derivative terms. The order two derivative terms
are

δSctB (∂2) = Ω3
8G6

[(
− 5

144 sin3 ξ
+ 17

144 sin ξ

)
R2∂k∂kh

(0)
ii (4.A.34)

+
(

+ 1
72 sin3 ξ

− 7
72 sin ξ

)
R2∂i∂jh

(0)
ij − 5

48 sin ξ
R4∂k∂kh

(2)
ii + 1

24 sin ξ
R4∂i∂jh

(2)
ij

]
.

The order three derivative terms are

δSctB (∂3) = 1
24G6

∫
S3
dΩ3

r5

3!z

[
x̂kx̂lx̂px̂q∂k∂l∂p∂qhii − x̂ix̂j x̂kx̂lx̂px̂q∂k∂l∂p∂qhij

]
(4.A.35)
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Since only integrals with even directional vectors are non vanishing, there is no term of
the form ∂3h(0). The remaining relevant terms are

δSctB (∂3) = Ω3
8G6

[ 7
1152 sin ξ

R4∂k∂k∂l∂lh
(0)
ii − 1

288 sin ξ
R4∂k∂k∂i∂jh

(0)
ij

]
. (4.A.36)

and the four derivative terms

δSctB (∂4) = − Ω3
8G6

[(
− 7

4608 sin3 ξ
+ 17

4608 sin ξ

)
R4∂k∂k∂l∂lh

(0)
ii

+
( 1

1152 sin3 ξ
− 1

144 sin ξ

)
R4∂k∂k∂i∂jh

(0)
ij

]
. (4.A.37)

We have thence obtained all the relevant counterterms.

For notational simplicity we express hii = h, ∂k∂k = ∂2 and ∂i∂jhij = h(∂2). To compute
the renormalized entanglement entropy we arrange all the relevant terms at order Rn:

Order R0

δSren(R0) = Ω3
8G6

[( 1
4 sin3 ξ

− 1
2 sin ξ

)
h(0) +

(
− 1

4 sin3 ξ
+ 1

2 sin ξ

)
h(0)

]
(4.A.38)

Order R2

δSren(R2) = R2Ω3
8G6

[( 3
4 sin ξ

− 4
3

)
h(2) +

( 5
144 sin3 ξ

− 3
16 sin ξ

+ 2
9

)
∂2h(0)

+
(

− 1
72 sin3 ξ

+ 1
8 sin ξ

− 2
9

)
h(0)(∂2) − 3

4 sin ξ
h(2) + 5

72 sin ξ
∂2h(0) − 1

36 sin ξ
h(0)(∂2)

+
(

− 5
144 sin3 ξ

+ 17
144 sin ξ

)
∂2h(0) +

(
+ 1

72 sin3 ξ
− 7

72 sin ξ

)
h(0)(∂2)

]
(4.A.39)

Order R4

δSren(R4) = R4Ω3
8G6

[ 8
15
h(4) +

( 5
48 sin ξ

− 4
15

)
∂2h(2) +

(
− 1

24 sin ξ
+ 2

15

)
h(2)(∂2)

+
( 7

4608 sin3 ξ
− 5

384 sin ξ
+ 1

45

)
∂2∂2h(0) +

(
− 1

1152 sin3 ξ
+ 1

96 sin ξ
− 1

45

)
∂2h(0)(∂2)

− 5
48 sin ξ

∂2h(2) + 1
24 sin ξ

h(2)(∂2) + 7
1152 sin ξ

∂2∂2h(0) − 1
288 sin ξ

∂2h(0)(∂2)

+
(

− 7
4608 sin3 ξ

+ 1
44 sin ξ

)
∂2∂2h(0) +

( 1
1152 sin3 ξ

− 1
144 sin ξ

)
∂2h(0)(∂2)

]
(4.A.40)
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Order R5

δSren(∂0) = Ω3
8G6

5
24
R5h

(5)
ii (4.A.41)

Using (4.3.33) and(4.3.34) to express all the higher order term in the Fefferman-Graham
expansion in terms of lower order ones, we find that below order R5 the variation of
renormalized entanglement entropy is zero. More explicitly for each orders we have

Order R2

δSren(R2) = R2Ω3
8G6

[( 1
8 sin ξ

− 2
9

)(
∂2h(0) − h(0)(∂2)

)
+
( 5

144 sin3 ξ
− 3

16 sin ξ
+ 2

9

)
∂2h(0)

+
(

− 1
72 sin3 ξ

+ 1
8 sin ξ

− 2
9

)
h(0)(∂2) − 1

8 sin ξ
(
∂2h(0) − h(0)(∂2)

)
+ 5

72 sin ξ
∂2h(0)

− 1
36 sin ξ

h(0)(∂2) +
(

− 5
144 sin3 ξ

+ 17
144 sin ξ

)
∂2h(0) +

(
+ 1

72 sin3 ξ
− 7

72 sin ξ

)
h(0)(∂2)

]
δSren(R2) = 0 (4.A.42)

Order R4

δSren(R4) = R4Ω3
8G6

[ 2
15
(
∂2h(2) − h(2)(∂2)

)
−
( 5

48 sin ξ
− 4

15

)
∂2h(2) +

(
− 1

24 sin ξ
+ 2

15

)
h(2)(∂2)

+
( 7

4608 sin3 ξ
− 5

384 sin ξ
+ 1

45

)
∂2∂2h(0) +

(
− 1

1152 sin3 ξ
+ 1

96 sin ξ
− 1

45

)
∂2h(0)(∂2)

− 5
48 sin ξ

∂2h(2) + 1
24 sin ξ

h(2)(∂2) + 7
1152 sin ξ

∂2∂2h(0) − 1
288 sin ξ

∂2h(0)(∂2)

+
(

− 7
4608 sin3 ξ

+ 1
144 sin ξ

)
∂2∂2h(0) +

( 1
1152 sin3 ξ

− 1
144 sin ξ

)
∂2h(0)(∂2)

]
,

(4.A.43)

gathering all the terms, it simplifies to

δSren(R4) =R4Ω3
8G6

[
− 1

45
∂2(∂2h(0) − h(0)(∂2)

)
1
45
∂2∂2h(0) − 1

45
∂2h(0)(∂2)

]
δSren(R4) =0 (4.A.44)
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Order R5

This is the only order ≤ 5 that is non-vanishing,

δSren(∂0) = Ω3
8G6

5
24
R5h

(5)
ii , (4.A.45)

which matches with (4.3.35) for d = 5.

4.A.4 Renormalized Weyl integrals

This appendix provides the calculation details for section 4.3.4. In (4.3.48) and (4.3.49),
the Weyl integrals are given in terms of the Riemann tensor of the boundary of AdS,
Rµνρσ, and we need to expand Rµνρσ into linear perturbation hµν . For Rtitj , we have the
following expression

Rtitj = 1
2

(∂t∂jhti + ∂t∂ihtj − ∂t∂thij − ∂i∂jhtt) (4.A.46)

Rtitj =
(

1 + r2x̂kx̂l

2
∂k∂l

)
1
2

(
∂t∂jh

(0)
ti + ∂t∂ih

(0)
tj − ∂t∂th

(0)
ij − ∂i∂jh

(0)
tt

)
+ z2

2

(
∂t∂jh

(2)
ti + ∂t∂ih

(2)
tj − ∂t∂th

(2)
ij − ∂i∂jh

(2)
tt

)
. (4.A.47)

The d = 3 integral

For d = 3, we do not need the subleading term in the Taylor expansion of the metric
perturbation as in (4.3.28). Also in d = 3 the boundary integral (4.3.49) is vanishing
in the limit of ξ → 0. After we substitute (4.A.47) into (4.3.48) the renormalized Weyl
integral W is mixed with different orders in the Fefferman-Graham expansion. Explicitly
we have

W =
∫ π

2

ξ
du

∫
S1
dΩ1

[
− 3R3 cosu sin3 u

2
h

(3)
tt + 3R3 cos3 u sin ux̂ix̂j

2

(
h

(3)
tt ηij − h

(3)
ij

)
(4.A.48)

+ R2 cos3 ux̂ix̂j

2

(
∂t∂jh

(0)
ti + ∂t∂ih

(0)
tj − ∂t∂th

(0)
ij − ∂i∂jh

(0)
tt + 2h(2)

tt ηij − 2h(2)
ij

) ]
.

After integrating over the circle we obtain

W = Ω1

[
− 3R3

8
h

(3)
tt + 3R3

16

(
2h(3)

tt − h
(3)
ii

)
(4.A.49)

+ R2

6

(
2∂t∂ih(0)

ti − ∂t∂th
(0)
ii − ∂i∂ih

(0)
tt + 4h(2)

tt − h
(2)
ii

) ]
.
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By solving the Einstein equation order by order in the Fefferman-Graham expansion, we
can deduced h(n) for n < d from h(0). This gives

h
(2)
ii =1

2

(
∂k∂kh

(0)
ii − ∂i∂jh

(0)
ij

)
(4.A.50)

h
(2)
tt =1

4

(
∂k∂kh

(0)
ii − ∂i∂jh

(0)
ij + ∂t∂th

(0)
ii + ∂k∂kh

(0)
tt − 2∂t∂ih(0)

ti

)
. (4.A.51)

Using the above two expression sfor h(2)
µν , we can easily simplify the renormalized Weyl

integral as

W = −3R3Ω1
16

h
(3)
tt (4.A.52)

which is the result stated in section 4.3.4.

The d = 5 integral

For d = 5, we need the subleading term in the Taylor expansion of the metric perturbation
as in (4.3.28). The relevant metric perturbation derivatives are

h′′
tt =

(
1 + r2x̂kx̂l

2
∂k∂l

)
2h(2)

tt + 12z2h
(4)
tt + 20z3h

(5)
tt (4.A.53)

h′
µν =

(
1 + r2x̂kx̂l

2
∂k∂l

)
2zh(2)

µν + 4z3h(4)
µν + 5z4h(5)

µν (4.A.54)

∂µh
′
νρ = 2zrx̂k∂k∂µh(2)

νρ , (4.A.55)

where ′ represent the radial derivative ∂z. The renormalized Weyl integral W becomes

W =
∫
S3
dΩ3

[
− 8R4

15
h

(4)
tt − 15R5

24
h

(5)
tt (4.A.56)

+
(

−4R2

3
x̂ix̂j − 4R2

5
x̂ix̂j x̂kx̂l∂k∂l

)
×
(
∂t∂jh

(0)
ti + ∂t∂ih

(0)
tj − ∂t∂th

(0)
ij − ∂i∂jh

(0)
tt + 2h(2)

tt ηij + 2h(2)
ij ηtt

)
+ 4R4

15
x̂ix̂j

(
∂t∂jh

(2)
ti + ∂t∂ih

(2)
tj − ∂t∂th

(2)
ij − ∂i∂jh

(2)
tt + 4h(4)

tt ηij + 4h(4)
ij ηtt

)
+ 5R5

12
x̂ix̂j

(
h

(5)
tt ηij + h

(5)
ij ηtt

)
+ 16R4

15
x̂ix̂k∂k

(
∂th

(2)
ti − ∂ih

(2)
tt

) ]
.
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After integrating this over the S3 using (4.A.5) we get

W = Ω3

[
R2

3

(
− 2∂t∂ih(0)

ti + ∂t∂th
(0)
ii + ∂i∂ih

(0)
tt − 8h(2)

tt + 2h(2)
ii

)
(4.A.57)

+R4

30

(
− 6∂t∂k∂k∂ih

(0)
ti + ∂t∂t∂k∂kh

(0)
ii + 2∂t∂t∂i∂jh(0)

ij + 3∂k∂k∂l∂lh
(0)
tt

− 22∂k∂kh
(2)
tt − 2∂t∂th(2)

ii + 2∂k∂kh
(2)
ii + 4∂i∂jh(2)

ij + 12∂t∂ih(2)
ti

+ 16h(4)
tt − 8h(4)

ii

)
+R5

48

(
− 10h(5)

tt − 5h(5)
ii

)]
.

Following the lower dimensional case, we need to related the terms of different orders in
Fefferman-Grahm expansion to see the cancellation between divergent pieces. By solving
the Einstein equations order by order in the Fefferman-Graham expansion, we can deduced
h(n) for n < d from h(0). Hence,

h
(2)
ii =1

6

(
∂k∂kh

(0)
ii − ∂i∂jh

(0)
ij

)
(4.A.58)

h
(2)
tt = 1

24

(
∂k∂kh

(0)
ii − ∂i∂jh

(0)
ij + 3∂t∂th(0)

ii + 3∂k∂kh
(0)
tt − 6∂t∂ih(0)

ti

)
(4.A.59)

h
(2)
ti =1

6

(
∂t∂ih

(0)
jj − ∂t∂jh

(0)
ij − ∂i∂jh

(0)
tj + ∂k∂kh

(0)
ti

)
(4.A.60)

h
(4)
ii =1

4

(
∂k∂kh

(2)
ii − ∂i∂jh

(2)
ij

)
(4.A.61)

h
(4)
tt =1

4

(
∂k∂kh

(2)
tt − ∂t∂th

(2)
ii

)
(4.A.62)

∂i∂jh
(2)
ij = 1

24

(
3∂k∂k∂l∂lh

(0)
ii − 3∂k∂k∂i∂jh

(0)
ij + ∂t∂t∂k∂kh

(0)
ii (4.A.63)

− 3∂k∂k∂l∂lh
(0)
tt + 63∂t∂k∂k∂ih

(0)
ti − 4∂t∂t∂i∂jh(0)

ij

)
∂t∂ih

(2)
it =1

6

(
∂t∂t∂k∂kh

(0)
ii − ∂t∂t∂i∂jh

(0)
ij

)
(4.A.64)

Substituting the above expressions for h(n)
µν , we can easily simplify the renormalized Weyl

integral as

W = −5R5Ω3
16

h
(5)
tt (4.A.65)

which is the result stated in section 4.3.4.

4.A.5 Variations in AdS5

Here we will fill in the computational details of section 4.3.5 to show that the divergences
of the variation of regularized entanglement entropy and variation of the counterterms
match. In (4.3.57), the variation of regularized entanglement entropy was given in terms
of both h

(0)
µν and h

(2)
µν . In order to compare with the counterterm we will first express h(2)

µν
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as function of h(0)
µν .

Since the perturbed metric of AdS5 satisfies the Einstein equation, the metric perturbation
can be expanded and solved order by order in an asymptotic series. Using the results in
[43],

g(2)
µν = −1

2

(
Rµν [g(0)] − 1

6
R[g(0)]g(0)

µν

)
. (4.A.66)

In d = 4, we only need to consider terms of order up to z2, hence we have

h(2)
µν = −1

2

(
Rµν [η + h(0)] − 1

6
R[η + h(0)](ηµν + h(0)

µν )
)
. (4.A.67)

Since the Ricci tensor of ηµν vanishes, to first order of h the Ricci tensor of g(0) is just the
first order variation. For our interests the relevant terms then become

sin θ
z

h
(2)
θθ = −sin θ

2z
δRθθ + R2 sin θ

12z
δR (4.A.68)

1
sin θz

h
(2)
ϕϕ = − 1

2 sin θz
δRϕϕ + R2 sin θ

12z
δR (4.A.69)

Using this expression, we can write the divergent term of the regularized entanglement
entropy in (4.3.58) in terms of h(0)

µν .

Now we need to evaluate the variation of the counter terms and check all the divergences
are cancelled. The induced metric γ̃ of the regularised entangling surface ∂B̃ϵ = B̃|z=ϵ is

ds2 = R2 − ϵ2

ϵ2
(
dθ2 + sin2 θdϕ2). (4.A.70)

Then the variation of the volume form is

δ
√
γ̃ = 1

2
√
γ̃γ̃ijδγ̃ij (4.A.71)

= sin θ
2

( 1
ϵ2
h

(0)
θθ + 1

ϵ2 sin2 θ
h

(0)
ϕϕ

)

To calculate the variation of the counterterms we need to embed
(
∂B̃, γ̃

)
into

(
AdS5|z=ϵ, G̃

)
and find its unit normals which are

n1 = dt

ϵ
, n2 = dr

ϵ
. (4.A.72)

The extrinsic curvature Kµν is defined by 1
2Lnγ̃µν . The trace of the extrinsic curvature is

then

K = G̃µνKµν = 1
2
γ̃ijLnγ̃ij = Ln ln

√
γ̃ (4.A.73)

In time independent situations, K1 vanishes. The extrinsic curvature corresponding to the
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radial normal is

K2 = ϵ∂r ln r
2 sin θ
ϵ2

= 2ϵ
r

(4.A.74)

Although we are only taking linear order of metric variation which leaves the direction of
the normals unchanged, the coefficients of unit normals na vary. Specifically for n2

δn2 = δ(nr∂r) = δ

(√
1
G̃rr

∂r

)
= −δG̃rr

2G̃
3
2
rr

∂r (4.A.75)

The variation of K2 can be related to the variation of the metric g as

δK2 = δn2
(

ln
√
γ̃
)

+ n2δ
(

ln
√
γ̃
)

(4.A.76)

= −δG̃rr

2G̃
3
2
rr

∂r ln
√
γ̃ + ϵ∂r

(1
2
γ̃ijδγ̃ij

)
= − ϵ

r
h(0)
rr − ϵ

r3h
(0)
θθ − ϵ

r3 sin2 θ
h

(0)
ϕϕ + ϵ

2r2∂rh
(0)
θθ + ϵ

2r2 sin2 θ
∂rh

(0)
ϕϕ

Keeping only the divergence, the structure of the variation of the third term in (4.3.9) is

δ
(√

γ̃k2) = δ
(√

γ̃
)
K2

2 +
√
γ̃δ
(
K2

2
)

(4.A.77)

Separating the terms in (4.A.77),

δ
(√

γ̃
)
K2

2 = sin θ
( 2
R2h

(0)
θθ + 2

R2 sin2 θ
h

(0)
ϕϕ

)
(4.A.78)

2
√
γ̃K2δK2 = sin θ

(
− 4h(0)

rr − 4
R2h

(0)
θθ − 4

R2 sin2 θ
h

(0)
ϕϕ

+ 2
R
∂rh

(0)
θθ + 2

R sin2 θ
∂rh

(0)
ϕϕ

)
(4.A.79)

The remaining terms are the variation of Ricci scalar and projected Ricci tensor. Note
that Raa in [104, 105] was given in a Euclidean setting. After Wick rotating the normal
direction back to Lorentzian signature, we obtain

Raa = Rµν(inµ1 )(inν1) + Rµνn
µ
2n

ν
2

Raa = z2(−Rtt + Rrr). (4.A.80)

Again we use the fact that our unperturbed spacetime is flat so the variation of these
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terms is

δ
(
Raa − 2

3
R
)

= δRµνn
µ
an

ν
a − 2

3
δR

= −z2

3
δRtt + z2

3
δRrr − 2z2

3

( 1
r2 δRθθ + 1

r2 sin2 θ
δRϕϕ

)
= z2

3
δR − z2

r2 δRθθ − z2

r2 sin2 θ
δRϕϕ (4.A.81)

notice there is an abuse of notation where in the first line δR = G̃µνδRµν and in the last
line δR = g(0)µνδRµν . Using (4.A.67) we can write (4.A.81) in terms of h(2),

δRµνn
µ
an

ν
a − 2

3
δR = 2z2

r2 h
(2)
θθ + 2z2

r2 sin2 θ
h

(2)
ϕϕ (4.A.82)

The divergent contributions to the counterterms are

(δSctB )div = 1
8G5

∫
S2
dΩ2

[ 1
2ϵ

(
h

(0)
θθ + 1

sin2 θ
h

(0)
ϕϕ

)
+ ln ϵ

2

( 1
R2h

(0)
θθ + 1

R2 sin2 θ
h

(0)
ϕϕ

− 2h(0)
rr − 2

R2h
(0)
θθ − 2

R2 sin2 θ
h

(0)
ϕϕ + 1

R
∂rh

(0)
θθ + 1

R sin2 θ
∂rh

(0)
ϕϕ

− 2h(2)
θθ − 2

sin2 θ
h

(2)
ϕϕ

)]
(4.A.83)

which matches with (4.3.58).

4.B Asymptotic expansions and integrals

4.B.1 Dilatation eigenfunction expansion

Under dilatation transformation xµ → Ωxµ, the boundary metric transforms as

γµν → Ω2γµν . (4.B.1)

In terms of infinitesimal operator

γµν → (1 + ϵδD)γµν (4.B.2)

where 1 + ϵ = Ω. The dilatation operator for the boundary metric γ is then

δD = 2
∫
ddxγµν

δ

δγµν
(4.B.3)

which replaces γµν with 2γµν as the dilatation weight of the metric is 2. The dilatation
operator in general contains all fields that transform non-trivially under dilatation. For
our purposes we will actually only consider pure gravitational systems so the dilatation
operator only contains the metric γµν . In the radial gauge the extrinsic curvature depends
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only on γµν and it curvature can be expanded in Fefferman-Graham coefficients as

Kµν [γ] = −z

2
∂zγµν

= z−2g(0)
µν − z2g(4)

µν + · · · + 2 − d

2
g̃(d)
µν log z2 − g̃(d)

µν + 2 − d

2
g(d)
µν + · · · (4.B.4)

and in dilatation eigenfunction expansion

Kµν [γ] = K(0) µν [γ] +K(2) µν [γ] + · · · + K̃(d) µν [γ] log z2 +K(d) µν [γ] + · · · (4.B.5)

where the logarithmic terms are only present for even d. The dilatation eigenfunctions
transform according to their order: we have homogenous transformations for K(n<d) µν

and K̃(d) µν ,

δDK(n) µν = (2 − n)K(n) µν (4.B.6)

and inhomogenous transformations for K(d) µν ,

δDK(d) µν = (2 − d)K(d) µν − 2K̃(d) µν . (4.B.7)

The origin of the inhomogenous transformation will become obvious when we relate the
two expansions. To do that we need to express the radial derivative in terms of functional
derivative of γµν

−z∂z = −z∂z|γµν=const +
∫
ddx2Kµν [γ] δ

δγµν
. (4.B.8)

Let us drop the first term as we are considering field that does not depend on z explicitly.
We know from (4.B.6) that the zeroth term in the dilatation eigenfunction expansion
K(0) µν [γ] is proportional to γµν then comparing with the leading term in (4.B.4) we can
deduce

K(0) µν [γ] = γµν . (4.B.9)

We see that expanding the extrinsic curvature in (4.B.8) the radial derivative is related
to the dilatation operator by

−z∂z = δD + δ(2) + · · · (4.B.10)

where

δ(n) =
∫
ddx2K(n) µν [γ] δ

δγµν
. (4.B.11)
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Taylor expanding the K(n) µν [γ] about z−2g
(0)
µν

K(n) µν [γ] = K(n) µν [z−2g(0)] +
∫
g(2)
ρσ

δK(n) µν
δγµν

|γ=z−2g(0) + · · · (4.B.12)

Since K(n)µν [z−2g(0)] are also dilatation eigenfunctions, we can rescale the metric to get rid
of the implicit z dependence. Using the integrated transformation of (4.B.6) for K(n<d) µν

and K̃(d) µν ,

K(n) µν [z−2g(0)] = zn−2K(n) µν [g(0)]. (4.B.13)

Now that we know at the leading order we can write the dilatation operator in terms of
the radial derivative δD ∼ −z∂z for implicit z dependence terms then,

−z∂z
(
K̃(d) µν [γ] log z2 +K(d) µν [γ]

)
∼ δD

(
K̃(d) µν [γ] log z2 +K(d) µν [γ]

)
. (4.B.14)

Note the bracket term depends on z through γ only because of the diffeomorphism invari-
ance of the bulk action. Expanding the bracket we get

−z∂zK̃(d) µν log z2 − 2K̃(d) µν − z∂zK(d) µν ∼ δDK̃(d) µν log z2 + δDK(d) µν (4.B.15)

and for all n at leading order of z we have

−z∂zK(n) µν [z−2g(0)] ∼ (2 − n)K(n) µν [z−2g(0)]. (4.B.16)

Hence matching the leading order terms in (4.B.15) we get back the inhomogenous trans-
formation in (4.B.7). After all the steps above we arrive at the z expansion of the dilatation
eigenfunctions,

K(0) µν [γ] = z−2g(0)
µν + g(2)

µν + · · · (4.B.17)

K(2) µν [γ] = K(2) µν [g(0)] + z2
∫
g(2)
ρσ

δK(2) µν

δg
(0)
µν

+ · · · (4.B.18)

and so on. The final steps to relate the Fefferman-Graham coefficients to the dilatation
eigenfunctions is to express K(n) µν [g(0)] in terms of g(m)

µν . In general K(n) µν [g(0)] are
obtained by comparing with the zn−2 in (4.B.4), i.e. for d > 4

z0 : Kµν [γ] = g(2)
µν +K(2) µν [g(0)] (4.B.19)

= 0

z2 : Kµν [γ] = z2g(4)
µν +

∫
g(2)
ρσ

δK(2) µν

δg
(0)
µν

+ z2K(4) µν [g(0)] (4.B.20)

= −z2g(4)
µν
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so we get

K(2) µν [g(0)] = −g(2)
µν (4.B.21)

K(4) µν [g(0)] = −2g(4)
µν +

∫
g(2)
ρσ

δg
(2)
µν

δg
(0)
µν

. (4.B.22)

For larger n, there will be functional derivative terms coming from the Taylor expansion
in (4.B.12) at the zn order, for example

zn−2
∫
g(n−2) ·

δK(2)

δg(0) , · · · , zn−2
(∫

· · ·
∫ )m

(g(p1) · · · g(pm)) · ( δ

δg(0) · · · δ

δg(0) )K(q), · · ·

(4.B.23)

where q + p1 + · · · + pm = n. Of course when onshell all gn<dµν and g̃
(d)
µν are functions of

g
(0)
µν . Order by order, we can write all the dilatation eigenfunctions in terms of the terms

Fefferman-Graham expansion.

4.B.2 Volume integrals of h(n)

This appendix will address some technical steps omitted in section 4.4.3. In those exam-
ples, the integral term in (4.4.55) is given by a volume integral over Bϵ. We know the
counterterm is given by surface integral over the regulated boundary of the entangling
surface ∂B̃ϵ. Since ∂B̃ϵ = ∂Bϵ, we need to express the integral term as a surface integral
over ∂Bϵ. In the following we will show the relation between volume and surface integrals
of the terms in the Fefferman-Graham expansion.

The leading term in the Fefferman-Graham expansion, h(0)µν , is part of the boundary
data hence should be treated as independent variable. Nonetheless, we can express them
as combination of total derivatives and moment density of the derivatives of h(0)µν . For
the spatial trace h(0) ii we have

(d− 2)h(0) ii = ∂i

(
xih(0) jj − xjh(0) ij − x⃗2

2

(
∂ih(0) jj − ∂ih(0) ij

))
(4.B.24)

+ x⃗2

2

(
∂i∂ih(0) jj − ∂i∂jh(0) ij

)
.

From the Einstein equation the last bracket above is related to h(2) ii by (4.3.33) and we
get

h(0) ii = 1
d− 2

∂i

(
xih(0) jj − xjh(0) ij − x⃗2

2

(
∂ih(0) jj − ∂ih(0) ij

))
+ x⃗2h(2) ii. (4.B.25)
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Integrating over Bϵ, we obtain a surface integral and a second moment of h(2) ii over Bϵ,

∫
Bϵ

dd−1xh(0) ii = 1
d− 2

∫
∂Bϵ

dd−2xx̂i
(
xih(0) jj − xjh(0) ij − x⃗2

2

(
∂ih(0) jj − ∂ih(0) ij

))
(4.B.26)

+
∫
Bϵ

dd−1x x⃗2h(2) ii.

Since ∂Bϵ is a sphere of radius x⃗2 = R2 − ϵ2, we can reverse the surface integral for the
last terms in the first line to get back a volume integral of h(2) ii over Bϵ.

∫
Bϵ

dd−1xh(0) ii = (R2 − ϵ2)
d−1

2

d− 2

∫
∂Bϵ

dΩd−2
(
h(0) ii − x̂ix̂jh(0) ij

)
(4.B.27)

−
∫
Bϵ

dd−1x (R2 − ϵ2 − x⃗2)h(2) ii.

Gathering the terms that appear in the integral correction terms we get

∫
Bϵ

dd−1x
(
h(0) ii + (R2 − x⃗2)h(2) ii

)
= (R2 − ϵ2)

d−1
2

d− 2

∫
Sd−2

dΩd−2
(
h(0) ii − x̂ix̂jh(0) ij

)
(4.B.28)

+
∫
Bϵ

dd−1x ϵ2h(2) ii.

For d > 3, the integral correction term contains higher order terms in the Fefferman-
Graham expansion. In general, the nth order terms are second derivative of (n − 2)th.
The following expressions for evaluating volume integral of a generic second derivative of
a tensor will be useful later on. First the second moment of such a derivative is∫

Bϵ

dd−1x x⃗2∂i∂jAij =
∫
Bϵ

dd−1x ∂i
(
x⃗2∂jAij − 2x⃗jAij

)
+ 2Aii (4.B.29)

then the shifted second moment is∫
Bϵ

dd−1x (R2 − x⃗2)∂i∂jAij =
∫
Bϵ

dd−1x ∂i
(
R2∂jAij − x⃗2∂jAij + 2x⃗jAij

)
− 2Aii

= ϵ2
∫
∂Bϵ

dd−2x x̂i∂jAij +
∫
∂Bϵ

dd−2x 2x̂ixjAij −
∫
Bϵ

dd−1x 2Aii

= 2rd−1
∫
Sd−2

dΩd−2 x̂
ix̂jAij − 2

∫
Bϵ

dd−1xAii (4.B.30)

+ ϵ2rd−2
∫
Sd−2

dΩd−2 x̂
i∂jAij .

The d = 4 examples in section 4.4.3.2, we have integral of the form of (4.B.31) where

h̃(4) ii = ∂i∂jAij (4.B.31)
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and

Aij = 1
8

(
h(2) ij − δijh(2) kk

)
. (4.B.32)

Neglecting the O(ϵ2) term since they are irrelevant in (4.4.75) we get,

∫
Bϵ

d3x (R2 − x⃗2)h̃(4) ii = (R2 − ϵ2)
3
2

4

∫
S2
dΩ2 (x̂ix̂jh(2) ij − h(2) ii) (4.B.33)

+ 1
2

∫
Bϵ

d3xh(2) ii.

As seen in (4.3.33), h(2) ii is the second derivative of h(0) ij , the last volume integral can
be easily turned into surface integral,

∫
Bϵ

d3xh(2) ii = (R2 − ϵ2)
1
2

4

∫
S2
dΩ2x̂

i(∂ih(0) jj − ∂jh(0) ij)

= r

4

∫
S2
dΩ2x̂

i
(
∂ih(0) jj − ∂rh(0) ir

− 1
r2∂θh(0) θi − 1

r2 sin2 θ
∂ϕh(0)ϕi − cos θ

r2 sin θ
h(0) θi − 2

r
h(0) ri

)
= r

4

∫
S2
dϕdθ sin θ

(
x̂i∂ih(0) jj − x̂ix̂j x̂k∂kh(0) ij (4.B.34)

+ 1
r3h(0) θθ + 1

r3 sin2 θ
h(0)ϕϕ − 2x̂ix̂j

r
h(0) ij

)

where we went from the first line to the second line by evaluating ∂jh(0) ij in polar coor-
dinates. From the second line to the third line we integrate by parts and we transform r

coordinate to Cartesian. Finally we can transform the angular coordinate into Cartesian
coordinates, ∫

Bϵ

d3xh(2) ii = r

4

∫
S2
dΩ2

[
h(0) ii − 3x̂ix̂jh(0) ij (4.B.35)

+ xj∂jh(0) ii − x̂ix̂jxk∂kh(0) ij

]
.

For the d = 4 example in section 4.4.3.3, we have integrals of the form of (4.B.31) where

h(4) ii = ∂i∂jBij (4.B.36)

and

Bij = 1
4

(
δijh(2) kk − h(2) ij

)
. (4.B.37)
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Neglecting the O(ϵ2) term since they are irrelevant in (4.4.84) we get

∫
Bϵ

d4x (R2 − x⃗2)h(4) ii = (R2 − ϵ2)
5
2

2

∫
S3
dΩ3 (h(2) ii − x̂ix̂jh(2) ij) (4.B.38)

− 3
2

∫
Bϵ

d4xh(2) ii

Following the steps in (4.B.34) we can evaluate the volume integral of h(2) ii,

∫
Bϵ

d4xh(2) ii = (R2 − ϵ2)
3
2

6

∫
S3
dΩ3x̂

i(∂ih(0) jj − ∂jh(0) ij) (4.B.39)

= r3

6

∫
S3
dΩ3x̂

i
(
∂ih(0) jj − x̂j x̂k∂kh(0) ij

− 1
r2∂θ1h(0) θ1i − 1

r2 sin2 θ1
∂θ2h(0) θ2i − 1

r2 sin2 θ1 sin2 θ2
∂ϕh(0)ϕi

− 2 cos θ1
r2 sin θ1

h(0) θ1i − cos θ2
r2 sin2 θ1 sin θ2

h(0) θ2i − 3
r
h(0) ri

)
= r3

6

∫
S3
dϕdθ1dθ2 sin2 θ1 sin θ2

(
x̂i∂ih(0) jj − x̂ix̂j x̂k∂kh(0) ij

+ 1
r3h(0) θ1θ1 + 1

r3 sin2 θ1
h(0) θ2θ2 + 1

r3 sin2 θ1 sin2 θ2
h(0)ϕϕ − 3x̂ix̂j

r
h(0) ij

)
Finally transforming into Cartesian coordinate we get

∫
Bϵ

d4xh(2) ii = r3

6

∫
S3
dΩ3

[
h(0) ii − 4x̂ix̂jh(0) ij (4.B.40)

+ xj∂jh(0) ii − x̂ix̂jxk∂kh(0) ij

]
.

4.C Covariant phase space Hamiltonian

In this section we follow the formalism in [103] but here we consider the renormalized
action, as well as different conditions on the vector. The variational problem of a La-
grangian theory with bulk and boundary terms requires the variation of both the bulk
and boundary terms to be zero onshell. Therefore the sum of the presymplectic potential
and the variation of the boundary terms should be exact on the boundary of the manifold

Θ[δϕ] − δB = dC[δϕ]. (4.C.1)

The presymplectic current can be expressed as

ω[δ1ϕ, δ2ϕ] = δ1 (Θ[δ2ϕ] − dC[δ2ϕ]) (4.C.2)

where δ is the exterior derivative on the configuration space. In Einstein gravity with cos-
mological constant and Gibbons-Hawking boundary term, without imposing any boundary
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condition, we get

Θ[δg] − δBGH = dCGH [δg] + π · δg. (4.C.3)

The exact contribution CGH [δg] captures the variation of the metric in the normal direc-
tion and the canonical momentum term captures the usual variation of the induced metric.
Hence one can eliminate this term by imposing a radial gauge condition. However, as we
will see later the variation of CGH will have a non zero contribution. On Bϵ we get

CGH [δg] = − εµν
16πGN

γνσnµnρδgσρ (4.C.4)

= − εzt
16πGN

δgtz. (4.C.5)

The variation of the Hamiltonian along the vector field ξ can be constructed from the
presymplectic form Ω̃

δH[ξ] = −ιXξ
Ω̃ (4.C.6)

where Xξ is the configuration space vector that takes the one form in configuration space
to the Lie derivative in configuration space

Xξ(δϕ) = LXξ
ϕ. (4.C.7)

The Lie derivative in configuration space only varies the dynamical fields along ξ direction
and the Lie derivative in spacetime varies both the dynamical fields and background fields
along the ξ direction. Any tensor is called covariant under the diffeomorphism induced by
ξ if the two Lie derivatives coincide

LXξ
T = LξT. (4.C.8)

In general, the normal is constructed from a background function,

n ∝ df, (4.C.9)

such that the level sets of the function define a foliation. Anything that distinguishes the
normal direction from other directions is not covariant unless we impose an extra condition
on ξ,

Lξf = ξ(f) = 0 (4.C.10)

which implies the normal direction of ξ vanishes. We label the difference between the two
Lie derivatives of C along generic ξ by

D[ξ] = LξC − LXξ
C. (4.C.11)
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Since the presymplectic form is given by the integral of the presymplectic form, ω, on the
Cauchy surface C, we can express the variation of the Hamiltonian as

δH[ξ] =
∫

C
−ιXξ

ω. (4.C.12)

Through some algebra in a generic theory onshell we get

−Xξ · ω = d
(
δQ[ξ] − ιξδB − διXξ

C − ιξπ · δϕ− D[ξ] + dιξC
)
. (4.C.13)

Let us define the Hamiltonian potential as the density over ∂C so

δH[ξ] = δQ[ξ] − ιξδB − διXξ
C − ιξπ · δϕ− D[ξ] + dιξC. (4.C.14)

We can see that the Hamiltonian potential has an exact term ambiguity because the
Hamiltonian is defined to be the integral of the Hamiltonian form over a manifold with no
boundary. We will now show that the full Noether charge form is a well defined Hamil-
tonian potential of the renormalized action. Since we have found that the holographic
charge form is equal to the full Noether charge form up to an exact term, the Hamiltonian
defined through holographic charge form is the full Noether charge. In the context of
the first law of entanglement entropy, neither the entanglement entropy nor the modular
energy is a Hamiltonian or a conserved charge, and hence the exact term difference mat-
ters. Here we will derive an expression for δ∆[ξB] in terms of the quantities defined above.

In [103], the case of Einstein gravity with cosmological constant and Gibbons-Hawking
boundary term was considered. The boundary condition imposed was

π · δg = 0 (4.C.15)

and restricting normal direction of ξ to be identically zero. Under these conditions, the
variation of the Hamiltonian potential is

δHBY [ξ] = δ (εµνnµT νσ ξσ) (4.C.16)

= δ (εµνnµ2πνσξσ) (4.C.17)

= −δQ[ξ] (4.C.18)

where Tµν is the Brown York stress tensor given by

Tµν = − 1
8πG

(Kµν − γµνK) . (4.C.19)

In our case, not only we do not impose the boundary condition (4.C.15), we also need to
use the vector field ξB which will introduce a term relating to the normal component of
ξB.
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The Hamiltonian potential from Einstein gravity with Gibbons-Hawking boundary term
is

δHGH [ξB] = δQ[ξB] − ιξB
δBGH − διXξB

CGH − ιξB
π · δg − DGH [ξB] + dιξB

CGH

= δQ[ξB] − ιξB
δBGH − διXξB

CGH − ιξB
π · δg

= δHBY [ξB] − εµνn
µτν

16πGN
δγτα∂α(ξβBnβ) − ιξB

π · δg (4.C.20)

where τ is the future pointing timelike normal vector. To get to the last line we also used
the following properties for the Killing vector ξB and in radial gauge,

ιξB
CGH = DGH [ξB] = 0. (4.C.21)

When we consider the renormalized action there are additional counterterms in the full
Hamiltonian potential

δHfull[ξ] = δQ[ξ] − ιξδB
GH − διXξ

CGH − ιξπ · δg − DGH [ξ] + dιξC
GH (4.C.22)

+ ιξδB
ct + διXξ

Cct + ιξπ
ct · δg + Dct[ξ] − dιξC

ct.

Simplifying the above equation by gathering the boundary terms we get

δHfull[ξ] = δQ[ξ] + δbGH [ξ] − δbct[ξ]. (4.C.23)

Hence the Gibbon-Hawking Hamiltonian potential is related to the full Hamiltonian po-
tential by

δHGH [ξ] = δHfull[ξ] + δbct[ξ]. (4.C.24)

From (4.C.4) and (4.C.11) we can deduce

CGH = Cct, DGH = Dct (4.C.25)

then we have

δHfull[ξ] = δQfull[ξ] − ιξπ(d) · δg. (4.C.26)

The full Hamiltonian potential is equal to the full Noether charge when the last term is
zero. For a conformal Killing vector we can apply the tracelessness condition on πµν

(d). In
our case, the unperturbed πµν

(d) is zero by itself, so we can relax all boundary condition on
δgµν .

By inspecting the dilatation eigenvalue expansion of (4.C.20), the renormalized Brown-
York Hamiltonian potential δHBY

(d) [ξB] can be expressed in terms of δHGH [ξB] and its
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counterterm,

δHBY
(d) [ξB] − ιξB

π(d) · δg = δHGH [ξB] − δHGH
ct [ξB]. (4.C.27)

In our setting πµν
(d) = 0 so the renormalized Brown-York Hamiltonian potential is obtained

by subtracting the lower order terms in the dilatation eigenvalue expansion of the Gibbons-
Hawking Hamiltonian potential. This should be distinguished from the full Hamiltonian
that is constructed form the renormalized Lagrangian or action. These two procedures of
obtaining the Hamiltonian are equivalent if the difference between Hamiltonian potentials
is exact. We will see in the following how the two renormalization procedures differ in the
context of entanglement entropy and modular energy.

First we use (4.C.20) and (4.C.22), to relate the two Hamiltonian potentials, δHBY [ξB]
and δHfull[ξB], by

δHBY [ξB] = δHfull[ξB] − ιξB
δBct − διXξB

Cct + εµνn
µτν

16πGN
δγτα∂α(ξβBnβ) (4.C.28)

The difference between the two Hamiltonian potentials is not exact, and this implies
δHBY [ξB] is not a proper Hamiltonian potential that integrates to give the Hamiltonian
induced by ξB. However, we shall see that the renormalized Brown-York Hamiltonian
potential or the holographic charge form is an appropriate Hamiltonian potential. Let us
first express it in terms of the full Hamiltonian potential and all the counterterms,

δHBY
(d) [ξB] = δHfull[ξB] − ιξB

δBct − διXξB
Cct − ιξB

πct · δg − δHGH
ct [ξB] (4.C.29)

δHBY
(d) [ξB] = δHfull[ξB] − δ∆[ξB]. (4.C.30)

The difference in the Hamiltonian potentials is non zero in general.

We can express the difference in Hamiltonian potentials as

δ∆[ξB] = δHGH
ct [ξB] + ιξB

δBct + διXξB
Cct + ιξB

πct · δg (4.C.31)

= δHGH
ct [ξB] − δbct[ξB]. (4.C.32)

Hence, the physical interpretation of δ∆ is the difference of counterterms in the two
renormalization procedure where δbct is the counterterms contribution of the Hamiltonian
potential derived from the renormalized action and δHGH

ct is the counterterm of the Hamil-
tonian potential derived from the bare action. More explicitly the we have the expression
that matches with (4.4.38),

δ∆[ξB] = −εµνn
µτν

16πGN
δγτα∂α(ξβBnβ) + διXξB

Cct + ιξB
δBct + δ (εµνnµ2πνct σξσ) , (4.C.33)
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with

διXξB
Cct = zεzt

16πGN
δgtt∂zξ

t
B. (4.C.34)

Let us now dissect (4.C.33) term by term.

The first term captures the non-covariant variation of the normal direction. In [103] this
term is absent as they restrict the diffeomorphism generator to preserve covariance of the
normal. In [91], this term is absent as a stronger fall-off condition is imposed.

The second term captures the variation of the diffeomorphism of the metric in the normal
direction. This term is non-vanishing because ξB is no longer Killing in the perturbed
metric. Hence we do not see the equivalent of this term in the unperturbed ∆[ξB] from
(4.4.15). The last two terms are the standard counterterm contributions from the full
Hamiltonian potential and Brown-York Hamiltonian potential. The non trivial result
we found is that this difference is exact, the exterior derivative of the density of the
entanglement entropy counterterms,

δ∆[ξB] = dδSct
B. (4.C.35)

Then the Hamiltonian defined by the renormalized Brown-York Hamiltonian potential is
the same as the full Hamiltonian potential,

δH[ξB] =
∫
∂C
δHBY

(d) [ξB] (4.C.36)

=
∫
∂C
δHfull[ξB] − dδSct

B

=
∫
∂C
δHfull[ξB]

δH[ξB] = δHfull[ξB]. (4.C.37)

For entanglement entropy and modular energy this difference matters because the integral
is over a manifold with boundary that turns the exact term into the appropriate countert-
erm for the entanglement entropy. This analysis establishes the first law of renormalized
entanglement entropy.
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CHAPTER 5

Classical String Correction to Holographic Chaos

5.1 Introduction

In the original AdS/CFT correspondence, the bulk classical gravity theory acts as the
effective field theory of a quantum string theory. One would expect at certain energy
scale, the stringy behaviour will start to become significant. Since the quantum chaos on
the boundary quantum theory is characterised by the high energy scattering in the bulk
spacetime, one would expect there to be stringy correction to the scrambling behaviour in
the gravitational theory. There have been investigations on the quantum string correction
to the Lyapunov exponent of holographic chaos [23]. In [23], they considered Tachyon-
Tachyon scattering in curved spacetime to simulate the high energy scattering in gravity.
The exchange of stringy Pomeron in curved spacetime introduced a subleading term in
the Lyapunov exponent that reduces the magnitude of the scrambling rate and increases
the scrambling time. This supports conjectured chaos bound in [67],

λL ≤ 2π
β
, (5.1.1)

which is saturated by Einstein gravity.

In this chapter, we are investigating the classical strings scattering process to probe the
possible correction from stringy scattering to chaos. In particular, we are interested in
the transverse oscillation contribution to the Lyapunov exponent. We will follow closely
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� =�+� (5.1.2)

Figure 5.1.1: These are the schematic Feynman diagrams representing the tree level for-
ward scattering with graviton, denoted by the wiggly line, as the intermediate particle.
On the left, the doubled straight lines represent the full classical string. In the middle,
the solid straight lines represent the zero mode of the classical string which is identical
to a particle following the centre of mass motion of the string. On the right, the doubled
wiggly lines represent oscillation modes of the classical string.

with the elastic eikonal scattering approach in [23] where the eikonal phase is equal to the
classical gravity action. Hence we aim to obtain the classical gravity action with linear
perturbation of the metric being sourced by the energy momentum tensors generated from
the motion of highly energetic classical strings with large momentum component along the
horizons of the two sided black hole.

The aim is to explore the possible corrections originate from the stringy nature in AdS/CFT.
We should emphasise the following exploration of classical string scattering is only one of
many stringy corrections one can include. In particular we are focusing on the depen-
dence of s in the eikonal phase which is related to Regge behaviour mention in (2.5.1).
The semi-classical 2-2 scattering in the shock wave picture is related to the perturbative
quantum gravity picture; the shock waves induced by the backreaction of the particles
act as the intermediate particles in the Feynman diagrams. Hence the Regge behaviour is
governed by the spin-2 gravitons exchange. In our picture, we are looking the backreac-
tion induced by the classical string. Therefore the intermediate particle is still the spin-2
graviton. However, we are taking a deviation from Tachyon or scalar field; we introduce
transverse oscillations in the classical strings, see figure 5.1.1. The qualitative result from
this calculation can give us insight into the full quantum string scattering of excited states.
Nonetheless, our methodology of calculating the backreaction of classical string is also an
interesting result on its own.

5.1.1 Overview of approach

In section 2.8, we saw the Lyapunov exponent was directly related to power law behaviour
of the eikonal phase. For the stringy correction in [23], which we reviewed in section
2.8.1, they focused on the shift in Regge intercept due to the curvature of the spacetime.
However, in this chapter we are focusing on the correction induced by replacing the in-
coming scalar particles to classical strings. The approach we are taking follows directly
from the shock wave calculation of the eikonal phase in section 2.8 but replaces the high
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energy particle energy momentum tensors with high energy classical string energy mo-
mentum tensors. In this section, we are going to outline our approach step by step before
presenting the calculating in the later part of the chapter.

We would like to set up two closed strings propagating along the two horizons of the
two sided AdS planar black hole separately. So the closed string action is given by the
Polyakov action with the two sided AdS planar black hole as the target. Then we solve the
worldsheet Polyakov action variational problem with respect to the string coordinates and
the worldsheet metric to get the equations of motion and the constraints in the lightcone
gauge and flat worldsheet gauge. We can solve for the equations of motion of the string
to obtain the expansion of the oscillation modes.

With the string solutions, we can obtain the spacetime energy momentum tensors that
are used to obtain the backreaction. We need to vary the string action with respect to
the spacetime metric to get the spacetime energy momentum tensor. Then we substitute
the string solutions back to the energy momentum tensor and expand it to the subleading
order. The subleading energy momentum tensors are the sources for subleading backreac-
tions. Both are responsible for the corrections to the eikonal phase.

Given the spacetime energy momentum tensor, we need the linearised Einstein equations to
find the backreaction, i.e. shock wave geometry. The covariant de Donder gauge renders
the simplest form of linearised modified Einstein equations which have the Laplacians
as the only second derivative operators. Some of the Einstein equations have only the
Laplacian of the derivatives of the transverse coordinates, others have the full Laplacian
including the null derivatives.

Here we give a technical description on how we solved the linearised Einstein equations.
Since the energy momentum tensors are singular in one of the null coordinate, we split the
metric perturbation into singular and non-singular parts which correspond to the Green’s
function of transverse Laplacian and the full Laplacian respectively. By looking at the
null coordinates dependence of the energy momentum tensors, we can split the metric
perturbation according to the null coordinates dependence.

Because the interaction occurs at the bifurcation point, we would like to set both null
coordinates to zero. However, we have to be careful with the singular distributional
functions, i.e. delta function and its derivative. After manipulation of the type u∂uδ(u) =
−δ(u), we can then drop the terms with explicit null coordinates as coefficients. The
Einstein equations simplified to one independent and 3 pairs of coupled sets of second
order linear PDE’s with constant coefficients.

We then Fourier transform the Einstein equations which then become a set of algebraic
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equations with momenta as coefficients. We solve the algebraic equations and write the
Fourier transform of the metric perturbations in terms of the momenta and the Fourier
transform of the energy momentum tensors.

Finally, after evaluating the integrals of the inverse Fourier transform, we obtain the metric
perturbations which are the backreactions. By the argument presented in section 2.8, the
eikonal phase is equal to the onshell action. So we evaluate the onshell action with the
subleading metric perturbations and subleading energy momentum tensor to obtain the
next-to-subleading eikonal phase induced by the classical string oscillating.

5.1.2 Overview of result

We found the corrections to eikonal phase due to the contributions of transverse classical
string oscillations to be insignificant or negligible. More specifically, these type of sub-
leading contributions to the eikonal phase do not grow when the centre of mass energy
increases,

δsub(s,b) ∼ O
(
s−n) , n ≥ 0. (5.1.3)

Due to the scaling of the centre of mass energy s, these types of corrections are neglected
in high energy scattering. This result matches with our expectation as the intermediate
particle remains spin-2.

5.2 High energy classical strings scattering in curved spacetime

5.2.1 Setup

The original metric, gµν , of the AdSd+1 planar black hole is

ds2 = −a(uv)dudv + r2(uv)δijdxidxj . (5.2.1)

The metric perturbation hµν induces the perturbation in the Ricci tensor as

Rµν [g + h] = R(0)
µν [g] +R(1)

µν [g, h] + · · · . (5.2.2)

The unperturbed Ricci tensors is

R(0)
µν = −(D − 1)

l2AdS
gµν . (5.2.3)
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Using this relation we can work out explicitly the connection between a, r, a′, r′, the di-
mension and the "radius" of the AdS at the horizons u = 0 or v = 0,

r′

r
= −(D − 1)a

4l2AdS
(5.2.4)

a′

a2 = (D − 1)(D − 4)
4l2AdS

. (5.2.5)

To evaluate the curvature tensor perturbation, we find the covariant de Donder gauge
helpful,

∇µh̄µν = 0 (5.2.6)

where h̄ is

h̄µν = hµν − 1
2
gµνh. (5.2.7)

After fixing the gauge of the metric perturbation, the linear perturbation of the Ricci
tensor is

R(1)
µν = −1

2
∇2hµν +Rρ σ

µν hρσ +Rσ(µhν)σ (5.2.8)

which its components are listed in appendix 5.A.

5.2.2 Classical string dynamics

The motion of the classical string in the two sided black hole background is governed by
equations of motion of the string. The analysis of classical string follows from standard
bosonic string theory but omits the quantisation of the oscillation modes, i.e. without
promoting the coefficients of the oscillation modes to quantum operators. We start off
by finding the equations of motion of the classical string from the Polykov string action.
Given a general background metric gµν , the Polykov string action is,

Sstring = − 1
4πα′

∫
d2σ

√
−γγabgµν(X)∂aXµ∂bX

ν (5.2.9)

where γab is the worldsheet metric, σa is the worldsheet coordinate and Xµ are the string
coordinates in the background manifold. Since the worldsheet metric has three gauge
freedoms, we can fix the metric to be flat γab = ηab = diag(−1, 1). The classical string
equation of motion is derived from varying the action with respect to the sting Xµ,

Eµ = gµν∂
a∂aX

ν + gµνΓνσρ∂aXσ∂aX
ρ = 0. (5.2.10)
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The action also has to be invariant to the variation of the worldsheet metric γab as it is
fixed by the gauge condition, hence the constraints are,

Zab = gµν

(
∂aX

µ∂bX
ν − 1

2
ηab∂

cXµ∂cX
ν
)
. (5.2.11)

On either horizons, including only the first leading correction and using the lightcone
gauge the equation of motion simplifies to

Eu = ∂a∂aU = 0, Ei = ∂a∂aX
i = 0 (5.2.12)

and the constraints become

Zτσ = −a

2

(2πα′

l
pv
)
∂σU + r2∂τX

i∂σX
i (5.2.13)

−2Zσσ = 2Zττ = −a
(2πα′

l
pu
)
∂τU + r2

(
∂τX

i∂τX
i + ∂σX

i∂σX
i
)

= 0 (5.2.14)

where the worldsheet spatial coordinates are parametrised in the domain σ = [0, l). The
Fourier mode expansion of the solutions of the equation of motion are,

V = 2πα′

l
pvτ (5.2.15)

U = U0 + 2πα′

l
puτ +

∞∑
n=−∞
n6=0

iα′

n

(
αune

i2πn
l

(τ+σ) + α̃une
i2πn

l
(τ−σ)

)
(5.2.16)

Xi = Xi
0 + 2πα′

l
piτ +

∞∑
n=−∞
n6=0

iα′

n

(
αine

i2πn
l

(τ+σ) + α̃ine
i2πn

l
(τ−σ)

)
, (5.2.17)

where we have taken the lightcone gauge in the V coordinate. From the constraints, the
spatial oscillation modes αin, α̃in are related to the mass square of the string,

−apvpu + r2pipi = −m2 = 4r2 ∑
n6=0

αinα
i
−n = 4r2 ∑

n6=0
α̃inα̃

i
−n, (5.2.18)

and the null oscillation modes αun, α̃un become functions of the spatial oscillation modes,

αun = 2r2pi

pv
αin − 2r2

apv

∑
p 6=0

αinα
i
n−p (5.2.19)

α̃un = 2r2pi

pv
α̃in − 2r2

apv

∑
p 6=0

α̃inα̃
i
n−p. (5.2.20)

As the strings are boosted along the past horizon, u = 0, towards the bifurcation surface,
the ingoing momentum is much larger than the other direction. Without loss of generality,
we take the transverse spatial centre of mass momentum to zero pi = 0, and |pv| � |pu|.
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Then the outgoing momentum pu is,

pu = 4r2

apv

∑
n6=0

αinα
i
−n = 4r2

apv

∑
n 6=0

α̃inα̃
i
−n, (5.2.21)

and the outgoing null oscillation modes αun, α̃un are

αun = − 2r2

apv

∑
p 6=0

αinα
i
n−p (5.2.22)

α̃un = − 2r2

apv

∑
p 6=0

α̃inα̃
i
n−p. (5.2.23)

The exact analysis can be repeated for the string propagating along the v = 0 horizon and
taking the lightcone gauge in the U coordinate.

We can take the functional derivative of the Polykov string action (5.2.9) with respect to
the spacetime metric to obtain the spacetime energy momentum tensor,

Tµν = − 1
2πα′√−g

∫
d2σ [−∂τXµ∂τXν + ∂σXµ∂σXν ] δ(D)(xρ −Xρ). (5.2.24)

Then we can substitute the string solutions into the argument of the delta functions and
Taylor expand about the centre of mass coordinates. Inside the worldsheet integral we
can manipulate the delta functions as follow,

∫ l

0
dσ

∫ ∞

−∞
dτ δ(D) (xµ −Xµ(τ, σ)) f(σ, τ) (5.2.25)

= l

2πα′|pv|

∫ l

0
dσ

[
δ(u− U0) − vpu

pv
δ′(u− U0)

]
δ(xi −Xi

0)f
(
σ,

lv

2πα′pv

)
(5.2.26)

where δ′ denotes the derivative of the delta function. To the leading order in α′ we
neglected the explicit αµn and α̃µn terms inside the delta functions but they are implicit
in pu. The integrals in (5.2.24) can be evaluated in the series expansion. Therefore the
components of the spacetime energy momentum tensor for the string with lightcone gauge
in the V coordinate up to subleading order in (pv)−1 are

Tuu = a|pv|
2rD−2 δ(x

i −Xi
0)δ(u− U0) − a|pu|

2rD−2 vδ(x
i −Xi

0)δ′(u− U0) (5.2.27)

Tuv = a|pu|
2rD−2 δ(x

i −Xi
0)δ(u− U0) (5.2.28)

Tij = 8
arD−6|pv|

∑
n6=0

α(i
n α̃

j)
n e

i2nv
α′pv δ(xi −Xi

0)δ(u− U0) (5.2.29)

Tvv = Tui = Tvj = 0. (5.2.30)
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5.3 Einstein equations

In curved background, the Einstein equations even in the linearised form are complicated
and highly coupled in between different components of metric perturbation. In addition,
the form of the energy momentum tensor is highly non-trivial with terms like the derivative
of delta fucntion. The goal of this section is to write the linearised Einstein equation into
a set of second order PDE with differential operators being only the Laplacian of the full
set of coordinates or the Laplacian of the subset of the transverse coordinates. On our way
to obtain the set of equations, we list out the approximations and assumptions needed.
At the leading order, governed by the centre of mass momenta of the strings, we recovered
the linearised Einstein equation in [23].

The linearised Einstein equation is

R(1)
µν + (D − 1)

l2AdS
hµν = 8π

(
Tµν − T

D − 2
gµν
)

(5.3.1)

where Tµν is the energy momentum tensor,

Tµν = 2√
−g

δI

δgµν
. (5.3.2)

For convenience we write the above as

Gµν = 8πTµν (5.3.3)

where the modified Einstein tensor is

Gµν := R(1)
µν + (D − 1)

l2AdS
hµν (5.3.4)

and the modified energy momentum tensor is

Tµν := Tµν − T

D − 2
gµν . (5.3.5)

The components of the modified energy momentum tensor up to subleading order are

Tuu = a|pv|
2rD−2 δ(x

i −Xi
0)δ(u− U0) − 2

rD−4|pv|
∑
n6=0

αinα
i
−nδ(xi −Xi

0)δ′(u− U0) (5.3.6)

Tuv = 4
rD−4|pv|(D − 2)

∑
n6=0

(
D − 4

2
αinα

i
−n + αinα̃

i
ne

i2nv
α′pv

)
δ(xi −Xi

0)δ(u− U0) (5.3.7)

Tij = 8
arD−6|pv|

∑
n6=0

(
α(i
n α̃

j)
n e

i2nv
α′pv − δij

(D − 2)

(
−αinαi−n + αinα̃

i
ne

i2nv
α′pv

))
(5.3.8)

× δ(xi −Xi
0)δ(u− U0)

Tvv = Tvi = Tuj = 0. (5.3.9)
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We would like to expand the energy momentum tensor in the high energy, low curvature
and small oscillation classical string limit. The perturbation parameters are pv, 1

l2
AdS

, αin
and α̃in. We introduce the following notation to separate the leading and subleading terms
with different dependence on v. T (0)

µν denotes the leading terms, t(v)
µν and t

(�v)
µν are the v

dependent and v independent terms of the subleading T (1)
µν . Namely,

T (0)
uu = a|pv|

2rD−2 δ(x
i −Xi

0)δ(u− U0) (5.3.10)

t(v)
uu = − a0|pu|

2rD−2 vδ(x
i −Xi

0)δ′(u− U0) (5.3.11)

t(v)
uv = 4

rD−4|pv|(D − 2)
∑
n6=0

αinα̃
i
ne

i2nv
α′pv δ(xi −Xi

0)δ(u− U0) (5.3.12)

t(�v)
uv = (D − 4)a0|pu|

2(D − 2)rD−2
0

∑
n6=0

αinα
i
−nδ(xi −Xi

0)δ(u− U0) (5.3.13)

t
(v)
ij = 8

a0r
D−6
0 |pv|

∑
n6=0

(
α(i
n α̃

j)
n − δij

(D − 2)
αinα̃

i
n

)
e

i2nv
α′pv δ(xi −Xi

0)δ(u− U0) (5.3.14)

t
(�v)
ij = 2|pu|

(D − 2)rD−4
0

∑
n 6=0

δijδ(xi −Xi
0)δ(u− U0). (5.3.15)

Setting u = 0, but keeping u∂uhµν , the components of the modified linearised Einstein
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tensor Gµν at first order of v
lAdS

are,

Guu = − 1
2
∂σ∂σhuu − (D − 1)(D − 2)

4l2AdS
u∂uhuu − (D − 1)(5D − 18)

4l2AdS
v∂vhuu (5.3.16)

− (D − 1)a0
2r2

0l
2
AdS

v∂khuk

Gvv = − 1
2
∂σ∂σhvv − (D − 1)(5D − 18)

4l2AdS
u∂uhvv − (D − 1)(D − 2)

4l2AdS
v∂vhvv (5.3.17)

Guv = − 1
2
∂σ∂σhuv − (D − 1)(3D − 10)

4l2AdS
u∂uhuv − (D − 1)(3D − 10)

4l2AdS
v∂vhuv (5.3.18)

− (D − 1)a0
4r2

0l
2
AdS

v∂khvk − (D − 1)(D − 4)
l2AdS

huv − (D − 1)a0
4r2

0l
2
AdS

hkk

Gij = − 1
2
∂σ∂σhij − (D − 1)(D − 6)

4l2AdS
u∂uhij − (D − 1)(D − 6)

4l2AdS
v∂vhij (5.3.19)

− (D − 1)
l2AdS

v∂(ihj)u − 2(D − 1)r2
0

a0l2AdS
δijhuv − (D − 1)

l2AdS
hij

Gui = − 1
2
∂σ∂σhuj − (D − 1)(D − 4)

4l2AdS
u∂uhui − (D − 1)(D − 4)

4l2AdS
v∂vhui (5.3.20)

− (D − 1)a0
4r2

0l
2
AdS

v∂khki − (D − 1)
l2AdS

v∂ihuv − (D − 1)(D − 4)
4l2AdS

hui

Gvi = − 1
2
∂σ∂σhvj − (D − 1)(D − 4)

4l2AdS
u∂uhvi − (D − 1)(D − 4)

4l2AdS
v∂vhvi (5.3.21)

− (D − 1)
4l2AdS

v∂ihvv + (D − 1)(D − 8)
4l2AdS

hvi.

We neglect the homogenous solution as they correspond to the background gravitational
wave in vacuum or associated to the incoming asymptotic solution in potential scattering.
Therefore up to subleading order hvv and hvi vanish,

Tvv, Tvi = 0 → Gvv,Gvi = 0 → hvv = 0 → hvi = 0. (5.3.22)

Since we are interested in the eikonal approximation of two particles moving along the
separate horizons and scatter at the bifurcation surface, the interaction or the exchange
of graviton is instantaneous. Hence we can set the limit of v → 0 and drop all terms
with explicit v dependence, only keeping v∂vhµν terms in the PDE in order to match the
components of the energy momentum tensor with monomial v1 dependence. Then up to
subleading order hui vanishes,

Tui = 0 → Gui = 0 → hui ∼ 0 (5.3.23)

The v dependence of Tij , Tuv is of exponential form so we can drop all the explicit v terms
and the u dependence of Tij , Tuv is a delta function δ(u). We can now split the metric
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perturbation into singular and non-singular parts

huv = h(S)
uv + h(NS)

uv , hij = h
(S)
ij + h

(NS)
ij (5.3.24)

where

h(S)
uv , h

(S)
ij ∝ δ(u). (5.3.25)

The singular parts have the distribution property of delta function

u∂uh
(S)
uv = −h(S)

uv , u∂uh
(S)
ij = −h(S)

ij . (5.3.26)

The leading and subleading order of Tuu is v independent and linear in v respectively. So
we need to keep the v∂vhuu term. As the leading and subleading order is singular in u we
can use the distribution property of the delta function and its derivative,

u∂uhuu = −huu. (5.3.27)

It is convenient to split the subleading metric perturbation h(1)
uu into a constant and linear

term in v

h(1)
uu = h(NL)

uu + vh(L)
uu . (5.3.28)

One can deduce

h(0)
uu ∝ δ(u), h(NL)

uu ∝ δ′′(u), h(L)
uu ∝ δ′(u). (5.3.29)

Then the modified Einstein equation simplifies to

− 1
2
∂k∂kh

(0)
uu + F̄ h(0)

uu = 8πT (0)
uu (5.3.30)

− 1
2
∂k∂kh

(NL)
uu + Ẽh(NL)

uu = − 1
a0
∂uh

(L)
uu (5.3.31)

− 1
2
∂i∂ih

(L)
uu + Ēh(L)

uu = 8πt(v)
uu (5.3.32)

− 1
2
∂σ∂σh

(NS)
ij + C̃h

(NS)
ij + D̄δijh

(NS)
uv = 8πt(v)

ij (5.3.33)

− 1
2
∂k∂kh

(S)
ij + C̄h

(S)
ij + D̄δijh

(S)
uv = 8πt(�v)

ij (5.3.34)

− 1
2
∂σ∂σh

(NS)
uv + Ãh(NS)

uv + B̄h
(NS)
kk = 8πt(v)

ij (5.3.35)

− 1
2
∂k∂kh

(S)
uv + Āh(S)

uv + B̄h
(S)
kk = 8πt(�v)

uv (5.3.36)

where the coefficients are listed in (5.B.1 − 5.B.9). The leading order Einstein equation
in (5.3.30) is the full equation for the point particle case, its transverse profile matches
with [23]. By Fourier transforming the whole equation then solve for h̃(0)

uu and finally do
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an inverse Fourier transform, we obtain the solution for h(0)
µν ,

h(0)
uu = 4a0|pv|δ(U)

(2π)D−3rD−4
0

√
πΩD−4Γ

(
D − 3

2

)(2r0
√

2F̄
x

)D−4
2

KD−4
2

(xr0
√

2F̄ ). (5.3.37)

The asymptotic form of h(0)
µν as the argument of the modified Bessel function becomes

large is

h(0)
uu ∼ 8πa0|pv|

rD−4
0

δ(U)

(
r0

√
2F̄
)D−5

2

2(2πx)
D−3

2
e−xr0

√
2F̄ . (5.3.38)

This is matches exactly with [23] as

2r2
0F̄ = (D − 1)(D − 2)r2

0
2l2AdS

(5.3.39)

which is the constant µ used in [23]. This is an evidence that validates our current
approach.

The subleading metric perturbations follow a similar approach, first Fourier transform
all the Einstein equations which become a set of simultaneous equations. Solving the
simultaneous to get the expression for h̃µν and do the inverse Fourier transform integral
to obtain the subleading metric perturbations. The calculation for the subleading terms
are more involved, we included the details of the calculation and results in appendix 5.C.

5.4 Onshell action

Previously, we have obtained the backreaction of a high energy classical string propagating
along one of the horizon. In the linear gravity approximation, we can separate the backre-
action of two classical strings propagating in orthogonal directions. In general, the onshell
shell action will include terms that represent a particle self interaction, e.g. a term that is
the product of the linear metric perturbation induced by string 1 and energy momentum
tensor of string 1,

h1µνT
µν
1 . (5.4.1)

But recall the Feynman diagrams for eikonal scattering do not include self interaction in
the ladder diagrams. These corrections are related to the loop correction to the propagator.
Following the standard ladder diagram approach, we will drop the self interaction terms.
In the calculation below, we recover the classical action for the particles case in [23]. We
will also demonstrate explicitly the subleading classical stringy correction vanishes and
obtain the next-to-subleading order correction.
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The action of our system with two strings in a curved spacetime is

I = IEH [g] + I1[g] + I2[g] (5.4.2)

where g is the full metric solution that minimises the classical action I.

δI

δgab

∣∣∣∣
g

= 0 (5.4.3)

δIEH
δgab

∣∣∣∣
g

+ δI1
δgab

∣∣∣∣
g

+ δI2
δgab

∣∣∣∣
g

= 0 (5.4.4)

From the perspective of perturbation theory, we introduce a schematic perturbative pa-
rameter ϵ to the particles’ action,

I = IEH [g] + ϵI1[g] + ϵI2[g], (5.4.5)

which may be set to 1−. We can now expand the full solution g into the background gb

and the perturbation h

g = gb + ϵh. (5.4.6)

From the definition of background solution, we know that gb minimises IEH

δIEH
δgab

∣∣∣∣
gb

= 0. (5.4.7)

The linearised equation of motion can be derived from expanding (5.4.4) using Taylor
series in functional derivative to the first order in ϵ,

δIEH
δgab(y)

∣∣∣∣
gb+ϵh

+ ϵ
δI1

δgab(y)

∣∣∣∣
gb+ϵh

+ ϵ
δI2

δgab(y)

∣∣∣∣
gb+ϵh

= 0 (5.4.8)

δIEH
δgab(y)

∣∣∣∣
gb

− ϵ

∫
dDz

δIEH
δgcd(z)δgab(y)

∣∣∣∣
gb

hcd(z) + ϵ
δI1

δgab(y)

∣∣∣∣
gb

+ ϵ
δI2

δgab(y)

∣∣∣∣
gb

= 0

−
∫
z

δIEH
δgcd(z)δgab(y)

∣∣∣∣
gb

hcd(z) + δI1
δgab(y)

∣∣∣∣
gb

+ δI2
δgab(y)

∣∣∣∣
gb

= 0. (5.4.9)

We define a differential operator D2
ab by

D2
ab[h] = 1√

−gb

∫
dDz

δIEH
δgcd(z)δgab(y)

∣∣∣∣
gb

hcd(z) (5.4.10)

and the energy momentum tensor of particle 1 by

T1ab = −2√
−g

δI1
δgab(y)

(5.4.11)
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and identically for particle 2. The linear equation of motion for particles’ backreaction is

D2
ab[h] + T1ab

2
+ T1ab

2
= 0. (5.4.12)

From the Einstein tensor,

1
16π

Gab = 1√
−gb

δIEH
δgab

, (5.4.13)

we can deduce the differential operator is essentially

D2
ab[h] = −1

16π
δGab[h]. (5.4.14)

Then (5.4.12) is the linearised Einstein equation. By linearity we can separate the back-
reaction by particle 1 from particle 2, hence

δGab[h1] = 8πT1ab, (5.4.15)

similarly form for particle 2.

As usual, the variation of the action is

I[gb + ϵh] = I[gb] + δI[gb, h]. (5.4.16)

The full action can be expanded around the background solution

I[gb + ϵh] = IEH [gb] − ϵ

∫
y

δIEH
δgab(y)

∣∣∣∣
gb

hab(y) + ϵ2

2

∫
z

∫
y

δIEH
δgcd(z)gab(y)

∣∣∣∣
gb

hab(y)hcd(z) + · · ·

(5.4.17)

+ ϵI1[gb] − ϵ2
∫
y

δI1
δgab(y)

∣∣∣∣
gb

hab(y) + · · ·

+ ϵI2[gb] − ϵ2
∫
y

δI2
δgab(y)

∣∣∣∣
gb

hab(y) + · · ·

I[gb + ϵh] = I[gb] + ϵ2

2

∫
dDy

√
−gb

[
habD2

ab[h] + habT1ab + habT2ab
]

(5.4.18)

I[gb + ϵh] = I[gb] + ϵ2

4

∫
dDy

√
−gbhab (T1ab + T2ab) (5.4.19)

we used (5.4.12) to reach the last line. In the point particle case the two integrands are
identical when we set ϵ = 1 the classical action becomes

I[gb + ϵh] = I[gb] + 1
2

∫
dDy

√
−gbhab1 T2ab. (5.4.20)

Hence recovering the action (32) in [23].
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5.4.0.1 Stringy correction to classical action

The metric perturbation and energy momentum tensor of string a = 1, 2 are expressed as

haµν = h(0)
aµν + h(1)

aµν , Taµν = T (0)
aµν + T (1)

aµν , (5.4.21)

where the first term is the leading point particle contribution and the second term is the
stringy correction. The leading contribution is the expected

δI(0) = 16|pv1||pu2 |a0

rD−4
0

(
r0

√
2F̄

2π∆x

)D
2 −2

KD
2 −2(∆xr0

√
2F̄ ) (5.4.22)

δI(0) ∼ s (5.4.23)

as a0p
v
1p
u
2 = s where the sign convention is different from (2.5.10).

The supposed subleading contributions vanish,

1
2

∫
dDy

√
−gb

[
h

(0)
1uuT

(1)uu
2 + h

(1)
1uuT

(0)uu
2

]
= 0 (5.4.24)

because of the mixture of null coordinate and delta function dependence of the metric
perturbation and energy momentum tensor that vanish under the integral, i.e.

h
(0)
1uuT

(1)uu
2 ∝

∫
vδ(v) (5.4.25)

and

h
(1)
1uuT

(0)uu
2 ∝

∫
uδ(u). (5.4.26)

The next-to-subleading classical action can be separated into

δI(2)
uu = 1

4

∫
dDy

√
−gb

[
h

(1)
1uuT

(1)uu
2 + h

(1)
2vvT

(1)vv
1

]
(5.4.27)

δI(2)
uv = 1

4

∫
dDy

√
−gb

[
h

(1)
1uvT

(1)uv
2 + h

(1)
2uvT

(1)uv
1

]
(5.4.28)

δI
(2)
ij = 1

4

∫
dDy

√
−gb

[
h

(1)
1ijT

(1)ij
2 + h

(1)
2ijT

(1)ij
1

]
(5.4.29)

Note the index in δI
(2)
µν are not tensor index, it is only a notation to indicate the which

components of metric perturbation and energy momentum tensor contributed. The result
of the next-to-subleading classical action can be found in appendix 5.D. From (5.D.1 −
5.D.4) we can see all the Bessel function argument is independent of the momenta. Hence
all the next-to-subleading classical action except the δI(NS)

ij component scale inversely to
s

δI(S)
uu , δI

(S)
uv , δI

(S)
ij , δI(NS)

uv ∼ s−1. (5.4.30)
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This is because the momenta follow the mass shell condition in (5.2.18) and (5.2.19) as
the momenta in the null direction orthogonal to the dominant null momenta scale as

|pu1pv2|,
∣∣∣∣pu1pu2

∣∣∣∣, ∣∣∣∣pv2pv1
∣∣∣∣ ∼ 1

pv1p
u
2

∼ s−1. (5.4.31)

For δI(NS)
ij , the Bessel fucntions’ argument does depend on s but in all limit we see δI(NS)

ij

is at most of order one

δI
(NS)
ij ∼ O(1). (5.4.32)

All the corrections we found will not change the power law behaviour of the eikonal phase
with exponent equal to the spin of the intermediate particle minus one, which is 2−1 = 1,

δ ∼ s1. (5.4.33)

5.5 Conclusions and outlook

Therefore we can conclude that the classical string transverse oscillation modes do not
give correction to the Regge intercept of the eikonal phase which means no correction to
the Lyapunov exponent. The Regge behaviour is governed by the intermediate particle
which in our analysis is still the spin-2 graviton. The next-to-subleading correction in
the eikonal phase corresponds to the tree level scattering of the oscillation modes of the
classical strings with the exchange of graviton. Through the Polykov string action, it is
easy to see the vertex between zero mode of the two strings, represented by the centre
of mass position, and a graviton is proportional to s. Hence the zero modes scattering
recovers the same eikonal phase as in the point particles scattering. Again by the inspection
of the Polykov string action, we see the vertex from the interaction of the oscillation mode
of the two strings and the graviton is proportion to the product of two Fourier coefficients,
αin, representing the amplitude of the oscillation mode. Therefore for each zero modes-
graviton vertex replaced by the oscillation modes-graviton vertex, a factor of s is missing.
In the tree level diagrams, there are only two vertices. At the subleading order, we only
replace one zero modes-graviton vertex with oscillation modes-graviton vertex. But due to
the onshell condition, this vanishes. At the next-to-subleading order, we need to replace
both of the zero modes-graviton vertices with oscillation modes-graviton vertices. Hence,
in total a factor of s2 is missing. In this heuristic argument, we can see directly the
difference of s between the leading and next-to-subleading (nts) eikonal phase

δnts ∼ s−2δleading (5.5.1)

δnts ∼ s−1 (5.5.2)
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matching with our explicit calculation. Unless αin, which have the same dimension as
momentum, is of order

√
s, the transverse oscillation will not give significant correction to

the eikonal phase.

Both the classical string correction we explored above and quantum string correction in [23]
are only a subset of possible stringy corrections one can introduce, nonetheless the chaos
bound still holds in both cases. There are other types of correction one can introduce.
Focusing on the calculation of the OTOC in the bulk picture, one has to look into different
way of incorporating stringy correction to the gravitational eikonal scattering.

A natural extension is to investigate the quantum string correction. There are ways of
quantising the string in a shock wave background [125] and the correction to the eikonal
phase from quantum stringy correction were also found in some background [126]. In the
ideal case, one can calculate the scattering of massless closed strings from a stack of D-
branes that created the AdS black hole background. In fact there are works on the leading
and subleading eikonal phase for high energy strings-brane scattering [127]. The stringy
correction comes into the impact parameter, where the impact parameter is shifted by the
transverse string position. It is possible to Taylor expand the eikonal phase and express
the subleading part in terms of the string spreading.

The previously mentioned outlooks are top-down string theoretic approach. An interest-
ing possible bottom-up approach to probe correction to chaos is by using the Lipatov
effective field theory method [128, 129]. By constructing extra gauge invariant terms in
the Lagrangian for the Reggeons, one is able to formulate the same Regge behaviour and
explore correction to the ladder diagrams.

5.A Curvature Tensor

The Christoffel symbols are

Γuuu = (D − 1)(D − 4)a0v

4l2AdS
Γvvv = (D − 1)(D − 4)a0u

4l2AdS
(5.A.1)

Γuij = −(D − 1)r2
0u

2l2AdS
δij Γvij = −(D − 1)r2

0v

2l2AdS
δij (5.A.2)

Γjiu = −(D − 1)r2
0v

4l2AdS
δij Γjiv = −(D − 1)r2

0u

4l2AdS
δij (5.A.3)
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Following (5.2.8) and setting u = 0 but keeping the uδ(u) terms,

R(1)
uu = − D − 1

l2AdS
huu − 1

2
∂σ∂σhuu − (D − 1)(D − 2)

4l2AdS
u∂uhuu (5.A.4)

− (D − 1)(5D − 18)
4l2AdS

v∂vhvv − (D − 1)a0
2r2

0l
2
AdS

v∂khuk

− (D − 1)2(D − 2)a0
8l4AdS

v2huu + (D − 1)2(2D − 9)a2
0

16r2
0l

4
AdS

v2hkk

R(1)
vv = − D − 1

l2AdS
hvv − 1

2
∂σ∂σhvv − (D − 1)(5D − 18)

4l2AdS
u∂uhvv (5.A.5)

− (D − 1)(D − 2)
4l2AdS

v∂vhvv

R(1)
uv = − (D − 1)(D − 3)

l2AdS
huv − (D − 1)a0

4r2
0l

2
AdS

hii − 1
2
∂σ∂σhuv − (D − 1)(3D − 10)

4l2AdS
u∂uhuv

(5.A.6)

− (D − 1)(3D − 10)
4l2AdS

v∂vhvv − (D − 1)a0
4r2

0l
2
AdS

v∂khvk − (D − 1)2(D − 2)a0
16l4AdS

v2hvv

R
(1)
ij = − 2(D − 1)r2

0
a0l2AdS

δijhuv − 1
2
∂σ∂σhij − (D − 1)(D − 6)

4l2AdS
u∂uhij (5.A.7)

− (D − 1)(D − 6)
4l2AdS

v∂vhij − (D − 1)
l2AdS

v∂(ihj)v − (D − 1)2r2
0

4l4AdS
δijv

2hvv

R
(1)
ui = − (D − 1)(D − 8)

4l2AdS
hui − 1

2
∂σ∂σhui − (D − 1)(D − 4)

4l2AdS
u∂uhui (5.A.8)

− (D − 1)(D − 4)
4l2AdS

v∂vhui − (D − 1)a0
4r2

0l
2
AdS

v∂khki

− (D − 1)
2l2AdS

v∂ihuv − (D − 1)2(3D − 13)a0
16l4AdS

v2hvi

R
(1)
vi = − (D − 1)(D − 8)

4l2AdS
hvi − 1

2
∂σ∂σhui − (D − 1)(D − 4)

4l2AdS
u∂uhvi (5.A.9)

− (D − 1)(D − 4)
4l2AdS

v∂vhvi − (D − 1)
2l2AdS

v∂ihvv

Since we are interested in the length scale less than length scale of the spacetime to be
large, only the terms that depends on the AdS radius up to l−2

AdS is consider. So we can
neglect the terms above with l−4

AdS dependence.
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5.B Coefficient in Einstein equations

The coefficients are

Ā = −(D − 1)(D − 6)
4l2AdS

(5.B.1)

Ã = −(D − 1)(D − 6)
l2AdS

(5.B.2)

B̄ = −(D − 1)
4l2AdS

a0
r2

0
(5.B.3)

C̄ = (D − 1)(D − 2)
4l2AdS

(5.B.4)

C̃ = (D − 1)
l2AdS

(5.B.5)

D̄ = −2(D − 1))
l2AdS

r2
0
a0

(5.B.6)

Ē = Ã (5.B.7)

Ẽ = C̄ (5.B.8)

F̄ = (D − 1)(D − 2)
4l2AdS

. (5.B.9)

5.C Fourier analysis

We are using the tilde to notate the Fourier transform of the coefficient of delta function
or it’s derivative in the u direction, so for function

Y = y × (∂u)nδ(u) (5.C.1)

then when we say the "Fourier transform of Y " it is actually the Fourier transform of y

Ỹ = F [y]. (5.C.2)
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Fourier transform of linear metric perturbation

h̃(0)
uu = 16π T̃

(0)
uu

k2 + 2F̄
(5.C.3)

h̃(L)
uu = 16π T̃

(0)
uu

k2 + 2Ē
(5.C.4)

h̃(NL)
uu = −32π

a0

T̃
(0)
uu

(k2 + 2Ē)(k2 + 2Ẽ)
(5.C.5)

h̃(S)
uv = 16π

 (k2 + 2C̄)t̃(�v)
uv − 2B̄t̃(�v)

ii

k4 + 2(Ā+ C̄)k2 − 4(D − 2)B̄D̄

 (5.C.6)

h̃(NS)
uv = 16π

[
(k2 + 2C̃)t̃(v)

uv − 2B̄t̃(v)
ii

k4 + 2(Ã+ C̃)k2 − 4(D − 2)B̄D̄

]
(5.C.7)

h̃
(S)
ij = 16π

k2 + 2C̄

t̃(�v)
ij − 2δij

D̄(k2 + 2C̄)t̃(�v)
uv − 2B̄D̄t̃(�v)

ii

k4 + 2(Ā+ C̄)k2 − 4(D − 2)B̄D̄

 (5.C.8)

h̃
(NS)
ij = 16π

k2 + 2C̃

[
t̃
(v)
ij − 2δij

D̄(k2 + 2C̄)t̃(v)
uv − 2B̄D̄t̃(v)

ii

k4 + 2(Ã+ C̃)k2 − 4(D − 2)B̄D̄

]
(5.C.9)

where k2 = kσkσ and k2 = kiki. The Fourier transform of the energy momentum tensor
components are

T̃ (0)
uu = a0

2rD−2
0

|pv|e−ikjx
j (5.C.10)

t̃(v)
uu = − a0

2rD−2
0

|pu|e−ikjx
j (5.C.11)

t̃(v)
uv = 8π

2rD−2
0

∑
n6=0 An

|pv|
e−ikjx

j (5.C.12)

t̃(�v)
uv = (D − 4)a0

2(D − 2)rD−2
0

|pu|e−ikjx
j (5.C.13)

t̃
(v)
ij = 16π

a0r
D−6
0

∑
n 6=0 Āij

n

|pv|
e−ikjx

j (5.C.14)

t̃
(�v)
ij = 2

(D − 2)rD−4
0

δij |pu|e−ikjx
j (5.C.15)

(5.C.16)

where Aij
n is the sum of symmetric combination pair of left and right oscillators

Aij
n = α(i

n α̃
j)
n (5.C.17)

and Āij
n is the traceless part of Aij

n

Āij
n = Aij

n − δij
D − 2

An. (5.C.18)
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5.C.1 Inverse Fourier transform

We see that the Fourier transform of the linear metric perturbations are made up of
fraction composed of polynomial of k or k. To assist the calculation of the integral in the
inverse Fourier transform, we are decomposing all the terms as fraction of the form

1
k2 + c

,
1

k2 + c
(5.C.19)

The denominators in (5.C.6 − 5.C.9) take similar form and can be factorised as

X2 + 2(Ā+ C̄)X − 4(D − 2)B̄D̄ = (X −A+)(X −A−) (5.C.20)

X2 + 2(Ã+ C̃)X − 4(D − 2)B̄D̄ = (X −A′
+)(X −A′

−) (5.C.21)

and

A± = −(Ā+ C̄) ±
√

(Ā+ C̄)2 + 4(D − 2)B̄D̄ (5.C.22)

A′
± = −(Ã+ C̃) ±

√
(Ã+ C̃)2 + 4(D − 2)B̄D̄. (5.C.23)

With this factorisation, we used partial fraction to decompose all the fractions into the form
of (5.C.19). Here are the two integrals that are needed for the inverse Fourier transform.
First, I the Green’s function for the transverse Laplace equation

I[Q, x] =
∫
dD−2k

eikix
i

kiki −Q
, (5.C.24)

second, ∆ the Green’s function for the full Laplace equation

∆n[λ, u, xi] = 2
i(2π)D−1

∫
dkud

D−2k
eikuueikix

i

ku − α′pv

2nr2
0
kiki + α′pv

2n λ
. (5.C.25)

The two integrals are related by a integration in u,

∫
du∆n[λ, u, xi] = i2

(2π)D−2
2nr2

0
α′pv

I[r2
0λ, x] (5.C.26)∫

due
i2mu
α′qu

2 ∆n[λ, u, xi] = i2
(2π)D−2

2nr2
0

α′pv
I[r2

0

(
λ− 4nm

α′pvqu

)
, x]. (5.C.27)

After Fourier transform, solving the algebraic equation and inverse Fourier transform we
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obtain the metric perturbation

h(0)
uu = 4a0|pv|δ(u)

(2π)D−3rD−4
0

I[−2r2
0F̄ , x− x0] (5.C.28)

h(v)
uu = −4a0|pu|δ′(u)

(2π)D−3rD−4
0 (Ẽ − Ē)

(
I[−2r2

0Ē, x− x0] − I[−2r2
0Ẽ, x− x0]

)
(5.C.29)

h(S)
uv = 4a0|pu|δ(u)

(2π)D−3rD−4
0

(
B+I[2r2

0A+, x− x0] −B−I[2r2
0A−, x− x0]

)
(5.C.30)

h
(S)
ij = 8|pu|δijδ(u)

(2π)D−3rD−6
0

(
C+I[2r2

0A+, x− x0] + C−I[2r2
0A−, x− x0] (5.C.31)

+ C − I[−2r2
0C̄, x− x0]

)
h(NS)
uv =−i16πa0α

′σ(pv)
(D − 2)rD−4

0

∑
n 6=0

Ane
i2nv
α′pv

(
B′

+∆n[A′
+] +B′

−∆n[A′
−]
)

(5.C.32)

h
(NS)
ij =−i32πa0α

′σ(pv)
(D − 2)rD−6

0

∑
n 6=0

e
i2nv
α′pv

(
Ān∆n[−2C̄] (5.C.33)

− a0
(D − 2)r2

0
δijAn

(
C ′

+∆n[A′
+] + C ′

−∆n[A′
−]
) )

5.C.2 Fourier integrals

We need to evaluate the integral

I[±P 2, xi] =
∫
RD−2

dD−2k
eikix

i

kiki ∓ P 2 . (5.C.34)

Since the integral is diffeomorphic invariant or rotational invariant, we can pick a frame
to align with the position vector x = (x, 0, · · · , 0). We can then integrate the k1 direction
by contour integration,

∫
dk1dk2 · · · dkD−2

eik1x

k2
1 + (k2

2 + · · · + k2
D−2 ± P 2)

. (5.C.35)

The corresponding contour integrals are

∮
C
dz

eizx

z2 + λ2 (5.C.36)∮
C′
dz

eizx

z2 − λ2 (5.C.37)

(5.C.38)

For upper hemisphere C of radius R, the integral (5.C.36) is

∫ R

−R
dr

eirx

r2 + λ2 + i

∫ π

0
dθ
Re−Rx sin(θ)ei(Rx cos(θ)+θ)

R2e2iθ + λ2 . (5.C.39)
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In the limit of R → ∞, the angular integral vanishes and the radial integral becomes the
k1 integral. Using the residual theorem on (5.C.36) we can deduce

∫ ∞

−∞
dr

eirx

r2 + λ2 = π

λ
e−λx. (5.C.40)

For (5.C.37) the poles are on the real axis hence we need to take a small semi-circle contour
of radius ϵ around poles. For such contour C ′ of radius R, the integral (5.C.36) is

P

∫ R

−R
dr

eirx

r2 − λ2 + i

∫ 0

−π
dθ

[
ϵeiθei(ϵe

iθ−λ)x

ϵeiθ(ϵeiθ − 2λ2)
+ ϵeiθei(ϵe

iθ+λ)x

ϵeiθ(ϵeiθ + 2λ2)

]
(5.C.41)

+ i

∫ π

0
dθ
Re−Rx sin(θ)ei(Rx cos(θ)+θ)

R2e2iθ + λ2 .

Similarly, taking the limit R → ∞ and using the residual theorem on (5.C.36) we can
deduce

P

∫ R

−R
dr

eirx

r2 − λ2 = −π

λ
sinλx. (5.C.42)

Let q = (k2, · · · , kD−2) and convert to polar coordinates,

I[−P 2, xi] = πΩD−4

∫ ∞

0
dq

qD−4√
q2 + P 2 e

−x
√
q2+P 2 (5.C.43)

I[P 2, xi] = πΩD−4

[∫ ∞

P
dq

qD−4√
q2 − P 2 e

−x
√
q2−P 2 −

∫ P

0
dq

qD−4√
P 2 − q2 sin x

√
P 2 − q2

]
(5.C.44)

After substitute of q =
√
Q2

± ± P 2, we can read off the integral from Table of Integrals,
Series and Products [130], section 3.387 equation 6, 7 and section 3.771 equation 6 for
D > 3

I[−P 2, xi] = π
1
2 ΩD−4Γ

(
D − 3

2

)(2P
x

)D−4
2
KD−4

2
(xP ) (5.C.45)

I[P 2, xi] = −1
2
π

3
2 ΩD−4Γ

(
D − 3

2

)(2P
x

)D−4
2
YD−4

2
(xP ) (5.C.46)

where Yn(z) and Kn(z) are the Bessel function and modified Bessel function of the second
kind. For D = 3, we can skip the q integrals and

I[−P 2, xi] = π

P
e−xP (5.C.47)

I[P 2, xi] = − π

P
sin xP, x 6= 0 (5.C.48)
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5.D Next-to-subleading contribution to onshell action

The subleading onshell action are

δI(S)
uu =a0|pu1pv2|

2

( √
2Ē

2πr0x

)D
2 −2

KD
2 −2(xr0

√
2Ē) + (1 ↔ 2, u ↔ v) (5.D.1)

δI(S)
uv =a0|pu1pv2|

2

( 1
2πr0x

)D
2 −2 [

−π

2
B+YD

2 −2(xr0
√
A+) +B−KD

2 −2(xr0
√

−A−)
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+ (1 ↔ 2, u ↔ v)
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2

)]
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where B±, B
′
±, C±, C are constants and Mn1,n2 is a function Aij

n1 ,A
ij
n2 ,

Mn1,n2 = Ān1 · Ā−n2 + Ā−n1 · Ān2 (5.D.6)
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with

B± = ± 1
A+ −A−

(
(D − 4)(A± + 2C̄)

D − 2
− 4B̄

)
(5.D.7)

B′
± = ±

A′
± + 2C̄

A′
+ −A′

−
(5.D.8)
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−

(
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(D − 2)r2
0

+ 4B̄
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C ′
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+ −A′

−
(5.D.10)

C = 2
D − 2

+ 4B̄D̄
(A+ + 2C̄)(A− + 2C̄)

(5.D.11)

5.E Scaling of Bessel functions

For z �
∣∣∣α2 − 1

4

∣∣∣,
Yα(z) ∼

√
2
πz

sin (z − nπ

2
− π

4
) (5.E.1)

Kα(z) ∼
√
π

2z
e−z (5.E.2)

For 0 < z �
√
α+ 1,

Yα(z) ∼


2
π

(
ln
(
z
2
)

+ γ
)

if α = 0

−Γ(α)
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(
2
z

)α
+ 1

Γ(α+1)
(
z
2
)α cot(απ) if α ∈ Z−
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π

(
z
2
)α otherwise

(5.E.3)

Kα(z) ∼

− ln
(
z
2
)

− γ if α = 0
Γ(α)
π

(
2
z

)α
if α 0

(5.E.4)

where γ is the Euler-Mascheroni constant.
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CHAPTER 6

Conclusions

To conclude, we will first present the results obtained from the previous three chapters on
renormalised entanglement entropy, first law of entanglement entropy and classical string
contribution to chaos. Furthermore, we will discuss about the significant and outlook from
the results and methodologies developed in these three chapters.

In chapter 3, we found an expression for the renormlised entanglement entropy in terms of
the Euler characteristic and other renormalised curvature invariants of the bulk entangling
surface. The expression was derived from the renormalising the area of the minimal
surface in asymptotically locally AdS2n case which we also showed it matches with the
renormalised entanglement entropy formula derived from the renormalised action. This is
due to the universal property of the holographic entanglement entropy in even spacetime
dimension. This new formula of renormalised entanglement entropy allows us to access
the property of the entangling surface. Most notably, the topology of the bulk entangling
surface is directly represented by the Euler characteristic in the renormalised entanglement
entropy formula. The term constructed from the extrinsic curvature of the bulk entangling
surface takes the form similar to higher dimensional Willmore functionals. Another term
in the new expression is the renormalised integral with integrand constructed from the
Weyl tensor pull back to the normal space of the bulk entangling surface. This term
proved to be useful in the first law of entanglement entropy.

In chapter 4, the renormalised version of the first law of entanglement entropy was de-
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rived. Three approaches were taken to show the equivalence between the variation of
renormalised entanglement entropy and variation of the modular energy calculated from
the renormalised stress tensor. The first two approaches set the radius of the disk like
entangling region to be small, resolving to the infinitesimal first law of the entanglement
entropy. The variation of the renormalised area density was explicitly shown to match the
density of the modular energy given by the renormalised stress tensor. In even spacetime
dimensions, we applied the new renormalised entanglement entropy formula developed in
chapter 3 to the first law of entanglement entropy which related the variation of renor-
malised entanglement entropy and variation of the modular energy to the variation of
the pull back of the Weyl tensor. The integral version of the first law of entanglement
entropy is related to conserved charges in holography. Hence we used the holographic
renormalisation procedure in the Hamiltonian formalism, that specialises in obtaining the
renormalised Noether charges density, to derive the renormalised integral first law of entan-
glement entropy. We further explained our findings in the covariant phase space formalism
and showed examples in spacetime dimension 4, 5 and 6.

In chapter 5, we considered the modification of the shock wave analysis of holographic
chaos from particles scattering to scattering of classical strings with oscillation. Due to
the setup, we focused on the high energy gravitational eikonal scattering. To validate
our method, we reproduced the exact result for point particle eikonal phase. Then we
included particular contributions from the transverse oscillation of the classical string.
The leading centre of mass contribution is identical to the standard point particles case.
The subleading contributions were shown explicitly to vanish in accordance to the onshell
condition. The next-to-subleading contributions were calculated by solving the Einstein
equation soured by the energy momentum tensor of the transverse oscillation modes. We
saw the correction to the eikonal phase is insignificant hence satisfying the chaos bound.
The result from the semi-classical shock wave calculation matches with heuristic argument
from perturbative method.

The exploration of renormalised entanglement entropy can be naturally extended into high
derivative gravity and can include non-trivial time dependence by switching to the covari-
ant holographic entanglement entropy in the HRT formalism [8]. For higher derivative
gravity, there are additional terms in the counterterms action hence more counterterms
for renormalised entanglement entropy as found in [54]. The renormalised entanglement
entropy formula would then need to be generalised to the renormalised area integral of
the HRT surface. The HRT surface, the covariant analogue of the RT surface, is an codi-
mension two extremal surface with minimal area. Also the form of the Weyl integral
in renormalised entanglement entanglement formula is related to the entropy integral in
conformal gravity. The connections between these as suggested in [122] are interesting
directions for future investigation.
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Holographic complexity has been following the footsteps of holographic entanglement en-
tropy. In the complexity=volume (CV) proposal, complexity is equal to the volume of a
codimension one subspace [13, 12]. Hence the bulk dual of both complexity and entan-
glement entropy are divergent volume/area of some geometrical object. In the complex-
ity=action (CA) proposal, complexity is equal to the action of some region of the bulk
spacetime [14, 15]. Then both complexity and entanglement entropy are evaluations of
the action in some regimes in the bulk, and are divergent. The divergent structures of
both proposals have been studied in [131]. The first law of complexity was also studied in
[132]. After the results and methodologies developed for renormalised entanglement en-
tropy in chapter 3 and 4, we gained insights and found new applications by reformulating
the renormalised quantities. Therefore, renormalised complexity will be a great extension
of our previous work on renormalised entanglement entropy.

The discovery of maximal chaotic growth in Einstein gravity, posed constraints on the
dual CFT [133]. The bulk scattering picture provided clear physical intuition as to how
chaos is propagated. Thus, it is interesting to investigate on how different type of bulk
interactions change, or not change, the chaotic behaviour. The string scattering problem
in curved spacetime by itself deserves attention. For future work, we would like to explore
the possible correction to the Lyapunov exponent by considering corrections to the eikonal
phase as mentioned in the conclusion of chapter 5.

The entanglement structure of spacetime and chaotic behaviour of gravity inspired a whole
new group of interesting theories of gravity as an ensemble [134, 135] or as an emergent
property of quantum mechanics [55, 56, 57]. The interests in developing discretised quan-
tum circuit models for holography is growing fast [16, 136, 137]. The tie between the
general concepts of holography, quantum information and quantum computing is not only
of interest to fundamental theorists but it is becoming a relevant and applicable theory.

This thesis highlighted aspects of quantum information in holography. The technically
challenging yet conceptually intriguing realisation of quantum phenomena in gravity is
teaching us about the quantum nature of spacetime. With the aforementioned recent de-
velopments and future directions, we as a community are getting closer towards a complete
picture of quantum gravity.
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