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Abstract
We develop an optimization model to provide a fair allocation of multiple resources to
multiple users. All resources might not be suitable to all users. We develop a notion of
fairness, and then provide a general class of functions achieving it. Next, we develop
more restricted notions of fairness—special cases of which exist in literature. Finally,
we distinguish between scarce and abundant resources, and show that if a resource is
abundant, all users seeking it achieve the maximum possible coverage.

Keywords Proportional fairness · Equity · Optimization · Welfare · Resource
allocation · KKT conditions

Notation
Sets and indices
i ∈ I Types of users
k ∈ K Types of resources
i ∈ Ik Subset of users eligible to receive resource k
k ∈ Ki Subset of resources eligible for user i

Data and parameters
ni Population of user i , ni > 0
bk Amount of resource k, bk > 0
fi Original coverage of user i , 0 ≤ fi < 1
wi Weight of user i , wi > 0

Decision variables
xik Amount of resource k allocated to user i
yi Final coverage of user i
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1 Background

We study the problem of allocating different kinds of substitutable resources to
different populations seeking them. This is related to a fundamental problem in
economics—how should different resources be produced andmade available to agents;
see, e.g., [10]. Our aim is to allocate resources in a fairmanner, a termwemake precise
below, and we develop a class of optimization models that achieve specific notions of
fairness. This work finds applications in resource allocation problems that have been
studied in specific settings; see, e.g., distribution of coal among power companies [2],
several military and defense examples [11], multiperiod manufacturing of high-tech
products [12], wireless networks [9], healthcare [6], education [3], and conservation
of threatened species [8]. Special cases of this general problem include the so-called
waterfilling algorithm; see, e.g., [13]. We present general results, based on the KKT
optimality conditions, that provide essential conditions for fair allocation of resources,
aswell as special cases inwhich resources are abundant. For an introduction to resource
allocation problems, see, e.g., [7].

An excellent introduction to different concepts in fairness is available in Bertsimas
et al. [1]. Similar to our study, the authors consider a central decision planner seeking to
allocate resources in a “fair” manner. The authors describe several concepts of fairness
based on utilities of each user, and primarily distinguish between max-min fairness
and proportional fairness. Our work differs from this existing body of literature in the
following sense. We do not seek to maximize utilities, but rather to ensure equitable
coverages (or, shortages) when allocating scarce resources with varying priorities (or,
claims) for users. Bertsimas et al. [1] call this as an Aristotle’s equity principle, which
they do not analyze; see also [4,14]. To this end, we develop mathematical models
and analyze their properties under specific notions of fairness that are significantly
different from the existing literature. As with Aristotle’s equity principle, our models
serve to answer the question: how should allocation decisions be conducted when
resources are due to users with pre-existing claims?

2 Mathematical models for fairness

We consider a set of user types (henceforth simply users), i ∈ I , seeking a set of
resources, k ∈ K . Define a subset of resources, k ∈ Ki , as the set of resources that
user i is eligible to receive. Define a subset of users, i ∈ Ik , as the set of users that
are eligible to receive resource k. Define the population of user i and an associated
weight as ni > 0 and wi > 0, ∀i ∈ I , respectively, and the availability of resource k
as bk > 0, ∀k ∈ K . The prior coverage of user i is denoted by 0 ≤ fi < 1, where
we assume fi is defined relative to the same population of size ni . Let xik ≥ 0 be the
amount of discretionary resource k allocated to user i . We denote the final coverage,
after allocation of all resources, by yi , where fi ≤ yi ≤ 1. Our resources are partially
substitutable in the sense that user i is equally able to make use of any resource in Ki ,
but can make no use of a resource in K\Ki .
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Consider the following optimization model:

min
x,y

∑

i∈I
wi ni F(yi ) (1a)

s.t.
∑

i∈Ik
xik ≤ bk,∀k ∈ K : νk (1b)

fi + 1

ni

∑

k∈Ki

xik = yi ,∀i ∈ I : αi (1c)

yi ≤ 1,∀i ∈ I : λi (1d)

xik ≥ 0,∀k ∈ Ki , i ∈ I , : −μik, (1e)

where F : [0, 1] → R is a loss function. The dual multipliers indicated in con-
straints (1b)–(1e) satisfy νk ≥ 0, λi ≥ 0 andμik ≥ 0, respectively.Model (1) provides
an optimal allocation, denoted x∗

ik , and, in turn, the optimal final coverage of each user
population, denoted y∗

i = fi + n−1
i

∑
k∈Ki

x∗
ik . The objective function in model (1)

seeks to minimize the weighted sum of the users’ loss values. Constraint (1b) ensures
that the allocated resources of type k do not exceed what is available. Constraints (1c)
and (1d) indicate that the maximum final coverage is at most 1 for every user type.
Constraint (1e) ensures non-negative allocation of resources. In the rest of this article,
we drop the superscript, (·)∗, on the optimal solution for simplicity. We start with the
following notion of priority which is fundamental to our notions of fairness.

Definition 1 (Priority) In an optimal solution to model (1) if wi ′ ≥ wi , then i ′ is said
to have a priority over i . If i ′ has a priority over i and yi ′ ≤ yi (with at least one
inequality strict), then i ′ has an inappropriate priority, denoted by i ′ 	 i ; while, if
i ′ has a priority over i and yi ′ ≥ yi (with at least one inequality strict) then i has an
appropriate priority, denoted by i ′ ≫ i .

In the above definition, “with at least one inequality strict” means that both the
weights and the coverages cannot be equal. Definition 1 distinguishes two kinds of
priorities. “Inappropriate” can be understood as follows: a user has a larger weight,
but receives a lower coverage; “Appropriate” refers to a larger weight and a larger
coverage. Excluding the trivial case of wi = wi ′ , yi = yi ′ , we have the following four
exclusive cases (i) i ′ 	 i , (ii) i 	 i ′, (iii) i ′ ≫ i , or (iv) i ≫ i ′. In Sect. 2.1, we
study the first two cases, while in Sect. 2.2 we study the latter two.

2.1 Fairness: inappropriate priorities

Definition 2 (Fairness) In an optimal solution to model (1) if i ′ 	 i implies xik = 0
for all k ∈ Ki ∩ Ki ′ and all i, i ′ ∈ I with yi ′ < 1, then the solution is said to be fair.

We can interpret Definition 2 by understanding whether the inappropriately prior-
itized user i ′ can “complain” about the allocation given to user i ; i.e., the distribution
being not fair. According to Definition 2, user i ′ can have a justifiable complain only
if: (a) user i ′ has coverage less than 100%, (b) there is a user, i , over which i ′ has
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an inappropriate priority, and (c) user i received positive allocation from a resource
shared with user i ′. The following theorem provides a class of functions, F(·), that
provide fairness for model (1).

Theorem 1 If F : [0, 1] → R is continuously differentiable, decreasing, and strictly
convex, then optimization model (1) achieves fairness.

Proof The feasible region of model (1) is nonempty and compact, and hence themodel
has a finite optimal solution. The constraints are linear, and F is differentiable and
convex, and so an optimal solution is characterized by the KKT conditions of primal
feasibility, i.e., constraints (1b)–(1e) along with multipliers that satisfy the following
conditions:

λi + αi + wi ni F
′(yi ) = 0, ∀i ∈ I (2a)

νk − αi

ni
− μik = 0, ∀k ∈ Ki , i ∈ I (2b)

νk ≥ 0, ∀k ∈ K , λi ≥ 0, ∀i ∈ I , μik ≥ 0, ∀k ∈ Ki , i ∈ I (2c)

and

νk

⎛

⎝
∑

i∈Ik
xik − bk

⎞

⎠ = 0, ∀k ∈ K (3a)

αi

⎛

⎝ fi + 1

ni

∑

k∈Ki

xik − yi

⎞

⎠ = 0, ∀i ∈ I (3b)

λi (yi − 1) = 0, ∀i ∈ I (3c)

μik xik = 0, ∀k ∈ Ki , i ∈ I . (3d)

Because F is strictly convex and decreasing, we have

wi F
′(yi ) ≥ wi ′F

′(yi ′), with strict inequality if either yi > yi ′ orwi ′ > wi . (4)

Assume that the optimal solution is not fair. Hence, there exists at least one user pair,
with i ′ 	 i, yi ′ < 1, and with k ∈ Ki ∩ Ki ′ �= ∅ such that xik > 0. From the
complementary slackness conditions (3c) and (3d), we have λi ′ = 0 and μik = 0.

From Eqs. (2a) and (2b), we obtain wi F ′(yi ) = −νk − λi
ni

and wi ′F ′(yi ′) =
μi ′k − νk . Thus, wi F ′(yi ) + λi

ni
+ μi ′k = wi ′F ′(yi ′), and because λi , μi ′k ≥ 0, we

have wi F ′(yi ) ≤ wi ′F ′(yi ′). Given that yi > yi ′ or wi ′ > wi , inequality (4) implies
the contradiction of wi F ′(yi ) > wi ′F ′(yi ′). 
�

Examples of functions that satisfy the hypothesis of Theorem 1 include F(z) =
(1 − z)m , where m > 1; F(z) = − ln(z + ε), where ε > 0; and, F(z) = e−z .
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2.2 Proportional fairness: appropriate priorities

The previous notion of fairness covers the case of inappropriate priorities. A stronger
notion of fairness can be developed by a slight change in the definition of fairness.
This encompasses the case when the prioritized user i ′ receives a larger coverage than
i ; i.e., the priority is appropriate. We term this notion as proportional fairness. Before
we explain the motivation for this term, we define another term as follows.

Definition 3 (Balance) An optimal solution to model (1) satisfying wi F ′(yi ) =
wi ′F ′(yi ′) is said to be balanced between users i and i ′.
In other words, a balance between two users requires their marginal losses to be in
inverse proportion to their weights. The following lemma proves that excluding the
trivial case ofwi = wi ′ , yi = yi ′ , only an appropriate priority could result in a balanced
coverage.

Lemma 1 Let F : [0, 1] → R is continuously differentiable, decreasing, and strictly
convex. Then, an optimal solution to model (1) with an inappropriate priority cannot
be balanced.

Proof Since wi , w
′
i > 0 and F is decreasing, wi F ′(yi ) = wi ′F ′(yi ′) cannot hold if

either i or i ′ has an inappropriate priority. 
�
Definition 4 (Proportional fairness) Consider a balanced optimal solution to
model (1). If yi ′ < 1 and xik > 0 for k ∈ Ki ∩ Ki ′ implies and is implied by
yi < 1 and xi ′k > 0, then the solution is said to be proportionally fair between user i
and i ′.

This stronger notion encompasses the situation when a user has an appropriate
priority, did not receive 100% coverage, and yet the other user received a positive
allocation of the shared resource. According to Definition 4, a user i ′ can have a
justifiable complain only if: (a) i ′ has coverage less than 100%, (b) another user, i ,
received a positive allocation from a resource shared with i ′, (c) the coverages of the
two users are balanced, and (d) i ′ did not receive any allocation of this shared resource
or user i received 100% coverage. We note from Lemma 1 that statement (c) can hold
only for the case of appropriate priorities.

The following theorem shows that the same class of functions as Theorem 1, but
with an additional condition, provide proportional fairness for model (1).

Theorem 2 Let F : [0, 1] → R is continuously differentiable, decreasing, and strictly
convex. If an optimal solution to model (1) is balanced and satisfies strict complemen-
tary slackness, then it is proportionally fair.

Proof The proof is similar to that of Theorem 2. Equations (2a) and (2b) yield

wi F
′(yi ) + λi

ni
− μik = wi ′F

′(yi ′) + λi ′

ni ′
− μi ′k .

From Definition 4, consider an (i, i ′) pair satisfying yi ′ < 1 and xik > 0 for k ∈
Ki ∩ Ki ′ . We prove that yi < 1 and xi ′k > 0. Because the optimal solution satisfies
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strict complementary slackness yi ′ < 1 implies λi ′ = 0 and xik > 0 implies μik = 0.
Since the solution is balanced, we have μi ′k = −λi

ni
. Because the dual multipliers are

non-negative, strict complementary slackness further implies yi < 1 and xi ′k > 0. 
�
Most interior point algorithms yield solutions that satisfy strict complementary

slackness; see, e.g., [16]. Also note, the assumption of differentiability ensures we can
compute the gradients of F , and the assumption of convexity on F ensures the KKT
conditions are necessary and sufficient. We thus have the following central results for
model (1) for the chosen class of F :

1. An optimal solution with an inappropriate priority is fair.
2. An optimal balanced solution with an appropriate priority that satisfies strict com-

plementary slackness is proportionally fair.

2.3 Scarce and abundant resources

We define a resource k to be abundant if
∑

i∈Ik xik is strictly less than bk , and scarce
if

∑
i∈Ik xik is equal to bk . Since F is decreasing, we expect that if bk is sufficiently

large, all users sharing resource k achieve 100% coverage; i.e., yi = 1,∀i ∈ Ik . Since
this is the maximum possible coverage, no user should complain; the hypotheses of
both Definitions 2 and 4 are not satisfied and there is no concept of fairness. However,
if there exists even a single user with less than 100% coverage, then we expect a
complete allocation of all resources the user is eligible for. And then, the user can
justifiably complain and seek fairness. The following theorem makes this precise.

Theorem 3 Abundant resources: In an optimal solution to model (1), if resource k is
not completely allocated, i.e.,

∑
i∈Ik xik < bk, then yi = 1,∀i ∈ Ik . Scarce resources:

In an optimal solution tomodel (1), if yi < 1 for some i ∈ I , then
∑

i∈Ik xik = bk,∀k ∈
Ki .

Proof Abundant resources: Consider a resource k ∈ K such that
∑

i∈Ik xik < bk .
From Eq. (3a), we have νk = 0. Assume that there exists some i ∈ Ik with yi <

1. Then, by Eq. (3c), we have λi = 0. From Eqs. (2a) and (2b) we have for this
(i, k) : μik = wi F ′(yi ). Since F ′(yi ) < 0 and wi > 0, we have μik < 0 which is a
contradiction of Eq. (2c).

Scarce resources: Assume that there exists some i ∈ Ik with yi < 1. Then, by
Eq. (3c), we have λi = 0. From Eqs. (2a) and (2b), we have for all k in Ki :μik −νk =
wi F ′(yi ). Since wi > 0, F ′(yi ) < 0 and μik ≥ 0, we have νk > 0. From Eq. (3a) we
have

∑
i∈Ik xik = bk,∀k ∈ Ki . 
�

The proof of Theorem 3 uses the KKT conditions for model (1). However, we can
also prove the samewithout requiring the assumptions of convexity or differentiability.
Consider an optimal solution, (x∗, y∗), and resource k′ is abundant. Assume that
yi ′ < 1 for some i ′ ∈ Ik′ . We show that this is not possible. Consider another solution,
(x ′, y′), as follows: x ′

i ′k′ = x∗
i ′k′+δ and x ′

ik = x∗
ik for all other (i, k)pairs; y

′
i ′ = y′

i ′+ δ
ni ′

and y′
i = y∗

i for all other i . Here 0 < δ < min{bk′ − ∑
i∈Ik′ x

∗
ik′ , ni ′(1 − y∗

i ′)}. Then,
this solution is feasible to model (1). Further, since F is decreasing and y′

i ′ > y∗
i ′ , we
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Table 1 Mapping between
model (1) and model (3.1) of
[15]

Model (1) Model (3.1) of [15]

i ∈ I (i, j) ∈ (I × J )

k ∈ K k ∈ K

i ∈ Ik –

k ∈ Ki k ∈ K j

ni ni j

bk bk

fi fi j , or

∑
k∈K j

mi jk

ni j

wi wi j

xik Qi jk

yi fi j +
∑

k∈K j
Qi jk

ni j
, or 1 − si j

have F(y′
i ′) < F(y∗

i ′). This contradicts the hypothesis that (x∗, y∗) is optimal. The
analogous proof for scarce resources mirrors this.

3 Amotivating example

This research was motivated by a collaboration with the Texas Department of State
Health Services, aimed at allocating a limited amount of vaccines in an equitable
manner during an influenza pandemic [5,6,15]. Here, we use model (3.1) from [15] to
allocate four types of vaccines to five different population groups seeking them. In this
example, vaccines are scarce at the start of the pandemic. The allocation ensures an
equitable access to vaccines across all five population priority groups in 254 different
counties of Texas. Vaccine types constitute our “resources” and the five priority groups
across the 254 counties of Texas constitute our “users”. Table 1 presents amap between
our notation and that of [15].

Singh’s optimization model in [15] presents a special case of model (1), with
F(yi ) = (1 − yi )2. A similar loss function is used in [5,6]. This loss function,
F(z) = (1 − z)2, satisfies the hypothesis of Theorem 2 and hence achieves fair-
ness for inappropriately prioritized users per Definition 2. Next, Theorem 3.2.1 of
[15] provides sufficient conditions for a balanced solution wi F ′(yi ) = wi ′F ′(yi ′): (i)
yi < 1 and yi ′ < 1, and (ii) xik > 0 and xi ′k > 0 for some k ∈ Ki ∩ Ki ′ . Then, the
solution is proportionally fair per Definition 4 for the given loss function. Singh [15]
thus proves the special cases of inappropriate priorities and appropriate priorities with
balance, using the quadratic loss function.

4 Conclusion

We develop a general optimization model to study the allocation of partially sub-
stitutable resources to different classes of users seeking them. Not all resources are
suitable to all classes of users, and different classes of users have different priorities.
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When a resource is abundant, all users seeking it achieve the maximum possible cov-
erage. When resources are scarce, we provide different notions of fairness depending
on the priorities between users. And, we provide a class of objective functions as well
as restrictions that achieve these notions of fairness.

Inappropriate priorities always result in fairness. Appropriate priorities, with two
additional restrictions of balance and complementary slackness, always result in pro-
portional fairness. Future research could establish what happens when these two
restrictions are not met, as well as sufficient and/or necessary conditions to guarantee
a balanced solution.

Finally, we demonstrate how our model is reducible to an existing model for equi-
table allocation of vaccines during an influenza pandemic.
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