The University of Southampton
University of Southampton Institutional Repository

Pseudo-Riemannian Graph Convolutional Networks

Pseudo-Riemannian Graph Convolutional Networks
Pseudo-Riemannian Graph Convolutional Networks
Xiong, Bo
d8c3ce0a-07ac-43f8-bd67-f230c6cbc1ec
Zhu, Shichao
0962a16d-69e5-4dcf-a3b4-a6eca361edab
Potyka, Nico
a8a29aeb-d747-4ac0-9c76-b093b4d3bb67
Pan, Shirui
5defae6b-0217-4d18-8c99-8ef0dd7665ca
Zhou, Chuan
2d43ec0c-1ddc-4605-94da-3677f44bc9dc
Staab, Steffen
bf48d51b-bd11-4d58-8e1c-4e6e03b30c49
Xiong, Bo
d8c3ce0a-07ac-43f8-bd67-f230c6cbc1ec
Zhu, Shichao
0962a16d-69e5-4dcf-a3b4-a6eca361edab
Potyka, Nico
a8a29aeb-d747-4ac0-9c76-b093b4d3bb67
Pan, Shirui
5defae6b-0217-4d18-8c99-8ef0dd7665ca
Zhou, Chuan
2d43ec0c-1ddc-4605-94da-3677f44bc9dc
Staab, Steffen
bf48d51b-bd11-4d58-8e1c-4e6e03b30c49

Xiong, Bo, Zhu, Shichao, Potyka, Nico, Pan, Shirui, Zhou, Chuan and Staab, Steffen (2022) Pseudo-Riemannian Graph Convolutional Networks. Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, , New Orleans, United States. 28 Nov - 09 Dec 2022. (In Press)

Record type: Conference or Workshop Item (Paper)
Text
pseudo_riemannian_graph_convol - Accepted Manuscript
Download (11MB)

More information

Accepted/In Press date: 8 October 2022
Venue - Dates: Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, , New Orleans, United States, 2022-11-28 - 2022-12-09

Identifiers

Local EPrints ID: 471372
URI: http://eprints.soton.ac.uk/id/eprint/471372
PURE UUID: 13983720-1751-4830-8ac8-5e56a4ff7d36
ORCID for Steffen Staab: ORCID iD orcid.org/0000-0002-0780-4154

Catalogue record

Date deposited: 04 Nov 2022 17:34
Last modified: 17 Mar 2024 03:38

Export record

Contributors

Author: Bo Xiong
Author: Shichao Zhu
Author: Nico Potyka
Author: Shirui Pan
Author: Chuan Zhou
Author: Steffen Staab ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×