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Abstract

This study provides a critical assessment of long-horizon return predictability tests

using highly persistent regressors. We show that the commonly used statistics are

typically oversized, leading to spurious inference. Instead, we propose a Wald statis-

tic, which accommodates multiple predictors of (unknown) arbitrary persistence degree

within the I(0)-I(1) range. The test statistic, based on an adaptation of the IVX proce-

dure to a long-horizon regression framework, is shown to have a standard chi-squared

asymptotic distribution (regardless of the stochastic properties of the regressors used as

predictors) and to exhibit excellent �nite-sample size and power properties. Employing

this test statistic, we �nd evidence of predictability for �old�and �new�pricing factors

with monthly returns, but this becomes weaker as the predictive horizon increases. The

predictability evidence substantially weakens with annual data. Overall, we question

the incremental value of using long-horizon predictive regressions.

1 Introduction

Stock return predictability has an important impact on the theory and practice of all aspects of
modern �nance. If returns are predictable, then risk premia, and hence the cost of capital become
time-varying, investors may engage in strategic asset allocation, and conditional asset pricing models
are bound to explain better than unconditional models the time-series and cross-sectional properties
of stock returns.

The empirical asset pricing literature keeps "discovering" signi�cant predictors of market returns
(see Welch and Goyal, 2008; Rapach and Zhou, 2013; and the references therein). These conclusions
rely on the statistical inference derived from predictive regressions, where the lagged value of a
�nancial variable is used as predictor of next-period stock returns. Given the low R2 of these
regressions, the marginal signi�cance of the coe¢ cient estimates for most of the predictors, and
the questionable validity of standard t-tests in the presence of highly persistent and endogenous
regressors (see, inter alia, Stambaugh 1986, 1999; Cavanagh et al., 1995; Elliott, 1998; Campbell
and Yogo, 2006; Kostakis et al., 2015, hereafter KMS; Demetrescu et al. 2020), the literature
often resorts to long-horizon predictive regressions (see the pioneering studies of Fama and French,
1988, 1989; Campbell and Shiller, 1988). Long-horizon predictive regressions typically yield R2s
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that increase with the assumed horizon and highly signi�cant coe¢ cient estimates when Newey
and West (1987) or Hansen and Hodrick (1980) standard errors are employed to account for using
overlapping observations.

Nevertheless, the validity of inference using long-horizon predictive regressions has also been
questioned (see Nelson and Kim, 1993; Goetzmann and Jorion, 1993; Boudoukh and Richardson,
1994; Ang and Bekaert, 2007; Boudoukh et al., 2008). Moreover, the increasing number of predictors
being discovered in prior studies unavoidably raises concerns regarding data mining and inadvertent
p-hacking (see the critiques of Ferson et al., 2003, and Harvey, 2017). Therefore, it is time to take
stock and re-examine the issue of long-horizon return predictability in a comprehensive manner.
This is the aim of this study.

Motivated by the very strong persistence of the commonly used predictors, a series of studies
have modelled these variables as local-to-unity processes à la Phillips (1987), whose autoregressive
root converges to unity at rate n (see Campbell and Yogo, 2006; Jansson and Moreira, 2006). Based
on this modelling innovation, Valkanov (2003), Torous et al. (2004), Rossi (2007), and Hjalmarsson
(2011) have devised Bonferroni-type con�dence interval procedures for inference in long-horizon
predictive regressions. Such procedures may exhibit good properties when the regressor is at least
as persistent as a local-to-unity process but typically they become asymptotically invalid if the
predictor is less persistent than a near-I(1) process. Since the exact degree of predictor persistence
remains unknown, this assumption is rather restrictive, leading to a substantially undersized test
statistic as we deviate from a (near) nonstationary data generation mechanism. Equally impor-
tantly, because of its reliance on con�dence interval construction for the local to unity parameter,
Bonferroni-type methods are typically restricted to the case of a single predictor and cannot ac-
commodate multivariate predictive regression systems that are of particular empirical interest.

To overcome the limitations described above, we propose a Wald test statistic that provides
valid inference for long-horizon predictive regressions, in the presence of potentially endogenous
regressors with arbitrary persistence properties covering the entire I(0)-I(1) spectrum. In particular,
our methodology extends the IVX procedure of Phillips and Magdalinos (2009) to long-horizon
multivariate predictive regression systems, encompassing as a special case the short-horizon setup
of KMS. The key idea of the presented methodology is to construct an instrumental variable whose
degree of persistence we explicitly control. In this way, the inference problems arising due to the
uncertainty regarding the persistence of the original regressor are avoided. Using the constructed
instrument, we then perform a standard instrumental variable estimation. The derived estimator
asymptotically follows a mixed normal distribution, and hence the corresponding Wald statistic
asymptotically follows a chi-squared distribution under the null, considerably simplifying inference.

The proposed test statistic presents a number of advantages in comparison to the previously
suggested approaches. First, as already mentioned, it does not require a priori knowledge of the
exact time series properties of the employed predictors. In fact, it accommodates regressors with
very general time series characteristics, varying from purely stationary to purely nonstationary
processes, including all intermediate persistence regimes. Second, it can be used to conduct joint
predictability tests in multivariate predictive regression systems, rather than univariate predictabil-
ity tests only. Third, it is much simpler to implement in comparison to Bonferroni-type tests, which
require computing critical values for each case in hand. Fourth, it can be used to test hypotheses
for any set of linear restrictions, not just the null of no predictability. Last, we show that this
test statistic exhibits excellent �nite-sample properties for a very large range of empirically rele-
vant parameter values, leading to valid inference. A related IVX-based method for long-horizon
regressions is developped by Demetrescu, Rodrigues and Taylor (2022) who augment the regression
before applying IVX instrumentation, leading to di¤erent predictability tests.

Equipped with this correctly sized test statistic, we examine whether factor returns are pre-
dictable. To provide comprehensive evidence, we consider both "old" and "new" factors, beyond
the well-examined market portfolio, which carry signi�cant premia and have been proposed in the
empirical asset pricing literature to risk-adjust returns. In particular we examine the size and value
factors of Fama and French (1993), hereafter FF1993, the momentum factor of Carhart (1997), the
pro�tability and investment factors of Fama and French (2015), hereafter FF2015, as well as the
corresponding size, pro�tability and investment factors of Hou et al. (2015), hereafter HXZ.
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Instead of "searching" for predictors, a practice that would raise a valid p-hacking criticism, we
examine the predictability of factor returns using a small set of six �nancial variables: dividend-
price ratio, earnings-price ratio, book-to-market value ratio, default yield spread, T-bill rate, and
term spread. Not only these variables have been extensively used as predictors of market returns
during the last three decades (see, inter alia, Keim and Stambaugh, 1986; Campbell and Shiller,
1988; Fama and French, 1988, 1989; Kothari and Shanken, 1997; Lamont, 1998; Ponti¤ and Schall,
1998), but their combinations have also been commonly used to span the state space of the economy
(see, for example, Campbell et al., 2003; Campbell and Vuolteenaho, 2004; Petkova, 2006; Maio
and Santa-Clara, 2012).

Our empirical analysis yields a number of interesting conclusions. Regarding univariate pre-
dictability tests with monthly returns, using the correctly sized Wald test statistic, we �nd evidence
in favor of in-sample predictability for the market portfolio at short horizons via the earnings-price
ratio, book-to-market value ratio, T-bill rate and term spread. However, this evidence becomes
weaker, not stronger, as the predictive horizon increases, and disappears when annual returns are
employed. This conclusion is in stark contrast with the �ndings of prior studies, which relying on
Newey-West or Hansen-Hodrick standard errors, concluded that market returns are highly signi�-
cantly predictable at long horizons via price-scaled ratios and term structure variables. We con�rm
that this spurious inference would arise in our sample period too.

Beyond the market portfolio, we �nd evidence that the default yield spread and the book-
to-market value ratio can signi�cantly predict the returns of the FF1993 size and value factors.
Again, this evidence becomes weaker as the horizon increases or when annual returns are used.
Interestingly, we �nd that the default yield spread can also signi�cantly predict momentum returns,
drawing a link between the premium that this factor yields and the credit conditions in the economy.
Regarding the recently proposed factors, we �nd almost no evidence that the premia earned by the
FF2015 pro�tability and investment factors are predictably time-varying via the state variables
we employ. To the contrary, the pro�tability factor of HXZ, which is constructed in a di¤erent
way than the factor of FF2015, is indeed predictable via the earnings-price ratio, the default yield
spread, and the T-bill rate. Overall, di¤erent predictors contain predictive ability over di¤erent
factors. To the extent that these factors mimic di¤erent sources of risk, one could argue that
di¤erent state variables are necessary to capture these alternative dimensions of risk.

Our multivariate predictability tests reveal some interesting patterns too. Con�rming the ar-
guments of Ang and Bekaert (2007), we �nd that combinations which include the dividend-price
ratio and the T-bill rate possess in-sample predictability with respect to market returns, but this
evidence is signi�cant only at short horizons. Moreover, we �nd only weak evidence of predictabil-
ity by the examined combinations of predictors with respect to the returns of the FF1993 size and
value factors. To the contrary, we report robust and signi�cant predictability for the returns of
the momentum factor and the HXZ pro�tability factor. Under the common assumption that these
variables are good proxies for the state of the economy, this evidence shows that the momentum
and pro�tability premia can be interpreted as compensation for exposure to macroeconomic risks.
Nevertheless, we show that no single combination of these predictors can accurately capture the
time-variation in the returns of all factors.

Taken together, our study provides a critical assessment of the long-horizon stock return pre-
dictability literature. Long-horizon predictability tests were initially perceived as a tool to con�rm
that market returns are signi�cantly predictable, overcoming the marginal signi�cance and the low
explanatory power of short-horizon regressions. The underlying assumption supporting this prac-
tice was that long-horizon returns are less noisy, and hence these tests would be more powerful (see
Campbell, 2001; Rapach and Wohar, 2005; for interesting discussions). However, it turns out that,
in the presence of strongly persistent variables, which have been predominantly used as predictors,
the highly signi�cant evidence reported in favor of predictability is mostly spurious due to use of
severely oversized test statistics. In fact, using a correctly sized test statistic, the signi�cance of
long-horizon predictability mostly disappears. Equally importantly, our simulation analysis shows
that the correctly sized test statistics become less, not more, powerful as the predictive horizon
increases, deteriorating the quality of inference at long horizons. Hence, our study questions the in-
cremental value of conducting statistical inference using long-horizon predictive regressions instead
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of the actual data generating process. The related paper of Demetrescu, Rodrigues and Taylor
(2022) reaches similar conclusions.

The rest of the study is organized as follows. Section 2 formally presents the predictive regres-
sion setup, introduces the proposed IVX estimator and IVX-Wald statistic for long-horizon return
predictability tests and presents the asymptotic theory of estimation and inference. Section 3 con-
tains an extensive simulation analysis, documenting the �nite-sample properties of the IVX-Wald
test in comparison to other commonly used predictability tests. Section 4 contains our empirical
application regrading the predictability of factor returns, whereas Section 5 concludes.

2 Econometric Analysis of Long Horizon Regressions

2.1 Predictive Regression Setup
We consider the following multivariate system of predictive regressions with regressors exhibiting

an arbitrary degree of persistence:

yt = �+Axt�1 + "t; (1)
xt = Rnxt�1 + ut; (2)

where A is anm�r coe¢ cient matrix for t 2 f1; :::; ng, where n denotes the sample size. The vector
of predictor variables xt in (2), initialised at x0 = 0 for simplicity, exhibits a degree of persistence
induced by the autoregressive matrix in (2) according to the following assumption.

Assumption P. The autoregressive matrix Rn in (2) satis�es

Cn := �n (Rn � Ir)! C as n!1 (3)

for some r� r matrix C satisfying kCk <1 and some sequence (�n)n2N of positive numbers. The
regressor xt in (2) belongs to one of the following classes:
(i) Near-nonstationary regressors, if (3) holds with �n=n! � 2 (0;1].
(ii) Near-stationary regressors, if (3) holds with �n=n! 0, �n !1 and C a negative stable matrix
(i.e. all eigenvalues of C have negative real part)
(iii) Stationary regressors, if (3) holds with �n = 1 and R = Ir + C has spectral radius � (R) < 1.

The classes P(i)-P(iii) include predictor variables with very general time series characteristics,
varying from purely stationary to purely nonstationary processes and accommodating all intermedi-
ate persistence regimes. It is worth noting that the above data generation environment represents
a major generalisation of that in KMS and Phillips and Magdalinos (2009), since the (severely
restrictive) diagonality assumption on C is replaced by assumptions on the spectrum of C. These
assumptions are minimal for cases P(ii) and P(iii): P(iii) is the standard (necessary and su¢ cient)
stability requirement for autoregressive processes, whereas the condition of P(ii) gives rise to regres-
sors with near-stationary characteristics; see the discussion following Assumption N and Lemma
2.1 of Magdalinos and Phillips (2020). In addition, negative stability of C in P(ii) is necessary and
su¢ cient for the existence of a matrix-valued improper integral of the form

R1
0 erC
erC

0
dr (for

some positive de�nite matrix 
) that arises as the probability limit of the sample moment ma-
trix n�1��1n

Pn
t=1 xtx

0
t under P(ii); see the de�nition of VC below. In sum, the parametrisation in

(3) builds on the asymptotic development of Magdalinos and Phillips (2020) and accommodates a
much wider class of unrestricted VAR(1) regressors xt than KMS with a single unknown persistence
degree within the I (0)-I (1) range.

A standard assumption in the stock return predictability literature is to assume that the in-
novations "t of the predictive equation (1) are uncorrelated, while allowing for correlation in the
innovations of the predictor sequence ut in the form of a stationary linear process. The dependence
structure of the innovations is formally presented in the following Assumption, designed to include
both conditional homoskedastic and covariance stationary GARCH innovation processes.
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Assumption INNOV. Let �t = ("0t; e
0
t)
0, with "t as in (1), denote an Rm+r-valued martingale

di¤erence sequence with respect to the natural �ltration Ft = � (�t; �t�1; :::) satisfying

EFt�1
�
�t�

0
t

�
= �t a:s: and sup

t2Z
E k�tk2� <1 (4)

for some � > 1, where �t is a positive de�nite matrix. Let ut in (2) be a stationary linear process

ut =
1X
j=0

Fjet�j ; (5)

where (Fj)j�0 is a sequence of constant matrices such that Fu (1) :=
P1
j=0 Fj has full rank and

F0 = Ir. We maintain one of the following assumptions:
(i) �t = �� for all t and

P1
j=0 kFjk <1:

(ii) The process (�t)t2Z satis�es (4), with � = 2 and (�t)t2Z being a stationary ergodic process.
The process ("t)t2Z in (1) admits the following stationary vec-GARCH (p; q) representation:

"t = H
1=2
t �t; vec (Ht) = '+

qX
i=1

Aivech
�
"t�i"

0
t�i
�
+

pX
k=1

Bkvech (Ht�k) ; (6)

where (�t)t2Z is an Ft-adapted sequence of i.i.d. (0; Im) random vectors, ' is a constant vector, Ai;
Bk are symmetric positive semide�nite matrices for all i; k, and the spectral radius of the matrix
� =

Pq
i=1Ai+

Pp
k=1Bk satis�es � (�) < 1. The sequence (Fj)j�0 in (5) satis�es

P1
j=0 j kFjk <1.

Assumption INNOV(i) imposes conditional homoskedasticity on the martingale di¤erence se-
quence �t and short-memory on the linear process (5). Assumption INNOV(ii) accounts for condi-
tionally heteroskedastic �t with �nite fourth-order moments of a very general form: the vec-GARCH
process in (6) is the most general multivariate GARCH speci�cation (see Chapter 11 of Francq and
Zakoian, 2010).

Following standard notational convention, we de�ne the short-run and long-run covariance
matrices associated with the innovations "t and ut in (1), (2) as follows: �"" = E ("t"

0
t), �"u =

E ("tu
0
t), �uu = E (utu

0
t), 
uu =

P1
h=�1E

�
utu

0
t�h
�
, �u" =

P1
h=1E

�
ut"

0
t�h
�
and 
"u = �"u+�0u".

Note that 
"u is only a one-sided long run covariance matrix because "t is an uncorrelated sequence
by Assumption INNOV. For the same reason, the long-run covariance of the "t sequence is equal to
the short-run covariance �"". Denoting by "̂t the OLS residuals from (1) and by ût the OLS residuals
from (2), the above covariance matrices can be estimated in a standard way: �̂"" = n�1

Pn
t=1 "̂t"̂

0
t,

�̂"u = n�1
Pn
t=1 "̂tû

0
t and �̂uu = n�1

Pn
t=1 ûtû

0
t: Accommodating autocorrelation in ut that takes

the general form (5) requires non-parametric estimation of the long-run covariance matrices: letting
Mn be a bandwidth parameter satisfying Mn ! 1 and Mn=

p
n ! 0 as n ! 1, we employ the

usual Newey-West type estimators

h
�̂uu; �̂u"

i
=
1

n

MnX
h=1

�
1� h

Mn + 1

�" nX
t=h+1

ûtû
0
t�h;

nX
t=h+1

ût"̂
0
t�h

#
(7)


̂uu = �̂uu+�̂uu+�̂
0
uu and 
̂"u = �̂"u+�̂

0
u". Under the full generality of Assumption INNOV, we

provide robust inference for the matrix of coe¢ cients A that is invariant to the predictor variables
belonging to classes P(i)-P(iii).
2.2 Long-Horizon Predictive Regressions

Inference based on regression estimators from (1), i.e., estimators derived from regressing yt
on xt�1 and an intercept, is said to apply in the short-horizon. An issue of substantial empirical
interest concerns inference in long-horizon predictive regressions, i.e., inference based on estimators
derived from regressing a K-period accumulation of yt on xt�1 and an intercept, while the true data
generating process (DGP) continues to be given by (1). In particular, denoting yt (K) =

PK�1
i=0 yt+i,
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long-horizon estimates are derived from the �tted regression:

yt (K) = �f +AKxt�1 + �f;t t 2 f1; :::; n�K + 1g (8)

for a pre-determined horizon value K, when the true relationship between yt and xt is given by (1).
For brevity, we introduce the notation

vt (l) :=
l�1X
i=0

vt+i for t 2 f1; :::; n� l + 1g (9)

for any sequence (vt)t�1 and denote nK := n�K + 1, a ^ b = min fa; bg and a _ b = max fa; bg :
It is clear that the accumulation of predicted variables on the left side of (8) generates additional

correlations that are not present in short-horizon regressions and a¤ect the stochastic properties
of long-horizon estimators. A standard result on partitioned regression yields that least squares
estimation of AK from the regression (8) is equivalent to least squares estimation of AK from the
regression:

yt (K)� �ynK (K) = AK (xt�1 � �xnK�1) + #t t 2 f1; :::; nKg : (10)

Let Y (K) =
�
y01 (K)� �y0nK (K) ; :::; y

0
nK
(K)� �y0nK (K)

�
; �ynK (K) = n�1K

PnK
t=1 yt (K), X (K) =�

x00 (K)� �x0nK�1 (K) ; :::; x
0
nK�1 (K)� �x

0
nK�1 (K)

�0 and �xnK�1 (K) = n�1K PnK
t=1 xt�1 (K); denoting

by �ynK and �xnK�1 the usual sample means of yt and xt�1 based on the �rst nK observations, the
OLS estimator of AK in (8)/(10) is given by

ÂOLSK = Y (K)0XnK�1
�
X 0
nK�1XnK�1

��1
: (11)

The additional correlations generated by the accumulation of predicted variables in (8) induce a least
squares bias that fails to vanish asymptotically. The magnitude of this asymptotic bias depends on
horizon K. The following assumption controls the growth rate of the horizon parameter K relative
to the sample size n.

Assumption H. The horizon K may be a �xed integer or a sequence (Kn)n2N that increases to
in�nity slower than the sample size n: Kn=n! 0 as n!1:

The following result derives an explicit expression for the asymptotic bias/inconsistency of
the least squares estimator in (11) as a function of the horizon parameter K and the regressor
persistence degree �n.

Proposition 1. Consider the model (1)�(3) under Assumptions P, INNOV and H. The OLS
estimator (11) generated by the long-horizon regression (8) has the following asymptotic behaviour as
n!1: (i) Under P(i)-P(ii), (K ^ �n)�1 ÂOLSK = A (K ^ �n)�1

PK�1
i=0 R

i
n + op (1). In particular,

K�1ÂOLSK !p A when K=�n ! 0 and ��1n Â
OLS
K !p �AC�1 when K=�n !1; (ii) Under P(iii),

ÂOLSK !p A
PK�1
i=0 �x0 (i) �

�1
x0 (0) for K 2 N [ f1g, where x0;t =

P1
j=0R

jut�j , with R = Ir + C,
denotes the stationary version of the process xt, and �x0 (�) denotes the autocovariance function of
x0;t.

Proposition 1 shows that the long-horizon OLS estimator (11) is inconsistent for all hori-
zons K > 1 and provides, to our knowledge, the �rst general representation of the asymptotic
bias/inconsistency arising in long-horizon least squares regression. The form of the asymptotic bias
depends on the relative magnitude of the horizon parameter K and the regressor persistence degree
�n: when �n dominates K (as will be the case for predictor variables in the unit root and local-to-
unity persistence regimes P(i) and P(ii) by Assumption H), the long-horizon OLS estimator (11)
estimates K�A instead of A in large samples; when K dominates �n and �n !1, ÂOLSK estimates
��nAC�1n = A (Ir �Rn)�1 instead of A in large samples. In both cases, the distance between the
true parameter A and the value estimated by ÂOLSK diverges to in�nity with the sample size when
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K ! 1. The least squares asymptotic bias is less severe for increasing horizons in the stationary
case P(iii) since

P1
i=0 �x0 (i) <1.

Proposition 1 also provides an insight into the failure of standard hypothesis testing procedures
based on the long-horizon OLS estimator. Classical procedures for testing the null hypothesis
A = 0, such as the Wald test (or the t-test for individual signi�cance), are based on computing a
statistical distance between an estimator of A and 0 and rejecting the null hypothesis when this
distance is large. However, ÂOLSK estimatesK�A instead of A for (local-to-) unit root regressors, so
the resulting hypothesis test computes the distance between K�A and 0, leading to over-rejections
that become increasingly severe as the horizon K increases; when K !1, the probability of Type
I error increases to 1. For the standard t-statistic (tOLS), the pattern of monotonically increasing
size with the regression horizon is illustrated by the simulated empirical size results of Table 1.

The limitations of employing a test statistic based on an estimator that is consistent only at
a single point of the parameter space, even if this point coincides with the restriction imposed by
the null hypothesis, can be further illustrated by the asymptotic invalidity of con�dence intervals
based on that test statistic. By Proposition 1, the standard t-statistic satis�es jtOLS j ! 1 when
K !1 under Assumptions P(i)-P(ii), so the standard asymptotic con�dence interval for A based
on tOLS would be (�1;1) for all A 6= 0 (even for very small values of A). Put di¤erently, when
rejecting the null hypothesis A = 0, a predictability test should also reject very small values of A
with the correct probability of Type I error: for example if jAj = 10�6, a reasonable statistical
decision rule should conclude that there is no predictability. However, when K ! 1 with the
sample size in the above scenario, both the standard long-horizon OLS estimator in (19) and the
associated t-statistic would diverge to +1 if A = 10�6 and to �1 if A = �10�6, giving rise to a
probability of Type I error increasing to 1 with n for a two-sided rejection region or to a probability
of Type I error increasing to 1 with n when A = 10�6 and decreasing to 0 when A = �10�6 for a
one-sided rejection region. This irregularity is a consequence of the inconsistency of the standard
OLS estimator in (11): a test based on a consistent estimator would continue to reject values of A
very close to the null hypothesis up to the point when departures from the null hypothesis reach
the Pitman local alternative (de�ned by the consistency rate of the estimator on which the test
statistic is based) with correct probability of Type I error. In view of the above, the starting point
of our analysis will be to obtain a corrected version of the OLS estimator in (11), see the estimator
in (12) below, that achieves consistency along the entire parameter space of A.

One way to proceed would be to employ a deterministicK-dependent correction to the estimator
in (11). However, Proposition 1 shows that the validity of such corrections is conditional upon a
priori knowledge of the predictor variables�persistence degree �n and of the relative magnitude of �n
and the horizon K. Since the persistence degree is unknown, a correction of this type is not feasible
along the classes P(i)-P(iii) of predictor variables. A similar situation applies to the t-statistic: a

straightforward calculation, shows that1 tOLS = Op

�
K�1=2 (K ^ �n)

�
K
�n
_ 1
�1=2�

under the null

hypothesis A = 0. As a result, deterministic rescaling such as tSCALED = K�1=2tOLS , considered
inter alia by Hjalmarsson (2011), works for nonstationary predictors but may distort inference when
the predictor exhibits (near-) stationary characteristics.

To obtain a consistent estimator for long-horizon regressions without the complications arising
from deterministic scalings that are dependent on the unknown stochastic properties of the predictor
variables, we introduce a stochastic modi�cation to the OLS estimator in (11):

~AMOLS
K = Y (K)0XnK�1

�
X (K)0XnK�1

��1
: (12)

In e¤ect, the modi�cation in (12) amounts to adjusting the regression signal matrix fromX 0
nK�1XnK�1

to X (K)0XnK�1; this stochastic adjustment produces a consistent estimator of A along the entire
parameter space, as opposed to ÂOLSK which is only consistent when A = 0.

Despite the consistency of ~AMOLS
K , the limit distribution of ~AMOLS

K �A (even under the suitable
1Using the consistency of K�1ÂOLSK by Proposition 1 and Lemma A4 in the Appedix, it is easy to show that the

sample mean of the squared residuals from (8) is of order Op (K).
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normalisation) will not be mixed Gaussian in the case of unit root and local-to-unity regressors,
and will, in all cases, depend on the nuisance parameter C in (3). Since consistent estimation of C
is not possible, tests that are used to conduct long-horizon inference on A are valid only when the
rate of regressor persistence is assumed to be known, i.e., when there is a priori knowledge that xt
belongs to one of the persistence classes P(i)-P(iii) above.

However, given the high degree of persistence that characterizes most of the popular predictors,
one cannot possess such knowledge, casting doubt on the validity of inference. Therefore, an
alternative inference procedure that is robust to the persistence properties of the predictor variables
is desirable. The IVX framework of Phillips and Magdalinos (2009), which has been adapted by
KMS for short-horizon return predictability tests, achieves the required robustness and provides
valid inference for predictors with arbitrary persistence properties.

Our study extends the IVX methodology in a way that delivers robust inference in long-horizon
predictive regression systems when there is no a priori knowledge of whether xt belongs to class
P(i), P(ii) or P(iii). The key idea of this methodology is to construct an instrumental variable whose
degree of persistence we explicitly control. In this way, the inference problems arising due to the
uncertainty regarding the persistence of the original regressor are avoided. Using the constructed
instrument, one then performs a standard instrumental variable estimation. The derived estimator
asymptotically follows a mixed normal distribution, and hence the corresponding Wald statistic
asymptotically follows a chi-squared distribution under the null, considerably simplifying inference.

Speci�cally, we devise near-stationary instruments belonging to the class P(ii) by di¤erencing
the regressor xt and constructing a new process according to an arti�cial autoregressive matrix with
a speci�ed degree of persistence. Despite the fact that the di¤erence �xt = ut + Cn

�n
xt�1 is not an

innovation unless the regressor belongs to the class of I (1) processes (P(i) with C = 0), it behaves
asymptotically as an innovation after linear �ltering by a matrix consisting of near-stationary roots
of the type P(ii). Choosing an arti�cial matrix,

Rnz = Ir +
Cz
�nz

; �nz !1; �nz=n! 0 and Cz < 0; (13)

IVX instruments ~zt are constructed as a �rst-order autoregressive process with autoregressive matrix
Rnz and innovations �xt,

~zt = Rnz~zt�1 +�xt, (14)

initialized at ~z0 = 0.
Given a consistent OLS estimator such as ~AMOLS

K , the IVX estimator is constructed as a feasible
instrumental variables estimator that replaces the regressor xt by the instrument ~zt in (12) in a
standard way:

~AIV XK = Y (K)0 ~ZnK�1
h
X (K)0 ~ZnK�1

i�1
; (15)

where ~ZnK�1 =
�
~z00; :::; ~z

0
nK�1

�0. Theorem 1 below shows that the normalised and centred IVX esti-
mator in (15) is asymptotically mixed Gaussian under all empirically relevant persistence regimes
P(i)-P(iii) for the predictor variables, implying a standard chi-squared limit distribution for the
associated IVX-Wald test statistic (Theorem 2). The distributional invariance of the IVX-Wald
test statistic to the stochastic properties of the regressors makes it suitable for general application.

In addition, the consistency of the IVX estimator over the entire parameter space allows testing
general hypotheses on the parameter matrix A; this is in contrast to testing procedures based on the
inconsistent OLS estimator (11), whether applied directly or combined with Bonferroni con�dence
interval construction for C, where the inconsistency of this estimator limits the range of testable
hypotheses to the null A = 0. This is a particularly important limitation in multivariate predictive
regression models, where the joint null hypothesis A = 0 cannot be used to test the individual
signi�cance of a predictor in the presence of other predictors. As a result, in addition to providing
robust inference to the regressors�stochastic properties, the IVX-Wald test extends the range of
testable hypotheses in multivariate long-horizon regression models.
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2.3 IVX Asymptotic Inference in Long-Horizon Regressions
In this section, we present the asymptotic properties of the IVX estimator (15) and the corre-

sponding IVX-Wald test statistic that delivers robust inference for long-horizon return predictability
tests. Writing out the centred long-horizon IVX estimator ~AIV XK in (15)

~AIV XK �A =
nKX
t=1

["t (K)� �"nK (K)] ~z0t�1
h
X (K)0 ~ZnK�1

i�1
, (16)

we observe that asymptotic mixed normality of ~AIV XK � A requires establishing a central limit
theorem for the sample covariance

PnK
t=1 "t (K) ~z

0
t�1, under suitable normalisation. Unlike the short-

horizon case, autocorrelation in the "t (K) sequence when K > 1 implies that the above sample
moment is not a martingale array. Under Assumption H, however, it is possible to obtain a
martingale approximation of

PnK
t=1 "t (K) ~z

0
t�1 as we now show. Changing the order of summation

we obtain

nKX
t=1

"t (K) ~z
0
t�1 =

nKX
t=1

t+K�1X
i=t

"i~z
0
t�1

=

K�1X
i=1

"i

iX
t=1

~z0t�1 +
nK�1X
i=K

"i

iX
t=i�K+1

~z0t�1 +
nX

i=nK

"i

nKX
t=i�K+1

~z0t�1

=
K�1X
i=1

"i

iX
t=1

~z0t�1 +
n�2KX
i=0

"i+K ~z
0
i (K) +

K�1X
i=0

"n�i

iX
t=0

~z0nK�t�1: (17)

All terms on the right of (17) are matrix valued martingale arrays and, since under Assumption H
n � 2K dominates K, the leading term of (17) will be the second term

Pn�2K
i=0 "i+K ~z

0
i (K) : After

vectorisation, this term becomes a martingale array with conditional variance matrix given by

~Vn =

n�2KX
i=0

�
~zi (K) ~z

0
i (K)
Hi+K

�
; (18)

where Ht = EFt�1 ("t"
0
t). Denoting the vectorised version of the numerator of (16) by

�n = (n{n)
�1=2

nKX
t=1

f~zt�1 
 ["t (K)� �"nK (K)]g (19)

where {n = (�n ^ �nz) [K ^ (�n ^ �nz)] [K ^ (�n _ �nz)], Lemma 1 below formally establishes the
martingale approximation discussed in (17) (see the asymptotic equivalence in (20)) and derives the
limit distribution of �n by applying a martingale central limit theorem to the leading term of (20).

We denote by 1
n
�nz
�n
! 0

o
the indicator function that takes value 1 if �nz�n ! 0 and 0 otherwise.

Lemma 1. Under Assumptions P, INNOV and H,

�n = (n{n)
�1=2

n�2KX
i=0

[~zi (K)
 "i+K ] + op (1)) N (0; V ) (20)

where V = V~z 
 �"" under Assumption INNOV(i) or Assumption INNOV(ii) with �n ! 1 or

K ! 1 with V~z given by: (i) V~z = VCz1
n
�nz
�n
! 0

o
+ VC1

n
�n
�nz

! 0
o
when K= (�n ^ �nz) ! 0;

(ii) V~z = C�1z 
uu
�
C�1z

�0
1
n
�nz
�n
! 0

o
+C�1
uu

�
C�1

�0
1
n
�n
�nz

! 0
o
when K= (�n ^ �nz)!1 and

9



K= (�n _ �nz)! 0; (iii) V~z = 2C�1z VC
�
C�1z

�0
1
n
�nz
�n
! 0

o
+2C�1VCz

�
C�1

�0
1
n
�n
�nz

! 0; �n !1
o

when K= (�n _ �nz) ! 1, where VC =
R1
0 erC
uue

rC0dr and VCz =
R1
0 erCz
uue

rC0zdr. Under

Assumption INNOV(ii) with �n = 1 and K �xed, V = W0;K =
PK�1
j;l=0E

�
x0;jx

0
0;l 
 "K"0K

�
where

x0;t =
P1
j=0R

jut�j with R = Ir + C is a stationary process.

Lemma 1 establishes a Gaussian asymptotic distribution for the �numerator��n of the centred
IVX estimator in (16) under all persistence regimes of Assumption P, including (near) nonsta-
tionarity. Since 
uu > 0 and C and Cz are negative stable matrices, the matrices VC and VCz
are well-de�ned and positive de�nite. Consequently, V~z and the asymptotic covariance matrix V
in (20) are positive de�nite. It is worth noting that the asymptotic covariance matrix V in (20)
admits a convenient signal/noise covariance factorisation V~z 
�"" in all but one cases of Lemma 1,
the exception being the combination of a stationary regressor satisfying P(iii), a conditionally het-
eroskedastic innovation process "t and a �xed horizon K. In this case, the IVX instrument ~zi (K)
can be approximated by the regressor xi (K) in �n, so the stationarity of the regressor process and
the �nite horizon fail to eliminate the GARCH e¤ects present in the innovation process.

The next result derives the limit distribution of the �denominator�of (16) and establishes the
asymptotic relevance condition for the IVX instrumentation in the long-horizon regression case.

Lemma 2. Under Assumptions P, INNOV, H, n�1 (K ^ �n)�1 (�n ^ �nz)�1X (K)0 ~ZnK�1 ) 	,
where the limit matrix is given by: (i) 	 = �~	uuC�1z 1 f�nz=�n ! 0g + VC1 f�n=�nz ! 0g when
K=�n ! 0; (ii) 	 = �VC

�
C�1z

�0
1 f�nz=�n ! 0g � C�1VC1 f�n=�nz ! 0g when K=�n ! 1 and

�n !1; (iii) 	 =
PK�1
i=0 �x0 (i) with �x0 (k) = E

�
x0tx

0
0t�k

�
when �n = 1, where VC , VCz and x0;t

are de�ned in Lemma 1, ~	uu = 
uu +
R 1
0 JC (t) dBu (t)

0 +
R 1
0 JC (t) JC (t)

0 dtC 0 under Assumption
P(i) with C = 0 when �n=n!1, and ~	uu = 
uu + VCC 0 under Assumption P(ii).

As in the short horizon case, the limit distribution of the normalised signal matrix is random in
the near-I(1) case P(i) and constant in P(ii) and P(iii). By Lemma 3.1(v) of Magdalinos and Phillips

(2020), det
�
~	uu

�
> 0 a:s: under P(i) and P(ii), so Lemma 2 above guarantees the asymptotic

relevance condition of the instrumental variable estimator in (15).
By combining Lemma 1 and Lemma 2, we conclude that the long-horizon IVX estimator in

(15)/(16) has a mixed Gaussian asymptotic distribution under all persistence regimes of Assumption
P, given by the theorem below.

Theorem 1. Consider the model (1)-(3) under Assumptions P, INNOV and H and the estimator
~AIV XK in (15). Denoting �n = (K ^ �n) (�n ^ �nz)1=2 [K ^ (�n ^ �nz)]�1=2 [K ^ (�n _ �nz)]�1=2,

p
n�nvec

�
~AIV XK �A

�
)MN

�
0;
h�
	�1

�0
V~z	

�1
i

 �""

�
as n!1

under Assumption INNOV(i) or under Assumption INNOV(ii) with �n !1 or K !1 with V~z
and 	 de�ned in Lemmas 1 and 2. Under Assumption INNOV(ii) with �n = 1 and �xed K,

p
nvec

�
~AIV XK �A

�
) N

�
0;
��
	�1

�0 
 Im�W0;K

�
	�1 
 Im

��
where W0;K is de�ned in Lemma 1.

When the horizon parameter is dominated by the persistence degree of both the regressor
and the instrument, K= (�n ^ �nz) ! 0, �n = (�n ^ �nz)1=2 and the asymptotic behaviour of the
long-horizon IVX estimator is identical to that of its short-horizon counterpart (Theorem A of
KMS). On the other hand, when the regressor is not highly persistent, �n may be dominated
by the horizon parameter K; if, in addition, K is dominated by �nz (as it is likely, since we
set �nz = n0:95), the horizon parameter appears in the denominator of the normalisation �n:
�n = �n=

p
K when K=�n ! 1 and K=�nz ! 0. In this case, the consistency rate of the IVX
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estimator and, hence, the power of the IVX-Wald test decreases with the horizon K, a feature that
explains our power simulation results in Section 3.

The asymptotic mixed normality property of the long-horizon IVX estimator implies that linear
restrictions on the coe¢ cients A generated by the system of predictive equations (1) can be tested
by a standard Wald test based on the IVX estimator for all persistence scenaria conforming to the
classes P(i)�P(iii). In particular, we consider a set of linear restrictions

H0 : Hvec (A) = h; (21)

where H is a known q�mr matrix with rank q and h is a known vector. Since, by Theorem 1, the

asymptotic variance of Hvec
�
~AIV XK �A

�
can be estimated by QH;K = Hf[X 0 (K)P ~Z;KX (K)]

�1


�̂""gH 0 where P ~Z;K = ~Zn�K
h
~Z (K)0 ~Z (K)

i�1
~Z 0n�K and ~Z (K) =

�
~z00 (K) ; :::; ~z

0
nK�1 (K)

�0, then
the IVX-Wald test statistic

W IV X
K =

h
Hvec

�
~AIV XK

�
� h

i0
Q�1H;K

h
Hvec

�
~AIV XK

�
� h

i
; (22)

has a standard chi-squared limit distribution under H0 in (21).
We actually propose and empirically implement an asymptotically equivalent modi�cation of

the above statistic, which possesses better �nite-sample properties in the presence of an intercept
in (1) and (8):

~W IV X
K =

h
Hvec

�
~AIV XK

�
� h

i0
~Q�1H;K

h
Hvec

�
~AIV XK

�
� h

i
; (23)

where ~QH;K = H[( ~Z 0n�KX (K))
�1
Im]MK [(X (K)

0 ~Zn�K)
�1
Im]H 0,MK = ~Z (K)0 ~Z (K)
�̂""�

nK �znK�1 (K) �z
0
nK�1 (K) 
 
̂FM , �znK�1 (K) = n�1K

PnK
t=1 ~zt�1 (K) and 
̂FM = �̂"" � 
̂"u
̂�1uu 
̂0"u,

�̂"" is the standard OLS estimator and 
̂"u and 
̂uu are long run covariance estimators de�ned
below (7). We refer to KMS (p. 1516 and Remark A(2) in p. 1549) for a justi�cation of the
better �nite sample properties of the modi�ed statistic in (23) in the short-horizon case; the same
argument essentially applies to the long-horizon case.

Theorem 2. Consider the model (1)-(3) under Assumption H. Then, the IVX-Wald statistics in
(22) and (23) for testing (21) are asymptotically equivalent and satisfy ~W IV X

K ) �2 (q) as n!1
under H0 for the following classes of predictor processes xt in (2): (i) P(i)-P(iii) under Assumption
INNOV(i); (ii) P(i)-P(iii) under Assumption INNOV(ii) when K ! 1; (iii) P(i)-P(ii) under
Assumption INNOV(ii) when the horizon parameter K is �xed.

Theorem 2 proposes a hypothesis testing procedure in long-horizon predictive regressions with
the following advantages: (a) the procedure accommodates a very large class of predictors, ranging
from purely stationary to unit root processes and including all intermediate persistence regimes;
(b) the proposed IVX-Wald statistic may be used to test the predictive power of vector-valued
regressors; (c) the proposed IVX-Wald statistic may be used to test general linear hypotheses on
the matrix parameter A, which allows us to assess the predictive power of a subset of regressors
(in the presence of other potential predictors). The possibility to conduct predictability tests for
subsets of regressors is a consequence of employing an long-horizon IVX estimator that is consistent
over the entire parameter space of A rather than just at the point A = 0 as is usually the case for
long-horizon predictability tests (see the discussion following Proposition 1).

The only combination of Assumptions P and INNOV not covered by Theorem 2 is that of
a purely stationary regressor satisfying P(iii), a conditionally heteroskedastic innovation process
"t and a �xed horizon K. In this case, the long-horizon IVX estimator becomes asymptotically
equivalent to its OLS counterpart which implies that the standard t or Wald statistics are asymp-
totically invalid; a White-type correction for the regression residuals (that accounts for the presence
of GARCH e¤ects in "t): see the discussion in p.1515-1516 in KMS and Theorem 4.4. of Magdalinos
(2020). Applying such a heteroskedasticity correction to the IVX-Wald statistic will extend the
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validity of Theorem 2(iii) to the entire range of Assumption P.
We conclude the section with a discussion of the implementation of the IVX-Wald test in (23)

with regards to the choice of instrument ~zt in (13) or, equivalently, the choice of Rnz in (13).
Normalising Cz = �Ir, this reduces to a choice of the instrument persistence parameter �nz. It is
well documented in the (short-horizon) IVX literature that there is a size-power trade-o¤ in choosing
�nz when the regressor process is near-I(1): a correctly sized critical region for the IVX-Wald
statistic requires �nz=n! 0 whereas the statistic�s divergence rate under the alternative hypothesis
increases with �nz. This trade-o¤ continues to apply in the long-horizon case, as Theorem 1 shows:
for a near-I(1) regressor satisfying K=�nz ! 0 the normalisation of the long-horizon IVX estimator
~AIV XK in Theorem 1 is

p
n�nz. Our selection of �nz follows the same approach as KMS: (i) we

correct for the �nite sample e¤ects on the size of the IVX-Wald test by employing the statistic
(23); (ii) following the analysis of the remainder term arising from the intercept in Remark A(2) of
KMS, we note that these �nite sample e¤ects are most prominent when xt is a unit root process
with innovations ut highly correlated with the innovations "t of (1); (iii) we conduct Monte Carlo
simulations for the size of the test in (23) under the worst scenario described in (ii) and select
the largest value of �nz that keeps the empirical size of (23) su¢ ciently close to the nominal size.
We �nd that the value �nz = n0:95 employed in the short-horizon IVX-Wald test of KMS extends
�nz as far as possible in the direction of the O (n) threshold while maintaining size control. We,
therefore, generate the instrument ~zt by selecting Cz = �Ir and �nz = n0:95 both for the Monte
Carlo exercise and for the empirical implementation of our procedure.

3 Finite-Sample Properties of Long-Horizon Test Statistics

This section conducts an extensive Monte Carlo simulation, presenting the �nite-sample properties
of various test statistics that have been commonly used in long-horizon predictability studies. We
consider the OLS t-statistic (tOLS), its counterpart scaled by the square root of the predictive
horizon K (tSCALED), the t-statistic with Newey-West standard errors (tNW ), the t-statistic with
Hansen-Hodrick standard errors (tHH), the t-statistic with Hodrick (1992) standard errors (tHOD)
and the Bonferroni test statistic (tBONF ) proposed by Hjalmarsson (2011).2 We compare the
�nite-sample properties of these test statistics with the properties of the long-horizon IVX-Wald
statistic (WIV X). This analysis covers a wide range of values for the parameters that determine
the properties of these test statistics. Hence, this analysis can serve as a guide for the suitability
of each test statistic for the particular combination of predictor(s) and equity factor in hand.
3.1 Univariate Long-Horizon Predictive Regressions

Starting with the univariate predictive regression setup, we use the following DGP, where yt
and xt are scalars: (1) with "t � NID(0; 1) and (2) with Rn = 1 + C=n, ut = �ut�1 + et and
et � NID(0; 1). The system is initialized at x0 = 0. The IVX estimator and the corresponding
Wald statistic are invariant to the value of �, so we opt for � = 0. Equipped with the simulated data,
we estimate the corresponding long-horizon predictive regressions, as in equation (8), for various
horizons K. We consider two-sided tests with nominal size 5% for all statistics, corresponding to
the null hypothesis of no predictability, i.e., that the slope coe¢ cient of the predictive regressor in
the DGP is equal to zero, H0 : A = 0 in (1).3

To examine the power of each statistic, we consider the following sequence of alternatives:

A =
b

n

p
1� �2 for b 2 f0, 2, ::, 12, 16, ::, 32, 40, 60, 100, 500, 1; 000g , (24)

with b = 0 corresponding to the size of each test and � = E ("tut) denoting the contemporaneous
correlation coe¢ cient between "t and ut, which measures the degree of predictor�s "endogeneity".

2Following common practice in the literature, we use K lags to compute the corresponding Newey-West and
Hansen-Hodrick standard errors.

3Under this null hypothesis, the slope coe¢ cient of the long-horizon predictive regression (AK) should also be
equal to zero for all horizons K.
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To examine the empirical size of the test statistics, each simulation experiment reports rejection
rates of the null hypothesis using 10; 000 repetitions. For their power properties, each simulation ex-
periment uses 1; 000 repetitions. We report results for various sample sizes n with relevant predictive
horizons K, alternative values for the local-to-unity parameter C, di¤erent degrees of endogeneity
� as well as alternative autocorrelation coe¢ cient � of the innovation of the autoregression in (2).

Di¤erent sample sizes n correspond to the use of monthly, quarterly or annual data in empirical
tests. The use of a broad but empirically relevant range of values for the local-to-unity parameter
C can reveal how the degree of regressor persistence a¤ects the �nite-sample properties of these
long-horizon test statistics. Di¤erent degrees of endogeneity � correspond to di¤erent combinations
of predictors and equity factors. For example, in case price-scaled �nancial ratios are used to
predict market returns, then, by construction, � is bound to be close to 1 in absolute value; to the
contrary, term structure variables exhibit a much lower degree of endogeneity. Since the magnitude
of the Stambaugh bias is primarily determined by the interaction of the predictor�s persistence and
its endogeneity, we consider various combinations of these parameter values to examine how this
interaction a¤ects the properties of the test statistics as the predictive horizon increases.
3.1.1 Size Properties

Table 1 presents the size of the tests for n = 1; 000 and � = 0, whereas Tables IA.1 and IA.2
in the Internet Appendix report the tests�sizes for n = 100 and n = 500, respectively. In addition,
Tables IA.3-IA.5 show the corresponding simulation results when � = 0:25.

A number of important conclusions can be drawn from these simulation results. First, we
con�rm that the commonly used tests (tOLS , tNW , tHH) become severely oversized as the predictive
horizon increases. Their overrejection becomes extreme in the case of predictors that are both
highly persistent and exhibit a very strong degree of endogeneity. The oversizing of these test
statistics in long-horizon predictive regressions is much more severe than the oversizing caused by
the Stambaugh bias in the short-horizon setup. In other words, this bias is propagated as the
predictive horizon increases, leading to severe overrejection of the null hypothesis.

Second, our simulation results show that the oversizing of these test statistics appears even
in the cases where the Stambaugh bias would not be a concern. In particular, if the degree of
endogeneity � is equal to zero, the size of tOLS , tNW , and tHH , appears to be correct in the
short-horizon setup, even for unit root predictors. However, as the predictive horizon increases,
these tests substantially overreject the null hypothesis relative to their nominal size. Hence, using
overlapping observations in long-horizon predictive regressions can have a dramatic impact on the
size properties of these test statistics. This evidence yields the conclusion that tOLS , tNW , and
tHH could lead to spurious inference due to oversizing for all persistent predictors, as long as the
predictive horizon is su¢ ciently long, regardless of their degree of endogeneity with respect to factor
returns. These conclusions hold across the examined sample sizes.

Third, scaling tOLS by the square root of the predictive horizon to compute tSCALED can only
partially address its severe oversizing due to the overlapping nature of observations in long-horizon
regressions. On the one hand, this approach obviously cannot address the oversizing due to the
Stambaugh bias that carries over to longer horizons. On the other hand, this adjustment may
actually lead to undersizing as the horizon increases, because tOLS increases at a rate lower than
the square root of the horizon when the predictor is less persistent than a (near-) unit root process.

Another conclusion of our analysis refers to the performance of tHOD, which is suggested to have
good size properties at long horizons (see Ang and Bekaert, 2007; and Wei and Wright, 2013). We
�nd that an increase in the predictive horizon has only a mild e¤ect on the size of tHOD. Hence, as
expected by the construction of the test, the size of tHOD is not severely a¤ected by the overlapping
nature of observations in long-horizon predictive regressions. However, this test statistic can still
exhibit severe oversizing due to the Stambaugh bias. In the case of highly persistent and endogenous
predictors, tHOD tends to overreject across all predictive horizons considered. This �nding holds
regardless of the sample size. As a result, even though tHOD overall performs better than tNW or
tHH , it can still lead to spurious inference in both short- and long-horizon predictive regressions.

The previous �nding highlights the dramatic impact of the predictor�s time series properties on
tests�size. The uncertainty surrounding the exact type of persistence of commonly used predictors
necessarily raises doubts about the appropriateness of traditional test statistics, including tHOD.
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This uncertainty motivates the use of WIV X , which yield inference that is robust to the exact
type of predictor�s persistence. More generally, the poor size properties of the commonly used test
statistics motivates the examination of the properties of alternative test statistics that are devised
to deal with arbitrarily persistent and endogenous predictors.

To this end, tBONF exhibits correct size, regardless of the horizon length, when the predictor
follows a unit root or a near-unit root process. This is not surprising because this test statistic
is constructed under the assumption that the predictor follows a local-to-unity process. However,
as we deviate from the unit root, tBONF seems to be somewhat undersized; this feature becomes
more pronounced when the horizon is substantially long. Hence, tBONF is bound to be very
conservative at long horizons. We consider further this feature when we subsequently examine the
power properties of the test.

Last but not least, WIV X exhibits very good size properties regardless of the predictor�s per-
sistence and degree of endogeneity. Its empirical size is very close to the nominal 5% level even
when the predictor follows a unit root or a near-unit root process. These good size properties
remain intact when we consider su¢ ciently long predictive horizons. Moreover, WIV X retains its
very good size control across the examined sample sizes as well as in the presence of autocorrelation
in the residuals of the autoregression. Hence, we conclude that WIV X is a¤ected neither by the
Stambaugh bias nor by the overlapping nature of observations in long horizons, and it can yield
inference that is robust to the exact type of predictor�s persistence.
3.1.2 Power Properties

Next, we compare the �nite-sample power properties of tHOD, tBONF , andWIV X . In particular,
for each of these three tests, we plot the rejection rate of the null hypothesis H0 : A = 0, as the
true value of the slope coe¢ cient A in (1) increases according to the sequence in (24). Figure 1
plots these rejection rates when the sample size is n = 1; 000 and the predictive horizon is K = 10.

We �nd that both tBONF and WIV X are powerful test statistics across all cases examined.
Their rejection rates monotonically and rapidly increase, as the true value of the slope coe¢ cient
deviates from zero. In relative terms, tBONF is particularly powerful when the predictor is a unit
root process (C = 0) and exhibits a strong degree of endogeneity (� = �0:99). To the contrary,
WIV X becomes more powerful than tBONF as the predictor becomes slightly less persistent. This
�nding is a consequence of the fact that tBONF becomes somewhat undersized as we deviate from
the unit root. The power of WIV X also appears to be very similar to that of tHOD when the
empirical size of the latter is close to its nominal 5% level. In fact, in the case of no endogeneity
(� = 0), where tHOD is correctly sized, the power plots of these three test statistics appear to be
almost indistinguishable across the three local-to-unity parameter values that we consider.

We derive very similar conclusions regarding the absolute and relative power properties of these
test statistics when we alternatively consider a much longer predictive horizon, such as K = 50.
The corresponding power plots are illustrated in Figure IA.1. Figures IA.2 and IA.3 yield very
similar patterns, using sample size n = 100 and predictive horizons K = 3 and K = 5, respectively.

Our simulation setup also allows us to shed light on an important issue surrounding the use of
long-horizon predictive regressions. An implicit argument in the prior literature is that long-horizon
returns are less noisy, and hence long-horizon predictability tests would be more powerful (see
Campbell, 2001). We examine this argument by comparing the power properties of the correctly-
sized test statistics across di¤erent predictive horizons.

Figure IA.4 presents the power plots for WIV X with sample size n = 1; 000 and horizons
K = 1; 50; and 100. It is evident that the power of this test statistic decreases as the predictive
horizon increases. This is true for all local-to-unity parameter values C and degrees of endogeneity
� considered. Figure IA.5 similarly illustrates the inverse relationship between the power of WIV X

and the length of the predictive horizon using sample size n = 100.
Is this inverse relationship between power and horizon a feature of WIV X only? To answer this

question, we repeat this analysis for tHOD and tBONF . Figures IA.6 and IA.7 show their power plots
when n = 1; 000 and K = 1; 50; and 100, whereas Figures IA.8 and IA.9 present the corresponding
power plots when n = 100 and K = 1; 5; and 10. We �nd the exact same inverse relationship that
we reported forWIV X ; the power of tHOD and tBONF decreases as the predictive horizon increases,
in all cases considered.
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In conclusion, the argument that long-horizon predictability tests are more powerful than the
short-horizon ones seems to be a misperception. This is most likely driven by the spurious evidence
of strong long-horizon predictability reported in prior studies, due to the use of test statistics
that become severely oversized as the horizon increases. To the contrary, when a correctly-sized
test statistic is employed, we show that long-horizon predictive regressions actually lead to power
loss. Taken together, our simulation analysis casts doubt on the incremental bene�t of conducting
long-horizon predictability tests.4

3.2 Conditionally Heteroskedastic DGP
We have also performed a simulation analysis using a GARCH(1,1) process for the innovations

of the predictive regression model. The simulation setup is formally presented in the Internet
Appendix. Tables IA.9, IA.10, and IA.11 present the sizes of the various test statistics for sample
size n = 100, n = 500, and n = 1; 000, respectively.

The main conclusions we derived using a homoskedastic DGP carry through in the case of het-
eroskedasticity. The rejection rate of tOLS , tNW , and tHH monotonically increases as the predictive
horizon increases. As long as the predictor is persistent, these tests become severely oversized at
long horizons, regardless of the predictor�s degree of endogeneity. The size properties of tHOD
also remain similar to the ones reported in the case of homoskedasticity. This test is substantially
oversized when the predictor exhibits both very high degree of persistence and strong endogeneity.
We also �nd that tBONF never becomes oversized. To the contrary, as we deviate from the unit
root case, this test statistic becomes undersized at su¢ ciently long horizons. Equally importantly,
this simulation analysis con�rms that WIV X retains its good size control under heteroskedasticity.5

3.3 Multivariate Long-Horizon Predictive Regressions
Empirical predictability tests are commonly conducted in the presence of multiple persistent

predictors. Nevertheless, the properties of the commonly used test statistics are not well understood
in the context of multivariate predictive regressions, especially when overlapping observations are
employed. The subsequent analysis �lls this gap.

We conduct Monte Carlo simulations using the following DGP that accommodates two regres-
sors:

yt = �+A
0xt�1 + "t; xt = (I2 + C=n)xt�1 + ut; ut = �ut�1 + et; (25)

with � = diag (�1; �2), �t = ("t; u
0
t)
0, � = E

�
�t�

0
t

�
and "t and et being zero-mean Gaussian with

covariance structure determined by �.
Equipped with this DGP, we consider three cases, which correspond to empirically relevant

combinations of values for the local-to-unity parameters C, the residuals�autocorrelation coe¢ cients
in �, and the covariance matrix �. Speci�cally, Case I assumes that C = diag(0;�5), whereas the
values for � and � are estimated using log excess market returns as the regressand, the earnings-
price ratio as the �rst predictor, and the T-bill rate as the second predictor. Case II assumes that
C = diag(0;�5), whereas the parameter values for � and � are estimated using log excess market
returns, the dividend-price ratio, and the T-bill rate, respectively. Last, Case III assumes that
C = diag(0;�10), and the parameter values for � and � are estimated using log excess market
returns, the earnings-price ratio, and the default spread, respectively. It can be con�rmed by the
descriptive statistics of these predictors, which are presented in the subsequent Section, that these
three cases give rise to di¤erent combinations regarding the predictors�degree of endogeneity (�)

4We have also examined the �nite-sample properties of the test statistics for the case where the correlation
coe¢ cient (�) between "t and ut is positive. Tables IA.6, IA.7, and IA.8 present the corresponding size properties for
n = 100, n = 500, and n = 1; 000, respectively. These simulation results yield similar conclusions to the ones derived
from the benchmark setup and con�rm the excellent size properties of WIV X . To shed further light on the impact of
endogeneity, Figures IA.10, IA.11, and IA.12 illustrate the size of the various test statistics for sample size n = 100
and predictive horizons K = 3, K = 5, and K = 10, respectively. It is evident that the �nite-sample size of WIV X is
not sensitive to the degree of endogeneity, whereas this a¤ects the size of commonly used test statistics.

5We have also investigated the �nite sample properties of the examined statistics under the possibility of conditional
heteroskedasticity in the error term of the autoregressive part of the system. The corresponding DGP is formally
presented in the Internet Appendix and Tables IA.12, IA.13, and IA.14 present the size properties of the test statistics
for alternative sample sizes n. In sum, this simulation analysis yields similar conclusions to the ones derived from
the benchmark DGP and con�rms the very good size control of WIV X .
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and the autocorrelation coe¢ cient (�) in the residuals of the corresponding autoregression.
3.3.1 Size Properties

Table 2 presents the rejection rates of the test statistics for sample size n = 1; 000. The
corresponding parameter values have been estimated using monthly data. Table IA.15 presents the
corresponding simulation results for n = 100, using annual data to estimate the relevant parameter
values. We present the rejection rates of the statistics with respect to three di¤erent tests. Panel
A tests the joint null hypothesis H0 : A = (0; 0), i.e., that the slope coe¢ cients of the predictors
are jointly equal to zero. For this joint test we compute the empirical size of Wald statistics with
alternative covariance estimation methods. We consider the standard least squares Wald statistic
scaled by the length of the predictive horizon (WSCALED) as well as Wald statistics with Newey-
West (WNW ), Hansen-Hodrick (WHH), and Hodrick (WHOD) covariances. We also present the
empirical size of the IVX-Wald statistic (WIV X). Panel B tests the null hypothesis H0 : A1 = 0,
i.e., that the slope coe¢ cient of the �rst predictor is equal to zero, whereas Panel C tests the null
hypothesis H0 : A2 = 0 , i.e., that the slope coe¢ cient of the second predictor is equal to zero. The
latter two hypotheses are of interest because, in the presence of multiple predictors, one may wish
to examine the individual signi�cance of each predictor, not just their joint predictive ability. For
these tests, apart from WIV X , we also report the sizes for tSCALED, tNW , tHH , and tHOD.

A number of conclusions arise from this analysis. WNW andWHH have very poor size properties.
Their oversizing becomes extreme as the predictive horizon increases due to the e¤ect of overlapping
observations. Hence, in the presence of a price-scaled ratio, which is highly persistent and exhibits
a strong degree of endogeneity, these test statistics are bound to spuriously reject the joint null
of no predictability, even when the second predictor is not endogenous and is less persistent. In
fact, we observe that in the presence of two persistent regressors, the oversizing of the joint test is
exacerbated at long horizons relative to the corresponding cases with a single predictor.

With respect to tests of individual signi�cance, the empirical size of tNW and tHH follows the
patterns we reported above in the case of univariate predictive regressions. The rejection rate of
these statistics monotonically increases as the predictive horizon increases. This oversizing becomes
more pronounced in the case of endogenous predictors, such as the price-scaled ratios (see Panel
B), but the horizon e¤ect leads to overrejection even when the predictor�s degree of endogeneity is
very low (see Panel C).

Moreover, we �nd that the simple adjustment of the OLS Wald statistic by the length of the
predictive horizon to compute WSCALED partially cancels out the horizon e¤ect on the empirical
size of the former. Nevertheless, this adjustment cannot address the oversizing that arises due
to the Stambaugh bias and carries over to longer horizons. A direct implication of the reported
rejection rates for WSCALED is that the standard, non-scaled OLS Wald statistic is bound to
almost certainly reject the joint null of no predictability, if the predictive horizon is su¢ ciently
long. Hence, inference based on this test statistic would certainly be spurious. In addition, the
properties of tSCALED for tests of individual signi�cance are very similar to the ones reported above
in the univariate predictive setup.

RegardingWHOD, we observe that when a price-scaled ratio is included as one of the predictors,
joint tests of no predictability are typically oversized. This oversizing appears already in the single-
period (K = 1) predictive regression and increases with the length of the horizon. However, the
horizon e¤ect is much less detrimental forWHOD relative toWNW andWHH . In fact, the empirical
size ofWHOD is very similar to the one ofWSCALED. With respect to tests of individual signi�cance
using tHOD, the emerging patterns are again similar to the ones reported in the case of univariate
predictive regressions. In sum, the presence of a persistent and endogenous predictor raises concerns
regarding the suitability of WHOD for joint predictability tests. To the contrary, WIV X exhibits
an empirical size that is very close to the nominal 5% level across the various cases considered,
regardless of the horizon length. Hence, we conclude thatWIV X exhibits the best �nite-sample size
properties for both joint and individual signi�cance tests in the context of multivariate long-horizon
predictive regressions.
3.3.2 Power Properties

Given the very good size properties of WIV X , we use this bivariate regression setup to examine
the �nite-sample power of this statistic. In particular, Figure 2 plots the rejection rate of the joint
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null hypothesis H0 : A = (0; 0) for each of the three combinations of parameter values described
above (Cases I-III), using sample size n = 1; 000 and horizons K = 1; 10; 50; and 100. Figure IA.13
presents the corresponding power plots for n = 100 and horizons K = 1; 3; 5; and 10. The left
column reports the rejection rate as the true value of the slope coe¢ cient of the �rst regressor (A1)
deviates from zero, whereas the right column presents the corresponding rejection rate when the
true value of the second regressor�s slope coe¢ cient (A2) is di¤erent from zero.

Both �gures show that WIV X is a powerful statistic for joint hypothesis tests. Its rejection
rate rapidly increases as the slope coe¢ cient of either of the two regressors increases. WIV X is
particularly powerful when the true value of the slope coe¢ cient of the unit root predictor di¤ers
from zero. We get a very similar picture across the three cases we consider. Hence, the power
properties of WIV X are not materially a¤ected by the predictors� degree of endogeneity or the
autocorrelation in the residuals of their autoregression. Importantly, these power plots con�rm, in
the context of joint tests, that an increase in the horizon length typically leads to power loss. This
is true across the various combinations of parameter values and for di¤erent sample sizes.

4 Are Factor Returns Predictable?

This Section examines whether equity factor returns are predictable. We consider both "old"
and "new" factors that have been proposed in the empirical asset pricing literature, beyond the
standard market portfolio. These factors are typically found to carry signi�cant full-sample premia.
Though there is still an active debate whether these premia provide compensation for exposure to a
macroeconomic/fundamental source of risk or they capture systematic mispricing, including them in
multi-factor models to risk-adjust returns essentially assumes that they are risk factors. Therefore,
examining whether these factor returns are predictable sheds further light on whether risk premia,
and hence discount rates, are time-varying in a predictable way, extending the analysis to these
alternative dimensions of risk.
4.1 Data

In addition to the excess returns of the market portfolio (MKT), we consider the returns of the
size (SMB) and value (HML) factors that comprise the 3-factor model of FF1993. Furthermore, we
examine the momentum (MOM) factor that is included in the 4-factor model of Carhart (1997).
We also use the pro�tability (RMW) and investment (CMA) factors, which have been devised by
FF2015 in their extended 5-factor model. For completeness, we additionally consider the size (ME),
investment (IA), and pro�tability (ROE) factors of the recently proposed 4-factor model by HXZ.

Following the convention in the predictability literature, returns are logarithmized. The sample
period for MKT, SMB, HML, and MOM is January 1927-December 2017, whereas the sample
period for RMW and CMA is July 1963-December 2017. Returns for these factors are sourced
from Kenneth French�s online data library. The sample period for ME, IA, and ROE is January
1967-December 2016; these factor returns have been kindly provided by Kewei Hou.

We use a number of �nancial variables that have been extensively used in the prior literature as
predictors of market returns as well as proxies for business cycle conditions. In particular, we report
results for the following variables: dividend-price ratio (d/p), earnings-price ratio (e/p), book-to-
market value ratio (b/m), default yield spread (dfy), T-bill rate (tbl), and term spread (tms). This
is a subset of the predictors considered in Welch and Goyal (2008). The sample period for the
predictors is January 1927-December 2017, with the exception of the term structure variables (tbl
and tms), which, following Campbell and Yogo (2006), we use in predictability tests post-1952.
Data are sourced from Amit Goyal�s website.

Table 3 presents the descriptive statistics for the monthly dataset. Panel A reports the average,
standard deviation and correlations of the factor returns. Panel B provides information regarding
the properties of the employed predictors. In particular, it reports the degree of correlation (�̂)
between the residuals from the univariate predictive regression of each predictor on each factor�s
returns, as in equation (1), and the residuals from the predictor�s AR(1) model, as in equation (2).
For each predictor, it also reports the corresponding AR(1) coe¢ cient estimate (cRn) as well as the
autocorrelation coe¢ cient estimate (�̂) for the residuals of the predictor�s autoregression. Table
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IA. 16 presents the corresponding descriptive statistics for the annual dataset.
The descriptive statistics show that most of these factors yield signi�cant premia. As expected,

we �nd that there is a very strong correlation between SMB and ME as well as between CMA and
IA. To the contrary, the correlation between RMW and ROE is not particularly high due to the
di¤erent way that these factors have been constructed.

Regarding the properties of the employed predictors, we con�rm that they are highly persistent.
In fact, their estimated AR(1) coe¢ cient is particularly close to unity. This feature gives rise to
uncertainty regarding the predictors�exact type of persistence or even their order of integration.
Given the crucial impact that the predictors�time series characteristics have on the properties of
the predictability test statistics, this uncertainty further motivates the use ofWIV X , which is robust
to di¤erent types of persistence.

Panel B of Table 3 shows that, apart from being highly persistent, most of these predictors
exhibit a non-negligible degree of endogeneity with respect to the factor returns. This feature is
most pronounced in the case of price-scaled ratios with respect to MKT, where a highly negative
correlation between their residuals appears by construction, but it is also evident in various combi-
nations involving SMB, HML, MOM, CMA, and IA. Hence, the Stambaugh bias could undermine
the validity of inference in standard predictability tests for most of the factors we examine here,
not just MKT. Moreover, it is evident from Panel B that the residuals from each predictor�s AR(1)
model typically exhibit a considerable degree of autocorrelation.

The predictability literature keeps discovering new predictors (see Rapach et al., 2016, for a
recent successful attempt). A priori, it cannot be excluded that di¤erent variables could predict the
returns of di¤erent factors (see, for example, the evidence in Cooper and Maio, 2019). However, this
practice has raised serious concerns about the reliability of inference due to data mining (Ferson
et al., 2003; Ferson et al., 2008) and the corresponding search for predictors (Harvey et al., 2016).
This practice may inadvertently lead to p-hacking, if critical values are not adjusted for multiple
hypothesis testing (see Harvey, 2017). To sidestep these criticisms, we rely on a parsimonious set
of six predictors, which have been commonly used to span the state space of the economy.
4.2 Univariate Predictive Regressions

This Section presents the results from univariate predictive regressions of each of the six �nancial
variables (d/p, e/p, b/m, dfy, tbl, tms) on each of the pricing factors considered (MKT, SMB, HML,
MOM, RMW, CMA, ME, IA, and ROE).
4.2.1 Market Factor

We �rstly examine whether monthly excess market returns are predictable. Panel A of Table
4 reports the least squares estimate (ÂK) of the slope coe¢ cient from regression (8) for horizons
K = 1; 12; 36; and 60 months, as well as the values of the statistics tSCALED, tNW , tHH , tHOD,
and WIV X , testing the null hypothesis of no predictability, i.e., that the slope coe¢ cient of the
predictive regressor in the DGP is equal to zero, H0 : A = 0 in (1).

The reported results lead to the following observations. First, we con�rm prior �ndings that
relying upon tNW or tHH , d/p appears to be a very strong predictor of excess market returns as
the horizon increases. Similar is the pattern using tOLS , whereas this horizon e¤ect is to a large
extent neutralized using tSCALED. In view of the simulation analysis presented in Section 3, we
conclude that these statistics lead to spurious inference, since d/p is the prototype of an extremely
highly persistent and almost perfectly endogenous predictor, causing tNW and tHH to be severely
oversized at long horizons. tHOD seems to be less a¤ected by the horizon e¤ect, though its value
still increases monotonically as the horizon increases. In sharp contrast with the inference based
on tNW or tHH , WIV X suggests that d/p is not a signi�cant predictor of excess market returns at
the 5% level or lower, regardless of the horizon length.

Second, using each of the other two price-scaled ratios, e/p and b/m, we �nd again that tNW
and tHH are typically higher in long-horizon regressions relative to the single-period regression.
Most interestingly, using either tNW or tHH , b/m is found to be a very strong predictor of excess
market returns at long horizons. Similar is the conclusion for b/m using tHOD. Regarding e/p,
tNW and tHOD yield strong evidence of predictability at K = 12 and K = 36 months. Since both
e/p and b/m are both highly persistent and strongly endogenous, inference based on tNW , tHH , or
tHOD can be spurious. Hence, we resort to WIV X , which is shown to be correctly sized. We �nd
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that excess market returns are indeed predictable at the 5% signi�cance level via e/p and b/m.
However, this evidence becomes weaker, not stronger as the horizon increases. This �nding may be
a result of the lower power that the correctly sized WIV X exhibits as the horizon increases.

The third observation refers to dfy. tNW and tHH tend to increase as the horizon increases,
even though dfy is substantially less endogenous than the price-scaled ratios with respect to excess
market returns. Nevertheless, its very high degree of persistence can still lead to spurious inference
in favor of predictability at su¢ ciently long horizons. To the contrary, WIV X shows that dfy is not
a signi�cant predictor. Similar is the conclusion we reach using tHOD, whose oversizing is much
less pronounced in this case because dfy exhibits a low degree of endogeneity.

Relying on WIV X to examine the predictive ability of tbl in the post-1952 period, we �nd
signi�cant evidence in favor of predictability only when K = 1 month. The rest of the test statistics
yield similar inference, even though tNW and tHH would also support predictability at the 10%
level or lower at K = 12 and K = 36 months. Last but not least, WIV X indicates that tms is
a signi�cant predictor of excess market returns across the presented horizons. Very similar is the
inference derived using tHOD. Interestingly, tNW and tHH exhibit again a horizon e¤ect, with the
slope coe¢ cient of tms being signi�cant at the 1% level at K = 36 months. On the other hand,
using tSCALED would lead to the conclusion of no predictability at su¢ ciently long horizons.

Panel A of Table IA.17 presents the corresponding results for annual excess market returns.
The most striking �nding is that, using the correctly sized WIV X , we would not reject the null
of no predictability at the 5% signi�cance level across the horizons considered for any of these six
predictors. One would derive a similar conclusion using tHOD, with a few exceptions of marginal
signi�cance. To the contrary, using tNW or tHH , one would �nd signi�cant predictability, especially
atK = 3 years, for all predictors apart from dfy. Most notably, the "strong predictive ability" of d/p
at the 3- and 5-year horizon, which has been long regarded as a "stylized fact" (see Cochrane 1999;
2008; 2011; Campbell, 2000), seems to be an artefact of the severe oversizing that characterizes tNW
and tHH at long horizons in the presence of highly persistent and endogenous regressors. Though
we cannot exclude the possibility that other variables could prove more successful, the evidence
based on these commonly used state variables casts doubt on the conventional wisdom that the
market premium is predictable at the annual frequency.
4.2.2 FF1993 Factors

Next, we examine whether the FF1993 factors are predictable. Size and value premia are often
claimed to re�ect compensation for exposure to macroeconomic risk factors. Since the employed
predictors have been commonly used as business cycle proxies, it is logical to hypothesize that they
should be able to capture the time-variation in SMB and HML returns. Nevertheless, there is only
limited empirical work on this issue (see Ferson and Harvey, 1999; Ponti¤ and Schall, 1999; Cohen
et al., 2003; Stivers and Sun, 2010; Gulen et al., 2011). Panel B of Table 4 reports the results
from predictability tests using monthly SMB returns, whereas Panel C presents the corresponding
results using monthly HML returns.

Using WIV X , we �nd strong evidence of predictability for SMB returns via b/m and dfy. How-
ever, this evidence becomes weaker as the predictive horizon increases. As mentioned above, this
�nding is most likely driven by the loss of power for WIV X as the predictive horizon increases.
To the contrary, we �nd no evidence of predictability for e/p, tbl, and tms. It is worth noting
that most of the examined test statistics yield qualitatively similar inference. This is because these
predictors�degree of endogeneity with respect to SMB returns is very low. Hence, the conventional
test statistics would not be substantially oversized, as the magnitude of the Stambaugh bias and
the impact of overlapping observations at long horizons would be rather limited.

Regarding HML returns, the evidence in favor of predictability is weaker. In particular, using
the proposed IVX-Wald statistic, we �nd b/m to be a signi�cant predictor at K = 1 and K = 12
months, whereas dfy signi�cantly predicts HML returns only when K = 1 month. To the contrary,
relying on tNW or tHH , one would conclude that HML returns are strongly predictable at long
horizons, with tbl emerging as signi�cant predictor. On the other hand, tHOD appears to be very
conservative, with no predictor being signi�cant at the 5% level, regardless of the horizon length.
Taken together, if SMB and HML premia compensate investors for being exposed to macroeconomic
risks, it is only b/m and dfy that capture the time-variation in these premia, con�rming their validity

19



as business cycle proxies.
Panels B and C of Table IA.17 present the results from predictability tests for annual SMB and

HML returns, respectively. We �nd that b/m and dfy are strongly signi�cant predictors of annual
SMB returns, but this evidence is weaker beyond the 3-year horizon. None of the rest predictors
is found to be signi�cant across the examined horizons. Regarding HML, the weak predictability
evidence we reported using monthly returns now entirely disappears. Based on WIV X , we �nd
that none of these variables can predict annual HML returns. tHOD yields the same conclusion.
To the contrary, tNW and tHH would spuriously provide support for predictability via b/m and
tbl at K = 5 years. Despite the fact that HML yields an economically and statistically signi�cant
premium at the annual frequency, we �nd no evidence that this premium is time-varying in a
predictable manner via the set of state variables that we employ in this study.
4.2.3 Momentum Factor

The debate on whether MOMmimics an underlying risk factor or its premium re�ects systematic
mispricing remains unsettled. In fact, there is no universally accepted theoretical background to
hypothesize that MOM returns should be predictable via business cycle proxies. Nevertheless,
given the magnitude of the momentum premium, it is worth examining whether it is predictably
time-varying; such a �nding would have important implications for factor investing.

Panel A of Table IA.18 reports the results from predictability tests for monthly MOM returns.
Using WIV X , we �nd strong evidence that dfy is a signi�cant predictor of MOM returns across the
examined horizons. We �nd that d/p and b/m can also signi�cantly predict MOM returns at short
horizons, but this relationship is insigni�cant at K = 36 and K = 60 months. It is interesting
to observe that, in some cases, the examined test statistics lead to qualitatively di¤erent inference
regarding the predictability of MOM returns. In fact, using tHOD, no predictor appears to be
signi�cant at the 5% level, regardless of the horizon length. Equally importantly, tNW and tHH
would not reveal signi�cant predictability for any variable at K = 1 month. This disagreement
highlights the importance of using a test statistic with good �nite-sample properties, such asWIV X .6

Panel A of Table IA.19 reports the corresponding results for annual MOM returns. UsingWIV X ,
we �nd signi�cant evidence in favor of predictability via dfy at K = 1 and K = 2 years. There is
also evidence that e/p and tbl are signi�cant predictors of annual MOM returns at short horizons.
Interestingly, tNW , tHH and tHOD point towards no predictability across the variables considered,
regardless of the horizon length. In sum, we �nd that it is only dfy that can consistently predict
both monthly and annual MOM returns, providing a link between the premium that this factor
bears and the credit conditions at the aggregate level.
4.2.4 FF2015 Factors

FF2015 have recently proposed two more pricing factors (RMW and CMA) to explain the
cross-section of expected stock returns, extending their original 3-factor model to a 5-factor model.
If RMW and CMA re�ect systematic sources of risk and they carry signi�cant premia, then it
is legitimate to ask whether these factor returns are predictable too. Panel B of Table IA.18
reports the results from predictability tests for monthly RMW returns, whereas Panel C reports
the corresponding results for monthly CMA returns.

Regarding the pro�tability factor, usingWIV X , we �nd no evidence whatsoever that its monthly
returns are predictable via any of the employed state variables. The rest of the test statistics lead
to a very similar conclusion. This agreement across the various test statistics is presumably due to
the fact that the degree of endogeneity of the employed regressors with respect to monthly RMW
returns is quite low (see Panel B of Table 3), and hence the Stambaugh bias becomes negligible.

Similarly, we �nd no evidence that the monthly returns of the investment factor are predictable
at the 5% signi�cance level when WIV X is considered. The only exception is when tms is used as
a predictor and K = 60 months. To the contrary, tNW , tHH , and tHOD provide some evidence in
favor of predictability via tbl.

6 In the commonly considered case of price-scaled ratios being regressed on excess market returns, an upward bias
appears in the estimated slope coe¢ cient because �̂ < 0. To the contrary, when �̂ > 0, as it is the case for most of the
examined regressors with respect to monthly MOM returns (see Panel B of Table 3), the estimated slope coe¢ cient
would be biased downwards (see Stambaugh, 1986). This downward Stambaugh bias could result in t-tests failing to
reject the null when the alternative is true.
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Panels B and C of Table IA.19 present the corresponding results for annual RMW and CMA
returns. Using WIV X , we �nd no evidence that the returns of these factors are predictable, re-
gardless of the horizon considered. tHOD points to the same conclusion, whereas tNW and tHH
indicate tbl as a signi�cant predictor at long horizons. Overall, the results based on the correctly
sized IVX-Wald statistic show that neither monthly nor annual RMW or CMA returns are signif-
icantly predictable via the examined regressors. To the extent that these variables span the state
space of the economy, we can conclude that RMW and CMA premia do not re�ect time-varying
macroeconomic risk premia.
4.2.5 HXZ Factors

Concurrently with FF2015, HXZ proposed an alternative set of pricing factors based on Tobin�s
q-theory of investment. Table IA.20 reports the results from predictability tests for monthly ME
(Panel A), IA (Panel B), and ROE (Panel C) returns. ME returns are highly correlated with
SMB returns. Nevertheless, since ME is only available post-1967, these tests could be viewed as a
subsample predictability analysis for the size factor. We �nd almost no evidence of predictability
for monthly ME returns. UsingWIV X , we only �nd dfy to be a signi�cant predictor at the 5% level
when K = 1 month. To the contrary, b/m, which was found to signi�cantly predict monthly SMB
returns in the full sample period, appears now to be insigni�cant across the examined horizons.

Similarly, IA returns are strongly, but not perfectly, correlated with CMA returns. Hence, the
evidence from predictability tests for IA returns is very similar to the one reported for CMA returns
in Table IA.18. The only exception is that tbl is now found to be a signi�cant predictor of monthly
IA returns. Based on WIV X , we also �nd signi�cant evidence of predictability for monthly ROE
returns via e/p, dfy, and tbl. However, this evidence becomes weaker as the predictive horizon
increases. To the contrary, using tNW or tHH , one would erroneously conclude that ROE returns
are strongly signi�cantly predictable at long horizons.

Table IA.21 presents the results from the predictability tests using annual ME, IA, and ROE
returns. On the basis of WIV X , we �nd no evidence of predictability for ME returns, regardless of
the horizon length. Similarly, we �nd no evidence of predictability for IA returns; the only exception
is when tms is used as predictor and K = 5 years. To the contrary, annual ROE returns are found
to be signi�cantly predictable via e/p, dfy, and tbl. This �nding is consistent with the results
reported for monthly ROE returns. However, these predictive relationships become insigni�cant
when K = 3 or K = 5 years.
4.3 Multivariate Predictive Regressions

In this Section, we consider multivariate predictive regressions using combinations of the pre-
dictors employed in the univariate analysis presented above. Multivariate predictive regressions are
of particular interest for a number of reasons. In tests of the semi-strong form of market e¢ ciency,
one may be interested in testing the joint predictive ability of a set of information variables rather
than the individual signi�cance of each of them separately. In addition, multivariate predictive
regressions can be used to select conditioning variables for the speci�cation of conditional asset
pricing models (see Petkova and Zhang, 2005; Cooper and Maio, 2019). More formally, the state
space of the economy may be more appropriately spanned by a set of state variables rather than a
single one. The VAR models that are commonly used in the intertemporal asset pricing and asset
allocation literature typically include multiple state variables (see Campbell et al., 2003; Campbell
and Vuolteenaho, 2004; Petkova, 2006; Maio and Santa-Clara, 2012), corresponding to multivariate
predictive regressions for stock returns.

Unfortunately, most of the test statistics that have been proposed to deal with highly persistent
regressors are developed within a univariate setup (see Valkanov, 2003; Torous et al., 2004; Camp-
bell and Yogo, 2006; Rossi, 2007; Hjalmarsson, 2011) and cannot be applied to the multivariate
framework, resulting in a methodological gap. Filling this gap, our test statistic can accommodate
multiple predictors of arbitrary persistence, exhibiting very good �nite-sample properties.

We report results for six combinations of the employed predictors. Motivated by the present-
value model of Ang and Bekaert (2007), Combination I uses d/p and tbl, whereas Combination
II includes e/p, instead of d/p, together with tbl. Combination III is motivated by the bivariate
regression by Lamont (1998), using d/p and e/p as predictors. Combination IV corresponds to
the trivariate regression of Ang and Bekaert (2007), including d/p, e/p, and tbl. Combination V,
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which consists of e/p, b/m, and tms resembles the state vector in the VAR model of Campbell
and Vuolteenaho (2004), using b/m instead of the value spread. Combination VI includes the four
"information variables" of Ferson and Schadt (1996) and Petkova (2006), namely d/p, tbl, tms, and
dfy. Using these pre-speci�ed combinations of the predictors, we sidestep the data mining concerns
that would arise if we were instead "searching" among their numerous permutations.
4.3.1 Market Factor

Panel A of Table 5 reports the results from multivariate predictability tests using monthly excess
market returns, leading to a series of interesting conclusions. First, using WIV X , we �nd evidence
of joint predictability for some of the combinations considered. However, the evidence based on
WIV X is much weaker relative to what WNW , WHH , and WHOD indicate. This pattern re�ects
the severe oversizing that mainly characterizes WNW and WHH , but also WHOD in the presence of
highly persistent and endogenous regressors, such as the price-scaled ratios.

Second, using WIV X , the evidence for predictability mostly disappears as the horizon increases.
We �nd that none of the reported combinations yields joint signi�cance when K = 36 or K = 60
months. To an extent, this feature may be driven by the loss of power of the test statistic as
the horizon increases. To the contrary, WNW and WHH indicate that excess market returns are
strongly predictable at long horizons. This feature highlights how spurious inference due to these
tests�oversizing at long horizons has been misinterpreted by prior studies as strong evidence in
favor of predictability.

The third conclusion refers to the combinations that are jointly signi�cant using the correctly
sized IVX-Wald statistic. In line with Ang and Bekaert (2007), we �nd that d/p and tbl are jointly
signi�cant predictors in the post-1952 period, but only when K = 1 month. Interestingly, e/p and
tbl are also found to be jointly signi�cant at short horizons. To the contrary, the Lamont regression
(d/p & e/p) does not yield joint signi�cance. The only other combination that seems to contain
robust and signi�cant predictive ability at short horizons is Combination VI (d/p, tbl, tms & dfy).

Panel A of Table IA.22 reports the corresponding results using annual excess market returns.
The evidence in favor of predictability becomes even weaker relative to the monthly results. In
particular, using WIV X , we �nd that neither of these six combinations yields joint predictability
beyond K = 1 year. Similar is the conclusion using WHOD. To the contrary, WNW and WHH

spuriously indicate that excess market returns are strongly predictable, especially at long horizons.
Taken together, our results show that excess market returns are signi�cantly predictable at short
horizons via the combinations of variables considered by Ferson and Schadt (1996), Petkova (2006),
and Ang and Bekaert (2007), but using a correctly sized test statistic, this evidence almost entirely
disappears as the horizon increases.
4.3.2 FF1993 Factors

Panels B and C of Table 5 examine whether monthly SMB and HML returns, respectively, are
jointly predictable by the combinations of variables that we consider in this Section. Interestingly,
we �nd very little evidence in favor of predictability. In particular, on the basis of WIV X , we �nd
that Combination VI (d/p, tbl, tms & dfy) can jointly predict monthly SMB returns only when
K = 1 month. None of the six combinations contains signi�cant predictive ability for SMB returns
beyond the horizon of K = 12 months. Similarly, there is no evidence of long-horizon predictability
for monthly HML returns. It is only the combinations of d/p & tbl and e/p & tbl that signi�cantly
predict HML returns when K = 1 month.

Panels B and C of Table IA.22 report the corresponding results for annual SMB and HML
returns, respectively. The results are striking. Regardless of the horizon length, none of the
combinations considered yields signi�cant predictability when eitherWIV X orWHOD is used as test
statistic. To the contrary, WNW and WHH spuriously indicate that HML returns, in particular,
are strongly predictable when K = 5 years. In conclusion, the very weak in-sample predictability
that we �nd for SMB and HML returns questions the reliability of conditional Fama-French models
with multiple conditioning variables.
4.3.3 Momentum Factor

We next examine MOM returns. Panel A of Table IA.23 reports the results for monthly MOM
returns, whereas Panel A of Table IA.24 present the corresponding results for annual MOM returns.
Based on WIV X , we �nd strong evidence of predictability at short horizons. In the case of monthly
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returns, all six combinations yield joint signi�cance at the 5% level when K = 1 month. However,
this evidence becomes substantially weaker or even disappears as the predictive horizon increases.
Similarly, all combinations, apart from Combination VI, yield joint signi�cance for annual MOM
returns when K = 1 year. This evidence disappears as the horizon increases, particularly when
K > 2 years, highlighting again the loss of power at long horizons.

These results reveal that the momentum premium is predictably time-varying via the state
variables that are commonly used in the empirical asset pricing literature. In fact, this evidence is
much more robust relative to the evidence for the in-sample predictability of the market premium,
which has attracted most of the attention in prior studies. Apart from drawing a clear link between
business cycle conditions and the time-variation in momentum returns, our �ndings show that,
within a factor investing setup, timing momentum returns may prove to be more reliable than
timing market, size, or value returns.
4.3.4 FF2015 Factors

We also conduct joint predictability tests with respect to RMW and CMA returns. The results
for monthly RMW returns are reported in Panel B of Table IA.23; the corresponding results for
annual RMW returns are presented in Panel B of Table IA.24. Using WIV X , we �nd no evidence of
predictability across the six combinations of predictors considered, regardless of the horizon length.
This conclusion holds true for both monthly and annual RMW returns. WHOD yields the same
inference, whereas WNW and WHH spuriously indicate that RMW returns are predictable at long
horizons. We conclude that the pro�tability premium, as captured by the RMW factor of FF2015,
is not predictably time-varying through the commonly used state variables.

Panel C of Table IA.23 contains the results from joint predictability tests with respect to
monthly CMA returns. Relying on WIV X , we �nd signi�cant evidence in favor of predictability for
most of the combinations considered, which remains robust up to K = 36 months. Similar is the
evidence based on WHOD. On the other hand, the corresponding results for annual CMA returns,
which are reported in Panel C of Table IA.24, show no evidence of predictability across the six
combinations considered. These results highlight that the inference on predictability also depends
on the frequency of the factor returns used, undermining the robustness of conclusions based solely
on monthly or annual returns.
4.3.5 HXZ Factors

Last, we run joint predictability tests for the HXZ factors. Results are presented in Table
IA.25 for monthly returns and in Table IA.26 for annual returns. Regarding the ME factor, WIV X

provides no evidence of joint predictability for any of the six combinations examined, regardless of
the length of the predictive horizon. This is true for both monthly and annual ME returns. As
with SMB, this evidence questions the common assumption that the size premium is related to the
business cycle conditions, which are commonly proxied by the employed state variables.

On the other hand, using WIV X , we �nd signi�cant evidence that monthly IA returns are
predictable via combinations that involve d/p, e/p, and tbl, particularly at short horizons. However,
these predictability relationships become weaker or even insigni�cant when we examine annual IA
returns. In fact, none of the examined combinations yields joint predictability when K = 1 year.

Among the factors proposed by HXZ, the strongest evidence in favor of predictability is re-
ported for ROE. In particular, WIV X indicates signi�cant joint predictability at short horizons
for all six combinations, with respect to both monthly and annual ROE returns. However, this
evidence becomes weaker as the predictive horizon increases. This �nding is in stark contrast with
the corresponding results for the pro�tability factor (RMW) of FF2015, for which no joint pre-
dictability is reported. This is due to the di¤erent way that these two pro�tability factors have
been constructed and the relatively low correlation that their returns exhibit.

Taken together, our results support the argument that the investment and pro�tability premia
of HXZ are related to the state of the economy and that they are predictably time-varying, at least
at the monthly frequency. Hence, it is worth considering conditional versions of this 4-factor model,
as they may exhibit superior pricing ability relative to its unconditional version.7

7We have also conducted multivariate predictability tests using a general-to-speci�c approach. Speci�cally, for
each factor return and a given horizon, we initially estimate a predictive regression including all six predictors. Then,
we drop the predictor with the lowest individual WIV X value, as long as this does not exceed the 10% chi-squared

23



5 Conclusion

This study provides a critical assessment of long-horizon return predictability tests via persistent
regressors. We conduct an extensive simulation analysis to show that, in the presence of a su¢ -
ciently persistent regressor, the test statistics using Newey-West or Hansen-Hodrick standard errors
become severely oversized as the horizon increases, leading to spurious inference. Moreover, the
test statistic with Hodrick standard errors also tends to overreject the null of no predictability in
the presence of highly persistent and endogenous regressors, such as the price-scaled ratios that
have been predominantly used in the literature during the last three decades. Hence, we side with
prior critical views, which cast doubt on the conventional wisdom that market returns are strongly
signi�cantly predictable at long horizons via price-scaled ratios or term structure variables.

Whereas a number of alternative testing methodologies have been proposed to conduct valid
inference, they all have certain limitations, either because they make strong assumptions about
the exact time series properties of the predictors or because they cannot accommodate multiple
predictors. As a remedy, we propose a simple IVX-Wald statistic, which accommodates multiple
predictors, exhibits excellent �nite-sample properties regardless of the predictive horizon�s length,
and is robust to a wide range of regressor persistence types.

Employing the proposed test statistic and a small set of variables that have been commonly
used as proxies for business cycle conditions, we �nd evidence of predictability for "old" and "new"
pricing factors with monthly returns. However, this evidence becomes weaker, not stronger, as
the predictive horizon increases and disappears for most of the factors with annual returns. This
is particularly true for market returns, the predictability of which has been long debated in the
literature. Interestingly, however, we �nd robust and signi�cant predictability for the returns of the
momentum factor as well as the pro�tability factor of HXZ. This evidence provides a link between
the macroeconomy and the premia that these factors yield.

In conclusion, our study questions the incremental value of using long-horizon predictive regres-
sions, for the additional reason that correctly sized test statistics are less, not more powerful as the
horizon increases. Hence, we argue that it is preferable to conduct inference relying on the actual
data generating process, rather than resorting to long-horizon predictive regressions. To a large
extent, this conclusion is consistent with the revisionary statement of Cochrane (2017, p. 490):
"After a long controversy, I think it is fair to say that long-horizon regressions are most important
for showing the economic rather than statistical signi�cance of forecasting regressions. The number
of nonoverlapping observations declines as the horizon lengthens, so larger standard errors make
up for larger coe¢ cients, and there is not really a huge statistical advantage either way".
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Table 1 
Finite−sample (𝒏𝒏=1,000) sizes with no autocorrelation in the residuals of the autoregression 
This table presents finite−sample sizes testing the null hypothesis 𝐻𝐻0:𝐴𝐴 = 0 versus the alternative 𝐻𝐻1:𝐴𝐴 ≠ 0 in (1) when there is no 
autocorrelation in the residuals of the autoregressive equation (2). The reported rejection rates for each test correspond to a 5% nominal 
size and they are based on the Monte Carlo simulation described in Section 3.1 with 10,000 repetitions and sample size 𝑛𝑛 = 1,000. 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 
denotes the t-statistic from an ordinary least squares (OLS) 𝐾𝐾 −horizon predictive regression. 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 is the OLS t-statistic scaled by the 
square root of the predictive horizon 𝐾𝐾. 𝑡𝑡𝑁𝑁𝑁𝑁 denotes the t-statistic computed with Newey-West (1987) standard errors, 𝑡𝑡𝐻𝐻𝐻𝐻 is the t-statistic 
computed with Hansen-Hodrick (1980) standard errors, and 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆 is the corresponding t-statistic computed with Hodrick (1992) standard 
errors. 𝑡𝑡𝐵𝐵𝑂𝑂𝑁𝑁𝐵𝐵 is the Bonferroni test statistic of Hjalmarsson (2011). 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 denotes the IVX-Wald test statistic defined in (23). Results are 
reported for different degrees of correlation between the residuals of regressions (1) and (2), 𝛿𝛿 = −0.99,−0.5, 0, different local-to-unity 
parameters, 𝐶𝐶 = 0,−5,−10,−50, corresponding to the autoregressive root 𝑅𝑅𝑛𝑛, and different predictive horizons 𝐾𝐾 = 1, 10, 50, 100. 

𝛿𝛿 = −0.99 𝐶𝐶 𝑅𝑅𝑛𝑛 𝐾𝐾 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆 𝑡𝑡𝐵𝐵𝑂𝑂𝑁𝑁𝐵𝐵 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
 0 1 1 0.306 0.306 0.310 0.312 0.303 0.046 0.056 
   10 0.874 0.315 0.484 0.352 0.307 0.036 0.049 
   50 0.948 0.341 0.595 0.499 0.317 0.028 0.045 
   100 0.963 0.365 0.676 0.638 0.335 0.022 0.038 
 -5 0.995 1 0.119 0.119 0.121 0.122 0.119 0.031 0.057 
   10 0.668 0.116 0.227 0.149 0.117 0.031 0.057 
   50 0.856 0.118 0.334 0.278 0.132 0.023 0.048 
   100 0.900 0.113 0.434 0.441 0.152 0.014 0.041 
 -10 0.990 1 0.087 0.087 0.088 0.088 0.085 0.029 0.054 
   10 0.599 0.084 0.176 0.113 0.087 0.028 0.054 
   50 0.811 0.069 0.270 0.236 0.095 0.021 0.046 
   100 0.867 0.058 0.357 0.389 0.110 0.010 0.042 
 -50 0.950 1 0.056 0.056 0.057 0.059 0.054 0.024 0.048 
   10 0.507 0.039 0.125 0.083 0.057 0.020 0.048 
   50 0.710 0.007 0.187 0.215 0.064 0.007 0.041 
   100 0.753 0.002 0.260 0.361 0.079 0.001 0.036 

𝛿𝛿 = −0.5 𝐶𝐶 𝑅𝑅𝑛𝑛 𝐾𝐾 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆 𝑡𝑡𝐵𝐵𝑂𝑂𝑁𝑁𝐵𝐵 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
 0 1 1 0.109 0.109 0.112 0.114 0.107 0.034 0.053 
   10 0.638 0.112 0.211 0.140 0.113 0.035 0.050 
   50 0.836 0.121 0.290 0.241 0.125 0.039 0.044 
   100 0.880 0.123 0.361 0.353 0.145 0.048 0.038 
 -5 0.995 1 0.068 0.068 0.070 0.071 0.068 0.024 0.053 
   10 0.562 0.068 0.145 0.092 0.069 0.023 0.051 
   50 0.792 0.067 0.218 0.179 0.078 0.024 0.050 

   100 0.843 0.061 0.290 0.297 0.092 0.026 0.044 

 -10 0.990 1 0.057 0.057 0.060 0.061 0.057 0.022 0.050 
   10 0.541 0.055 0.128 0.081 0.057 0.021 0.048 
   50 0.777 0.046 0.201 0.167 0.065 0.019 0.045 
   100 0.827 0.039 0.269 0.277 0.078 0.018 0.044 
 -50 0.950 1 0.051 0.051 0.052 0.053 0.049 0.019 0.049 
   10 0.501 0.033 0.109 0.066 0.050 0.013 0.048 
   50 0.695 0.007 0.154 0.148 0.053 0.004 0.043 
   100 0.735 0.001 0.179 0.241 0.063 0.001 0.041 

𝛿𝛿 = 0 𝐶𝐶 𝑅𝑅𝑛𝑛 𝐾𝐾 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆 𝑡𝑡𝐵𝐵𝑂𝑂𝑁𝑁𝐵𝐵 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
 0 1 1 0.049 0.049 0.051 0.052 0.049 0.049 0.051 
   10 0.539 0.048 0.115 0.066 0.051 0.046 0.048 
   50 0.791 0.052 0.182 0.144 0.064 0.048 0.047 
   100 0.848 0.053 0.253 0.252 0.079 0.058 0.043 
 -5 0.995 1 0.053 0.053 0.053 0.054 0.052 0.051 0.050 
   10 0.532 0.049 0.118 0.070 0.051 0.045 0.049 
   50 0.774 0.047 0.180 0.146 0.058 0.040 0.048 
   100 0.827 0.040 0.248 0.253 0.067 0.041 0.042 
 -10 0.990 1 0.050 0.050 0.050 0.051 0.049 0.047 0.049 
   10 0.531 0.047 0.118 0.070 0.050 0.041 0.049 
   50 0.764 0.040 0.177 0.146 0.055 0.035 0.045 
   100 0.823 0.028 0.239 0.243 0.064 0.030 0.044 
 -50 0.950 1 0.047 0.047 0.048 0.051 0.047 0.044 0.049 
   10 0.498 0.031 0.107 0.064 0.045 0.028 0.045 
   50 0.692 0.006 0.138 0.128 0.052 0.006 0.046 
   100 0.726 0.001 0.158 0.205 0.057 0.001 0.044 
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Table 2 
Finite−sample (𝒏𝒏=1,000) sizes for predictive systems with two persistent regressors 
This table presents finite−sample sizes for tests based on the predictive system in equation (25) with two persistent regressors. The reported rejection rates for each test correspond to a 5% nominal size and 
they are computed using the Monte Carlo simulation described in Section 3.3 with 10,000 repetitions and sample size 𝑛𝑛 = 1,000. Panel A reports the rejection rates for joint tests of the null hypothesis 𝐻𝐻0: 𝐴𝐴 ≡
(𝐴𝐴1 𝐴𝐴2) = 01𝑥𝑥2, i.e., that the slope coefficients of both regressors are equal to zero. 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 refers to the Wald statistic computed from an ordinary least squares (OLS) regression scaled by the predictive 
horizon 𝐾𝐾. 𝑊𝑊𝑁𝑁𝑁𝑁 denotes the Wald statistic computed with Newey-West (1987) standard errors. 𝑊𝑊𝐻𝐻𝐻𝐻 represents the Wald statistic computed with Hansen-Hodrick (1980) standard errors. 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 refers to the 
corresponding Wald statistic computed with Hodrick (1992) standard errors. 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 denotes the IVX-Wald test statistic defined in (23). Panel B reports the rejection rates for tests under the null hypothesis 
𝐻𝐻0: 𝐴𝐴1 = 0, i.e., that the coefficient of the first persistent regressor is equal to zero. Panel C reports the corresponding rejection rates for tests under the null hypothesis 𝐻𝐻0: 𝐴𝐴2 = 0, i.e., that the coefficient of 
the second persistent regressor is equal to zero. 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 is the OLS t-statistic scaled by the square root of the predictive horizon 𝐾𝐾. 𝑡𝑡𝑁𝑁𝑁𝑁 denotes the t-statistic computed with Newey-West standard errors, 𝑡𝑡𝐻𝐻𝐻𝐻 
is the t-statistic computed with Hansen-Hodrick standard errors, and 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆 is the corresponding t-statistic computed with Hodrick standard errors. Results are reported for three different combinations of the 
relevant parameter values (C, Φ and Σ). diag(C) provides the local-to-unity parameters of the regressors employed in each case. For all cases considered data of monthly log excess market return (MKT) is 
employed for the regressand, whereas for each case monthly data for a combination of two regressors (Predictors) is used. For each case, the estimated autocorrelation coefficients (𝜙𝜙′𝑠𝑠) in the residuals of the 
autoregressive equations are reported (diag(Φ)) as well as the degrees of correlation (𝛿𝛿′𝑠𝑠) between the 𝜀𝜀𝑡𝑡  and 𝑢𝑢𝑡𝑡 with matrix Σ given in (25). For each case, the combination of predictors employed for the 
estimation of the simulation parameters along with their values are: 

 Predictors Data period diag(C) diag(Φ)  Σ 

Case I dividend-price ratio, 
T-bill rate 1952-2017 (0, -5) (0.0640, 0.3379) �

1 −0.9827 −0.1251
−0.9827 1 0.3379
−0.1251 0.3379 1

� 

Case II earnings-price ratio, 
default yield spread 1927-2017 (0, -5) (0.2741, 0.2167) �

1 −0.7596 −0.2787
−0.7596 1 0.1246
−0.2787 0.1246 1

� 

Case III earnings-price ratio,  
T-bill rate 1952-2017 (0, -10) (0.3538, 0.3379) �

1 −0.6156 −0.1282
−0.6156 1 0.1583
−0.1282 0.1583 1

� 

 
  Panel A:  𝐻𝐻0: 𝐴𝐴1 = 𝐴𝐴2 = 0 Panel B:  𝐻𝐻0: 𝐴𝐴1 = 0 Panel C:  𝐻𝐻0: 𝐴𝐴2 = 0 

Case I K 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆  𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
 1 0.123 0.130 0.133 0.124 0.060 0.165 0.166 0.169 0.163 0.072 0.075 0.077 0.079 0.074 0.057 
 10 0.130 0.289 0.187 0.130 0.061 0.167 0.284 0.201 0.165 0.069 0.074 0.153 0.101 0.074 0.054 
 50 0.142 0.433 0.377 0.143 0.052 0.172 0.373 0.319 0.176 0.058 0.067 0.220 0.184 0.072 0.051 
 100 0.146 0.560 0.555 0.163 0.043 0.171 0.454 0.452 0.189 0.044 0.056 0.297 0.305 0.073 0.047 
Case II K 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆  𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 

 1 0.273 0.279 0.285 0.266 0.079 0.373 0.378 0.381 0.371 0.105 0.116 0.117 0.118 0.115 0.064 
 10 0.281 0.504 0.355 0.273 0.076 0.378 0.540 0.417 0.369 0.099 0.113 0.206 0.139 0.110 0.062 
 50 0.314 0.658 0.575 0.280 0.064 0.395 0.635 0.561 0.378 0.078 0.102 0.276 0.230 0.092 0.059 
 100 0.347 0.764 0.730 0.303 0.053 0.411 0.705 0.680 0.380 0.056 0.087 0.337 0.328 0.081 0.062 
Case III K 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆  𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
 1 0.170 0.177 0.180 0.167 0.066 0.217 0.222 0.226 0.217 0.073 0.082 0.085 0.086 0.081 0.062 
 10 0.174 0.350 0.234 0.167 0.065 0.219 0.354 0.253 0.216 0.069 0.078 0.165 0.107 0.080 0.061 
 50 0.181 0.498 0.436 0.181 0.055 0.230 0.451 0.385 0.228 0.057 0.064 0.228 0.192 0.073 0.054 
 100 0.187 0.620 0.603 0.201 0.047 0.236 0.531 0.516 0.244 0.046 0.049 0.293 0.304 0.069 0.053 

 



30 
 

Table 3 
Descriptive statistics, monthly data 
This table presents descriptive statistics for monthly equity factor returns (Panel A) and predictive regressors (Panel B). Panel A contains the correlation matrix, mean, standard deviation and autoregressive 
coefficient of monthly equity factor log returns during the period 1927-2017. MKT, SMB, and HML denote the excess market, size, and value factors, respectively, from the Fama-French 3-factor model. 
MOM stands for the momentum factor. RMW and CMA denote the profitability and investment factors, respectively, from the Fama-French 5-factor model. ME, IA, and ROE stand for the size, investment, 
and profitability factors, respectively, from the Hou-Xue-Zhang (HXZ) 4-factor model. RMW and CMA are available post 1964. ME, IA, and ROE are available for the period 1967-2016. Panel B presents 
for each predictive regressor: (i) the autoregressive coefficient 𝑅𝑅𝑛𝑛� , which is estimated from the autoregressive equation (2), (ii) the autocorrelation coefficient 𝜙𝜙� for the residuals of the autoregressive equation 
(2), and (iii) the correlation coefficient �̂�𝛿 between the residuals of the univariate predictive regression model (1) for each equity factor and the corresponding autoregressive equation (2). These statistics are 
reported for the following predictive regressors: log dividend-price ratio (d/p), log earnings-price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), T-bill rate (tbl), and term spread 
(tms). The sample period for tbl and tms is 1952-2017. 
 

Panel A: Equity Factor Returns 

 Correlations of Factor Returns    

 MKT SMB HML MOM RMW CMA ME IA ROE Mean (%) St. Dev. (%) AR coeff. 
MKT 1.00         0.51 5.35 0.113 
SMB 0.31 1.00        0.17 3.13 0.055 
HML 0.21 0.10 1.00       0.32 3.39 0.202 
MOM -0.33 -0.15 -0.41 1.00      0.53 5.22 0.145 
RMW -0.23 -0.40 0.07 0.11 1.00     0.22 2.24 0.144 
CMA -0.38 -0.16 0.69 -0.01 -0.05 1.00    0.27 2.00 0.136 
ME 0.27 0.95 -0.04 -0.03 -0.37 -0.05 1.00   0.26 3.06 0.041 
IA -0.38 -0.26 0.67 0.03 0.10 0.91 -0.15 1.00  0.39 1.87 0.132 
ROE -0.20 -0.37 -0.14 0.52 0.66 -0.09 -0.31 0.04 1.00 0.51 2.56 0.134 

Panel B: Predictive Regressors 

 Correlations of Residuals (𝛿𝛿′𝑠𝑠)    
 MKT SMB HML MOM RMW CMA ME IA ROE 𝑅𝑅𝑛𝑛� 𝜙𝜙�  

d/p -0.97 -0.23 -0.22 0.36 0.16 0.35 -0.15 0.33 0.17 1.000 0.10  
e/p -0.75 -0.21 -0.15 0.29 0.08 0.25 -0.10 0.25 0.07 1.000 0.27  
b/m -0.81 -0.18 -0.32 0.39 0.03 0.20 -0.11 0.19 0.04 0.997 0.18  
dfy -0.27 -0.23 -0.27 0.26 0.04 0.03 -0.07 0.03 0.08 0.993 0.22  
tbl -0.13 -0.03 -0.07 0.08 0.05 -0.05 -0.01 0.00 0.07 0.997 0.34  
tms 0.06 0.11 0.10 -0.13 -0.09 0.08 0.10 0.03 -0.17 0.983 0.11  
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Table 4 
Univariate predictive regressions for monthly MKT, SMB, and HML factor returns 
This table presents the results of univariate 𝐾𝐾 −horizon predictive regressions for monthly equity factor returns, as in equation (8), testing the null hypothesis 𝐻𝐻0:𝐴𝐴 = 0 versus the alternative 𝐻𝐻1:𝐴𝐴 ≠ 0 in (1). 
The sample period is 1927-2017. MKT, SMB, and HML denote the excess market, size, and value factors, respectively, from the Fama-French 3-factor model. Results are presented for each of the following 
predictive regressors: log dividend-price ratio (d/p), log earnings-price ratio (e/p), book-to-market value ratio (b/m), default yield spread (dfy), T-bill rate (tbl), and term spread (tms). The sample period for tbl 
and tms is 1952-2017. Results are reported for the predictive horizons 𝐾𝐾 = 1, 12, 36, 60. �̂�𝐴𝐾𝐾 denotes the ordinary least squares (OLS) slope coefficient estimate from the corresponding 𝐾𝐾 −horizon regression 
model. 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 is the OLS t-statistic scaled by the square root of the predictive horizon 𝐾𝐾. 𝑡𝑡𝑁𝑁𝑁𝑁 denotes the t-statistic computed with Newey-West (1987) standard errors, 𝑡𝑡𝐻𝐻𝐻𝐻 is the t-statistic computed with 
Hansen-Hodrick (1980) standard errors, and 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆 is the corresponding t-statistic computed with Hodrick (1992) standard errors. 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 denotes the IVX-Wald test statistic defined in (23). * and ** indicate 
significance at the 5% and 1% level, respectively. 
Predictor  Panel A: MKT Panel B: SMB Panel C: HML 

d/p K �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
 1 0.00 1.40 0.96 0.89 1.04 1.84 0.00 1.30 1.07 1.12 1.03 2.20 0.00 1.19 0.67 0.61 0.76 1.29 
 12 0.08 1.61 1.75 1.47 1.42 3.06 0.04 1.69 1.87 1.53 1.33 4.59* 0.03 1.11 0.96 0.80 0.82 1.46 
 36 0.21 1.61 2.57* 2.48* 1.69 2.93 0.08 0.87 0.97 0.78 0.91 1.73 0.06 0.87 0.99 0.89 0.66 0.46 
 60 0.34 1.68 3.40** 3.42** 1.85 2.57 0.07 0.45 0.56 0.51 0.55 0.39 0.11 0.94 1.09 0.98 0.79 0.52 

e/p K �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
 1 0.01 1.94 1.72 1.61 1.90 4.22* 0.00 -0.10 -0.10 -0.10 -0.09 0.01 0.00 1.36 1.05 0.97 1.16 1.72 
 12 0.09 1.75 2.09* 1.87 2.24* 4.57* 0.01 0.46 0.62 0.51 0.49 0.30 0.03 0.86 1.00 0.88 0.99 0.85 
 36 0.20 1.35 1.96* 1.87 2.03* 3.21 0.02 0.22 0.32 0.25 0.33 0.11 0.05 0.67 0.93 0.83 0.77 0.33 
 60 0.25 1.11 1.62 1.58 1.71 2.12 0.01 0.05 0.06 0.05 0.06 0.00 0.07 0.56 0.95 0.87 0.71 0.21 

b/m K �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
 1 0.01 2.16* 1.12 1.00 1.25 3.90* 0.01 2.60** 1.95 2.00* 1.90 7.00** 0.01 3.15** 1.25 1.10 1.43 8.79** 
 12 0.19 2.43* 2.93** 2.53* 1.84 6.12* 0.15 3.43** 3.60** 2.96** 2.20* 13.07** 0.11 2.15* 1.99* 1.68 1.41 5.05* 
 36 0.46 2.03* 2.51* 2.13* 2.25* 3.94* 0.28 1.79 2.24* 1.85 1.96* 6.05* 0.18 1.48 1.80 1.64 1.24 1.76 
 60 0.60 1.75 2.60* 2.21* 2.18* 2.71 0.25 0.95 1.41 1.32 1.29 2.45 0.25 1.31 2.00* 1.85 1.28 1.37 

dfy K �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
 1 0.15 0.65 0.23 0.21 0.27 0.20 0.60 4.43** 2.37* 2.36* 2.25* 18.83** 0.35 2.37* 0.72 0.63 0.82 5.12* 
 12 2.26 0.73 0.64 0.61 0.41 0.39 5.93 3.61** 4.67** 4.24** 1.99* 14.25** 2.96 1.52 1.27 1.09 0.69 2.75 
 36 5.97 0.67 1.19 1.16 0.55 0.32 12.89 2.27* 3.94** 3.38** 1.88 9.45** 3.08 0.64 1.15 1.36 0.37 0.36 
 60 12.44 0.91 2.04* 1.71 0.90 0.74 14.88 1.55 3.15** 2.95** 1.69 5.60* 5.38 0.72 1.53 1.73 0.52 0.50 

tbl K �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
 1 -0.12 -2.40* -2.20* -2.17* -2.19* 5.21* -0.02 -0.48 -0.54 -0.54 -0.55 0.14 0.06 1.85 1.63 1.55 1.69 3.66 
 12 -0.96 -1.49 -1.84 -1.84 -1.58 2.44 0.08 0.20 0.31 0.27 0.26 0.10 0.38 0.85 0.98 0.89 1.00 1.32 
 36 -2.05 -1.14 -2.06* -1.63 -1.29 1.28 0.53 0.35 0.70 0.59 0.60 0.36 1.52 1.30 2.21* 2.23* 1.51 2.46 
 60 -2.23 -0.77 -1.11 -0.96 -0.90 0.67 0.22 0.10 0.17 0.16 0.16 0.10 2.56 1.40 3.98** 3.78** 1.64 2.53 

tms K �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 �̂�𝐴𝐾𝐾 𝑡𝑡𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑡𝑡𝑁𝑁𝑁𝑁 𝑡𝑡𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻𝑂𝑂𝑆𝑆  𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
 1 0.23 2.16* 1.96* 1.90 2.02* 4.39* 0.09 1.17 1.18 1.16 1.21 1.81 -0.08 -1.13 -0.97 -0.89 -1.05 0.83 
 12 2.65 1.90 2.56* 2.52* 2.09* 4.98* 0.25 0.27 0.36 0.30 0.34 0.20 0.34 0.34 0.38 0.33 0.44 0.64 
 36 5.98 1.60 4.08** 3.65** 2.05* 4.44* -2.22 -0.68 -1.23 -1.19 -1.24 1.31 -1.08 -0.42 -0.77 -0.80 -0.63 0.06 
 60 8.28 1.39 2.46* 2.19* 2.07* 4.76* -4.09 -0.73 -1.60 -2.92** -1.52 2.68 -3.14 -0.78 -1.94 -2.12* -1.35 0.99 
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Table 5 
Multivariate predictive regressions for monthly MKT, SMB, and HML factor returns 
This table presents the results of multivariate 𝐾𝐾 −horizon predictive regressions for monthly equity factor returns, as in equation (8), testing the joint null hypothesis 𝐻𝐻0:𝐴𝐴 = 01𝑥𝑥𝑥𝑥 in (1). MKT, SMB, and HML 
denote the excess market, size, and value factors, respectively, from the Fama-French 3-factor model. Results are presented for 6 combinations of predictive regressors. Combination I uses d/p and tbl. 
Combination II employs e/p and tbl. Combination III involves d/p and e/p, whereas Combination IV uses d/p, e/p, and tbl. Combination V utilizes e/p, b/m, and tms. Combination VI employs d/p, tbl, tms, and 
dfy. The sample period for combinations that involve tbl or tms is 1952-2017. For Combination III, the sample period is 1927-2017. Results are reported for the predictive horizons 𝐾𝐾 = 1, 12, 36, 60. 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 
refers to the Wald statistic computed from an ordinary least squares 𝐾𝐾 −horizon predictive regression scaled by 𝐾𝐾. 𝑊𝑊𝑁𝑁𝑁𝑁 denotes the Wald statistic computed with Newey-West (1987) standard errors. 𝑊𝑊𝐻𝐻𝐻𝐻 
represents the Wald statistic computed with Hansen-Hodrick (1980) standard errors. 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 refers to the corresponding Wald statistic computed with Hodrick (1992) standard errors. 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 denotes the IVX-Wald 
test statistic defined in (23). * and ** indicate significance at the 5% and 1% level, respectively. 
  Panel A: MKT Panel B: SMB Panel C: HML 
Combination I K 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
d/p & tbl 1 14.56** 13.19** 13.04** 12.52** 6.22* 1.05 0.67 0.69 0.66 1.63 4.53 3.01 2.73 3.20 6.26* 
 12 10.50** 14.63** 10.80** 10.85** 4.32 0.64 0.84 0.59 0.43 1.70 0.74 0.96 0.79 0.99 1.80 
 36 7.83* 22.37** 25.87** 6.89* 2.36 0.16 0.73 0.63 0.40 0.48 1.70 4.95 5.25 2.34 3.23 
 60 4.50 93.38** – 4.76 1.46 0.13 0.68 0.99 0.21 0.75 1.98 15.87** 14.80** 2.82 3.51 
Combination II K 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
e/p & tbl 1 12.89** 11.54** 11.36** 11.25** 11.25** 0.40 0.42 0.42 0.43 0.36 5.54 4.44 4.06 4.64 6.32* 
 12 7.03* 10.19** 8.40* 8.47* 7.71* 0.12 0.17 0.12 0.12 0.31 1.30 1.39 1.10 1.75 2.96 
 36 4.27 12.98** 13.48** 5.64 4.48 0.12 0.56 0.44 0.36 0.36 1.99 6.69* 7.04* 2.74 3.47 
 60 1.59 5.55 4.62 2.86 2.22 0.01 0.03 0.03 0.04 0.13 2.60 18.60** 15.48** 3.76 4.02 
Combination III K 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
d/p & e/p 1 3.76 2.97 2.60 3.61 3.38 3.93 2.29 2.38 2.17 4.34 1.95 1.11 0.96 1.35 1.84 
 12 3.33 5.84 4.55 5.07 3.79 4.06 5.70 3.79 2.16 6.14* 1.23 1.12 0.82 1.06 1.48 
 36 2.73 7.92* 7.37* 4.51 2.98 1.08 1.51 1.07 1.02 2.76 0.76 0.97 0.88 0.65 0.47 
 60 2.90 12.75** 23.28** 3.92 2.63 0.34 0.76 0.68 0.54 1.06 0.88 1.42 1.56 0.71 0.57 
Combination IV K 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
d/p, e/p & tbl 1 15.44** 14.96** 15.18** 13.71** 6.26 1.11 0.79 0.92 0.72 1.69 5.55 4.51 4.10 4.73 6.19 
 12 10.72* 14.82** 10.80* 11.02* 4.26 0.73 1.94 1.61 0.69 1.84 1.57 4.01 3.12 2.96 2.89 
 36 7.87* 23.90** 38.26** 6.89 2.66 0.19 0.77 0.66 0.59 0.71 2.08 9.20* 10.14* 3.58 3.25 
 60 4.61 110.20** – 5.51 3.65 0.30 1.45 1.70 2.03 3.12 2.84 29.94** 34.09** 5.49 3.88 
Combination V K 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
e/p, b/m & tms 1 8.09* 7.24 6.88 7.47 6.58 4.70 5.35 6.58 4.57 5.03 3.33 2.43 2.14 2.73 2.66 
 12 7.11 12.44** 9.38* 9.25* 7.88* 4.06 8.17* 5.51 5.03 5.48 2.50 6.20 4.59 4.35 4.03 
 36 5.22 27.02** 26.56** 6.81 6.01 1.37 3.53 2.53 3.38 3.17 3.10 6.45 7.97* 6.15 4.89 
 60 3.17 12.93** 10.05* 5.36 5.79 1.05 3.41 36.22** 3.10 3.17 3.65 32.36** 41.31** 7.14 5.79 
Combination VI K 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 𝑊𝑊𝑂𝑂𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆 𝑊𝑊𝑁𝑁𝑁𝑁 𝑊𝑊𝐻𝐻𝐻𝐻 𝑊𝑊𝐻𝐻𝑂𝑂𝑆𝑆 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼 
d/p, tbl, tms & dfy 1 17.12** 14.76** 15.13** 13.45** 10.36* 8.97 9.69* 11.11* 8.59 9.85* 8.18 3.57 3.14 3.86 8.62 
 12 13.79** 19.93** 14.53** 12.92* 10.00* 2.93 9.36 7.53 3.92 4.74 1.50 4.19 3.71 2.69 4.23 
 36 11.09* 39.59** 42.35** 9.43 7.63 0.95 7.51 12.08* 4.00 3.05 1.80 6.21 6.02 2.45 3.54 
 60 7.74 69.58** 188.90** 9.44 7.99 0.82 3.89 – 3.65 3.60 2.03 20.70** 19.32** 3.55 3.45 
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Figure 1  
Power plots for sample size 𝒏𝒏 = 𝟏𝟏,𝟎𝟎𝟎𝟎𝟎𝟎 and predictive horizon 𝑲𝑲 = 𝟏𝟏𝟎𝟎 
This figure shows the rejection rates for tests of the null hypothesis 𝐻𝐻0:𝐴𝐴 = 0 versus the alternative 𝐻𝐻1:𝐴𝐴 ≠ 0 in (1), as the true value of 𝐴𝐴 increases, using a 𝐾𝐾 −horizon predictive regression model with 
𝐾𝐾 = 10. The reported rejection rates for each test with 5% nominal size (horizontal line) are based on the Monte Carlo simulation described in Section 3.1 with 1,000 repetitions, sample size 𝑛𝑛 = 1,000, 
and no autocorrelation in the residuals of the autoregressive equation (2). The solid curve (𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼) shows the rejection rate for the IVX-Wald test statistic defined in (23). The dashed curve (𝑡𝑡𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵) 
illustrates the rejection rate for the Bonferroni test statistic and the dotted one (𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) the scaled, by √𝐾𝐾, t-statistic of Hjalmarsson (2011). The dash-dot curve (𝑡𝑡𝐻𝐻𝐵𝐵𝑠𝑠) shows the rejection rate for the t-
statistic computed with Hodrick (1992) standard errors. Power plots are presented for different combinations of the local-to-unity parameter, 𝐶𝐶 = 0,−5,−10, −50,−100,−500, and the degree of correlation 
between the residuals of regressions (1) and (2), 𝛿𝛿 = −0.99,−0.5, 0. 
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Figure 2 
Power plots of the joint IVX-Wald test statistic with two regressors and sample size 𝒏𝒏 = 𝟏𝟏,𝟎𝟎𝟎𝟎𝟎𝟎 
This figure shows the rejection rates for joint tests based on the predictive system in equation (25) with two persistent regressors, using the 
IVX-Wald test statistic defined in (23) with 5% nominal size (horizontal line). The reported rejection rates are computed using the Monte 
Carlo simulation described in Section 3.3, with 1,000 repetitions and sample size 𝑛𝑛 = 1,000, under the null hypothesis 𝐻𝐻0: 𝐴𝐴 = 01𝑥𝑥2 in (25), 
i.e., that the slope coefficients of both regressors are equal to zero, as the true value of each regression coefficient 𝐴𝐴𝑖𝑖  increases. In each row, 
the left panel illustrates the rejection rate of the test statistic as the true value of the first regressor’s coefficient (𝐴𝐴1) increases whereas the 
second regressor’s coefficient remains equal to zero (𝐴𝐴2 = 0). The right panel illustrates the corresponding rejection rate as the true value 
of the second regressor’s coefficient (𝐴𝐴2) increases whereas the first regressor’s coefficient remains equal to zero (𝐴𝐴1 = 0). Results are 
reported for three different combinations of the relevant parameter values (C, Φ and Σ). diag(C) provides the local-to-unity parameters of 
the regressors employed in each case. For all cases considered data of monthly log excess market return (MKT) is employed for the 
regressand, whereas for each case monthly data for a combination of two regressors (Predictors) is used. For each case, the estimated 
autocorrelation coefficients (𝜙𝜙′𝑠𝑠) in the residuals of the autoregressive equations are reported (diag(Φ)) as well as the degrees of correlation 
(𝛿𝛿′𝑠𝑠) between between 𝜀𝜀𝑡𝑡  and 𝑢𝑢𝑡𝑡 of with matrix Σ given in (25). For each case, the combination of predictors employed for the estimation 
of the simulation parameters along with their values are: 

 Predictors Data period diag(C) diag(Φ)  Σ 

Case I dividend-price ratio, 
T-bill rate 1952-2017 (0, -5) (0.0640, 0.3379) �

1 −0.9827 −0.1251
−0.9827 1 0.3379
−0.1251 0.3379 1

� 

Case II earnings-price ratio, 
default yield spread 1927-2017 (0, -5) (0.2741, 0.2167) �

1 −0.7596 −0.2787
−0.7596 1 0.1246
−0.2787 0.1246 1

� 

Case III earnings-price ratio,  
T-bill rate 1952-2017 (0, -10) (0.3538, 0.3379) �

1 −0.6156 −0.1282
−0.6156 1 0.1583
−0.1282 0.1583 1

� 

These power plots are illustrated for different predictive horizons 𝐾𝐾. The solid curve corresponds to 𝐾𝐾 = 1, the dashed curve corresponds 
to 𝐾𝐾 = 10, the dash-dot curve corresponds to 𝐾𝐾 = 50, and the dotted curve corresponds to 𝐾𝐾 = 100. 
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