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A B S T R A C T   

There is increasing interest in leveraging Earth Observation (EO) and geospatial data to predict and map aspects 
of socioeconomic conditions to support survey and census activities. This is particularly relevant for the frequent 
monitoring required to assess progress towards the UNs’ Sustainable Development Goals (SDGs). The Sundarban 
Biosphere Reserve (SBR) is a region of international ecological importance, containing the Indian portion of the 
world’s largest mangrove forest. The region is densely populated and home to over 4.4 million people, many 
living in chronic poverty with a strong dependence on nature-based rural livelihoods. Such livelihoods are 
vulnerable to frequent natural hazards including cyclone landfall and storm surges. In this study we examine 
associations between environmental variables derived from EO and geospatial data with a village level multi-
dimensional poverty metric using random forest machine learning, to provide evidence in support of policy 
formulation in the field of poverty reduction. We find that environmental variables can predict up to 78% of the 
relative distribution of the poorest villages within the SBR. Exposure to cyclone hazard was the most important 
variable for prediction of poverty. The poorest villages were associated with relatively small areas of rural 
settlement (<~30%), large areas of agricultural land (>~50%) and moderate to high cyclone hazard. The 
poorest villages were also associated with less productive agricultural land than the wealthiest. Analysis suggests 
villages with access to more diverse livelihood options, and a smaller dependence on agriculture may be more 
resilient to cyclone hazard. This study contributes to the understanding of poverty-environment dynamics within 
Low-and middle-income countries and the associations found can inform policy linked to socio-environmental 
scenarios within the SBR and potentially support monitoring of work towards SDG1 (No Poverty) across the 
region.   
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1. Introduction 

Measuring, monitoring and understanding the dynamics of poverty is 
vital to achieving the United Nations’ Sustainable Development Goals 
(SDGs), particularly to SDG 1 which aims to end poverty in all its forms 
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everywhere. Census enumeration and household surveys are the stan-
dard methods used to measure progress towards development and pro-
vide governments with vital statistics for planning resource allocation. 
However, there are often relatively large time lags between enumera-
tion. For example, Census enumeration is once every 10 years for most 
countries and household sample surveys can be every 3–5 years 
depending on the country (Blumenstock, 2016). Given the rapid socio-
economic and demographic changes occurring in many countries these 
time lags limit the ability to monitor progress (Njuguna and McSharry, 
2017; Devarajan, 2013) and have led the UN to call for a data revolution 
(IEAG, 2014). This data revolution requires significantly more data 
collection at higher frequency, which is often infeasible using traditional 
survey methods due to the high costs involved (Jerven, 2017; Demom-
bynes and Sandefur, 2014). This has led to studies examining the asso-
ciations between socioeconomic conditions and environmental proxy 
indicators, specifically looking at how non-traditional geospatial and 
earth observation (EO) data could be used to support the monitoring of 
SDG progress (Anderson et al., 2017; Kavvada et al., 2020; Hargreaves 
and Watmough, 2021). 

The assertion that environmental data can inform the monitoring of 
socioeconomic conditions comes from the fact that there are often close 
links between aspects of people’s wellbeing and their environment 
(Okwi et al., 2007; Engstrom et al., 2017; Watmough et al., 2019), and 
that regions of relative wealth or poverty can be associated with 
particular land cover characteristics (e.g., Emmanuel, 1997; Lafary 
et al., 2008). In rural regions of low- and middle-income countries 
(LMIC), where there is high reliance on agriculture and other natural 
resources for livelihoods and food production, broad environmental 
proxies such as access to market, proximity to forest, presence of vege-
tation, agriculture, built environment and elevation have previously 
been found to provide useful insights into socioeconomic conditions. For 
example, Amoako Johnson (2016) identified statistical associations 
between the distribution of increasing soil salinity and poverty outcomes 
within the Ganges Brahmaputra Meghna Delta of Coastal Bangladesh. 
Watmough et al. (2016) identified that the time to travel to market along 
with percentage of a community area covered with woodland and winter 
crop were significantly associated with poverty within the state of 
Assam, India. The length of growing season, household size and per-
centage of bare land were associated with poverty in Sauri, rural Kenya 
(Watmough et al., 2019). Furthermore, Berchoux et al. (2019) found 
strong spatial associations between measurements of physical, natural, 
financial and social capitals derived from household surveys and envi-
ronmental proxy indicators in the Mahanadi delta. 

Poverty and wellbeing are complex and, within rural regions of LMIC 
countries, often explicitly linked to livelihoods which are known to be 
multi-dimensional, combining different elements between people and 
across time and space (Scoones, 2015). The associations between 
poverty and environmental characteristics are complex and can vary 
depending upon the region being examined and the scale of analysis 
(Watmough and Marcinko, 2021). Environmental proxies alone cannot 
predict all aspects of socio-economic conditions. However, the associa-
tions found in previous studies indicate the potential value of using 
environmental proxies obtained from EO and other non-traditional 
geospatial data to help map and monitor socioeconomic conditions be-
tween census enumeration periods (Watmough et al., 2019; Engstrom 
et al., 2017; Steele et al., 2017). Higher frequency estimates of socio-
economic conditions could be extremely informative to decision makers, 
promoting evidence-based decision making and accurate targeting of 
resources. Furthermore, examining the associations between socioeco-
nomic conditions and environmental proxies also provides greater 
insight into the complex relationships between social and ecological 
systems. Such knowledge is vital for identifying areas of potential con-
flict and trade-off between socioeconomic and environment focused 
SDGs and therefore successfully achieving the UN’s 2030 development 
agenda. 

As part of a wider study of interactions between Sustainable 

Development Goals in deltas, we examine associations between poverty 
and a range of population and environmental proxies within the Sun-
darban Biosphere Reserve (SBR), a complex socio-ecological system 
within the Ganges-Brahmaputra-Meghna (GMB) delta. A random forest 
machine learning method is used to predict a village level measure of 
multidimensional poverty from variables related to Land Use Land 
Cover (LULC), agricultural yield, natural hazard risk, access to urban 
areas and population density gained from satellite, transport and pop-
ulation data. We identify the importance of these data in predicting 
village level poverty and use model results to gain a greater under-
standing of the dynamics of poverty across the region. 

2. Study area 

The Sundarban Biosphere Reserve (SBR, 1989) (21◦ 32ʹ N - 22◦ 40ʹ N 
and 88◦ 05ʹ N - 89◦ 51ʹ E) is located within the state of West Bengal, India 
within the Ganges-Brahmaputra-Meghna delta (Fig. 1). The region 
comprises an area of 9630 km2 including approximately 4200 km2 of 
globally important mangrove ecosystem. A network of interconnecting 
channels, canals and creeks divides the land into over 100 islands, 
approximately half of which (54/102) are inhabited with a total popu-
lation of over 4.4 million people (PCA, 2011). The inhabited areas 
consist of 19 administrative blocks which form the entire South 24 
Parganas district and the southern part of the North 24 Parganas district 
of West Bengal. 

The SBR region is one of the most impoverished and vulnerable in 
India with an average per capita income of approximately USD 0.5 per 
day (Nishat, 2019) and about half of the population living below the 
poverty line (Sánchez-Triana et al., 2014). Over 87% of people living in 
the Southern 24 Parganas district lack food security, with household 
surveys indicating that many suffer from malnutrition (Sánchez-Triana 
et al., 2014). Poor health is a problem for many, due to the effects of 
inadequate freshwater supply and sanitation combined with limited 
access to a public health system. Educational attainment is low with only 
16% of the population attending secondary education and there are 
limited employment opportunities. This endemic poverty is com-
pounded by exposure to the impacts of climate change, rising sea-levels 
and coastal erosion (Marcinko et al., 2021 and references therein). The 
region is especially vulnerable to cyclone hazard and storm surges, 
having experienced multiple cyclones over recent decades including 
extremely severe cyclone Sidr in 2007, extreme cyclone Aila in 2009 
(Chakraborty, 2015) and more recently super cyclonic storm Amphan in 
2020. These events threaten, not only life, but can also devastate local 
infrastructure and natural resources depended upon for livelihoods in 
the region. Despite these conditions, the population in the region is 
increasing with many people migrating into the area from within West 
Bengal and neighbouring Bangladesh (Sánchez-Triana et al., 2014). 

Livelihoods within the SBR predominantly depend on agriculture 
(Banerjee A, 1998, Marcinko et al., 2021), the alluvial peat providing 
fertile conditions for paddy fields (FAO, 2005). However, the impact of 
frequent natural hazards has seen the majority of the population adapt 
to multiple livelihood activities throughout the year to earn their living 
(HDR, 2009). The tidal creeks and inland natural wetlands create live-
lihood opportunities in fishing (riverine, tidal-brackish water, marine) 
and aquaculture (freshwater or brackish) (Banerjee A, 1998). Prior to 
the formation of the National Park in 1984, mangrove forests provided 
livelihoods in the form of logging and harvesting timber. However, the 
subsequent ban on logging in protected areas has restricted forest-based 
livelihoods to the collection of Non-Timber Forest Products (NTFP) in 
the Buffer zones of the National Park (DasGupta and Shaw, 2013). 
Honey and wax collection along with other NTFP provide livelihoods to 
considerable numbers of people in fringe forest areas (Nishat, 2019) 
such as Gosaba and Kultali blocks. A growing tourist industry relating to 
access to the mangrove provides some direct and indirect support to 
local farmers, fisherfolks, local transport vehicle owners and youths who 
are employed by the tourism companies and the Forest Department in a 
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variety of roles including as guides, helpers and maintenance workers. 
Although tourism from both national and international visitors is 
increasing, the benefits from this sector are slow to trickle down to the 
majority of the SBR’s inhabitants (Guha and Ghosh, 2007). Therefore, 
rural household incomes significantly rely on natural 
resource-dependent activities (Sánchez-Triana et al., 2014). 

3. Data and methods 

3.1. Village level multi-dimensional poverty index 

A Multi-dimensional Poverty Index (MPI) is designed to assess acute 
poverty across the three equally weighted dimensions of Health, Edu-
cation and Living standards. MPIs are used by the United Nations 
Development Programme and by many governments to gain an under-
standing of the dynamics of poverty (OPHI-UNDP Handbook, 2019). We 
constructed a village level MPI (vMPI) following the Alkire-Foster 
methodology (Alkire et al., 2011) and using 2011 Indian Census Data 
(PCA, 2011), to allow the comparison of poverty levels across villages 
within the SBR. The index was calculated using information from eight 
indicators which are grouped into the three equally weighted di-
mensions of Health, Education and Living standards (Table 1) following 

the approach taken in Santos and Alkire (2011). The equal weighting 
approach assumes that the three dimensions are contributing equally to 
overall poverty which is a simplification. However, weightings have 
been tested in the past and yielded high correlations, indicating that 
varying dimension weights did not have a large impact on overall MPI 
results (Alkire et al., 2010; Santos and Alkire, 2011). Due to lack of data 
availability, several indicators typically used in the construction of an 
MPI were replaced by the nearest proxy. Justification for indicator 
choices is provided within Table 1. 

A deprivation score ranging between 0 and 1 was calculated for each 
household by taking the weighted sum of the different indicators. The 
score increases as the number of deprivations of the household in-
creases, reaching a maximum of 1 when the household is deprived in all 
aspects. A household not deprived in any indicator receives a score equal 
to 0 (Alkire et al., 2011). A poverty cut-off ratio of 1/3 was applied in 
line with UNDP (2015) standards, ensuring that a household was iden-
tified as poor if it had a deprivation score higher or equal to 1/3. 
Households with a poverty score below 1/3 had their deprivation score 
set to zero. The poverty information is subsequently aggregated into two 
indices; (1) the incidence of poverty (H), representing the pro-
portion/headcount ratio of households that experience multiple depri-
vations, and, (2) the intensity of deprivation (A), representing the 

Fig. 1. Sundarban Biosphere Reserve (SBR), West Bengal, India. The SBR Transition Zone, which comprises the populated study area, is outlined in purple. The 
protected mangrove forest is shown in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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average proportion of (weighted) deprivations poor households’ expe-
rience/deprivation share. The vMPI was computed as the product of 
these two components following Equation (1). 

vMPI =H x A (1) 

This method identifies both poor households as well as the acuteness 
or intensity of the poverty situation (Alkire et al., 2011). As the asset 
data within the 2011 Census data was only available as a proportion at 
the village level, and household values were unavailable, random allo-
cation of assets down to the household level was undertaken using a 
bootstrapping approach (Heinrich, 1998) over 1000 replications. The 
final household asset score was taken as the mean allocation value. 

3.2. Explanatory environmental and population variables 

The environmental and population variables used in this study were 
primarily derived from data collected in 2011. This allowed the land-
scape characteristics around villages to be captured during the same 
period as the census data used to calculate the poverty index. When 
deriving recent changes in landscape, data from 2011 were compared 
with data from 2001. Where data were not available for 2011 directly, 
such as the travel time estimates, these data were adjusted as described 
in section 3.2.1. Summary statistics were performed on 19 potential 
explanatory environmental and population variables to explore data 
characteristics and identify potential issues including multicollinearity. 
Several bivariate correlations had relatively large correlation co-
efficients and as such several indicators were dropped from the analysis. 
A large correlation was defined as a spearman correlation coefficient 
>0.7 significant at the p < 0.001 level. Several variables were also 
removed due to lack of variance across the dataset. The percentage of 
single, double and triple crop as independent variables were removed 
due to high correlations with the percent of agricultural land and the 
percent of land used for multiple crops. Variables indicating the percent 
of bare land, brick kiln, mud flat and land converted from agriculture to 
aquaculture were removed due to lack of variance. Fourteen explanatory 
variables were taken forward for analysis and are detailed in Table 2. 

3.2.1. Time to travel to urban centres 
Travel routes from each village centroid within the study area to 

central Kolkata and the nearest town were generated using the Google 
Maps API (application programming interfaces) for the time period 

August 16th, 2019 at 8:00AM (Fig. 2 a & b). Travel time information 
(duration in minutes) encoded into the routes were joined to village 
polygons. As the analysis in this study was focused upon 2011 due to the 
availability of socioeconomic data (Section 3.1), 2019 travel times to 
Kolkata were adjusted based on the presence of bridges that post-dated 
2011. The adjustment of 2019 travel time was achieved through a visual 
inspection of the routes against the ESRI base map imagery to identify 
river crossings. These crossings were cross referenced with the imagery 
archive available in Google Earth Pro (version 7.3.2) and the earliest 
date extracted so a year could be associated with each bridge crossing. 
The earliest available date that the bridge was observed in Google Earth 
Pro (which has an imagery archive going back to 2003) was assigned to 
each bridge. Twelve bridges were identified as being built after 2011. 
River crossings that showed no bridges in 2019 were tagged as ferry 

Table 1 
Description of indicators used to construct the village level MPI score weighted to give an overall 1/3 weighting to Health, Education and Standard of Living. Indicators 
have been derived from the 2011 Indian census.  

Name Description Weight Indicator Justification 

Health 

Unsafe drinking 
water 

% households without access to safe drinking water 1/9 Safe drinking water is vital for good health and positive correlations exist between low- 
income households and the occurrence disease from unsafe drinking water (Bedi et al., 
2015) 

No clean fuel % households using unclean fuel (dung, crop residue, 
firewood or charcoal) 

1/9 The use of solid fuel expose people to smoke and pollutants longer and can lead to 
occurrence of respiratory infections (such as asthma, pulmonary tuberculosis, Acute 
Lower Respiratory Infection) and perinatal mortality (World health statistics, 2018) 

No proper 
sanitation 

% households without access to adequate sanitation/ 
latrine 

1/9 High occurrence of diarrhoea in children under 5 have been linked to unimproved 
sanitation (Kumar and Das, 2014). 

Education 

Illiteracy % illiteracy 1/3 Illiteracy was considered as a proxy for years of schooling and school attendance. 
Standard of Living 

Electricity % households without electricity 1/12 Standard MPI indicator 
Household 

environment 
% households that cook indoors without a kitchen 1/12 A household is considered as deprived if it cooks inside the house but doesn’t have a 

separate kitchen. Studies show that it is an indicator for lack of wealth (Mohanty, 2011) 
and lack of availability of separate kitchen plays vital role in determining the indoor air 
quality (Duflo et al., 2008). 

Poor housing Floor made of mud 1/12 Standard MPI indicator 
Assets % households that have not more than one radio, tv, 

mobile phone, bicycle, moped or refrigerator and not have 
a car 

1/12 Standard MPI indicator  

Table 2 
List of environmental and population explanatory variables used in modelling 
associations with village level poverty.  

Explanatory Variables Description and Source 

Travel time to Kolkata (comprising 1 
variable) 

Google maps API - rolled back to 2011 by 
removing bridges not in place (method 
described in section 3.2.1). 

Travel time to nearest town (comprising 
1 variable) 

Google maps API (method described in 
section 3.2.1). 

Land cover % within village boundary 
for rural settlement (built up); multiple 
crop; aquaculture; waterbody; 
mangrove; river/stream and total 
agricultural land. (comprising 7 
variables) 

2011 Landsat-TM land cover map at 30 
m resolution (method described in 
section 3.2.2). 

NDVI – Greenness index (comprising 1 
variable) 

MODIS NDVI for agricultural pixels 
within village (method described in 
section 3.2.3). 

Land converted from agriculture to rural 
settlement (comprising 1 variable) 

Based on Landsat-TM land cover maps 
for 2001–2011 at 30 m resolution. 

Population density (comprising 1 
variable) 

Indian Census 2011 (PCA, 2011). 

Cyclone hazard index (comprising 1 
variable) 

Based on Tropical cyclone risk model 
(TCRM) (method described in section 
3.2.4). 

Flood hazard index (comprising 1 
variable) 

Based on Landsat-TM data at 30 m 
resolution (May 26, 2009) after the 
severe cyclone Aila (method described in 
section 3.2.4).  
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Fig. 2. a) Google Maps API output on the August 16, 2019 at 08:00 for single route from each village to Kolkata, b) Google Maps API output for the August 16, 2019 
at 08:00, routes are colour coded to emphasize villages routing to their nearest town (red points), c) Time to travel from each village to Kolkata based on access to 
bridges in 2011 and d) Time to travel to nearest town. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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crossings as it was possible to observe in the imagery associated pier 
structures and roads terminating at the river banks on both sides. Thus, 
bridges that appeared in Google Earth Pro after 2011 would have been 
ferry crossings before 2011. For these crossings, the 2019 travel times 
for the routes were adjusted based on the assumption that a ferry 
crossing would take 1 h (loading, transport across the channel and dis-
embarking). No adjustment was made for improved road conditions as it 
was not possible to source if/when road surfaces were improved since 
2011. The addition of bridges post 2011 affected less than 5% of the 
villages in the study region and visually there is little impact on travel 
times. Travel durations from each village to Kolkata and to the nearest 
town used in the analysis are shown in Fig. 2 c & d. 

3.2.2. Land use land cover 
Multitemporal cloud-free Landsat-5 Thematic Mapper (TM) data at 

30 m resolution were used to classify the land use/land cover (LULC) of 
the SBR. Satellite images were downloaded for the years 2000–2001 and 
2010–2011 from the USGS website (https://earthexplorer.usgs.gov/). 
Radiometric calibration and atmospheric correction were performed for 
reducing atmospheric and scattering effects using the FLAASH tool in 
ENVI (Module, 2009; Sibanda and Ahmed, 2021). Maximum likelihood 
supervised classification techniques were executed on the Landsat im-
ages (Giri et al. 2007, 2021; Datta and Deb, 2012). Training samples 
(380 in total) were manually selected on satellite images based on field 
knowledge and high-resolution Google Earth imagery to run the classi-
fication. LULC classes identified included rural settlement; monocrop, 
double-crop and triple crop agricultural land; aquaculture; waterbody; 
mangrove; river/stream, urban settlement, barren land and mud flat. 
Classification of the three types of cropland (monocrop, double crop, 
and triple crop) was achieved by classifying images obtained in Kharif 
(July–Nov), Rabi (Dec–April), and Rabi Summer (March–June) seasons 
into crop (given value = 1) and non-crop (given value = 0). As almost all 
cropland is used for the Kharif rice crop within the SBR, the Kharif 
cropland raster was used to clip the Rabi and Rabi summer rasters. The 
Kharif, Rabi and Rabi summer rasters were then added together to 
identify areas of multiple cropping. Post-editing was performed for 
better accuracy based on field knowledge and historic high-resolution 
Google Earth imagery following methods set out in Thakkar et al. 
(2017). The proportion of LULC classes within each village were ob-
tained using zonal statistics. 

3.2.3. Village\Block level NDVI values 
Normalised Difference Vegetation Index (NDVI) 16-day composite 

data associated with Julian day 289 in 2011 were extracted from the 
MODIS satellite product MOD13Q1 sourced from the LP DAAC website 
(https://lpdaac.usgs.gov/; Didan, 2015). Data had a spatial resolution 
on 250 m and captured the NDVI over the two weeks prior to the start of 
harvest of the main season rice crop across the region. Analysis was 
carried out in ESRI ArcPro. Data were clipped to the study area and 
quality controlled using the pixel reliability layers; unreliable data were 
excluded. The land use land cover map, described in section 3.2.2, was 
simplified into two classes: cultivated and non-cultivated. The polygons 
representing cultivated land were converted into a binary raster at the 
same resolution and alignment as the NDVI data to create an agricultural 
mask. This mask was used with the zonal statistics tool to extract the 
NDVI of cultivated land within each village boundary. Finally, a scaling 
factor of 0.0001 was applied. 

3.2.4. Hazard indices 
Landsat-5 TM data at 30 m spatial resolution was acquired from 

https://earthexplorer.usgs.gov for the date of the February 19, 2009 and 
the May 26, 2009 directly after the severe cyclone Aila. The imagery was 
used to map the consequent extensive inundation by the storm surge of 
2–3 m high over and above the high tide within the SBR. Imagery was 
atmospherically corrected using ENVI FLAASH tool and clipped to the 
SBR boundary. The water area was extracted using the Normalised 

Difference Water Index (NDWI) as described in McFeeters (1996). Pos-
itive values of NDWI were classified as water and negative values were 
classified as non-water (Guo et al., 2017). The binary raster of the water 
area was converted to a polygon vector layer which was then clipped by 
the previous month’s river polygon to exclude perennial water bodies 
and obtain the surge inundation layer. Post-editing was performed 
whereby, small clusters of pixels were removed in cases where inunda-
tion could not occur due to the distance from a river. Overall accuracy 
was estimated at 94.4% with a kappa value of 0.88. The kappa coeffi-
cient values indicate the classification results are in strong agreement 
between classified and original class. Village specific inundation values 
were obtained using zonal statistics. A flood index was generated by 
scaling the percentage inundation per village using min-max normal-
isation (Fig. 3a). 

Cyclonic wind hazard was calculated using the Tropical cyclone risk 
model (TCRM) (Arthur et al., 2008) and following the methodology 
described in Ghosh et al. (2019). The model generates synthetic cyclone 
tracks across the study area based on the properties of historic cyclone 
events. Maximum wind speed is derived over the life of each synthetic 
cyclone event using a parametric wind field and boundary layer model 
(Kepert, 2001; Powell et al., 2005). The generalised extreme value 
(GEV) distribution was used to specify the maximum wind speed for 
each grid location across the Indian Bengal Delta (IBD). Tropical cy-
clones of multiple return periods from 5 to 2000 years were modelled to 
estimate the speed of cyclones. Wind speeds were aggregated to the 
village level using zonal statistics and values were scaled using a 
min-max normalisation to create cyclone hazard index for the IBD 
(Fig. 3b). 

3.3. Machine learning to identify associations between poverty and 
environmental variables 

The vMPI was grouped into three equally sized categories: poorest 
33% (group 1), middle 33% (group 2), and wealthiest 33% (group 3). 
Analysis of vMPI distribution and preliminary results indicated that this 
choice of categorisation offered the greatest predictive capacity, whilst 
balancing the needs of appropriate distinction between categories and 
sufficient category sample size. Poverty groups were predicted from the 
explanatory variables using a Random Forest model in R 3.6.0 and the 
randomForest (Liaw and Wiener, 2002) and caret packages (Kuhn, 
2008). Random Forest is a machine learning algorithm (Breiman, 2001) 
that combines Classification and Regression Tree (CART) methods with 
bagging (bootstrap aggregating). CART methods have several advan-
tages for this type of analysis, they do not assume normal error distri-
bution and are suitable for examining highly non-linear and complex 
relationships (Auret and Aldrich, 2012), important when considering 
human-natural systems (Liu et al., 2007). Random forest models pro-
duce predictions by averaging the results of many classification trees 
which have been trained independently on a random subset of data (e.g. 
bootstrapped samples). Furthermore, when growing each classification 
tree, only a random selection of explanatory predictor variables is 
considered at each split in the tree. This prevents correlations in pre-
dictions and reduces variance in the final mode and prevents overfitting 
to the data. To determine model performance data were split into 
training/calibration (80% of total data) and testing/validation (20% of 
the total data) samples. Each of the three poverty groups were sampled 
independently to ensure that the testing dataset consisted of an equal 
proportion of each poverty category. A k-fold cross validation approach 
(set at k = 10) was used to estimate model accuracy from the training 
data (Svetnik et al., 2004). The final model was applied to the testing 
sample and a confusion matrix created using the “caret” package was 
used to identify the overall model prediction accuracy as well as the 
accuracy of each poverty group. 
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4. Results 

4.1. Multidimensional poverty index 

The distribution of poverty across the SBR varied considerably. Vil-
lages with higher multidimensional poverty index scores (red) were 
clustered in the central regions of the SBR. Whilst the majority of vil-
lages with relatively low levels of poverty (green) were on the western 
side of the SBR (Fig. 4). Areas of extreme poverty include the northern 
region of Basanti and the southwest region of Canning II, along with 
northern areas of Kultali and the eastern areas of Jaynagar I and Jay-
nagar II blocks, all administrative areas within the South 24 Parganas 
District. Other blocks indicating relatively high levels of multidimen-
sional poverty in the South 24 Parganas District included Canning I and 
Gosaba. In contrast, relatively low poverty scores occurred in the 
southwest of the SBR in Sagar, Namkhana, Patharpratima and Kakdwip 
blocks in the South 24 Paganas district. Within the North 24 Parganas 
district, Sandeshkahali II block and the southern regions of Hingalganj 
block were regions of high poverty. In contrast, relatively low poverty 
scores were seen in the northwest of the SBR in Haroa, Hasnabad, 
Minakhan and Sandeshkhali I blocks of the North 24 Parganas district. 

Results indicated that across the SBR 15.8% of villages were highly 
deprived in education, 52.5% were highly heath deprived and 40.5% of 
villages were highly deprived in terms of living standards. Within the 
poorest villages 46.5% were highly deprived in education, 76.1% were 
highly heath threatened and 75.8% were highly deprived in living 
standards. 

4.2. Predicting village level poverty from environmental variables 

The Random Forest model was built on 778 observations (villages) 
and 14 explanatory variables. The model was run using 1000 trees as 
this was sufficient for convergence in results. The out-of-bag (OOB) 
training accuracy assessed through k-fold cross validation was 57.1%. 
The optimum mtry parameter was 4, this represents the number of 

randomly selected parameters considered at each split when growing 
trees. The overall accuracy of the model when applied to the unseen test 
dataset (n = 193) was 61.5% with a kappa coefficient of 0.42 (Table 3). 
Both test and cross-validation training accuracies are much greater than 
the no information rate (33%). The breakdown of model accuracy per 
group indicated the Poorest villages (Group 1) were predicted well with 
an accuracy of 78%. The predictive accuracy of the Middle and 
Wealthiest poverty groups (Group 2 and 3) was lower at 41 and 66%, 
respectively. Results indicate no evidence of spatial clustering in cor-
rect/incorrect predictions (Fig. 5a). There is little confusion between the 
poorest and wealthiest groups (identified by values of − 2 or +2 in 
Fig. 5b). The confusion matrix (not shown) indicated that the relatively 
lower accuracy for the middle group was due to confusion with the 
poorest group and wealthiest group in near equal measure. The accuracy 
of the wealthiest group was affected by confusion with the middle group. 

4.3. Associations between village level poverty and environmental 
variables 

The importance of each environmental or population variable to the 
model prediction was calculated. Overall, cyclone hazard, proportion of 
rural settlement, time to travel to Kolkata, NDVI and percentage of 
agricultural land were among the most important variables for model 
predictions (Fig. 6). However, if importance is disaggregated for each 
poverty group (Fig. 6), the proportion of rural settlement within a 
village was the most important variable for the Poorest group followed 
by percentage agricultural land, time to nearest town and NDVI. Addi-
tionally, cyclone hazard and proportion of aquaculture land were also 
important for prediction of the Poorest group. Cyclone hazard was the 
most important variable for predicting the Wealthiest group followed by 
the time to travel to Kolkata and the NDVI of agricultural land. Other 
important variables for the prediction of the Wealthiest group included 
the proportion of rural settlement and the time to nearest town. For the 
Middle group, time to Kolkata was most important followed by popu-
lation density, proportion of river or stream within a village, proportion 

Fig. 3. Village level hazards indices of a) flood based on storm surge after cyclone Alia in 2009 and b) modelled cyclone wind speed.  
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of multi cropped land, mangrove and rural settlement. 
Partial dependence plots (PDP- Fig. 7) allow insights from the 

Random Forest in terms of the effect of each explanatory variable on the 
predicted outcome. They show the type of relationship (e.g. whether it is 
linear or more complex) and the direction of influence between the vMPI 
group and each explanatory variable. For a classification result, the 
partial dependence plots display the probability for a certain class (y- 
axis) given different values of the explanatory variable (x-axis) (Molnar, 

2019). Partial dependence plots for the five most important variables in 
Poorest and Wealthiest groups are shown in Fig. 7. Partial dependence 
plots are not shown for the Middle group because the predictive accu-
racies were considered to be too low and therefore relationships were 
subject to a higher level of uncertainty. 

Results indicated that a village was more likely to be classified as 
poorest if it had relatively low amounts of rural settlement (<30%) 
(Fig. 7a), high amounts of agricultural land (>50%) (Fig. 7b) and 

Fig. 4. Village level Multi-dimensional Poverty Index (vMPI) across the Sundarban Biosphere Reserve.  
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experienced moderate to high cyclone hazard (index value between ~ 
0.55–0.75) (Fig. 7c). Furthermore, a village was more likely to be clas-
sified as poorest if it was between 25 and 125 min away from the nearest 
town (Fig. 7e) and was within 200 min of Kolkata (Fig. 7f). In contrast, 
the PDP plots for the Wealthiest group of villages indicated that pre-
diction had a bimodal relationship with cyclone hazard, with a village 
more likely to be classified as wealthiest if it was in a region where 
cyclone hazard was low (<0.6) or very high (>0.75) (Fig. 7c). A village 
was also more likely to be classified in this group when the proportion of 
land within the village boundary classified as rural settlement was 
relatively high (>25%) (Fig. 7a) and there were relatively lower 
amounts of agricultural land (<30%) (Fig. 7b). The relationship be-
tween the Wealthiest group and time to travel to the nearest town was 
multimodal, perhaps indicating the complex nature between village 
level poverty and access to urban centres. Fig. 7f indicates a linear 
relationship with the probability of being classified as wealthiest 
decreasing as time to travel to Kolkata increases. Villages <100 min 
from Kolkata were more likely to be predicted in the Wealthiest group. 
Analysis of the PDP for NDVI suggests that agricultural land for villages 
classified as poorest was less productive when compared to the 
wealthiest villages. Fig. 7d indicates that the Poorest group was more 
likely to be classified if NDVI was between 0.4 and 0.65 compared to the 

Wealthiest group which was more likely to be classified at higher NDVI 
values (between 0.6 and 0.8). 

5. Discussion 

5.1. Poverty prediction 

This study has identified statistical associations between village level 
poverty and environmental variables, determined from EO and non- 
traditional geospatial data, within a complex socio-ecological deltaic 
system. Although it is widely recognised that physical environment and 
climatic factors can play a significant role in the distribution of poverty 
in LMIC countries (Vista and Murayama, 2011; Okwi et al., 2007), 
quantification of these relationships has, to-date, been limited. Here we 

Table 3 
Predictive accuracy of the Random forest model calculated from unseen test 
dataset and internal cross validation estimate.   

Overall 
Accuracy 
(%) 

Poorest 
(Group 1) 
Accuracy (%) 

Middle 
(Group 2) 
Accuracy (%) 

Wealthiest 
(Group 3) 
Accuracy (%) 

Test Data (n 
= 193 
Withheld) 

61.5 78.1 40.6 65.6 

K-fold Cross 
validation 

57.1 65.8 39.4 60.4  

Fig. 5. a) Spatial distribution of correct (n = 118) and incorrect predictions (n = 74) of poverty categories in the withheld test data (n = 193). b) Predicted poverty 
category – actual poverty category where poverty categories were numbered as follows: Poorest = 1, Middle = 2, Wealthiest = 3. 

Fig. 6. Variable importance for the prediction of each poverty group ranked in 
terms of overall importance to model prediction. 
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have demonstrated that environmental variables that characterise the 
physical and climatic conditions are able to predict village level poverty 
with an accuracy of up to 61.5 percent within the SBR, India. Results 
showed a very high level of predictive accuracy for the poorest villages, 
up to 78.1% were predicted correctly in the test dataset withheld from 
model development. Relatively high accuracy was also achieved for the 
wealthiest group of villages (up to 65.6%). The middle poverty group 
had lower predictive accuracy (up to 40.6%) and results indicated this 
was due to high rates of confusion with both the poorest and wealthiest 
group. This is perhaps unsurprising given the rather arbitrary bound-
aries set by the categorisation of the vMPI. There is a good distinction 
between the vMPI values of the poorest and the wealthiest groups but 
less so between the poorest and the middle group and the middle and the 
wealthiest group. Similar issues have been found in previous studies 
using categorisation approaches (Watmough et al., 2019). The pattern in 
prediction capacity across the three poverty categories was consistent in 
the k-fold cross validation accuracy estimates. However, the overall and 
individual accuracies were slightly lower compared to those calculated 
from the independent test dataset. This may be because out of bag and 
cross validation methods can potentially overestimate the true predic-
tion error in classification problems especially when there is an equal 
number of observations from all response classes, a relatively small 

sample size, a large number of predictor variables, small correlation 
between predictors and weak effects (Janitza and Hornung, 2018). The 
magnitude of model accuracy compares well with previous studies 
(Engstrom et al., 2017; Steele et al., 2017; Watmough et al., 2016) and 
are notable considering the complex nature of poverty and the limited 
set of predictor variables used. 

5.2. Examining the associations between environment and poverty 

In addition to assessing predictive capacity, the outputs from the 
model allowed variable importance and the nature of associations with 
poverty to be examined. Our results indicated that the poorest villages 
within the SBR were associated with relatively small proportions of rural 
settlement (i.e. built up areas) and were dominated by agricultural land 
(>50% of village area). Conversely, the wealthiest villages were asso-
ciated with higher proportions of rural settlement and lower proportions 
of agricultural land. This potentially suggests that poorer villages are 
associated with a higher dependency on agricultural livelihoods, as 
supported by Hajra and Ghosh (2018). Furthermore, results indicated 
that agricultural land within the poorest villages was associated with a 
lower NDVI prior to harvest, suggesting that, although the proportion of 
agricultural land was high, agricultural yield per hectare may be less 

Fig. 7. Partial dependence plots indicating the probability for Poorest and Wealthiest villages prediction given different values of the top 5 most important variables 
in each of these groups. a) Rural settlement, b) % agricultural land c) cyclone hazard, d) NDVI of agricultural land e) time to travel to nearest town and f) time to 
travel to Kolkata. Note estimates are less reliable in regions where there are relatively few data points as indicated at the bottom of each plot. 
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than land in the wealthiest villages. However, the differentiation in 
NDVI signal taken from a single snapshot in time could indicate other 
factors at play including differing farming practices. 

Several of the blocks, including Kakdwip, Mathurapur and Nam-
khana, which have lower poverty scores in the vMPI, are connected to 
the mainland via bridges and roads. The infrastructure and facilities in 
these blocks are more developed than in blocks without direct connec-
tion to the mainland and the populations have more diverse livelihood 
options (Nishat, 2019). Namkhana, in particular, is a destination for 
many tourists from Kolkata that come to visit both the beaches and use 
locations within the block as an entry point to the mangrove forest 
reserve and this activity provides related livelihood opportunities to the 
local communities. Similarly, Sagar Island sees large amounts of reli-
gious pilgrimage tourism every year which significantly contributes to 
the local economy (Nishat, 2019). A lack of diversity in livelihood op-
portunities is known to perpetuate poverty and limit the ability of people 
to cope with external shocks (de Sherbinin et al., 2008; Berchoux et al., 
2019). Therefore, communities within these more connected blocks may 
be better able to cope with shocks events such as cyclones, compared to 
communities with less diverse opportunities, that are more dependent 
on precarious agricultural livelihoods. 

Exposure to cyclone hazard had a significant impact on the poverty 
distribution within the SBR and results indicated that the relationships 
with poverty were nonlinear (Fig. 7c). The SBR is highly susceptible to 
medium to severe tropical cyclones originating within the Bay of Bengal 
and they can have devastating effects on infrastructure and livelihoods, 
particularly those relating to agriculture. High wind speeds can lead to 
storm surges and the failure of embankments which allows ingression of 
saline water onto agricultural land (Ghosh and Mistri, 2021), whilst 
strong winds can lead to extensive crop damage. Classification of the 
poorest group was associated with moderate to high cyclone hazard with 
a unimodal relationship centred around a hazard score of 0.65. This 
perhaps reflects the high cyclone hazard scores seen for communities 
within the central region of the SBR (Fig. 4b), including within Kultali 
and northern Basanti blocks, which had relatively high poverty in the 
vMPI (Fig. 5). These blocks are known to be almost completely detached 
from the mainland and therefore have limited livelihood opportunities. 
Conversely, a bimodal relationship was seen between the wealthiest 
villages and cyclone hazard, which indicated that classification in to the 
wealthiest group was more likely at low and very high cyclone hazard 
scores (Fig. 7c). It may be that although cyclone hazard is very high in 
the southeast region of the SBR, including southern Namkhana, that 
these communities have more diverse livelihoods and are relatively 
wealthier than communities in high to moderate cyclone hazard areas 
with limited livelihood options and high dependency on agriculture. 

Associations have been found in several studies between poverty and 
remoteness or access to markets (Barrett, 2005; Okwi et al., 2007; Steele 
et al., 2017; Watmough et al., 2016). However, the nonlinear associa-
tions found with travel time to nearest town may indicate a more 
complex situation within the SBR. The relationship between travel time 
to the nearest town and prediction of the wealthiest group was bimodal 
in nature and associated with travel times less than 25 min or over 110 
min. The first peak in the bimodal pattern may be capturing the villages 
along the western edge of the SBR that are closer to towns (Fig. 3b) and 
have relatively lower levels of poverty. Improved access to towns can 
provide increased access to markets which have been associated with 
increased wealth (Muktar et al., 2013) providing more opportunities for 
incomes and for people to develop different or multiple livelihood 
strategies (Berchoux et al., 2020; Weiss et al., 2018). Increased access to 
urban centres can also mean better access to educational and health 
facilities (Blanford et al., 2012; Gabrysch and Campbell, 2009). The 
second peak may be capturing those villages in the far south of the SBR 
which, as previously discussed, although remote have lower poverty 
scores. 

5.3. Limitations and future work 

This study has demonstrated that environmental and population 
variables can achieve good predictive capacity of the poorest and 
wealthiest villages across the SBR and lends support to the assertion EO 
and non-traditional geospatial data could play an important role in 
improving the monitoring of socio-economic conditions and the prog-
ress being made towards achieving the SDGs (Anderson et al., 2017; 
Kavvada et al., 2020). However, it must be remembered that environ-
mental information alone cannot predict all aspects of poverty and they 
do not capture important contributions to poverty reduction such as 
government safety nets or assistance. The poverty-environment dy-
namics identified within this study can have value for local policy and 
decision makers in that they increase understanding of the factors that 
are contributing to poverty across the region and better understanding 
will allow for more effective targeting of policy and resources. 
Furthermore, results could have application as an exploratory tool to 
examine impacts of potential future LULC change or policy upon 
regional poverty. Although this type of analysis would assume the 
strength and nature of the association described remain constant going 
forward. The complex nature of poverty and the fact that it varies 
overtime based on people’s livelihood strategies and ability to adapt to 
changes in climate, markets and policies across multiple scales (local, 
regional, national) means that there is uncertainty around the time-
frames over which associations between poverty and individual envi-
ronmental variables hold. Therefore, future work should address these 
uncertainties by expanding analysis to identify if and how 
poverty-environment dynamics change over time and what implications 
this may have for monitoring socioeconomic conditions between survey 
periods. 

6. Conclusion 

Effective poverty monitoring is a well established problem. The gold 
standard method is the census which are collected once every 10 years in 
most countries. The decadal gap in enumeration means that rapidly 
changing socioeconomic conditions can be missed. Census data are also 
not always readily available to researchers or consultants alike. As such 
the development of an approach which allows the use of standardised 
spatial data, whilst no substitute for census, has the potential to allow for 
inter-survey monitoring or augmentation with the census. Clearly the 
outcomes are associative, there being no particular way that we might 
directly link some spatial environmental variables with poverty in a 
process driven manner. For example, the road access variables form part 
of the association with poverty through a series of plausible assumptions 
around access to market, education, health and institutions (linking 
social capital). However, the linkages between reliance on agricultural 
productivity and increased poverty may have as much to do with 
remoteness as income derived from selling agricultural products. 
Indeed, a key conclusion of the work, is that reliance on agriculture, 
remoteness and a lack of livelihood alternatives may substantially 
contribute to poverty outcomes. Whilst avoiding environmental deter-
minism and the issue of causality, the methodological approach has 
shown, with a particular efficacy in the extremes of the vMPI (poor/less 
poor), that a spatial statistical approach can contribute in a constructive 
way to the estimation of poverty in a rural region of an LMIC country. 
The associations between poverty and environmental factors found in 
this study have the potential to inform policy linked to socio- 
environmental scenarios and to support monitoring of work towards 
SDG1 across the region. 
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