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ABSTRACT

Studying galaxies at different cosmic epochs entails several observational effects that need to be taken into account to compare
populations across a large time span in a consistent manner. We use a sample of 166 nearby galaxies that hosted type Ia supernovae
(SNe Ia) and have been observed with the integral field spectrograph MUSE through the AMUSING survey. Here, we present a study
of the systematic errors and bias in the host stellar mass with increasing redshifts that are generally overlooked in SNe Ia cosmological
analyses.We simulate observations at different redshifts (0.1 < 𝑧 < 2.0) using four photometric bands (𝑔𝑟𝑖𝑧, similar to the Dark Energy
Survey-SN program) to then estimate the host galaxy properties across cosmic time. We find that stellar masses are systematically
underestimated as we move towards higher redshifts, due mostly to different rest-frame wavelength coverage, with differences reaching
0.3 dex at 𝑧 ∼ 1. We have used the newly derived corrections as a function of redshift to correct the stellar masses of a known sample
of SN Ia hosts and derive cosmological parameters. We show that these corrections have a small impact on the derived cosmological
parameters. The most affected is the value of the mass step Δ𝑀 , which is reduced by ∼0.004 (6% lower). The dark energy equation
of state parameter 𝑤 changes by Δ𝑤 ∼ 0.006 (0.6% higher) and the value of Ω𝑚 increases at most by 0.001 (∼0.3%), all within the
derived uncertainties of the model. While the systematic error found in the estimate of the host stellar mass does not significantly affect
the derived cosmological parameters, it is an important source of a systematic error that one should correct for as we enter a new era
of precision cosmology.

Key words. cosmology: observations – cosmology: cosmological parameters – supernovae: general

1. Introduction

Type Ia supernovae (SNe Ia) have been successful as standard
candles to probe the expansion history of our Universe over the
last decades (see e.g. Riess et al. 1998; Perlmutter et al. 1999; Be-
toule et al. 2014; Riess et al. 2018; Scolnic et al. 2018; DES Col-
laboration 2019). However, SNe Ia are not perfect standard can-
dles, and several empirical corrections are used to estimate their
intrinsic luminosity. For example, light-curve shapes (Phillips
1993) and colours (Riess et al. 1996; Tripp 1998) have been used
to reduce the scatter of their peak magnitudes by 50% and im-
prove distance errors down to ∼ 7%. With increasing samples
of spectroscopically confirmed (e.g. Scolnic et al. 2018; Smith
et al. 2020) and photometrically classified SNe Ia (Jones et al.
2018b) we are now in a phase where understanding the origin
of these empirical corrections will improve our constraints and
provide for better corrections. This has potential implications for
the determination of the equation of state of the Universe.

★ E-mail: apaulinoafonso@tecnico.ulisboa.pt

The observed scatter of SNe Ia distance residuals for the best-
fit cosmologicalmodel is close to the 0.1mag level (see e.g. Brout
et al. 2019). This indicates that either there is a limit to which
one can standardize SNe Ia, or there are additional correlations
to their peak brightness that are not yet known due to limits
on the quality of existing samples. These additional correlations
are thought to arise from uncertainties related to the progenitor
properties, physics of SNe Ia explosions and/or the environment
in which they occur (see, e.g. Scannapieco & Bildsten 2005;
Mannucci et al. 2006; Maoz et al. 2014; Livio & Mazzali 2018).
The drive to obtain ever more accurate standardizations of SNe
Ia has motivated the search for additional empirical corrections
based on the properties of the host galaxy used as a tracer of
the SNe Ia progenitors (e.g. Hicken et al. 2009; Sullivan et al.
2010; Kelly et al. 2010; Lampeitl et al. 2010; Gupta et al. 2011;
D’Andrea et al. 2011; Hayden et al. 2013; Rigault et al. 2013;
Childress et al. 2013; Johansson et al. 2013; Pan et al. 2014;
Uddin et al. 2017, 2020; Ponder et al. 2020; Smith et al. 2020).
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One of the most commonly used empirical corrections is
based on the host stellar mass, with studies finding that SNe
Ia occurring in galaxies with 𝑀★ > 1010M� require additional
brightness corrections compared to those found in lower stellar
mass galaxies (e.g. Sullivan et al. 2010; Kelly et al. 2010; Lam-
peitl et al. 2010). Such a correction has been found in multiple
studies, at various degrees of confidence (3 − 6𝜎) using multi-
ple samples in the low and high-redshift Universe (e.g. Sullivan
et al. 2010; Kelly et al. 2010; Lampeitl et al. 2010; Childress et al.
2013; Johansson et al. 2013; Pan et al. 2014; Uddin et al. 2017,
2020; Ponder et al. 2020). However, it has been shown that more
recent fitting frameworks lead to reduced corrections (e.g. Brout
et al. 2019; Smith et al. 2020). There is currently no consensus
on the physical motivation for this correction, as the stellar mass
of galaxies is found to correlate with other global properties of
the host galaxy: star-formation rate (e.g. Speagle et al. 2014),
metallicity (e.g. Tremonti et al. 2004; Curti et al. 2020), and dust
(e.g. Garn & Best 2010). Thus, it has also been found that the
excess scatter could be corrected using other physical parameters
of the host galaxy such as their metallicity and stellar age (Gupta
et al. 2011; D’Andrea et al. 2011; Hayden et al. 2013; Pan et al.
2014; Moreno-Raya et al. 2016), star-formation rate (Sullivan
et al. 2010) or dust (Brout & Scolnic 2021).
The studies mentioned above focused on the global properties

of the host galaxy since, for large cosmological distances, these
are the only possible measurements with current instrumentation.
Nonetheless, the progenitors of SNe Iamight reside in a particular
region of the galaxy that is not well traced by their global proper-
ties. Recent studies on nearby galaxies have traced the empirical
corrections to the local environment in which the SNe Ia occur
(Stanishev et al. 2012; Rigault et al. 2013, 2015, 2020; Galbany
et al. 2014, 2016b; Jones et al. 2015, 2018a; Moreno-Raya et al.
2016; Roman et al. 2018; Kim et al. 2018, 2019; Rose et al. 2019,
2021; Kelsey et al. 2021). In these studies, the authors focused
on the local star formation rate (traced by H𝛼 emission or local
𝑈 − 𝑉 /𝑢 − 𝑔 colours) to find that SNe Ia in actively star-forming
environments are fainter than those found in more passive envi-
ronments. However, Jones et al. (2015) and Jones et al. (2018a)
find no conclusive evidence that correlations built from the local
properties are better than those found with global properties.
Despite the existence of different empirical corrections, that

based on the global host stellar mass has been the mostly used
in cosmological analysis using SNe Ia (e.g. Sullivan et al. 2011;
Betoule et al. 2014; Scolnic et al. 2018; Popovic et al. 2021). This
is a consequence of the stellar mass being a more straightforward
measurement to obtain, as it is the most robust parameter that
can be estimated from photometry alone (e.g. Pforr et al. 2012).
Nonetheless, care should be taken when estimating stellar masses
and comparing estimates across a large redshift range, especially
when using a small number of photometric bands as is typical
in photometric studies of SNe. In this scenario one needs to
account for observational effects (cosmological dimming, rest-
frame coverage) that can impact the derived parameters. We aim
to quantify the systematic errors on the estimates of stellar masses
from the same photometric bands across a large redshift range,
and test its impact on the derived cosmological parameters from
supernovae studies.
In this paper, we use a sample of 166 nearby galaxies with in-

tegral field spectroscopic (IFS) data from the All-weather MUse
Supernova Integral field Nearby Galaxies (AMUSING) survey
(Galbany et al. 2016a) to simulate photometric observations of
the same galaxies between 0.1 < 𝑧 < 2.0. Using our host galaxy
IFSdata,we have simulated griz observations and derived the host
galaxy properties with commonly used spectral energy distribu-

Fig. 1.We highlight with the shaded region the coverage of the MUSE
spectroscopic data in comparison to the coverage of the DECam and
SDSS griz filters.

tion (SED) fitting codes. We then take the observed differences
between the new simulated properties and those derived in the
local Universe to estimate a redshift-dependent stellar-mass cor-
rection. We use our new correction in our cosmological analysis
and show the impact on the derived cosmological parameters.
This manuscript is organized as follows: in Section 2 we

briefly explain the AMUSING survey on which our manuscript
is based. In Section 3 we explain our novel method for simu-
lating galaxy observations at higher redshift. Section 4 details
the different stellar mass estimates that are used throughout the
paper. We show our results regarding systematic errors on stellar
mass estimation and their impact on the derivation of cosmolog-
ical parameters, and we discuss our findings within the current
ΛCDM paradigm in Section 5. We summarize our main conclu-
sions in Section 6. We use ABmagnitudes (Oke &Gunn 1983), a
Chabrier (Chabrier 2003) initial mass function (IMF) unless oth-
erwise explicitly stated, and assume a ΛCDM cosmology with
H0=70 km s−1Mpc−1, Ω𝑀=0.3, and ΩΛ=0.7.

2. The AMUSING survey

In this work we use a sample of SN host galaxies drawn from the
AMUSING survey 1 Galbany et al. (in prep.). Data were obtained
with the Wide Field Mode of the MUSE instrument (Bacon et al.
2010) installed at the UT4 of the Very Large Telescope in Chile.
Each pointing has approximately 1′× 1′field of view (FoV) taken
at a scale of 0.2′′/pixel. The spectra have a wavelength coverage
in the optical range (4750Å-9300Å, see Fig. 1 for a comparison
with the DECam and SDSS 𝑔𝑟𝑖𝑧 filter sets) with a fixed spectral
sampling of 1.25Å (spectral resolution of around 1800 at the blue
edge and 3600 at the red edge). Our observations have a median
seeing of ∼1′′ which corresponds to a physical resolution around
∼ 600pc at the median redshift of our sample, < 𝑧 >= 0.03 (with
75% of the sample below 𝑧 = 0.05), corresponding to a distance
of ∼124 Mpc.
The data used in our work has been reduced using the MUSE

pipeline (v1.2.1, Weilbacher et al. 2014) and the Reflex envi-
ronment (Freudling et al. 2013). Tasks performed by the pipeline
include standard reduction such as subtracting bias, flat fielding,
galactic extinction corrections, and flux/wavelength calibrations.

1 Based on observations made with ESO Telescopes at the Paranal Ob-
servatory (programmes 95.D-0091(A/B), 96.D-0296(A), 97.D-0408(A),
98.D-0115(A), P99 - 099.D-0022(A), P100 - 100.D-0341(A), P101 -
101.D-0748(A/B), P102 - 102.D-0095(A), P103 - 103.D-0440(A/B) and
P104 - 104.D-0503(A/B).
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For removal of the sky background, we use either an offset point-
ing to an empty region or blank sky regions within the science
frames themselves (for smaller targets) and use the Zurich At-
mosphere Purge package (ZAP, Soto et al. 2016) to perform this
task. To reconstruct the final data product we applied a geomet-
rical transformation of the individual slices to align them in a
datacube. For more information on this procedure we refer to
Galbany et al. (2016a) and Krühler et al. (2017). We have further
corrected the fluxes of the observed spectra by matching the flux
of the integrated galaxy light in the 𝑟-band to, by order of prior-
ity of available data, Pan-STARRS, DES, and SDSS photometry
(Galbany et al. in prep.).

2.1. Our sample

Our study is based on a subsample of the AMUSING survey
that selects only SNe Ia host galaxies for which the FoV covers
the entire galaxy, and no significant foreground contamination
by bright stars or background contamination by distant galaxies
is found in the MUSE datacubes. No galaxies with 𝑧 ≥ 0.1 are
selected, with the great majority (∼ 75%) having 𝑧 < 0.05. There
is no additional cut on any other property within the sample.
And since the existence of foreground stars and/or background
galaxies does not depend on either the host galaxy or the SNIa, the
resulting subsample is akin to a random sampling of the parent
sample. This process was conducted through visual inspection of
each object and its corresponding segmentation map. This map
is defined as the selection of all pixels belonging to the object of
interest flagged, and it was done as a combination of two steps.
First, we searched for Gaia matches within the field-of-view

of the MUSE datacube with a 1′ radial search around the cube
centre using the astroquery package (Ginsburg et al. 2019).
Then we selected as foreground stars all objects with good par-
allax (𝜋) measurements (i.e. 𝜋 > 2𝜋err with 𝜋err being the error
on the parallax). With the final list of foreground stars, we built
individual circular masks centred on each and with a radius con-
taining 95% of the flux measured within a 3′′radius. Then, we
select as the final object map all connected spaxels with a S/N > 3
that belong to the target object and do not overlapwith the circular
masks defined in the previous step. A similar S/N cut is applied
when measuring photometry in the simulated observations (see
Section 3).
All segmentation maps were individually inspected to select

only objects without clear interlopers and with no other nearby
objects (either bright foreground stars or background galaxies)
that may contaminate the light of the galaxy of interest. After this
inspection, a total of 166 galaxies were selected to be included
in our study. To establish a comparison with other host galaxy
samples in the literature, we have computed the physical proper-
ties (stellar masses and star-formation rates) of our AMUSING
subsample using magphys, as described in section 4, and a griz
magnitude set (using any of the other codes described below does
not change significantly the results. This is comparable to the stel-
lar mass estimates of the SDSS (Sako et al. 2018 , < 𝑧 >=0.17)
and DES-SN program (Smith et al. 2020 , < 𝑧 >=0.36) sam-
ples. 2 As we show in Fig. 2, the AMUSING sub-sample spans
similar stellar mass ranges as the samples from SDSS and has
more massive galaxies on average than the sample from DES-SN
program. This latter difference could be naturally explained by
different cosmic epochs probed by the two samples. Our AMUS-

2 We computed stellar masses using both their published catalog pho-
tometry and magphys and find negligible differences to their published
values (smaller than 0.05 dex).

Fig. 2. The comparison of the AMUSING sample stellar masses and
star-formation rates computed using magphys, see Section 4 (in blue),
with the sample from Smith et al. (2020) (in green) and the one from
Sako et al. (2018) (in orange). We show as lines with shaded regions
the expected relation between stellar mass and SFR (commonly referred
to as ’Main-Sequence’) for the population of star-forming galaxies at
different redshifts (adapted from Speagle et al. 2014). We show in the
upper panel the stellar mass distributions and in the right panel the 𝑆𝐹𝑅
distributions for the three samples. We highlight the 1010M� threshold
for SNe Ia brightness corrections (see e.g. Sullivan et al. 2010) as the
vertical dotted line.

ING lower redshift sample galaxies would have had more time
to build up their stellar masses. In terms of star-formation rates,
we find that our sample is slightly less star-forming on average
than the other two programs, but that can be easily explained
by the median redshift of the sample, as one expects galaxies to
increase their star-formation as we move from 𝑧 ∼ 0 to 𝑧 ∼ 2
(see e.g. Madau & Dickinson 2014; Speagle et al. 2014). This
shows that our population of galaxies is not particularly biased,
and the differences among different surveys can be attributed to
the different redshift ranges that are being targeted.

3. Reconstructing data cubes at higher redshift

3.1. Extending the MUSE datacubes

Weare interested in testing the impact of the observedwavelength
range on estimated stellar masses. To simulate observations in a
large redshift range we need to have an extended wavelength
baseline. We note, however, that for galaxies in our AMUSING
subsample the differences in rest-frame coverage form one galaxy
to another are negligible (Δ𝑧 ≈ 0.03) andmuch smaller than what
we aim to simulate in our work.
To perform a simulation of the galaxy spectral energy distri-

bution (SED) using a broad range of filters, we thus artificially
extended the data available in theMUSE datacubes (which covers
the region 4750-9000Å) to span a larger rest-frame wavelength
coverage: 1200Å - 20000Å. To do so we use starlight (Cid
Fernandes et al. 2005) to perform a spaxel-by-spaxel fit of the
local spectra and then use the best-fit model to get the extended
wavelength coverage (see Fig. 3). Prior to the fit with starlight,
all major emission lines are masked as none of the models in-
clude them (the blue line in Fig. 3).We expect that the masking of
emission lines will have negligible impact on the derived stellar
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masses, which is the main goal in our work (e.g Whitaker et al.
2014). This fit is done for all spaxels belonging to each object
map as defined in the previous section. The choice of the extended
coverage takes into account that simulated galaxies will be used
with optical and near-infrared filters across a large redshift range
(𝑧 . 2).
We use a combination of 45 base spectra built with the

Bruzual & Charlot (2003) library and a Chabrier (2003) initial
mass function. The base spectra span 15 stellar ages from 1 Myr
to 13 Gyr and three metallicities (Z = 0.004, 0.02 and 0.05). The
best-fit SSP template is then constructed as a linear combination
of these base spectra that best approximates the observed spectra.

3.2. Artificial redshifting of galaxies

To estimate how the perceived properties of galaxies change
across cosmic time, we wrote an algorithm (hereafter referred
to as argas) to simulate observations of how galaxies in the
local Universe would look if they were at higher redshift. This
is done by artificially redshifting galaxies following closely the
method described in Paulino-Afonso et al. (2017, see also Barden
et al. 2008).
The core of the algorithm consists of three separate transfor-

mations:

1. We apply a flux correction to the datacube (the dimming
factor) that scales as the inverse of the luminosity distance to
the galaxy.

2. We re-scale each wavelength slice of the cube (i.e. a 2D
image at that wavelength) to match the pixel scale of the high-
redshift observations whilst preserving the physical scale and
flux of the galaxy.

3. We redshift the extended galaxy spectra of each spaxel to
match the observed frame at the requested redshift.

We show in Fig. 4 the effects of the scaling and dimming on
images of a galaxy for the four different filters. The same method
was applied to all slices of the extended datacube to re-create a
MUSE observation at higher redshifts. From this extended and
redshifted datacube one can then extract photometry from filters
within the observed wavelength interval between 1200× (1+ 𝑧)Å
and 20000×(1+𝑧)Åfor assessing possible biases in the estimation
of physical galaxy parameters from photometric data (e.g. stellar
mass or star-formation rates).
We have applied each of these effects (dimming, scaling, and

redshifting) separately and find that cosmological dimming is
counteracted by the reduced physical resolution of higher redshift
images. This experiment nicely confirms the concept of surface
brightness which is independent of distance for instruments with
the same resolution. This occurs since, while the flux observed
at higher redshift is lower due to the cosmological dimming
effect, each pixel also covers a larger physical area of the galaxy
which naturally corresponds to higher emitted flux per pixel.
And since both the luminosity distance and angular diameter
distance scale similarly with redshift, they tend to cancel each
other. We find that we lose some flux in the outskirts of galaxies
as we move towards higher redshifts. Nonetheless, the different
rest-wavelength coverage of the photometric filters has the most
significant impact on the derived physical parameters. The rest-
frame coverage changes with redshift, towards bluer wavelengths
as we move to higher redshifts when using the same filter set,
leading to the major contribution to the observed differences. The
use of 3D data from MUSE allows for a more accurate depiction
of observational effects than simply simulating integrated SEDs,

as it allows to measure the impact of flux loss in galaxy outskirts
due to surface brightness dimming, as well as a good handle on
the observed wavelength dependence of the flux.

3.3. Noise addition

To simulate realistic observation conditions, we need to add noise
to the simulated high-redshift images. We assume that the noise
is well described by a Gaussian distribution with a width defined
by 𝜎rms. We have tested two approaches to simulated noise.
One approach is to scale the noise of the original MUSE dat-

acube to the desired exposure time of the simulated observations.
In doing this, we assume that the RMS is inversely proportional
to the exposure time. In practice, we build a 2D noise mapmatch-
ing each of the filters we want to test. For each exposure time
we have that for an exposure time 𝑡 the noise is described by a
𝜎rms (𝑡) = 𝜎rms,0 × 𝑡0/𝑡, with 𝑡0 and 𝜎rms,0 being the exposure
time and noise properties of the original datacube.
A second approach is to define a magnitude limit for each set

of observed filters. To do this, we simulate a point-like object as
a 2D Gaussian profile with an FWHM = 3 pixels (which is the
typical sampling of a PSF, depending only on the instrument)
with a flat spectrum with a constant value 𝑓★. We determine 𝑓★ to
be the value for which the integrated magnitude in the observed
filter and within a 3′′ aperture is equal to the desired magnitude
limit. Then we compute the 𝜎rms that allows the simulated star
to be detected with an S/N = 5 in the 3′′ aperture. This helps
simulate the conditions of typical surveys, for which the limiting
depth is similar across the observed fields. The value of 𝜎rms
is estimated by exploring a fixed list of values, computing the
magnitude of the star at each value of 𝜎rms and comparing that
to the real magnitude of the star. Once the difference between
magnitudes exceeds 0.2 mag3, we select that value of 𝜎rms to
fix our simulated survey depth. To remove the bias of having
a particular realization of a 2D Gaussian noise distribution to
define our final value of 𝜎rms, we repeated this procedure 200
times and defined as our final value of 𝜎rms the median of those
200 realizations.
In the remainder of the paper, we use simulations with noise

added as described in the second approach. Our choice was made
since this approach is the one that can most easily be matched to
existing survey designs given the publicly available information.
The conclusions from our work do not change if we choose the
first approach to add noise to the images. We have simulated
galaxies with 4 different limiting magnitudes, 𝑚lim: 25, 27, 29,
and 31. The results in this work are all based on a value of𝑚lim =

27 (akin to the wide COSMOS survey, Scoville et al. 2007;
Koekemoer et al. 2007) used for all redshifts. The conclusions
from this work remain similar if we use any of the other three
values, with the exception thatwe fail to detectmost of the sources
at 𝑧 > 1.5 when simulating with 𝑚lim = 25. This implies that to
observe galaxies at 𝑧 < 1 using an instrument with the simulated
plate scale of 0.2′′/pix, it suffices to have a depth of ∼25 mag
across all photometric bands. For 𝑚lim = 27, we detect &90% of
the sample in all photometric bands at all redshifts.

4. Estimating stellar masses

Estimating a galaxy stellar mass from photometric data has been
a powerful driver of extragalactic studies over the past decades.
In particular, SED fitting codes have often been used with this

3 A S/N=5 means a 20% error on the flux, which translates to
−2.5 log10 (1.2) ≈ 0.2mag.
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Fig. 3. Example of a spectrum with an extended wavelength coverage obtained from the best-fit starlight model (in orange) compared to the
original MUSE data (in black). The best-fit is done on the masked spectra (in blue). The transmission curves of the DES filters are shown as
shaded regions. We also show the observed wavelengths of the redshifted spectra at z=0.5, 1, and 2 in this figure as the purple, green, and red lines,
respectively. Vertical offsets were applied for better visualization. On top of the plot we identify the observed strong emission lines.

Fig. 4. Example of the different observational effects as simulated for a single scale instrument (same as used in our simulations, with a pixel scale
of 0.2′′) showing a galaxy (PGC 128348, host of SN Ia ASASSN-14jg) simulated at various redshifts (no SED redshifting is applied here). The
original image is shown in the single panel on the left. The simulated images are shown in the grid with redshifts increasing from left to right and,
from top to bottom, the effects of dimming, scaling and both applied to the galaxy. Each square has the exact same physical scale of ≈ 20×20 kpc.

goal (Le Borgne & Rocca-Volmerange 2010; Burgarella et al.
2005; Ilbert et al. 2006; da Cunha et al. 2008; Kriek et al. 2009;
Carnall et al. 2018; Johnson et al. 2021). However, getting the
right stellar mass estimate is not yet a well-posed problem due
to the large number of model choices that one can make prior to
fitting data (e.g. Pforr et al. 2012; Mitchell et al. 2013; Acquaviva

et al. 2015; Mobasher et al. 2015; Lower et al. 2020). To estimate
the stellar masses and star-formation rates (𝑆𝐹𝑅) for the galaxies
in our sample, we have performed our SED fitting using several
publicly available SED fitting codes that we describe below. We
have tried, whenever possible to use the same set of templates
and configurations among different SED fitting codes, although
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that is not always possible due to individual code design choices.
We detail below the set of templates/choices used with each code.
All our fitting was done using the photometric data derived for
DES 𝑔𝑟𝑖𝑧 filter set, as seen in Fig. 1. In fitting of the SEDs, the
redshift of the galaxies is known from the spectra and fixed.

4.1. ZPEG

In ZPEG (Le Borgne & Rocca-Volmerange 2010) the template
library for the stellar populations is built from PEGASE.2 (Fioc
& Rocca-Volmerange 1997) from a set of nine exponentially
declining star-formation histories, where

𝑆𝐹𝑅(𝑡) ∝ exp (−𝑡/𝜏)
𝜏

(1)

with 𝑡 being the age of the galaxy and 𝜏, the e-folding time, a
parameter with the possible values of : 0.1, 0.2, 0.3, 0.4, 0.5,0. 75,
1, 1.5, or 2 Gyr. The SED is computed for 201 timesteps from 0
to 14 Gyr and the standard nebular emission prescription is used
(see Fioc & Rocca-Volmerange 1997 for details on this). For each
template, the initial metallicity has a value of 0.004 and evolves
with time (with new stars having the metallicity of the ISM). We
use the Kroupa (2001) IMF for this set of templates as PEGASE
does not include base templates derived using Chabrier (2003).
Nonetheless, we expect differences on stellar masses from using
these two IMFs to be small (𝑀★,Kroupa = 1.06𝑀★,Chabrier, e.g.
Speagle et al. 2014). We assume a uniform dust screen model
using the Calzetti et al. (2000) law and with 𝐸 (𝐵 −𝑉) = 0 − 0.3
with 0.05 mag steps.

4.2. LePhare

LePhare was originally a photometric redshift code (Arnouts
et al. 1999; Ilbert et al. 2006), but it can also be used to estimate
a number of physical parameters of galaxies from the best-fit
templates. This code is one of the most flexible of those used
in this paper, and to minimize differences among different codes
we use LePhare with the same templates as those described in
the previous section (zpeg templates). The only difference is
the addition or absence of emission lines on top of the original
templates created following the prescription described by Ilbert
et al. (2006).

4.3. MAGPHYS

magphys (daCunha et al. 2008) uses stellar templates constructed
from the stellar libraries byBruzual&Charlot (2003) and the dust
absorption model follows Charlot & Fall (2000). The adopted
IMF is that defined by Chabrier (2003). In this code, the star-
formation histories are derived from an exponentially declining
model and superimposed random bursts. Stellar metallicities are
uniformly sampled between 0.02 and 2 times solar metallicity.
Although there is no freedom to change the underlying templates,
the code compares the data to the entire library and builds the
probability distributions for each physical parameter (e.g. stellar
mass, 𝑆𝐹𝑅, dust, among others). Moreover, while this constraint
limits our ability to compare directly with other codes, we use
a set of libraries that are commonly used in the community and
can serve as a standard reference.

4.4. CIGALE

cigale is a code that was used to build optical-to-infrared SED
models with and without AGN contributions that can also be

used to estimate physical parameters on galaxies with no AGN
contribution and limited wavelength coverage as is our case (Bur-
garella et al. 2005; Noll et al. 2009; Boquien et al. 2019). This
code allows us a few degrees of freedom, and we try to match
the set of available templates to those prescribed by magphys.
The major difference is that we cannot replicate the same star-
formation histories, and we use an exponentially delayed 𝜏model
(𝑆𝐹𝑅(𝑡) ∝ 𝑡 × exp (−𝑡/𝜏) /𝜏) with 𝜏 having the same values be-
tween 0.1 and 2 Gyr as described in Section 4.1.

4.5. PROSPECTOR

Finally, we use prospector (Johnson et al. 2020, 2021) that al-
lows for a Bayesian exploration of the parameter space based
on a set of template libraries of choice. We try our best to
mimic the template configuration of magphys. We allow for
the variation of three parameters: stellar-mass (with a top-hat
prior 8 < log10 (𝑀★/M�) < 12); metallicity (with a top-hat prior
−1.7 < log(𝑍/Z�) < 0.3); and an exponentially declining star
formation history with a log-uniform prior 0.1 < 𝜏 < 30 Gyr).
The IMF is fixed to that of Chabrier (2003), and we use the dust
law defined by Charlot & Fall (2000) with the dust index fixed at
-0.7 (the same as assumed in magphys).

5. Results and Discussion

The goal of our work is to study the impact of observational
strategies on the derived stellar masses of galaxies. To test this,
we have applied our artificial redshifting code (argas) to 166
galaxies from the AMUSING survey and simulated observations
at seven different redshifts 𝑧 = 0.1, 0.3, 0.5, 0.8, 1.0, 1.5, and 2.0.
At each redshift, we compute the photometric data in the four 𝑔𝑟𝑖𝑧
bands from DECam and use the SED fitting codes described in
Section 4 to get the best stellar mass of the galaxy. We use as a
frame of reference for each code the stellar mass computed at the
original redshift of the galaxy (𝑧 ∼ 0.03) using the same filters
and templates.

5.1. Underestimation of stellar masses

After obtaining our stellar mass estimates, we compare the one
obtained at each simulated redshift with the one obtained locally
using the same filter set and library templates. The median differ-
ence for our 166 galaxy sample between the simulated and local
values are shown in Fig. 5 (see also Table 1).
One of the first findings is that, despite the observed differ-

ences among the different used codes, there is a systematic under-
estimation of the stellar mass that depends on the redshift. This
has implications for the implementation of the mass-step correc-
tion, as it implies that galaxies which are observed to be below
the 1010M� threshold for correction may actually lie above it.
This effect becomes more prominent as we move towards higher
redshifts as more galaxies are affected (larger median offset from
the true value). This is an important aspect that needs to be con-
sidered when estimating stellar masses for a singular dataset (i.e.
observed with the same photometric bands) across an extensive
redshift range, as is the case of large surveys such as DES. Given
our defined set of filters and our choice of stellar population tem-
plates, we find that the LePhare (excluding emission lines) code
is the overall best code in estimating stellar masses for galax-
ies at 𝑧 ≤ 0.5. Interestingly, zpeg performs better for galaxies
0.5 < 𝑧 ≤ 1. This is likely due to a combination of the nebu-
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Table 1.Median difference [in dex] on estimated stellar masses for all simulated reshifts (one per column) and different codes (one per row) used
in this work. Errors are computed as 𝜎/

√
𝑁 , with 𝑁 being the number of galaxies in the bin. In the last column we show the overall performance

across all redshifts.

Code 𝑧 = 0.1 𝑧 = 0.3 𝑧 = 0.5 𝑧 = 0.8 𝑧 = 1.0 𝑧 = 1.5 𝑧 = 2.0 All
LePhare -0.03 ± 0.01 -0.04 ± 0.02 -0.09 ± 0.02 -0.15 ± 0.02 -0.25 ± 0.03 -0.54 ± 0.03 -0.70 ± 0.04 -0.11 ± 0.01

LePhare [nolines] -0.03 ± 0.01 -0.01 ± 0.02 -0.02 ± 0.02 -0.09 ± 0.02 -0.15 ± 0.03 -0.35 ± 0.03 -0.70 ± 0.04 -0.08 ± 0.01
magphys -0.02 ± 0.07 -0.03 ± 0.06 -0.08 ± 0.06 -0.19 ± 0.06 -0.26 ± 0.06 -0.31 ± 0.06 -0.22 ± 0.07 -0.10 ± 0.03
ZPEG -0.05 ± 0.02 -0.06 ± 0.03 -0.18 ± 0.03 -0.06 ± 0.03 0.01 ± 0.03 -0.35 ± 0.04 -0.10 ± 0.06 -0.12 ± 0.01
Cigale -0.03 ± 0.00 -0.05 ± 0.01 -0.16 ± 0.02 -0.25 ± 0.02 -0.30 ± 0.02 -0.39 ± 0.03 -0.36 ± 0.04 -0.11 ± 0.01

prospector -0.02 ± 0.00 -0.08 ± 0.01 -0.14 ± 0.02 -0.22 ± 0.02 -0.27 ± 0.02 -0.23 ± 0.02 -0.15 ± 0.02 -0.10 ± 0.01

Fig. 5. The median stellar mass difference for our sample of galaxies as a function of redshift in the case of different SED fitting codes. The stellar
mass reference at 𝑧 ≈ 0 is computed for each individual code using the same photometric filters. This difference can reach to 0.2-0.3 dex by 𝑧 ∼ 1.
We find that LePhare (with no added emission lines) gives the best overall results for 𝑧 < 1 of all used codes, but it still underestimates the stellar
masses at 𝑧 & 0.5. The shaded region indicates the redshifts for which the SED fitting codes are not well calibrated, since we are mostly probing
regions in the rest-frame UV.

lar emission prescription included in the templates used and the
filters where the emission lines are expected to fall.

Although there are several studies in the literature that tackle
a similar issue of estimating physical parameters, they present
results using a much broader filter set. For instance, Pforr et al.
(2012), Mitchell et al. (2013), andMobasher et al. (2015) use op-
tical, NIR and MIR (IRAC photmetry), Acquaviva et al. (2015)
use additional UV photometry and more recently Lower et al.
(2020) uses FIR data from Herschel to constrain physical param-
eters. This extended set of photometric points is what is usually
required for accurately constraining SED fitting models, given
the number of available variables that need constraining (Ac-

quaviva et al. 2015; Mobasher et al. 2015). Additionally, none
of these studies evaluates the same galaxy simulated at different
redshifts. They either consider exclusively mock galaxies (Pforr
et al. 2012; Mitchell et al. 2013; Lower et al. 2020), real data
(Acquaviva et al. 2015) or a mix of both (Mobasher et al. 2015).
Nevertheless, the differences among different codes are consistent
with results from Mobasher et al. (2015), who found an average
spread of 0.136 dex in stellar mass differences estimated from
different SED fitting codes using a similar set of assumptions in
the model templates. The maximum scatter on the estimation of
stellar masses was found to be due to contamination from neb-
ular emission, reaching values of up to 0.5 dex (Mobasher et al.
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2015). With respect to stellar mass estimation bias as a function
of redshift, both Pforr et al. (2012) and Mitchell et al. (2013)
find no significant differences. However, in their test case, they
were using a much larger filter set, and estimating stellar masses
for mock galaxies simulated to be at the redshift they were being
observed.
Interestingly, Pforr et al. (2012) tested the impact of assum-

ing different filter sets on photometry of mock galaxies, which
includes two sets close to the one we study (𝑢𝑔𝑟𝑖𝑧 and𝑈𝐵𝑉𝑅𝐼).
Contrary to our results, they find no significant difference with
redshift, even for these smaller filter sets. We note, however, that
galaxies in their study are derived from simulations at the redshift
they are being observed, and only include star-forming galaxies
with young stars dominating the SED at optical wavelengths. We
suppose that it is the fact that we are observing two different types
of SEDs at each redshift that is driving the difference between our
works. Namely, in our work we use a more evolved population
that is the same at all redshifts, whereas in Pforr et al. (2012)
they simulate star-forming galaxies that evolve with the redshifts
they are testing. This tends to counterbalance the effect of filter
shifting (when applied over the same population) likely due to a
combination of the added 𝑢-band coverage and a population of
younger galaxies. These are two complementary approaches to a
similar problem, that nicely test different aspects of stellar mass
estimates across large redshift ranges.
In our experimental set-up, we are attempting to fit the same

galaxies using different rest-frame coverage (here corresponding
to the different simulated redshifts) and a small filter set for SED
fitting to mimic the conditions for large sky surveys where most
SN are found. We find that the one feature that most affects the
measured stellar mass is the possibility to constrain the 4000Å
break that allows one to have an idea of the fraction of young
and old stars in the galaxy and better constrains the average
stellar population age. As we move towards higher redshifts, we
are sampling increasingly bluer wavelengths, and thus giving
more weight to the younger stellar population (e.g. Pforr et al.
2012; Mobasher et al. 2015) that can outshine the older stellar
populations which add up to most of the galaxy stellar mass
(especially in star-forming galaxies, see e.g. Sorba & Sawicki
2018). And since these stars have lower mass-to-light ratios,
estimates of stellar masses based on these wavelengths tend to be
lower than the true value (Pforr et al. 2012).

5.2. Impact on cosmology

We find that galaxy stellar mass corrections depend strongly on
the observed redshift. This can be a problem for cosmological fits
based on SN data that spans a sizeable cosmic time and use SN
host galaxies stellar masses as the third empirical correction to
their brightness. Our findings imply that some galaxies observed
at stellar masses lower than 1010M� are more likely to actually
be above that correction threshold. This is increasingly critical
as we move towards higher redshifts. In this sub-section, we use
our derived corrections to estimate their impact on the derived
best-fit cosmological models.
We use the median stellar mass difference to re-estimate the

best-fit cosmological parameters for the Betoule et al. (2014)
sample. We do this using two different approaches. The first
using the best approximationwe derive from the set of SEDfitting
codes that were tested in our paper (i.e. LePhare [no-lines]). In
the second approach we combine all individual corrections using
a weighted average to produce a global correction curve for the
estimated stellar masses. To derive the stellar mass correction
curve as a function of redshift (Δ𝑀 (𝑧)), we interpolate linearly

Fig. 6. Themass correction function for each redshift to be applied to the
estimated observed stellar masses. The orange line represents the global
mass correction using our best approximation (LePhare [no-lines]). The
green line shows the correction to be applied using the weighted aver-
age correction derived from all SED fitting codes. The shaded regions
represent the uncertainty on the correction at each redshift.

Fig. 7. The resulting posterior distributions on Δ𝑀 for different runs.
We show the LePhare-NL stellar mass correction results in orange
and average stellar mass correction results in green, compared to the
fit using the original stellar masses from Betoule et al. (2014). Vertical
lines indicate the best-fit value for each configuration. We find that
the fiducial model has a slightly larger value for Δ𝑀 than either of
the mass-corrected models, being very close to the best-fit value for the
LePhare-NL correction model. Nevertheless, the resulting distributions
for both mass-corrected models are similar among themselves.

between the simulated redshifts.We show these correction curves
in Fig. 6. We restrict our stellar mass corrections to be valid only
at 𝑧 ≤ 1. This has negligible impact on our tests for cosmological
parameters since themajority of SNe are below that redshift limit.
The distance modulus to each supernova can be modelled as

(e.g. Betoule et al. 2014):

𝜇(𝑧) = 𝑀𝐵 + 5 log10 (𝐻0 [𝑧,Ω𝑚, 𝑤]) − 𝛼 × (𝑠 − 𝑠) + 𝛽 × 𝑐 (2)

where 𝑠 is the stretch term and 𝑐 is the colour term. The supernova
luminosity is parameterized by

𝑀𝐵 =

{
𝑀𝐵,1 + Δ𝑀 , if 𝑀★ ≥ 1010M�
𝑀𝐵,1, otherwise

(3)
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Table 2. Best-fit parameters of the cosmological model based on the three different configurations described in Sect. 5.2.

Parameter Fiducial Mass-corrected [LePhare-NL] Mass-corrected [average]
𝑤0 𝑓 𝑙𝑑 -1.029+0.069−0.043 -1.022+0.053−0.056 -1.023+0.053−0.055
𝛼 0.142+0.006−0.007 0.141+0.007−0.006 0.141+0.007−0.006
𝛽 3.080+0.076−0.083 3.070+0.087−0.074 3.068+0.087−0.075
𝑀 -19.108+0.036−0.043 -19.110+0.040−0.037 -19.111+0.041−0.037
Δ𝑀 -0.064+0.016−0.030 -0.063+0.022−0.023 -0.060+0.020−0.022
Ω𝑚 0.309+0.019−0.012 0.310+0.016−0.015 0.310+0.015−0.015
𝐻0 68.249+1.248−2.034 68.075+1.594−1.600 68.043+1.652−1.546

Fig. 8. The resulting posterior distributions on 𝜔 and Ω𝑚 for different
stellar mass corrections (LePhare-NL stellar mass correction in orange
and average stellar mass correction in green), compared to the fit using
the original stellar masses from Betoule et al. (2014), in blue. The
contours levels correspond, from inside out, to 68%, 95% and 99% of
the posterior distribution. We show as stars (same colours as contours)
the best-fit value for each configuration. Vertical and horizontal lines
indicate the best-fit value of each parameter for the three different set-
ups. There is no significant difference on the constraints when using the
mass-corrected dataset with respect to the fiducial model. We find small
differences in the best-fit values (star symbols), with the LePhare-NL
stellar mass correction configuration showing the largest difference with
respect to the fiducial model.

with 𝑀𝐵,1 being a free parameter, and Δ𝑀 the magnitude differ-
ence to be applied for SNe Ia in massive hosts.
We estimate the best-fit parameters and corresponding prob-

ability density distributions using an MCMC approach with the
package MontePython (Brinckmann & Lesgourgues 2018; Au-
dren et al. 2013). Our analysis is conducting using the "Joint
Light-Curve Analysis" sample (Betoule et al. 2014 , hereafter
referred to as JLA). This sample combines data from 740 SNe
Ia up to redshift 𝑧 ∼ 1.3 and data from the cosmic microwave
background (CMB Planck Collaboration et al. 2020). We use a
likelihood defined as (see e.g. González-Gaitán et al. 2021):

−2 ln(L) =
∑︁
SN

{
[𝜇(𝑧) − 𝜇obs]2

𝜎2tot

}
, (4)

where the uncertainty is defined as the diagonal of the covariance
matrix:

𝜎2tot = 𝜎2𝑚𝐵
+ (𝛼𝜎𝑆)2 + (𝛽𝜎𝐶 )2 + 𝜎2int. (5)

We assume that 𝜎int = 0.105, which is the average value for the
JLA sample. We use the constraints of CMB data as a prior in our
model in the same functional form as in equation 18 by Betoule
et al. (2014), only updating the values with the latest release from
the Planck survey (Planck Collaboration et al. 2020).
To incorporate the uncertainty of the stellar mass correction

models (see Fig. 6), we create 50 different corrections curves that
are randomly perturbed around themedian correction, and within
the shown uncertainty region. We then run our cosmological fits
for each of the 50 individual corrections. Finally, we combine
the results into a single posterior distribution for each parameter,
marginalized over the uncertainty on the stellar mass correction.
We do this exercise in three different configurations: one

using the original stellar masses from the JLA sample, which is
our fiducial model; and the two other MCMC runs are using the
derived stellar mass corrections shown in Fig. 6 applied to the
measured stellar masses of the JLA sample. The best-fit values
and corresponding uncertainties for each of these configurations
is shown in Table 2. We also show all the posterior distributions
for the fitted parameters in Fig. A.1.
We find that the parameters that changes the most when

applying our stellar mass corrections is Δ𝑀 . In our LePhare-
corrected model, the best-fit parameter value decreases by ∼2%,
while when we apply our average-correction the difference with
respect to the fiducial model is ∼6%. Since Δ𝑀 is the parameter
that is linked on the host stellar mass (Eq. 3), it is expected that it
is the most affected by applying corrections to the original stellar
masses (see Fig 7).
With respect to the constraints of the cosmological param-

eters, we find smaller differences with respect to the fiducial
model (< 1%, see Figures 7 and 8). The value of Ω𝑚 increases
by 𝛿 ∼ 0.001 (∼ 0.3%) in the LePhare-corrected and average-
corrected fits. The value of 𝑤0 increases by 𝛿 ∼ 0.007 (∼ 0.7%)
when using the LePhare stellar mass corrections. To contextu-
alize, this possible systematic bias corresponds to approximately
one tenth of the expected error budget in 𝑤0 from Euclid (Amen-
dola et al. 2018). The difference in 𝑤 is slightly smaller when we
use the average correction, with it increasing only by 𝛿 ∼ 0.006
(∼ 0.6%). Finally, we find also small changes in the 𝐻0 parame-
ter: 𝛿 ∼ −0.2 (∼ −0.3%) for both the LePhare and the average
stellar mass corrections. We note, however, that these differences
are all within the fitting uncertainties.

6. Conclusions

We study the impact of observational effects (namely cosmolog-
ical dimming and rest-frame coverage) on estimating physical
parameters of galaxies. In particular, we aimed to assess possible
systematic bias on the estimation of stellarmasseswhen analysing
galaxy samples across a large redshift range. To achieve this goal
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we use a sample of 166 SNe Ia host galaxies with IFS from the
AMUSING survey. With these galaxies it was possible to sim-
ulate observations of galaxies at redshifts (0.1 < 𝑧 < 2 using
a 𝑔𝑟𝑖𝑧 filter set to mimic the DES-SN program). Five different
codes—cigale, LePhare, magphys, prospector, zpeg—were
used to estimate stellar masses allowing for a better identification
of possible bias associated with the choice of SED fitting models.
The implications of our results on the determination of cosmo-
logical parameters using mass step correction has been studied.
Our main conclusions are:

– Regardless of the code used to estimate stellar masses, there
is a systematic underestimation of the stellar mass, which in-
creases with increasing redshift. Depending on the individual
code, this difference reaches around 0.2-0.3 dex by 𝑧 ∼ 1.

– We find that when correcting the observed stellar masses for
a public SNe Ia sample, there is a small impact on the best-fit
parameters of the cosmological model. The impact has the
same order of magnitude whether we use the LePhare-NL
or the average stellar mass corrections.

– The cosmological parameters show the largest impact when
deriving the best-fit value of the magnitude correction Δ𝑀 ,
which is reduced by ∼2 and ∼6% for the LePhare-NL and
average stellar mass corrections, respectively. The cosmo-
logical parameters show deviations from the fiducial value
below 1%: Ω𝑚 increases by 0.3% (𝛿 ∼ 0.001); 𝑤 is reduced
by 0.6% (𝛿 ∼ 0.006); and 𝐻0 decreases by 0.3% (𝛿 ∼ 0.2).
These differences are all within the fitting uncertainties, but
could be a non negligible source of systematic errors in the
coming decade.

Our main conclusion is that stellar mass estimations across
a large redshift range have a systematic underestimation that
itself depends on the redshift of the observed host galaxy. The
forthcoming surveys, such as Euclid and/or Nancy Grace Roman
Space Telescope, can help minimize these effects by providing
a more significant baseline of rest-frame coverage (with added
filters in the NIR regime) that helps minimize the error budget.
By doubling the number of filters into the NIR regime, one can
hope to constrain better the region around 4000Å rest-frame to
higher redshifts, helping quantify the amount of old and young
stars in the galaxy, which are crucial for accurate stellar mass
estimates.
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Appendix A: Full results from cosmological fits

In this section we show the posterior distributions for all the fitted
parameters in our MontePythonmodel (see description in Sect.
5.2). In Fig. A.1 we show that for most parameters the distribu-
tions are similar, with the variable that shows the largest impact
from correcting the stellar masses being Δ𝑀 , the magnitude cor-
rection to be applied depending on the host stellar mass (see Eq.
3).
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Fig. A.1. The resulting posterior distributions on all the free parameters for our cosmological model using the three different configurations: fiducial
model (in gray), stellar masses corrected using best approximation with LePhare-NL (in orange), and stellar masses corrected with the average
difference among different codes (in green). The contours levels correspond, from inside out, to 68%, 95% and 99% of the posterior distribution.
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