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Abstract
FACULTY OF SOCIAL SCIENCES

SOUTHAMPTON BUSINESS SCHOOL

Doctor of Philosophy

by Marios Dominikos Kremantzis

This thesis sheds new light on proposing and illustrating the use of several alternative
modelling approaches and methodological frameworks to attain fairness in the evalua-
tion outcomes of the decision-making units (DMUs) under exploration, being arranged
as a network Data Envelopment Analysis (DEA) system.

The thesis contains three main chapters. Apart from Chapter 1 (Introduction), in Chap-
ter 2, we initially emphasise that in DEA, a variety of approaches have been used in
the context of single-stage and basic serial two-stage systems to attain fairness in the
evaluation of DMUs. Little work, however, has been done to address this challenge
in a generalised two-stage structure featuring additional inputs in the second stage
and a proportion of first-stage outputs as final outputs. In this chapter, we argue that
in this context, fairness is enhanced by increasing measures related to the discrimina-
tory power and the weighting scheme of the method. We describe a mechanism that
gives prominence to a more contemporary concept of fairness, incorporating diver-
sity and inclusion of minority opinions. These aspects have, to our knowledge, not
yet received explicit attention in the methodological development of DEA. We pro-
pose a novel combination of an additive self-efficiency aggregation model, a minimax
secondary goal model, and the CRiteria Importance Through Inter-criteria Correlation
(CRITIC) method, in order to promote these aspects of fairness, and thus achieve a
better degree of cooperation between the stages of a DMU and among DMUs. The
additive aggregation model is chosen over the alternative multiplicative approach for
a variety of reasons relating to the emphasis on the intermediate products exchanged
and the simplification. The minimax model offers peer evaluation in which each DMU
aims to evaluate the worst of the others in the best possible light. Application of the
CRITIC method to DEA addresses the aggregation problem within the cross-efficiency
concept. Practical applications of this approach could include supporting the deter-
mination of training needs in job rotation manufacturing, or evaluation of sustainable
supply chains. The chapter includes a description of a numerical experiment, illustrat-
ing the approach.
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The evaluation of the performance of a DMU can be measured by its own optimistic
and pessimistic multipliers, leading to an interval self-efficiency score. While this con-
cept has been thoroughly studied with regard to single-stage systems, there is still a
gap when it is extended to two-stage tandem structures, which better correspond to a
real-world scenario. In this spirit, in Chapter 3, we argue that in this context, a mean-
ingful ranking of the DMUs is obtained; this outcome simultaneously considers the
optimistic and pessimistic viewpoints within the self-appraisal context, and the most
favourable and unfavourable weight sets of each of the other DMUs in a peer-appraisal
setting. We initially extend the optimistic-pessimistic DEA models to the specifications
of such a two-stage structure. The two opposing self-efficiency measures are merged
to a combined self-efficiency measure via the geometric average. Under this frame-
work, the DMUs are further evaluated in a peer setting via the interval cross-efficiency
(CE). This methodological tool is applied to evaluate the target DMU in relation to the
most favourable and unfavourable weight profiles of each of the other DMUs, while
maintaining the combined self-efficiency measure. We, thus, determine an interval in-
dividual CE score for each DMU and flow. By treating the interval CE matrix as a
multi-criteria decision making problem and by utilising several well-established ap-
proaches from the literature, we delineate its remaining elements; these lead us to a
meaningful ultimate ranking of the DMUs. A numerical example about the efficiency
evaluation of ten bank branches in China illustrates the applicability of our modelling
approaches.

Many organisations are composed of multiple departments connected either in series or
in parallel, which may be further decomposed into a number of functions arranged in
a hierarchical structure. Several researchers have successfully used appropriate DEA
modelling techniques to assess complex structures. However, to our knowledge, no-
one has examined the case of measuring and evaluating a parallel network structure
combined with a hierarchical one. Chapter 4 discusses the development of the novel
multi-function parallel system with embedded hierarchical network structures to elim-
inate this research gap. A linear additive decomposition DEA model and a non-linear
multiplicative aggregation DEA model are proposed as alternatives to evaluate the op-
erating performance of such a structure. The system, the sub-systems, and the effi-
ciencies of their internal units, as well as their relationships, are identified. The system
efficiency of the additive model is shown to be greater than or equal to that of the mul-
tiplicative model. To verify the applicability of our proposed models, we consider a
hypothetical example of the evaluation of the performances of several Business Schools
across a number of universities. Other envisaged areas of application of our structure
could include supporting the evaluation of the supply chain management of a firm, or
the determination of most desirable ship design considering maintenance issues. Chap-
ter 5 summarises the main findings of the PhD thesis, points out limitations of the work,
and discusses future research directions.
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Chapter 1

1.1 Research Context & Background

Data Envelopment Analysis (DEA) is a well-established mathematical programming
approach, often used in operations management and economics, for measuring and
evaluating the relative efficiency of a set of (typically) homogeneous decision making
units (DMUs) that make use of multiple inputs to produce multiple outputs (Cook
and Seiford, 2009; Cooper et al., 2011). The inputs are typically resources to be min-
imised and the outputs are products/outcomes to be maximised, leading to a better
performance/efficiency measure. When DEA acts as a benchmarking process, then the
inputs are usually the less-the-better type of measures and the outputs are the more-
the-better type of measures. Under this circumstance, DEA also highlights its nature as
a multiple-criteria decision making tool (Doyle and Green, 1994; Stewart, 1996; Cook
et al., 2014). In particular, DMUs are the decision alternatives, and the DEA inputs
and outputs are the cost and benefit criteria, respectively. DEA is also known as a
non-parametric approach, since it does not need to define the mathematical form of
the production or operations function. It does not make any specific assumptions with
respect to the internal mechanisms of a particular DMU either (Cooper et al., 2000).

DEA was originally developed by Charnes et al. (1978) (CCR) for the constant returns-
to-scale (CRS) assumption, and extended by Banker et al. (1984) to incorporate the
variable returns-to-scale assumption (VRS). If a DMU operates under the CRS assump-
tion, then a change in the input level leads to a proportionate change in the output level.
If one input or one output has an equal value across the DMUs under consideration,
then the CRS assumption is replaced by the VRS assumption. This is due to the fact
that the input/output constraint takes the form of a convexity constraint in the model
under the CRS assumption (Cook et al., 2014). In general, DEA can be either input-
or output-orientated. In the former case, an inefficient DMU becomes efficient via the
proportional decrease of its inputs while its outputs proportions are kept fixed. In the
latter case, an inefficient DMU becomes efficient via the proportional increase of its
outputs while its inputs proportions are held constant (Kao, 2017). To simultaneously
consider both orientations, that is to address the input excesses and output shortfalls,
Taleb et al. (2022) introduced a bi-objective DEA model with undesirable factors and
mixed integer restrictions.

Since the seminal work of Charnes et al. (1978), there has been a continuous interest
and increased development in the field of DEA. As a result, a considerable amount
of published research papers and textbooks have appeared in the DEA literature, in-
cluding those of Cook and Zhu (2007), Cooper et al. (2011), Cook et al. (2014), and
Emrouznejad and Yang (2018). DEA has been widely used in various applications, in-
cluding energy and environment (Zhai et al., 2019), water resource efficiency (Liang et
al., 2021), local governments (Amatatsu et al., 2012), research and development depart-
ments (Wang et al., 2013), financial services and banking (Paradi and Zhu, 2013; Tan
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et al., 2021; Shi et al., 2021; Li et al., 2022), insurance services (Omrani et al., 2022b),
supply chain management (Azadi et al., 2014), sports (Moreno and Lozano, 2014), in-
ternational shipping (Gan et al., 2019), inland transportation (Stefaniec et al., 2020;
Wang et al., 2022), hospital efficiency (Dehnokhalaji et al., 2022; Omrani et al., 2022a),
higher education (Ekiz and Tuncer Şakar, 2020; Lee and Johnes, 2021), and many more.
DEA can facilitate the identification of sources of inefficiency and the classification of
DMUs from the most to the least efficient (Liang et al., 2008; Cook et al., 2014; Halkos
et al., 2014).

In the conventional DEA, the overall assessment of the target DMU is based on the
optimal set of its own most favourable multipliers and on the concept of the efficiency
frontier (Zhu, 2015). In this context, “the efficient DMUs, as defined by DEA, may not nec-
essarily form a production frontier, but rather lead to a best-practice frontier” (Cook et al.,
2014, p.2). In a traditional single-stage DEA structure, it is not known how the inputs
(resources) are converted into outputs (outcomes) within the core of a DMU under con-
sideration. The so-called “black box” analysis is assigned to such cases, to depict that
a DMU is being treated as a whole unit that measures its relative performance by only
considering its exogenous inputs and exogenous outputs (Kao, 2017). As stressed in
Zhu (2020), a great number of tasks and performance measures cannot be accommo-
dated in a “black box” DEA structure. The internal operations of a DMU might consist
of a number of interrelated and/or independent functions and tasks, depending on the
context of the problematic area (Kao, 2014). Ignoring the internal operations of a DMU
could lead to misleading outcomes. For instance, while the whole unit could be charac-
terised as efficient, all its constituent sub-stages may be inefficient. This could be better
explained by considering an application in the financial sector, where there are two in-
terrelated processes, the capital collection and the profitability due to the investment
decisions. By exploring the effect of the information technology (IT) on the efficiency
of a bank branch, we might discover that IT is linked to the capital collection but not
to profitability. The selection of the appropriate investment opportunities will deter-
mine the level of profit. In addition, the traditional concept can lead to a large number
of DEA-efficient DMUs (Ma et al., 2017), sharing the top position in the ranking list.
Hence, to enable the study of internal operations and easier identify any causes of inef-
ficiency, research has extended DEA models to consider network structures (Färe and
Grosskopf, 2000).

According to Zhu (2020) and Charles et al. (2021), network DEA is most prominent
in the area of big data, highlighting how various performance metrics could be asso-
ciated via complicated network structures. Fukuyama and Weber (2021), for instance,
implemented a network DEA approach under a big data set to optimally reallocate
tests for COVID in the United States. The network system differs from the black-box
in that it involves more complex structures, thereby leading to a less systematic illus-
tration (Kao, 2017). Furthermore, the traditional single-stage (black-box) DEA model
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always identifies at least one efficient DMU, whilst a network DEA model might not
spot an overall efficient DMU (Fukuyama and Mirdehghan, 2012; Zhu, 2020). In gen-
eral, a network system converts the inputs forwarded to the system from the external
environment to final outputs through the assistance of some intermediate measures.
To measure the efficiency of the units and sub-units within a network DEA structure,
literature advocates the concepts of the efficiency decomposition and the efficiency ag-
gregation (Kao, 2016; Kao, 2017; Kao, 2018; Lee, 2021). The efficiency decomposition
(see also Lozano and Khezri (2021)) defines the system efficiency taking into account
only the exogenous inputs and outputs, and then identifies a mathematical (multiplica-
tive or additive) relationship that associates system and process efficiencies. Despotis
et al. (2016) argued that the efficiency scores obtained via the additive decomposi-
tion method are biased, whereas those obtained via the multiplicative method are not
unique. Recently, Koronakos et al. (2022) introduced a novel network DEA approach
to reach a fair compromise efficiency decomposition. On the other side, the efficiency
aggregation defines the system efficiency as a (multiplicative or additive) function of
those of its components, involving the intermediate measures (Kao, 2017). Lu et al.
(2020) proposed a multiplicative efficiency aggregation approach in a two-stage net-
work DEA model into the form of second order cone programming.

In the simplest version of a two-stage tandem system, all inputs used by a DMU feed
into a first stage, producing intermediate outputs that all feed into a second stage, pro-
ducing the final outputs of the entire system. Performance measurement of DMUs in
this structure has received a reasonable amount of attention (Cook et al., 2010b). Kao
and Hwang (2008) proposed that the overall efficiency is decomposed into the product
of the efficiencies of the two constituent stages. Chen et al. (2009) examined an additive
efficiency decomposition approach in which the overall efficiency is decomposed into
the weighted sum of the efficiencies of the two divisions, where the weights indicate
the degree of importance. While Kao and Hwang’s (2008) approach was only appli-
cable to CRS situations, Chen et al. (2009) showed applicability to both CRS and VRS
conditions. Ang and Chen (2016) proved that the decomposition weights in Chen et
al.’s (2009) study are non-increasing in the order of sub-stages. They particularly high-
lighted that earlier divisions would be assigned higher relative importance, affecting
the overall system’s efficiency to a greater extent. Based on that, they also demon-
strated that the overall and sub-stages’ efficiency scores are prone to the impact of the
decomposition weights. Some pitfalls that concern the weighted additive efficiency de-
composition approach have also been discussed and addressed via an alternative over-
all efficiency index that reflects the division efficiencies by (Guo et al., 2017). Wang and
Chin (2010c) proposed alternative DEA models in which the overall system efficiency
of the two-stage tandem series process is modeled as a weighted harmonic mean of
the efficiencies of the two internal divisions. Which of these methods leads to the best
results will depend on the context of application, and while not part of the focus in this
Ph.D. thesis, it does form an interesting area for further examination.
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Realistic cases extend the two-stage tandem structure into a generalised one in which
the first stage additionally generates final outputs, the second stage also produces ex-
ogenous inputs, and certain outputs of the second stage are re-utilised by the first (see
for example, Chen and Zhu, 2019; Pérez-González et al., 2021). The latter structure
can be further illustrated with the use of multiple divisions arranged in a series way
(Despotis et al., 2016). Chen et al. (2010), for instance, proposed a model for perfor-
mance estimation where the stages share non-splittable inputs, while Zha and Liang
(2010) designed cooperative and non-cooperative models where shared inputs can be
freely allocated between the two stages. Yu and Shi (2014) examined a two-stage struc-
ture with additional inputs in the second stage and part of intermediate products, as fi-
nal outputs. Jianfeng (2015) considered a different two-stage DEA model, in which part
of the intermediate products from the first stage convert into an input for the second
stage, while the remaining products convert into the final output. Moreover, he classi-
fies the inputs into those that are entirely integrated into one stage and those that are
shared between the two stages. Amirteimoori et al. (2016) developed a number of ad-
ditive efficiency models to evaluate the operating performance of DMUs in the form of
a two-stage DEA structure with shared resources. Ma et al. (2017) proposed a parallel-
series hybrid two-stage DEA model. Their model utilised the principles of additive and
multiplicative DEA approaches for efficiency measurement and decomposition. Wang
et al. (2020) constructed a two-stage network DEA model with shared inputs, addi-
tional intermediate inputs, and free intermediate outputs to evaluate the technological
innovation efficiency of China’s high-tech industries. Chen et al. (2021) proposed an
extended two-stage network DEA approach with shared input resources to measure
the operating efficiency of a set of Chinese universities. Michali et al. (2021) suggested
an additive decomposition network DEA approach with intermediate and undesirable
outputs to measure the European railway transport process efficiency. Such systems
have mainly a series structure, in that they operate interdependently. Nevertheless, in
other types of networks, the internal divisions are largely placed in parallel without
impacting one another (Kao, 2009b; Kao, 2012). These networks have been essentially
divided into two prevalent systems: the multi-component and the multi-function par-
allel systems (Kao, 2017). Extensive research has examined such systems in various
applications, including the performance evaluation of physics and chemistry depart-
ments in UK universities (Beasley, 1995), the assessment of commercial banks in Iran
(Jahanshahloo et al., 2004), the maximisation of sales of Portuguese retail stores (Vaz
et al., 2010), the impact of coal-fired power plants on pollution-generating processes
(Lozano, 2015), and the evaluation of the operational capability of container terminals
(Park et al., 2022). In most of the aforementioned studies, scholars examined realistic
multi-stage parallel systems with shared/non-shared resources and common/separate
outcomes. Although many scholars have emphasised the key assumption of the paral-
lel systems, in that the internal divisions are related to the same type of inputs and out-
puts (in differing amounts), there are also efforts indicating the development of parallel
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network DEA models with respect to addressing non-homogeneous parallel divisions’
issues (Du et al., 2015). Other special network cases are the hierarchical systems, where
the resources of a unit in a certain level are further split to the sub-units of the immedi-
ate next level. For instance, Castelli et al. (2004) presented single-stage and two-stage
hierarchical structures to measure the efficiency of DMUs, assuming that the internal
divisions are under the constant returns-to-scale. Cook and Green (2005) introduced a
DEA model to evaluate the efficiency of a number of power plants that are decomposed
into power units within a hierarchical structure. The novelty of their model lay in its
nature to consider all hierarchical levels at the same time. Kao (2015) also developed
a relational model for a single-stage hierarchical structure to measure both the overall
system and its divisions’ efficiencies simultaneously. He argued that this structure is
identical to a parallel system (Kao, 2009b). Kao (2015) optimised the efficiency of the
overall production system, considering only the constraints corresponding to the ter-
minal divisions. Li et al. (2020) focused on the same hierarchical structure by addition-
ally optimising the efficiencies of the terminal divisions. Chen et al. (2019) proposed
a hierarchical DEA framework to construct an indicator with a view to reevaluating
the 2014 Global Food Security Index. Zhang and Chen (2019) extended the concept of
Kao (2015) to a generalised single-stage hierarchical structure wherein all internal units
across the different levels can reflect a two-stage tandem system. To examine the rela-
tionship between the system and its sub-units, they introduced additive aggregation
and multiplicative decomposition DEA models. Gan et al. (2019) suggested a gen-
eral two-stage series process, in which each stage is no longer treated as a black-box,
but is further elaborated into a hierarchical structure with multiple layers. Ghasemi
et al. (2020) assessed the performance of the campuses of the Farhangian University,
which are developed as a four-level hierarchical structure. Which network model is
most appropriate, is arguably dictated by the area of application, and should consider
the interplay between the physical reality of how inputs and outputs connect, and how
the decision maker (DM) divides managerial responsibilities across different sections
of DMUs.

While network structures have the potential to investigate the sources of inefficiency,
two major challenges similar to those in a single-stage production system emerge. The
first one concerns the lack of discrimination power (Mahdiloo et al., 2016; Örkcü et al.,
2019). This is more likely to occur when the number of DMUs is small relative to the
number of inputs and outputs. It is often a problem that coincides with a high number
of DEA-efficient DMUs (Bal et al., 2010; Ghasemi et al., 2014). The challenge stems
from the self-evaluation concept of (classic) DEA (Örkcü et al., 2019). The inability
to discriminate DMUs may lead to a lack of actionable results to be identified by the
decision maker.
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The second challenge is pertinent to what is referred to in the literature as an ‘unre-
alistic’ weighting scheme (Mahdiloo et al., 2016; Örkcü et al., 2019). Indeed, it is al-
lowed for a high relative-importance weight to be assigned to ‘less important’ inputs
or outputs (according to some objective standards), and/or a low weight to significant
factors. This choice of weights could turn a DMU into a DEA-efficient unit. When
evaluated according to a weighting scheme which would reflect an ‘objective’ rela-
tive significance of various inputs or outputs, this DEA efficient DMU might, in fact,
have a worse performance than a seemingly DEA non-efficient DMU (Wu et al., 2012b;
Ghasemi et al., 2014). As cited in Zarei Mahmoudabadi and Emrouznejad (2022),
there are specific conditions under which the selection of input and output weights
requires further considerations. For instance, when the weights allocated to the var-
ious known factors are zero or epsilon, or when the decision maker is not compliant
with several of the results, then an unbalanced situation can emerge. The common set
of weights is one of the many methods introduced in (traditional and network) DEA
models to reduce the flexibility in the selection of weight sets assigned to the input and
output factors (Omrani et al., 2019; Mavi et al., 2019; Yu et al., 2021). Whether or not
a weight scheme is deemed unrealistic has thus to do with the question about whether
the degrees of freedom given to the self-evaluating DMUs (the subjective realm) are too
high or not in the light of the existence and nature of overarching considerations about
areas of consensus across the collective of DMUs (the objective realm). These over-
arching considerations can either be imposed a priori (e.g., top-down by the decision
maker), or revealed during the DEA evaluation process (e.g., through cross-efficiency
evaluation).

The aforementioned challenges can impede the attainment of a fair and unique rank-
ing. Fairness can be generally considered as a universal mechanism that corresponds to
using a system of evaluation and ranking that is acceptable by the units being assessed
(Fehr et al., 2002; Beullens et al., 2012). Leventhal et al. (1980) suggested several
fairness organisational principles including the consistency, the lack of bias, the use of
precise information in decision-making contexts, and the conformity to dominant stan-
dards of ethics. According to Hartmann and Slapnicar (2012), the fairness of a project
is connected to the uncertainty of its outcomes. As the uncertainty of the project out-
comes increases, the efficiency of that project increases too. However, the cost of the
uncertainty can outweigh the benefits of fairness at some point. In the DEA context,
fairer evaluation outcomes could be achieved by establishing effective rules and guide-
lines and/or implementing DEA methodologies that everyone can accept and account
to fairness in a way everyone can find agreeable. Banker and Morey (1986) introduced
a fairness approach where the groups are classified by the degree of discrimination
power. Jahanshahloo et al. (2017) introduced a fairer method for ranking the DMUs
under examination; they, particularly, evaluated the optimistic and pessimistic effi-
ciency scores by taking into account the optimistic and pessimistic optimal weights of
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all DMUs. Chen et al. (2020) proposed a fair DEA framework showing that an unpriv-
ileged group of DMUs cannot reach the same level of outputs as the privileged group
of DMUs, although they both use the same level of inputs. To achieve fairer efficiency
scores without creating disparate impact, they imposed additional constraints to the
original models. Yu and Chen (2020) developed a modelling approach to evaluate pro-
duction and service efficiency and explore technology biases in the internal divisions
of a DMU, by integrating network DEA and the meta-frontier approach. Radovanović
et al. (2021) integrated fairness into a DEA method through additional constraints re-
garding the disparate impact of algorithmic decision-making. Finally, Wu et al. (2021)
investigated how fairness concern influences a DMU by introducing new utility-based
network DEA models to analyse the non-cooperative and cooperative modes.

In this Ph.D. thesis, we are interested in methods which aim to ensure appropriate con-
ditions for a fairer evaluation and ranking of the outcomes of the DMUs under explo-
ration. These conditions could lie in a higher level of discriminatory power, a more re-
alistic weight scheme, a greater degree of collaboration between DMUs and sub-stages
of a particular DMU, the less mainstream and more diversified profiles and viewpoints
within a decision-making context, and/or the more complicated mechanisms and op-
erations within the core of a DMU. In short, we say that we intend to tweak the network
DEA methodology to enable fairer efficiency estimations.

There are, broadly speaking, two types of methods for addressing the fairness issues.
These methods have been primarily developed for and tested on single-stage DEA
models. Methods in the first class incorporate a priori information into the model
(Dyson and Thanassoulis, 1988; Zhu, 1996; Halme et al., 1999). Methods in the sec-
ond class keep the model largely intact but reveal additional principles of consensus
via the DEA process. In particular, these methods (often) rely on a generalisation of the
process of how each DMU’s performance is arrived at, e.g. through: cross-efficiency
(Doyle and Green, 1994), interval cross-efficiency (Yang et al., 2012), multi–criteria
DEA (MCDEA) (Li and Reeves, 1999), or Nash bargaining game (An et al., 2017). The
following paragraphs will introduce some of the DEA concepts related to the second
class and explore relevant literature, in order to get a firm grip on understanding how
fairness has been attained per case. Nevertheless, it is important to mention that part
of the focus in this Ph.D. thesis is to make methodological advancements only in cross-
efficiency and interval cross-efficiency concepts (belonging to the second class) within
an appropriate network DEA context.

According to the cross-efficiency evaluation concept (Sexton et al., 1986), each DMU is
assessed using its own most favourable weights next to the weight profiles of all other
DMUs. Anderson et al. (2002) emphasised that cross-efficiency greatly improves the
probability of obtaining a unique ranking and eliminates the unrealistic weight distri-
bution. A critical drawback of this concept is the non-uniqueness of optimal weights,
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which leads to the non-uniqueness of cross-efficiencies. This result is in general un-
favourable (Liang et al., 2008), indicating that this concept is by itself not sufficiently
strong. Indeed, one can imagine game-playing behaviour to become possible in which
DMUs will select their self-evaluation multipliers in an aim to, for instance, lower ul-
timate scores of some of their peers. See also Wu et al. (2021) for a review of DEA
cross-efficiency methods and applications.

Doyle and Green (1994) were among the first to recommend the adoption of alterna-
tive secondary goals in an aim to select unique optimal multipliers. In particular, they
introduced an aggressive model and a benevolent model, while the secondary objective
functions in Liang et al. (2008) reflected the minimisation of total deviation, maximum
deviation, and mean absolute deviation from an ‘ideal’ point i.e. the situation when
the self-efficiency score equals 1. Alternative definitions of ideal points were given
in Wang and Chin (2010b) as to include both DEA efficient and non-efficient units.
Stimulated by the concept of the ideal points, Wu et al. (2016) proposed extended sec-
ondary goal models considering both desirable and undesirable cross-efficiency (CE)
targets for the DMUs. Their merit was that the evaluated DMUs have the motivation to
accept their ranking since they approach their ideal targets and diverge from the anti-
ideal points. In addition, Wang and Chin (2010a) introduced a neutral DEA model for
CE evaluation, in that the optimal weight profile of each DMU is neither aggressive nor
benevolent to the other DMUs. Ramon et al. (2010) developed CE models to determine
more reasonable weight profiles; they ensured non-zero and least dissimilar weights.
Li et al. (2018) suggested a game-like iterative algorithm to obtain balanced CE scores.
A number of studies have been reported in this direction, such as Wang et al. (2011),
Wu et al. (2012b), Alcaraz et al. (2013), Oukil and Amin, 2015, Liu et al. (2017), Shi
et al. (2021), and Alcaraz et al. (2022). Furthermore, Kao and Liu (2019) applied the
cross-efficiency to measure the efficiency in two basic network structures, in series and
in parallel; for this purpose, they developed an aggressive-based model. Örkcü et al.
(2019) came up with a neutral-based cross-efficiency model in a two-stage DEA system
to quantify the performance of both the overall system and its individual stages. This
neutrality was indifferent regarding the impact of the optimal weight sets on the aver-
age cross-efficiencies of all other DMUs. Shao and Wang (2021) also introduced several
novel aggressive, benevolent, and neutral two-stage cross-efficiency DEA evaluation
models based on prospect theory.

Overall, the choice of an alternative secondary goal model mainly depends on the de-
veloped relationship among DMUs. This relationship could be cooperative (DMUs
could work together to attain a shared target) or non-cooperative (DMUs could act in
a competitive mode to satisfy their own benefits). As for the first type of relationship,
Troutt (1997) and later Liang et al. (2008) developed a novel secondary goal model,
based on the minimisation of the maximum k-inefficiency score within a traditional
single-stage DEA structure. In other words, they put emphasis on the designation of
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the best behaviour of the worst performing DMU, leading to an environment that cre-
ates an atmosphere of cooperation. To the best of the authors’ knowledge, no-one has
yet amended and customised such a model to the specifications of a network struc-
ture. In general, far too little literature exists towards the development of a cooperative
secondary goal model within a network DEA context.

In addition to the alternative secondary goal model, the aggregation of the individ-
ual cross-efficiency scores plays another instrumental role in accommodating fairness
in the evaluation outcomes within a DEA context. In DEA literature, several ways of
aggregating these scores have been raised, mainly varying between the traditional av-
erage and the weighted average methods. Although the arithmetic average method
has proven effective in ensuring a credible ranking order in certain cases (Liang et al.,
2008, Wang and Chin, 2010b), it loses sight of the weights assigned to individual CE
(Wang and Wang, 2013). On top of that, it is not a Pareto optimal solution (Wu et al.,
2011). To accommodate these issues, Wu et al. (2009) treated the DMUs as players in
a cooperative game and the solution of Shapley value was determined to compute the
ultimate CE. Wu et al. (2011) utilised the Shannon entropy approach, allocating a fixed
but different weight to each DMU. Wu et al. (2012a) pointed out that this is a problem-
atic condition, since it ignores the primary role of the self-evaluated efficiency of each
DMU, located on the leading diagonal of the CE matrix. To this end, they embedded the
Shannon entropy into the CE concept by fully considering the association among the
self and the peer-evaluation values. Wang and Chin (2011) proposed the use of the or-
dered weighted averaging (OWA) operator weights to fairly allocate the weights to CE
in terms of the DM’s optimism level. The optimism level is characterized by an orness
degree value, which is uncertain and requires DM’s subjectivity. By the same token,
Leon et al. (2014) proposed an aggregation approach based on the induced ordered
weighted averaging (IOWA) operators to integrate the DMs’ preferences regarding the
relative importance weights. Ruiz and Sirvent (2012) calculated the CE scores via a
weighted average method that reflected the disequilibrium in the DEA weight profiles.
More recent works see Yang et al. (2013), Song et al. (2017), Song and Liu (2018), Wu
et al. (2021), and Fu and Li (2022).

On the aggregation of the individual cross-efficiencies, existing frameworks (Wang and
Chin, 2011; Wu et al., 2012a; Song and Liu, 2018) pay close attention to the reasonable
allocation of the weights by limiting the range between self and peer-assessment ef-
ficiencies. Their direction was probably inspired by the assumption that the opinion
of the evaluator for itself is significantly more powerful than the respective opinion of
others, yet quite ill-treated since it belongs to the minority; it, thus, does not receive the
attention it deserves. The exploration of an aggregation method that will, by design,
not only value majority opinions but also well-supported minority opinions is crucial
since it will correspond to the more modern mindset of many organisations.
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Fairness in the evaluation outcomes has been achieved even via the MCDEA (Li and
Reeves, 1999; Hatami-Marbini and Toloo, 2017). As mentioned earlier, MCDEA be-
longs to those methods that keep the model intact while revealing additional princi-
ples of consensus. While classic DEA models pursue solely the maximisation of the
efficiency score, in MCDEA other alternative objective functions are used as well. Li
and Reeves suggested the following objectives: (1) minimisation of the deviation vari-
able, i.e. maximising the efficiency score of the evaluated DMU; (2) minimisation of
the maximum deviation, which can be called a Chebyshev objective; and (3) minimi-
sation of the sum of deviations. By its very nature of being a multi-objective linear
programming (MOLP) model, it is typically difficult to identify a global optimal so-
lution (Li and Reeves, 1999; Bal et al., 2010; Ghasemi et al., 2014; Ghazi and Lotfi,
2022). Related research includes the conversion of the MOLP model either into a goal
programming (GP) model (Bal et al., 2010; dos Santos Rubem et al., 2017) or into a
bi-objective weighted MCDEA model (Ghasemi et al., 2014). Mahdiloo et al. (2016)
adjusted the MCDEA in the context of a two-stage sustainable system in an aim to fix
the unrealistic weight scheme and the weak discrimination power.

Furthermore, one of the most attractive features of DEA is its weight flexibility. This
allows each DMU to be allocated its most favourable set of weights to be assigned
to inputs and outputs for determining its relative efficiency. However, the perfor-
mance measurement of a DMU can additionally be supported by the pessimistic view-
point and in turn by its most unfavourable (optimal) weight sets. Research has con-
sistently shown that considering the optimistic and pessimistic perspectives within a
self-appraisal setting simultaneously, can provide more valuable and meaningful in-
sights. Entani et al. (2002) were, to our knowledge, among the first to conceive the
idea of considering DEA efficiencies from both the best and the worst aspects to ob-
tain an interval efficiency. A drawback of their approach was that only one input and
one output were utilised in calculating the worst relative efficiency of each DMU, re-
gardless of the total number of inputs and outputs allocated to each DMU. Toloo and
Tichý (2015) proposed a multiplier model to identify the maximum efficiency scores
and applied the envelopment model to attain the maximum discrimination among ef-
ficient DMUs. Based on the ideal and anti-ideal DMUs, Liu and Wang (2018) also
developed the normalised efficiency metric and then formulated two DEA models to
obtain its lower and upper bounds. Numerous studies, in general, exist towards the
measurement of the relative efficiency of the target DMU based on its own optimistic
and pessimistic weight profiles, simultaneously, within a traditional single-stage DEA
structure (Wang and Luo, 2006; Wu, 2006; Wang and Yang, 2007; Azizi and Ajirlu,
2010; Azizi and Jahed, 2011; Azizi and Wang, 2013; Chen, 2014; Azizi, 2014; Örkcü et
al., 2020). Badiezadeh et al. (2018) were, to our knowledge, the first to conceive the
idea of considering optimistic-pessimistic DEA models under a network DEA context
to evaluate the performance of a sustainable supply-chain management. Su and Sun
(2018) introduced a new DEA model to measure the efficiency of a multi-stage network
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supply chain structure with undesirable outputs and dual-role factors. Nevertheless,
other relevant studies and applications towards using a double-frontier DEA model
within a network system are surprisingly sparse so far.

Finally, research has showcased that the performance measurement of the target DMUs
can be attained even with the exploration of the cross-efficiencies in a weight space con-
sidering all the weight profiles, within the traditional single-stage DEA structure (Yang
et al., 2012). This concept, which was originally introduced by Yang et al. (2012), en-
sures neutrality (no preference choice between aggressive and benevolent strategies),
unique sets of weights, and a unique and meaningful rank. Following the idea of Yang
et al. (2012), Liu (2018) considered interval cross-efficiencies along with their variances
to estimate the variability of the CE intervals and rank the targeted DMUs. In this
paper, the author showed how the interval cross-efficiencies will be ranked using the
signal-to-noise ratio. Other studies have also been reported in this direction, including
Ramón et al. (2014), Fang and Yang (2019), and Wang et al. (2021). Far too little lit-
erature, however, exists towards the customisation of such a methodological approach
(i.e., the interval cross-efficiency concept) within a network DEA context and its impact
thereon.

1.2 General Research Contributions

The general research contributions of this Ph.D. thesis are threefold:

1. To attain fairness in the evaluation and ranking of several competing DMUs in
the form of a generalised two-stage DEA structure; this is achieved by increasing
measures related to discrimination power and the weight scheme, and by high-
lighting the concepts of cooperation, diversity, and inclusion.

2. To meaningfully evaluate and rank DMUs within a two-stage tandem DEA struc-
ture; this is achieved by considering the optimistic and pessimistic scores in a
self-evaluation context as well as the most favourable and unfavourable weight
sets of each of the other DMUs in a peer-appraisal setting.

3. To develop a multi-function parallel system with embedded hierarchical network
structures and evaluate the operating performance of DMUs with such structure.

1.3 Research Aims & Objectives

A significant number of researchers have paid attention to the measurement of the
relative efficiency of DMUs as “black-box” units (whose internal operations are en-
tirely neglected). In reality, however, organisations, entities, departments, premises,
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and countries (the so-called DMUs) might consist of more complex and various con-
stituent functions and/or operational procedures. Assessing a DMU without consid-
ering its internal operations can discourage decision-makers from entering it into the
ranking process, which tends to be less fair and balanced. In particular, this may lead to
the lack of identifying the sources of inefficiency or the specific internal functions/sub-
stages with a highly beneficial footprint. Moreover, the absence of cooperation, the
assignment of a smaller relative importance to meaningful factors, and the tie of a num-
ber of DMUs (especially in the first place) are a few significant obstacles in pursuing a
more meritocratic evaluation and ranking.

The research aim of this Ph.D. thesis is to attain a fairer measurement, evaluation and
ranking of the relative performances of DMUs; their structure is not restricted to only
considering exogenous inputs to consume and exogenous outputs to produce, but it is
further extended to more complex internal operations. In particular, existing and new
modelling approaches and methodologies are utilised within self and peer-appraisal
settings to meaningfully rank DMUs with either a generalised two-stage structure or a
two-stage tandem structure (both structures already exist in the DEA-related literature)
or a multi-function parallel network hierarchical system (proposed for the first time in
this thesis). The ultimate goal is to gain a valuable insight into not only their network
structures’ past accomplishments, but also their future developments and aspirations.
This Ph.D. thesis sheds light on a number of substantial topics on network analyses
that are jointly considerable to academics and practitioners in fields of higher educa-
tion, logistics, production, banking, and generally in multiple-criteria decision making
situations.

Research aims of Chapter 2: to meaningfully evaluate and rank DMUs in the form of a
generalised two-stage DEA structure with additional inputs in the second stage and
part of intermediate products as final outputs. To attain the former target, we aspire
to eliminate the lack of discrimination power, to increase the chances of obtaining a
more realistic weight scheme, to highlight the best behaviour of the worst performing
DMUs, and to give prominence to the minority opinions.

The research objectives of Chapter 2:

1. To propose an additive self-efficiency aggregation model in a generalised two-
stage DEA structure with a view to identifying the strength of each of the con-
stituent stages.

2. To develop a multi-objective minimax secondary goal model within the network
structure under consideration, in order to ensure unique optimal multipliers, a
more realistic weight scheme, and a better degree of cooperation between sub-
stages of a DMU and among DMUs.
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3. To apply the CRiteria Importance Through Intercriteria Correlation (CRITIC) multi-
criteria decision-making method in DEA to alternatively address the aggrega-
tion problem within the cross-efficiency concept via objectively determining the
weights assigned to individual cross-efficiencies.

4. To both theoretically and empirically explain how the two pillars of the CRITIC
method, the contrast intensity (standard deviation) and the conflict measures, can
give voice to the less mainstream opinions, promoting diversity and inclusion.

5. To demonstrate that the CRITIC method is compatible with the minimax sec-
ondary goal model proposed for the generalised two-stage DEA structure, ob-
taining a greater discrimination power among DMUs.

Research aims of Chapter 3: to meaningfully evaluate and rank DMUs in the form of
a two-stage tandem DEA structure. To attain this target, each DMU will evaluate it-
self using its own most favourable and unfavourable weight sets leading to a unified
measure. Moreover, each DMU will be further evaluated via the most favourable and
unfavourable weight profiles of each of the other DMUs, while keeping the unified
self-efficiency measure unchanged.

The research objectives of Chapter 3:

1. To illustrate via several modelling approaches how a DMU can be self-assessed
using its own optimistic and pessimistic multipliers, simultaneously, within a
two-stage tandem (series) structure.

2. To demonstrate how the two opposing self-efficiency measures are merged to a
combined self-efficiency measure via the geometric average.

3. To derive the mathematical relationship among the combined self-efficiency score
of the target DMU for the overall system and those for its constituent sub-stages.

4. To extend the interval cross efficiency concept in the two-stage tandem struc-
ture, in order to determine the minimum and the maximum individual cross-
efficiencies for each DMU and flow, leading to a respective interval peer-efficiency
score.

5. To demonstrate that each interval cross efficiency matrix is treated as a multi-
criteria decision-making problem and utilise established modelling approaches
from the literature to delineate its elements and ultimately rank the DMUs.

Research aims of Chapter 4: to develop a more realistic network DEA structure, according
to which each DMU will be decomposed, on a macro level, into a finite number of
parallel sub-systems. Each sub-system will further disintegrate, on a micro level, into
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multiple units with distinctive functions arranged into a hierarchical structure. Several
properties of such a system will be analysed.

The research objectives of Chapter 4:

1. To develop a multi-function parallel system with embedded hierarchical network
structures in order to broaden the range of options within the network DEA field.

2. To introduce a linear additive decomposition DEA model and a non-linear multi-
plicative aggregation DEA model to measure and assess the performance of (hy-
pothetical and real) DMUs with such a network structure.

3. To identify the efficiencies of the overall system, its sub-systems, and its internal
units at all levels of the hierarchical structure within each sub-system as well as
their relationships and properties.

4. To derive the scientific relationship between the system efficiency of the additive
decomposition model and the system efficiency of the multiplicative aggregation
model.

5. To gauge the operating performance of several Business Schools across a number
of hypothetical universities that reflect the proposed parallel network hierarchical
DEA structure and then draw compact conclusions about their strengths, weak-
nesses, and areas of improvement.

1.4 Structure of the Thesis

In this Ph.D. thesis, we have systematised our efforts towards measuring, evaluating,
comparing, and ranking, with empirical rigour, the operating performance of units
with a network DEA structure under a deterministic multiple-criteria decision mak-
ing environment. The network systems under consideration are the generalised two-
stage structure (Chapter 2), the two-stage tandem (series) structure (Chapter 3), and the
newly introduced multi-function parallel system with embedded hierarchical network
structures (Chapter 4). These network structures are more flexible in effectively corre-
sponding to the performance evaluation and comprehension of complex and realistic
organisation and production systems with independent and interrelated internal pro-
cesses. The exploration of the past achievements and the more mindful planning of the
future business strategy have a significant impact in managers’ strategic, tactical, and
operational decisions within a firm. In the current thesis, more emphasis is placed on
the development of new mathematical (optimisation) models as well as the implemen-
tation of consolidated methodologies and techniques from the literature, for a more
systematic study of the above-mentioned network DEA structures. The thesis makes a
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significant effort to ensure appropriate conditions for a fairer evaluation and ranking
of the DMUs under examination. A central point which underpins the shared target
of fairness in ranking with respect to the three network systems is the investigation
of their internal operations and functions. Nevertheless, each of the three systems (in
each of the subsequent three main chapters of the thesis) is devoted to a different direc-
tion and emphasis by employing different approaches, while addressing the common
research question.

Specifically, in Chapter 2, we will discuss how a novel combination of an additive self-
efficiency aggregation model, a multi-objective minimax secondary goal model, and
the CRITIC method attains a fairer evaluation and a better degree of cooperation be-
tween stages of a DMU and among DMUs under consideration. The proposed research
framework evaluates the DMUs within a generalised two-stage DEA structure, initially
introduced by Yu and Shi (2014), under self and peer-appraisal settings. In particu-
lar, the additive self-efficiency aggregation will highlight the size of each division via
DMU-specific weights and lead to the most favourable self-efficiency score per DMU
and stage. The minimax goal model will address the non-unique optimal multipliers
derived via the self-evaluation model. The CRITIC method is the third piece that will
alternatively accommodate the aggregation problem within the DEA cross-efficiency
and further show how its two main pillars (conflict and contrast intensity) emphasise
the more diversified viewpoints.

Chapter 3 is still on the same wavelength with the previous chapter, yet with two ma-
jor differentiations. In the traditional self-evaluation context, the DMUs will be as-
sessed via their own optimistic and pessimistic weight sets, leading to a combined self-
efficiency measure. In the peer setting, each DMU will be evaluated, based on the most
favourable and unfavourable weight profiles of each of the other DMUs, while keeping
unchanged the combined self-efficiency measure. In this chapter, we will particularly
introduce a 7-step methodological framework to ensure more informative and multi-
dimensional evaluation outcomes. The first three steps of the framework will highlight
how the optimistic and pessimistic DEA models, which are inspired by the studies of
Wang and Luo (2006) and Wu (2006), are built towards the more realistic two-stage
tandem system. The remaining steps of our framework will ensure the peer-evaluation
of the DMUs via the customisation of the interval CE method to the specifications of
the two-stage tandem structure.

Finally, in Chapter 4, greater emphasis is placed on the development of a novel multi-
function parallel network hierarchical DEA system that might better correspond to the
reality than the network systems presented in the other two chapters. Its main asset
lies in the fact that the selected network scheme (parallel) intertwines with a hierarchi-
cal structure. An additive decomposition DEA model and a multiplicative aggregation
DEA model are proposed as alternatives to evaluate the operating performance of such
a structure. This chapter will showcase how such a new structure will address the
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weaknesses of the traditional black-box DEA model and the parallel system of Kao
(2009b); this will be achieved by improving the level of discriminatory power among
efficient DMUs and by measuring the performance scores of not only the overall sys-
tem and its parallel sub-systems, but also the internal units at all levels of each of the
integrated hierarchies.

In conclusion, overall summary of findings and research contributions of the thesis are
clearly presented in Chapter 5. In addition, this chapter acknowledges the potential
limitations of current work and outlines future research directions.
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A fairer assessment of DMUs in a
generalised two-stage DEA structure



Chapter 2

2.1 Introduction

A paper based on this chapter has been published, see
Kremantzis, M. D., Beullens, P., & Klein, J. (2021). A fairer assessment of DMUs in a
generalised two-stage DEA structure. Expert Systems with Applications, 115921.

Data Envelopment Analysis (DEA) is a non-parametric approach for evaluating the
performance of decision-making units (DMUs) that use inputs to produce outputs (Cook
et al., 2014). DEA was developed by Charnes et al. (1978) (CCR) for the constant
returns-to-scale assumption. Traditional DEA does not model the internal processes in
a DMU. As a result, a relatively large proportion of DMUs emerge as DEA-efficient,
without a means to distinguish them (Ma et al., 2017). To enable the study of in-
ternal structures, research has extended DEA models to consider network structures
(Färe and Grosskopf, 2000; Tone and Tsutsui, 2009; Kao, 2009; Kao and Hwang, 2011;
Wanke and Barros, 2014; Kao, 2014; Zhu, 2015; Guo et al., 2017; Chen and Zhu, 2017;
Koronakos et al., 2019; Örkcü et al., 2019; Shi et al., 2021; Koronakos et al., 2022; Qu et
al., 2022; Khoveyni and Eslami, 2022; Kiaei and Kazemi Matin, 2022). In a two-stage
process in particular, inputs used by a DMU feed into a first stage, producing interme-
diate outputs that feed into a second stage, producing the final outputs of the entire
system. Such a structure facilitates the measurement of both the overall system and its
individual stages’ efficiencies (Mahdiloo et al., 2016).

Measuring the performance can be challenging when inputs and outputs are shared
among different processes and are not easily distinguished (Zha and Liang, 2010). Yu
and Shi (2014) examine a two-stage structure with additional inputs in the second stage
and part of intermediate products as final outputs, towards building cooperative and
leader-follower models. Jianfeng (2015) considers a network DEA model, in which the
inputs are classified into those that are entirely integrated into one stage and those that
are shared between the two stages. Ma et al. (2017) propose a parallel-series hybrid
two-stage DEA model utilising the principles of additive and multiplicative efficiency
decomposition.

While two-stage DEA models have the potential to increase managerial insight into the
sources of inefficiency, two major problems similar to those in a single-stage emerge.
The first one concerns the lack of discrimination power due to a high number of ef-
ficient DMUs (Mahdiloo et al., 2016). The second challenge relates to an ‘unrealistic’
weighting scheme. Indeed, it is allowed for high relative-importance weights to be as-
signed to ‘less important’ inputs or outputs, and/or low weights to significant factors.
This choice of weights could turn a DMU into an efficient unit (Ghasemi et al., 2014).

In this chapter, we are interested in methods which aim to avoid a low degree of dis-
crimination, unrealistic weight schemes, and to use a system of ranking that encourages
cooperation by the units being evaluated. While doing so, we also wish to provide a
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mechanism that gives a voice for minority opinions. This aspect has, to our knowledge,
not yet received explicit attention in the methodological development of DEA. In short,
we say that we intend to tweak DEA methodology to improve the fairness1 in the eval-
uation outcomes. We summarize the core literature, relevant to fairness evaluation in
DEA, in Figure 2.1.

Among those methods tested towards fairness is the cross-efficiency (CE), which adds
peer-evaluation to the self-evaluation principle (Sexton et al., 1986). As stressed by An-
derson et al. (2002), CE improves the probability of obtaining a unique ranking. A crit-
ical drawback of the CE is the non-uniqueness of optimal weights, which leads to the
non-uniqueness of cross-efficiencies. To alleviate this, Doyle and Green (1994) recom-
mended the adoption of alternative secondary goals in an aim to select unique optimal
multipliers. In particular, they introduced an aggressive and a benevolent model, while
the secondary objective functions in Liang et al. (2008) reflected the minimisation of to-
tal deviation, maximum deviation, and mean absolute deviation from an ‘ideal’ point.
The interested reader could also check Wang and Chin (2010a), Wang et al. (2011), Wu
et al. (2012), Wu et al. (2016) and Li et al. (2018). The non-uniqueness issue is also
critical in a network system. Kao and Liu (2019) developed an aggressive CE model
to measure the efficiency in two basic network structures. Örkcü et al. (2019) came up
with a neutral CE model in a two-stage system, which is indifferent to the preference
choice between the aggressive and benevolent formulations.

The aggregation of the cross-efficiency scores is another issue in CE. An appropriate
aggregation strategy can enable the DMUs to accept their ranking. Although the av-
erage method has proven effective in ensuring a credible ranking (Liang et al., 2008,
Wang and Chin, 2010b), it loses sight of the weights assigned to scores (Wang and
Wang, 2013). To accommodate this issue, Wu et al. (2011) utilised the Shannon entropy,
allocating a fixed but different weight to each DMU. Wu et al. (2012a) highlighted that
this is problematic, since it ignores the primary role of the self-evaluated efficiency of
each DMU. They, thus, embedded the Shannon entropy into the CE by considering the
association among the self and the peer-evaluation values. See also more recent work
by Wang and Chin (2011), Wang and Wang (2013), and Song and Liu (2018).

Fairness in the evaluation outcomes has been achieved even via the integration of game
theoretic concepts within traditional single-stage and two-stage DEA networks. For in-
stance, Zhou et al. (2013) introduced a Nash bargaining game model to obtain a unique
efficiency decomposition for the two constituent sub-stages of the centralized model.
Their approach leads to a fair context, in that it reflects how the two sub-stages bar-
gain with each other for better efficiencies. An et al. (2017) also used Nash bargaining,
but introduced a framework for setting fair target values for intermediate products of
two-stage systems, so that the two stages are encouraged to collaborate with each other

1No attempt is made to give a formal definition of fairness, but aspects which might reasonably be
considered to contribute to this are discussed throughout this chapter.
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within a pre-agreed range of fair outcomes. Wu et al. (2016a) proposed a CE evalua-
tion approach based on Pareto improvement. A merit of their approach is that it always
generates a set of Pareto optimal cross-efficiencies for the DMUs. Li (2017) introduced
a sequence of leader-follower procedures as to ensure a fair evaluation in the sense that
it guarantees that the same result is obtained for the second (=follower) stage of a DMU
as would be obtained applying the standard DEA model to the second stage indepen-
dently. A number of studies have been reported in this direction, such as Yu and Shi
(2014), Ma et al. (2014), and Li et al. (2018).

FIGURE 2.1: Related literature on fairness evaluation in DEA.

In summary, fairness in the evaluation of DMUs has been extensively explored via CE
towards single-stage and basic network structures. Nevertheless, when the discussion
shifts to more complex structures where inputs and outputs are shared among different
processes, there is a limited attention to how to achieve more meaningful results for the
DMUs. This intricacy is due to the additional inputs in the second stage obtained from
the external environment and the dual role of the intermediate products. There are sev-
eral enlightening applications, especially in logistics, supply chain, and manufacturing,
that could justify the necessity of exploring fairness in the performance evaluation of
a generalised two-stage structure. These are discussed in more depth with an example
in Section 2.3 and in the implications of Section 2.4.2.

In our paper, we firstly introduce an additive self-efficiency aggregation model that can
highlight the strength of each sub-stage and obtain the most favourable efficiency for
the DMU overall. Since the optimal set of weights derived from the aggregation model
may not be unique, we employ a minimax secondary goal model. The reasons to the
adoption of this model are twofold: (i) it corresponds to cooperative situations (Liang et
al., 2008b), since sub-stages behave benignly, and (ii) it is compatible with multi-stage
systems where the individual sub-stages pursue mutual cooperation via the maximi-
sation of the overall efficiency (Yu and Shi, 2014). Although other approaches such as
the minimisation of the total deviation from the ideal point (Liang et al., 2008) were
also considered for the exploration of a unique set of optimal multipliers, they were
eventually deemed inappropriate for the goals that this study pursues to attain. For
this case of minimising the sum of inefficiencies (Doyle and Green, 1994; Liang et al.,
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2008), each DMU aims to optimise their own benefits while disrespecting the status of
the other DMUs. Hence, they act in a non-cooperative environment; we believe that
this characteristic is not compatible with the general aims of our paper towards en-
suring a fairer evaluation and ranking outcome. The selected multi-objective model is
converted using the Compromise Programming methodology as a means to identify a
good solution that balances the objectives.

On the aggregation of the individual CE, existing frameworks (Wang and Chin, 2011;
Wu et al., 2012a) pay attention to the reasonable allocation of the weights by limiting
the range between self and peer-assessment efficiencies. This condition may indicate
consistency from the perspective of the majority opinion. However, considering that
many organisations are moving towards systems of evaluation in which also the opin-
ions of minorities are valued (Park and DeShon, 2010), we introduce an aggregation
method that rewards contrast. We rely upon the CRiteria Importance Through Inter-
criteria Correlation (CRITIC) method (Diakoulaki et al., 1995), an objective method for
eliciting weights in multi-criteria problems. With the exception of He and Ma (2015),
our paper is the first to apply the CRITIC method in the context of DEA. Its novel func-
tion and meaning as deployed in the paper is further described in Section 2.3.3.2, and
differences with the above study are discussed in Section 2.4.2. Besides, CRITIC would
be compatible with the minimax model introduced herein; this is justified by model’s
nature to highlight the best behaviour of the worst-performing unit, while the scores of
the other better-performing units might decrease.

The remainder of the chapter is organised as follows. Section 2.2 describes the method-
ological background. In Section 2.3, we develop the alternative modelling approach
for the generalised two-stage DEA structure. Section 2.4 illustrates the methods with a
numerical example. Section 2.5 presents conclusions and further research.

2.2 Methodological Background

In the typical input-oriented CCR DEA model (Charnes et al., 1978), each DMUj (j =

1, 2, ..., n) uses m inputs (i = 1, 2, ..., m) to produce s outputs (r = 1, 2, ..., s). Let Xij

be the input value of i ∈ M for DMU j ∈ N and Yrj be the output value of r ∈ S for
DMU j ∈ N. These values are known and non-negative. The multiplier-form model
that evaluates the efficiency of the target DMUk is the following:
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E∗ = Max
s

∑
r=1

µ∗rkYrk

subject to
m

∑
i=1

ν∗ikXik = 1,

s

∑
r=1

µ∗rkYrj −
m

∑
i=1

ν∗ikXij ≤ 0, ∀j,

µrk, νik ≥ 0, ∀ r, i,

(2.1)

where µ∗rk, ν∗ik are the rth output and the ith input virtual optimal multipliers, respec-
tively. These are unknown decision variables and they are determined by the linear
program. If the set of non-negative optimal multipliers makes the associated objective
function equal to 1, then the target DMUk is called DEA efficient; otherwise, it is called
DEA non-efficient.

Two significant challenges of the black-box DEA model, recall the discussion in Section
2.1, are to acquire a unique ranking order of the existing DMUs (dealing with the lack
of discrimination power) and to obtain a more realistic weight scheme (Örkcü et al.,
2019). They are inter-related and concurrent (Li and Reeves, 1999).

2.2.1 Cross-efficiency concept

A commonly used approach to overcome these inabilities is the cross-efficiency (CE)
evaluation, proposed by Sexton et al. (1986). Conventional DEA models provide a self-
appraisal of the DMUs, using their own optimal weights (Örkcü et al., 2019). Assume
that for model (1), µ∗rk, ν∗ik formulate the optimal set of multipliers. Based on this optimal
solution, DMUk is characterised as efficient if and only if E∗kk = 1 (Charnes et al., 1978).
Model (2.1) needs to be resolved for each DMU (in total n times) to obtain an optimal
set of weights for the corresponding DMU. Then by applying the cross-efficiency con-
cept, in which peer-appraisal is the main idea, we evaluate each DMU, considering the
weight profiles of all DMUs. In particular, Ekj = ∑s

r=1 µ∗rkYrj/ ∑m
i=1 ν∗ikXij indicates the

individual cross-efficiency of the DMUj, according to the optimal weighting scheme of
DMUk. A cross-efficiency matrix is a valuable tool for such cases. In this matrix, ele-
ments Ekj depict the peer-efficiency scores of DMUj, based on the optimal weights of
DMUk. The diagonal elements of the same matrix indicate the self-efficiency scores of
DMUk. The cross-efficiency score that attributes the final rank of a DMU, is usually es-
timated by averaging all individual cross-efficiencies of the corresponding DMU which
is being evaluated. Thus, êj = 1

n ·∑
n
k=1 Ekj (j = 1, 2, ..., n) (Anderson et al., 2002).

A key difficulty of the CE evaluation is that the optimal weights obtained by model
(2.1) may not be unique, resulting in the non-uniqueness of cross-efficiency scores and
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rankings of DMUs. To tackle this difficulty, Doyle and Green (1994) proposed the use
of aggressive and benevolent models, as alternative secondary goals. Model (2.2) is
the aggressive. It maximises the performance of the DMU under consideration while
minimising the cross-efficiencies of all other DMUs. Model (2.3) is the benevolent that
ensures the maximisation of the cross-efficiencies of all other DMUs, whilst maintain-
ing the performance of the target DMU.

Min
s

∑
r=1

µrk(
n

∑
j=1,j 6=k

Yrj)

subject to
m

∑
i=1

νik(
n

∑
j=1,j 6=k

Xij) = 1,

s

∑
r=1

µrkYrk − E∗kk

m

∑
i=1

νikXik = 0,

s

∑
r=1

µrkYrj −
m

∑
i=1

νikXij ≤ 0, ∀j; j 6= k,

µrk, νik ≥ 0, ∀ r, i,

(2.2)

Max
s

∑
r=1

µrk(
n

∑
j=1,j 6=k

Yrj)

subject to the same constraints as in model (2.2).

(2.3)

Troutt (1997) and later Liang et al. (2008) developed a novel secondary goal, based on
the minimisation of the maximum k-inefficiency (or deviation) score. By identifying
an optimal set of multipliers that assigns the maximum efficiency score to the DMU
with the worst performance, they achieved the reduction of deviations among all the
other DMUs. Hence, they presented the following linear programming model, where
α∗k = 1− E∗kk:

Min θk

subject to
s

∑
r=1

µrkYrj −
m

∑
i=1

νikXij + αj = 0, ∀j,

m

∑
i=1

νikXik = 1,

s

∑
r=1

µrkYrk = 1− α∗k ,

θk − αj ≥ 0, ∀j,

µrk, νik, αj, θk ≥ 0, ∀ r, i, j.

(2.4)
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Model (2.4) corresponds to a cooperative situation towards a single-stage DEA struc-
ture. In Section 2.3.2, it will be amended and customised to the specifications of the
generalised two-stage structure to accommodate the purposes of our DEA methodol-
ogy.

2.3 Models Development

Yu and Shi (2014) recommended a DEA structure in which each DMU consists of
two sub-stages connected in series, as in Figure 2.2. The initial inputs Xij (where
i = 1, 2, ..., m) entering stage 1 are converted into intermediate products Zdj (where
d = 1, 2, ..., D). Part of intermediate products αdjZdj is consumed during stage 2, and
the remaining part (1− αdj)Zdj is channeled out of the system as final output. αdj is the
allocation proportion, dividing this intermediate product into the aforementioned two
parts, where 0 ≤ αdj ≤ 1. In stage 2, additional inputs X2

hj (where h = 1, 2, ..., H) are
also supplied from outside. Finally, Yrj (where r = 1, 2, ..., s) are the outputs from stage
2 produced for outside.

Note that αdj is pre-specified externally by the decision maker; it is therefore an ob-
served rather than a decision value, that is subjectively designated prior to solving the
corresponding mathematical model. This conceptual idea contrasts with the handling
of αdj as a variable, according to Yu and Shi (2014). Our decision to illustrate αdj as an
observed value determined by the decision maker (externally) and not the model (in-
ternally) may represent the reality better, reflecting for example: the market conditions,
the contractual requirements, the produced quantity of sub-stage 1, and the alternating
requirements and needs of the decision-maker.

To gain a better understanding of the reason we have selected αdj as an observed value,
we can refer to a real-life example that clearly describes the two-stage structure (Figure
2.2). A stock-farmer in a cattle farm (DMU) feeds with corn, wheat, and pasture land
(initial inputs in stage 1) dairy cows to produce raw milk (intermediate product at the
end of stage 1). The farmer ought to decide how much quantity of the produced milk
will be further processed (part of intermediate product as input of stage 2) to get butter,
cheese, and yoghurt (final output), and how much quantity will be directly allocated
to the outside market (remaining intermediate product as final output). Finally, the
fungi for the flash pasteurisation of milk could be an additional (exogenous) input of
stage 2. In this example, the decision maker i.e. the stock-farmer freely determines
beforehand the way to utilise the produced quantity of milk. Evidently, his decision
could be influenced by the laws of supply and demand, the production capacity of the
cattle farm, and/or the state of health of the cows.
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FIGURE 2.2: The generalised two-stage structure; Yu and Shi (2014).

2.3.1 Additive efficiency aggregation

The constant-returns-to-scale (CRS) efficiency scores for the target DMUk can be calcu-
lated by the following two CCR models, respective to the first and second stage; they
are based upon the CCR model (Charnes et al., 1978):

ECCR1
kk = Max ∑D

d=1 ηdkZdk

∑m
i=1 νikXik

subject to
∑D

d=1 ηdkZdj

∑m
i=1 νikXij

≤ 1, ∀j,

ηdk, νik ≥ 0, ∀ d, i.

(2.5)

ECCR2
kk = Max ∑s

r=1 µrkYrk + ∑D
d=1 ηdk(1− αdk)Zdk

∑H
h=1 qhkX2

hk + ∑D
d=1 ηdkαdkZdk

subject to
∑s

r=1 µrkYrj + ∑D
d=1 ηdk(1− αdj)Zdj

∑H
h=1 qhkX2

hj + ∑D
d=1 ηdkαdjZdj

≤ 1, ∀j,

ηdk, µrk, qhk ≥ 0, ∀ d, r, h.

(2.6)

Yu and Shi (2014) do not measure (1− α)Z flows as outputs of the second stage, which
is a note that merits a comment. This might make sense when part of the outflow of
stage 1 is directly forwarded to an outside market without affecting the remaining out-
flow processed in stage 2. In this way, stage 2 does not need to consider the trade-off
and the two sub-stages act rather as being independent. On the other hand, our model
(2.6) measures the (1− α)Z flows. This conceptual difference justifies our motivation
to examine how the outflows of stage 1 (intermediate products) are split into two dis-
tinctive instances which interact with one another. As a further reason of the inclusion
of the (1− α)Z flows in our study, we draw attention to the commonly used efficiency
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aggregation method to build our models. As discussed in Kao (2017), in such a case the
efficiency of the system is defined as a function of those of the constituent sub-stages.
The intermediate products (αZ flows, (1− α)Z flows) should be initially involved in
measuring the efficiency of the corresponding sub-stage and then in calculating the
overall efficiency. The α value will be freely determined by the decision-maker con-
sidering the amount of the respective intermediate measure to be directly forwarded
outside of the system and the amount to be further processed in the second sub-stage;
the decision-maker’s option will reasonably be impacted by the conditions of the mar-
ket, the availability of the produced quantity, and the laws of supply and demand.

The system efficiency of the DMUk can be computed from the following CCR model
(2.7). Its objective function illustrates the ratio of the aggregate exogenous outputs to
that of the aggregate exogenous inputs, considering only the operations of the entire
system.

ECCR
kk = Max ∑s

r=1 µrkYrk + ∑D
d=1 ηdk(1− αdk)Zdk

∑m
i=1 νikXik + ∑H

h=1 qhkX2
hk

subject to
∑s

r=1 µrkYrj + ∑D
d=1 ηdk(1− αdj)Zdj

∑m
i=1 νikXij + ∑H

h=1 qhkX2
hj

≤ 1, ∀j,

ηdk, µrk, νik, qhk ≥ 0, ∀ d, r, i, h,

(2.7)

ηdk, µrk, νik, qhk correspond to the weights associated with intermediate measure d, out-
put r and inputs i and h, for the DMUk, respectively. Note that the weights (or mul-
tipliers) of the intermediate measures are assumed to be the same for both sub-stages
(Kao and Hwang, 2008).

Model (2.7) disregards the internal operations of DMUs and treats each DMU as a black
box that uses exogenous inputs to produce exogenous outputs. Neglecting the inter-
nal operations of DMUs could spur us to results that are not accurate. For instance,
while the overall system could be characterised as efficient, one or both of its individ-
ual stages may be inefficient. This is one of the main reasons why we need to examine
and model the operations of the internal structures for each DMU.

To accommodate the aforementioned issue, we explore the efficiency aggregation method
as previously discussed. It is known that it might take either an additive or a multiplica-
tive form depending on the nature of the problem. To Chen et al. (2009), additive effi-
ciency aggregation models are a way of aggregating components in a two-stage struc-
ture. This type of aggregation requires the allocation of a relative importance weight
to each sub-stage. The weights can be user-specified. They can alternatively be DMU-
specific to recognise the strength of each stage as well as the discrepancies between
them, and to facilitate the transformation of the non-linear model to a linear one (Guo
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et al., 2017). As discussed in Kao (2016), the DMU-specific weights will obtain the most
favourable efficiency for the system under evaluation. We believe that this might be a
reason towards ensuring a fairer and more cooperative environment for the competing
DMUs. This approach can also estimate how much more the inputs of the system can
be reduced, while ensuring the same level of output production. Finally, it is applicable
to both constant and variable returns-to-scale assumptions.

On the other hand, the multiplicative efficiency aggregation method does not require
predetermined weights for building the model. Nevertheless, it can put less empha-
sis on the intermediate products that are being exchanged between the sub-stages of a
DMU, whereas a weighted aggregation method does and thus better reflects the level
of cooperation between the stages of a DMU. In addition, when it handles a generalised
two-stage network structure with exogenous outputs leaving from stage 1 and/or ex-
ogenous inputs entering to stage 2, it is extremely nonlinear and cannot be easily con-
verted into a linear model using the Charnes-Cooper transformation. Even the utili-
sation of a heuristic search method cannot guarantee a global optimal solution (Chen
and Zhu, 2017). For the above reasons, this study selects to define the system efficiency
as the weighted (arithmetic mean) approach (Chen et al., 2009) of its two sub-stage
efficiencies.

(w1
k ·

∑D
d=1 ηdkZdk

∑m
i=1 νikXik

+ w2
k ·

∑s
r=1 µrkYrk + ∑D

d=1 ηdk(1− αdk)Zdk

∑H
h=1 qhkX2

hk + ∑D
d=1 ηdkαdkZdk

), (2.8)

where w1
k and w2

k are weights determined by the decision-maker, so that w1
k + w2

k = 1.
These weights are not unknown variables, but functions of the optimisation variables.
According to Chen et al. (2009), these weights could be DMU-specific, in that they
could represent the size/strength of a particular stage. Guo et al. (2017) treated the
weights of the two sub-stages as parameters (pre-defined by the decision-maker) that
can vary between 0 and 1. We can, thus, estimate the overall efficiency of the DMUk by
solving model (2.9).

Max (w1
k ·

∑D
d=1 ηdkZdk

∑m
i=1 νikXik

+ w2
k ·

∑s
r=1 µrkYrk + ∑D

d=1 ηdk(1− αdk)Zdk

∑H
h=1 qhkX2

hk + ∑D
d=1 ηdkαdkZdk

)

subject to
∑D

d=1 ηdkZdj

∑m
i=1 νikXij

≤ 1, ∀j,

∑s
r=1 µrkYrj + ∑D

d=1 ηdk(1− αdj)Zdj

∑H
h=1 qhkX2

hj + ∑D
d=1 ηdkαdjZdj

≤ 1, ∀j,

w1
k + w2

k = 1,

w1
k , w2

k , ηdk, µrk, νik, qhk ≥ 0, ∀ d, r, i, h.

(2.9)
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Weights w1
k and w2

k represent the relative importance of the performances of stages 1
and 2 respectively, divided by the overall performance of the evaluated DMU. A larger
weight indicates the corresponding stage’s stronger effect on the entire performance
of the system. To Chen et al. (2009) and Kao (2016), the portions of total resources
devoted to each stage could correspond to the relative size of a stage. This is also due
to the nature of the models which are input-oriented. Therefore, we define:

w1
k =

∑m
i=1 νikXik

∑m
i=1 νikXik + ∑H

h=1 qhkX2
hk + ∑D

d=1 ηdkαdkZdk
(2.10)

and

w2
k =

∑H
h=1 qhkX2

hk + ∑D
d=1 ηdkαdkZdk

∑m
i=1 νikXik + ∑H

h=1 qhkX2
hk + ∑D

d=1 ηdkαdkZdk
. (2.11)

Substituting (2.10) and (2.11) into the objective function of model (2.9), we obtain the
following linear fractional programming model:

ECCR
kk = Max ∑D

d=1 ηdkZdk + ∑s
r=1 µrkYrk + ∑D

d=1 ηdk(1− αdk)Zdk

∑m
i=1 νikXik + ∑H

h=1 qhkX2
hk + ∑D

d=1 ηdkαdkZdk

subject to
∑D

d=1 ηdkZdj

∑m
i=1 νikXij

≤ 1, ∀j,

∑s
r=1 µrkYrj + ∑D

d=1 ηdk(1− αdj)Zdj

∑H
h=1 qhkX2

hj + ∑D
d=1 ηdkαdjZdj

≤ 1, ∀j,

ηdk, µrk, νik, qhk ≥ 0, ∀ d, r, i, h.

(2.12)

By applying the variable substitution technique in Charnes and Cooper (1962) and by
replacing ηdkαdk = φ1

dk and ηdk(1− αdk) = φ2
dk, we introduce the self-evaluation CCR

performance score model (2.13), which is equivalent to model (2.12). According to the
following (implicitly) linear model, it is possible to measure the performance for each
DMU, whose internal structure is illustrated by the two-stage DEA process of Figure
2.2. This relational model estimates the aggregated system efficiency while considering
the internal mechanisms of its individual stages.
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ECCR
kk = Max

D

∑
d=1

ηdkZdk +
s

∑
r=1

µrkYrk +
D

∑
d=1

φ2
dkZdk

subject to
m

∑
i=1

νikXik +
H

∑
h=1

qhkX2
hk +

D

∑
d=1

φ1
dkZdk = 1,

D

∑
d=1

ηdkZdj −
m

∑
i=1

νikXij ≤ 0, ∀j,

s

∑
r=1

µrkYrj +
D

∑
d=1

φ2
dkZdj −

H

∑
h=1

qhkX2
hj −

D

∑
d=1

φ1
dkZdj ≤ 0, ∀j,

ηdk, µrk, νik, qhk ≥ 0, φ1
dk + φ2

dk = ηdk, φ1
dk ≥ 0, φ2

dk ≥ 0, ∀ d, r, i, h.

(2.13)

At the optimality of model (2.13), the system efficiency, the efficiency of sub-stage 1,
and the efficiency of sub-stage 2, respectively, are computed as follows:

ECCR
kk = (∑D

d=1 η∗dkZdk + ∑s
r=1 µ∗rkYrk + ∑D

d=1 φ2∗
dk Zdk)/

(∑m
i=1 ν∗ikXik + ∑H

h=1 q∗hkX2
hk + ∑D

d=1 φ1∗
dk Zdk),

E1
kk = (∑D

d=1 η∗dkZdk)/(∑m
i=1 ν∗ikXik),

E2
kk = (∑s

r=1 µ∗rkYrk + ∑D
d=1 φ2∗

dk Zdk)/(∑H
h=1 q∗hkX2

hk + ∑D
d=1 φ1∗

dk Zdk).

2.3.2 Proposed cross-efficiency model

Model (2.13) searches for the optimal most favourable weights ηdk, µrk, νik, qhk, φ1
dk, φ2

dk

to yield an optimistic self-efficiency score for DMUk. However, this DEA flexibility
of the DMUk in choosing its own weights could sometimes lead to an unrealistically
high efficiency score of the corresponding DMU. This results in a lack of discrimination
power and therefore in unrealistic weight distribution. Besides, the optimal solution
for model (2.13) may not be unique, reducing the theoretical value of the potential
results (Mahdiloo et al., 2016). A point to focus on in this chapter is the best possible
treatment of the limited discriminatory power and the unrealistic weight distribution,
for the two-stage structure (Figure 2.2).

To overcome these weaknesses, we apply the cross-efficiency concept in the two-stage
DEA structure that we examine. We initially propose an alternative secondary goal
model to mainly encounter the shortcoming of the non-unique optimal set of multipli-
ers of model (2.13). This model contains two objective functions (i.e. criteria); each of
them represents one of the two stages of the whole system. These two criteria need to
be optimised simultaneously.
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To advance our multiple criteria-based secondary goal, we have been influenced by
the concept of the “minimisation of the maximum k-inefficiency” (Troutt, 1997; Liang
et al., 2008). In the minimax model (2.14), there are two independent objective func-
tions. The first objective (θ1) represents the situation in which we have to minimise the
maximum deviation of stage 1 among all DMUs. The second objective (θ2) illustrates
the minimisation of the maximum deviation of stage 2 among all DMUs. There is no
former preference order between these criteria. Considering the theoretical framework
of the concept, this approach might be proved useful in cooperative situations (Liang
et al., 2008). In our case this is vital, as the two stages that constitute the entire system
should have the same bargaining power and should cooperate in order to maximise the
overall efficiency (Halkos et al., 2014).

Min θ1

Min θ2

subject to
m

∑
i=1

νikXik +
H

∑
h=1

qhkX2
hk +

D

∑
d=1

φ1
dkZdk = 1,

D

∑
d=1

ηdkZdk +
s

∑
r=1

µrkYrk +
D

∑
d=1

φ2
dkZdk = ECCR∗

kk ,

D

∑
d=1

ηdkZdj −
m

∑
i=1

νikXij + b1
j = 0, ∀j,

s

∑
r=1

µrkYrj +
D

∑
d=1

φ2
dkZdj −

H

∑
h=1

qhkX2
hj −

D

∑
d=1

φ1
dkZdj + b2

j = 0, ∀j,

θ1 ≥ b1
j , ∀j,

θ2 ≥ b2
j , ∀j,

b1
j , b2

j , ηdk, µrk, νik, qhk ≥ 0, ∀ j, d, r, i, h,

φ1
dk + φ2

dk = ηdk, φ1
dk ≥ 0, φ2

dk ≥ 0, ∀ d.

(2.14)

In the above model, ECCR∗
kk denotes the optimal objective function value of model (2.13).

The reason why we are using the restrictions “θ1 ≥ b1
j ” and “θ2 ≥ b2

j ” (where j =

1, 2, ..., n) is to set θ1 as the maximum deviation of stage 1, and θ2 as the maximum
deviation of stage 2. This model pursues to result in an optimal set of weights that will
highlight the best behaviour of the worst-performing DMU, underpinning the fairness
in the decision-making process.

Model (2.14) is a bi-objective programming model that can hardly obtain a global op-
timal solution. A multi-objective program usually provides a set of non-dominated
solutions (see Li and Reeves, 1999). The researcher could either apply the objectives
interactively (Mahdiloo et al., 2016) or identify an alternative way of satisfying the
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conditions simultaneously. Goal programming has been proposed for optimising all
criteria at the same time (Ghasemi et al., 2014; dos Santos Rubem et al., 2017).

We apply the concept of dos Santos Rubem et al. (2017) to convert the MOLP model
(2.14) into a goal programming model. However, given the utopian values assigned to
each of the two objective functions (goals), the model should be aligned more closely
to Compromise Programming. Moreover, since b1

j , b2
j ≥ 0, ∀ j, it follows that θ1, θ2 ≥ 0

and thus there is no need to use the negative deviations, d−1 and d−2 , in such a model.
Actually θ1 = d+

1 and θ2 = d+
2 . Hence, the model is just formulated as follows:

Min θ1 + θ2

subject to the same constraints as in model (2.14).
(2.15)

Model (2.15) is the proposed minimax secondary goal model for the two-stage struc-
ture (Figure 2.2) in this chapter and is run under the CRS assumption. It is seeking a
particular solution on the Pareto frontier of model (2.14) i.e. one with equally weighted
deviations. This model can significantly reduce the number of zero weights assigned
to the known factors and better discriminate the DEA-efficient DMUs.

2.3.3 Alternative aggregation approach

Recalling the discussion in Section 2.1, we are going to calculate the individual cross-
efficiencies, based on the representative optimal weights from model (2.15). In addition,
we will determine the cross-efficiencies to get the final ranks of the considered DMUs,
based on the CRITIC method.

2.3.3.1 Individual & ultimate cross-efficiencies

Like all DEA models for cross-efficiency evaluation, the proposed secondary model
(2.15) needs to be solved n times, once for every DMU. There will be n sets of input,
intermediate measure and output weights available for cross-efficiency evaluation. Ac-
cording to Kao and Liu (2019), in a series DEA structure as the one we probe in this
paper, the discriminatory power is stronger due to the increasing number of restric-
tions; thus, there are less chances that the optimal set of multipliers derived from the
first secondary goal model for each DMU is non-unique. Therefore, we can adopt Kao
and Liu’s (2019, p.73) belief that this optimal set is “representative enough” for our anal-
ysis. At the optimality of model (2.15), for each DMUj (j 6= k),
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Ekj = (∑D
d=1 η∗dkZdj + ∑s

r=1 µ∗rkYrj + ∑D
d=1 φ2∗

dk Zdj)/
(∑m

i=1 ν∗ikXij + ∑H
h=1 q∗hkX2

hj + ∑D
d=1 φ1∗

dk Zdj),

E1
kj = (∑D

d=1 η∗dkZdj)/(∑m
i=1 ν∗ikXij),

E2
kj = (∑s

r=1 µ∗rkYrj + ∑D
d=1 φ2∗

dk Zdj)/(∑H
h=1 q∗hkX2

hj + ∑D
d=1 φ1∗

dk Zdj).

These are referred to as the cross-efficiency values of the DMUj of the overall system, of
stage 1 and of stage 2, according to the optimal weight scheme of DMUk respectively,
and reflect the peer-evaluation of DMUj.

For each DMUj, the weighted average cross-efficiency score, produced by the weighted
cross-efficiency aggregation is the following:

êj =
∑n

k=1 wk · Ekj

∑n
k=1 wk

, ê1
j =

∑n
k=1 wk · E1

kj

∑n
k=1 wk

, ê2
j =

∑n
k=1 wk · E2

kj

∑n
k=1 wk

. (2.16)

They are called the cross-efficiencies for the overall system, stage 1 and stage 2, respec-
tively. w1, ..., wn are the relative importance weights for cross-efficiency aggregation
and satisfy the conditions: wk ≥ 0 (k = 1, ..., n) and ∑n

k=1 wk = 1.

2.3.3.2 CRITIC method in DEA

Several subjective and objective weight evaluation methods that have been introduced
in the multi-criteria decision-making (MCDM) relevant literature, could obtain the weights
in (2.16) and solve the aggregation problem. Methods such as the analytic hierarchy
process (AHP) and the expert scoring method (Delphi) aim to determine the subjec-
tive preference of experts. To overcome the limitation of strong subjectivity and be
less dependent on the decision-maker’s viewpoint (Bhadra et al., 2021), it is generally
suggested to implement objective weighting methods (which are mainly based on the
evaluation of the respective data set) for further improvements (Wu et al., 2019). The
most widely applied objective methods include the Shannon entropy (Shao et al., 2020;
Pan et al., 2021), the Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) (Hwang and Yoon, 1981), the VIKOR method (Amin et al., 2022), and the
CRITIC method (Diakoulaki et al., 1995).

In this paper, to estimate the weights in (2.16), we apply the CRITIC method, an ob-
jective way to determine the relative importance in MCDM situations. This objectivity
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stems from its formal mathematical procedure and the fact that it is less prone to sub-
jective modifications by a decision-maker. CRITIC considers the evaluation decision-
making matrix (in our case the cross-efficiency matrix) to elicit information involved
in the evaluation criteria. The emitted information is capable of altering the decision
situation and the order of preference. This information delves into two dimensions:
the contrast intensity and the conflict among the evaluation criteria (Diakoulaki et al.,
1995).

There is a plethora of reasons for selecting the CRITIC method to properly aggre-
gate the individual cross efficiency scores within such a generalised two-stage network
DEA structure. Firstly, it has been found that it is more comprehensive and objective
than several other well-established objective weighting methods (as cited in Lu et al.,
2022). Secondly, several commonly used weight evaluation methods such as AHP, Del-
phi method, principal component analysis, eigenvalue method, and grey correlation
method do not normally explore the internal correlation and the consistency degree
among the criteria, resulting in significant deviations from the actual outcomes (Huang
et al., 2018). In comparison with the aforementioned methods, the CRITIC method is
considered as a more informative option since it examines the variability and conflict
among the criteria (Wu et al., 2020). Thirdly, MCDM-relevant literature has shown
that entropy-based methods and CRITIC are two of the most commonly used objective
weighting methods. As mentioned previously, CRITIC method considers both the con-
trast intensity and the conflict among the decision criteria. It is also a technique suitable
for investigating the trends of individual attributes and the correlations among them.
On the other hand, Shannon entropy method only accommodates the contrast inten-
sity (Peng et al., 2020; Krishnan et al., 2021) and neglects the interconnections among
criteria (Wu et al., 2018).

Below, we will provide an overview of Diakoulaki et al.’s (1995) method as we would
apply it to single-stage DEA structures; we further explain why it is a sensible tool for
promoting fairness, and why it is compatible with the proposed minimax secondary
model.

For a finite set A with j = 1, 2, ..., n alternatives and k = 1, 2, ..., n evaluation criteria Ek,
the multi-criteria decision making problem is as follows: Max {E1(α), E2(α), ..., En(α) |
α ∈ A}. Initially, we obtain the generalised cross-efficiency matrix (Table 2.1), consid-
ering the Ekj values for k, j = 1, 2, ..., n. See more details of that in Section 2.2.1.
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TABLE 2.1: Cross-efficiency matrix; Doyle and Green (1994).

Target DMUj

Evaluator DMUk 1 2 ... n

1 E11 E12 ... E1n

2 E21 E22 ... E2n

... ... ... ... ...
n En1 En2 ... Enn

We proceed to converting the initial cross-efficiency matrix (Table 2.1) into a matrix of
relative scores (Table 2.2) with the generic element Xkj, where Xkj = (Ek(j)− Emin

k )/
(Emax

k − Emin
k ). In this mathematical formula, Emax

k is equivalent to max{Ek1, Ek2, ..., Ekn}
and Emin

k is equivalent to min{Ek1, Ek2, ..., Ekn}.

TABLE 2.2: Matrix of relative scores.

Target DMUj

Evaluator DMUk 1 2 ... n

1 X11 X12 ... X1n

2 X21 X22 ... X2n

... ... ... ... ...
n Xn1 Xn2 ... Xnn

We generate a vector Xk signifying the scores of all n alternatives Xk = (Xk(1), Xk(2), ...,
Xk(n)). This vector is characterised by the standard deviation σk, which quantifies the

contrast intensity of criterion k. Define σk =

√
∑n

j=1(Xk(j)− ˆXk)2

n , where X̂k = ∑n
j=1 Xk(j)/n.

Then, a symmetric matrix of n⊗ n criteria with Rkj elements (Spearman rank correla-
tion coefficients) is constructed (Table 2.3), connecting the rank orders of the elements
included in the vector Xk and Xj. Note that, in contrast to the previous two tables, Ta-
ble 2.3’s columns do not list the ‘target’ DMUs. Instead, each element Rkj is a measure
of how the degree by which the viewpoint of DMU k as evaluator corresponds to the
viewpoint of DMU j as evaluator.

TABLE 2.3: Symmetric matrix.

Evaluator DMUj

Evaluator DMUk 1 2 ... n

1 R11 R12 ... R1n

2 R21 R22 ... R2n

... ... ... ... ...
n Rn1 Rn2 ... Rnn
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The amount of information Ck emitted by the kth criterion can be determined by mul-
tiplying the two measures σk (i.e. contrast intensity) and ∑n

j=1(1− Rkj) (i.e. conflict):

Ck = σk ·
n

∑
j=1

(1− Rkj). (2.17)

The higher the Ck, the more information we receive from criterion k and the higher its
relative importance. Thereby, they define the formula for the weight of criterion k as:

wk =
Ck

∑n
l=1 cl

. (2.18)

The value of the weights wk (k = 1, 2, ..., n) in formula (2.18), can be used to determine
the cross-efficiency of DMUj for the overall system (êj), the stage 1 (ê1

j ), and the stage
2 (ê2

j ) in (2.16). CRITIC should, in effect, run three times, based on the investigation of
the cross-efficiency matrix of the respective system/stage.

Using the traditional average method, we would assign equal weights (1/n) to every-
one’s opinion, thus conforming to the majority vote. It would also not matter how
diversified or not each of these opinions are. CRITIC, however, emphasises the value
of those opinions that are more diversified and less mainstream. In particular, criterion
k (here, evaluator DMUk) will receive more weight if it achieves a wider gap between
the best and the worst alternative (here, the target DMUs) in the process of evaluation.
This explicitly leads to a higher standard deviation (contrast intensity), implying that
its opinion is taken more into account. In other words, the opinion of someone who
ranks everyone the same is given less importance, which agrees with the widely ac-
cepted viewpoint of Zeleny (1982). This may be justified in the context of DEA, or peer
evaluation in general, if the lack of discriminatory signals in the evaluation report of
one particular evaluator is believed to represent less reliable information. The only way
in which such a viewpoint is able to receive importance would be through the number
of evaluators sharing this opinion.

The second feature of the CRITIC method, known as the conflict measure, assigns more
weight to the criterion (opinion of evaluator DMU) that puts emphasis on the minority
opinion with respect to peer evaluation. The less someone corresponds to a mainstream
evaluation profile, the more their opinion is opposed to the majority, the higher their
conflict score. This indicates that their opinion will be more valued under these circum-
stances.
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One way to give the application of CRITIC to DEA an interpretation is to say that the
CRITIC method infuses a flavour of the ‘scientific’ approach into a ‘political’ voting sys-
tem. Politics is usually in compliance with the majority vote, but in matters of science
we often value the most transparent and well-documented opinion. The ‘conflict’ mea-
sure of CRITIC is quite in accordance with the latter viewpoint. However, this analogy
is certainly not exact since in science it suffices to have one new opinion that is proven
to be correct that can overturn all other opinions (the status quo). CRITIC does not go
that far as it does still account for everyone’s opinion; the ultimate efficiency measure
a DMU receives is still a weighted average.

Another, and perhaps more fruitful interpretation we believe, is that the CRITIC method
avoids assigning a too large weight to the majority vote which, by definition, excludes
the minority opinion. In this way, it does not let the mass influence too much the public
opinion, and in addition, promotes diversity and inclusion. This reflects a contempo-
rary understanding of fairness as an accommodative attitude which is inclusive of a
broad variety of legitimate opinion rather than simply mirroring the viewpoint of the
majority.

Finally, CRITIC could be compatible with the proposed minimax secondary goal model
(see Section 2.3.2), since it rewards contrast intensity. Hence, it is more likely that while
the worst-performing DMU attempts to assess itself in its best possible light, the effi-
ciency scores of the other better-performing DMUs might decrease (Liang et al., 2008).
Since this situation increases the contrast intensity, our proposed model seems to be an
acceptable option to coexist with the CRITIC method.

2.4 Numerical Experiments

This section illustrates the use of the mathematical concepts developed/presented in
Section 3 to examine the issue of fairness in DEA context. Our study applies the fig-
ures drawn from Yu and Shi (2014) for the evaluation of the efficiency of 10 generalised
two-stage supply chains of different milk and dairy farm communities. The cattle farms
compete with each other, aiming to decide on a sensible allocation of the available raw
milk produced. The generalised two-stage DEA structure is considered for this exam-
ple (see Figure 1), with part of intermediate measures as final outputs and additional
inputs in the second stage.

The input resources corn (X1), wheat (X2), and pasture land (X3) are the food of dairy
cows consumed by stage 1 to produce raw milk. The raw milk illustrates the inter-
mediate product at the end of stage 1. We distinguish the raw milk between high-fat
(3.5 − 4.5%) content and low-fat (≤ 2.5%) content. The former represents the inter-
mediate measure Z1 and the latter the Z2. The farmer (i.e. the decision maker) in each
community needs to pre-specify how much of these quantities will be further processed
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in stage 2 and how much will be forwarded to the external environment (i.e. the end-
market), as final output. αdj is a proportion, freely determined by the decision-maker,
that acts as a regulator of the amount of the dth intermediate measure assigned for pro-
cessing to stage 2. In this example, we can assume that the stock-farmer has set each
αdj equal to 0.7 for simplicity, reflecting market conditions, customer requirements, and
updated research surveys; they desire a major proportion of the produced outputs of
stage 1 to be further processed in stage 2, while nevertheless channelling a significant
quantity as final output. This proportion might consider, for example, the degree to
which raw milk contains amino acids, vitamins, minerals, and fatty acids as well as to
what extent it is a proper option for those with lactose intolerance, asthma, and allergic
conditions. The current observed values of αdj could have been any continuous value
between 0 and 1, leading to equally meaningful results. Once the quantity of the re-
spective type of raw milk is processed, the working time for the flash pasteurisation of
milk (X2

1) and the working time for its homogenisation through fine nozzles (X2
2) will

be taken into account. The final (exogenous) outputs will be pasteurised milk (Y1) and
cheese (Y2). The dataset with the 10 farming communities (DMUs) is summarised in
Table 5. For modelling, running, and analysing our data, we have utilised the program-
ming language Python 3.7.6 and in particular the version 2.1 of PuLP as the free linear
programming library. The experiment ran on a computer with 16GB RAM.

TABLE 2.4: The numerical example of Yu and Shi (2014).

DMU X1 X2 X3 Z1 Z2 X2
1 X2

2 Y1 Y2

1 9 50 1 20 10 5 8 100 25
2 10 18 10 10 15 7 10 70 20
3 9 30 3 8 20 2 8 96 30
4 8 25 1 20 20 10 10 80 20
5 10 40 5 15 20 5 15 85 15
6 7 35 2 35 10 5 5 90 35
7 7 30 3 10 25 8 10 100 30
8 12 40 4 20 25 4 8 120 10
9 9 25 2 10 10 5 15 110 15
10 10 50 1 20 15 9 10 80 20

2.4.1 Findings

We first consider solving the problem of evaluation and ranking with the classic self-
evaluation DEA approach. This serves as a benchmark for comparison with our pro-
posed approach. Table 2.5 exhibits the (non-unique) optimal multipliers from solving
the proposed additive self-evaluation two-stage DEA model (2.13), i.e. the basic model
without the further model improvements we have introduced in Section 2.3.2. There
are 35 zero weights in total, assigned to the respective known factors. The existence
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of a zero weight indicates that the information of the corresponding known factor is
not considered; this prevents us from adhering to the reality. The larger this number of
zeros, the more uneven the weight distribution becomes.

Table 2.6 shows the CCR self-efficiency scores and their corresponding rankings of the
10 DMUs for the overall system (ECCR

kk ), the stage 1 (E1
kk), and the stage 2 (E2

kk), respec-
tively. Recall that the efficiency scores have been calculated via the optimal weights of
model (2.13). DMUs 3,6 and 8 are characterised as DEA-efficient for the overall system,
DMUs 1,4,6 and 7 are DEA-efficient for stage 1, and DMUs 3,6,8 and 9 are DEA-efficient
for stage 2. Only DMU 6 can be deemed as entirely efficient, since the efficiency of their
sub-stages is one. It is evident from the results in Table 2.6 that the DMUs cannot be
easily ranked via the self-evaluation method, and from the results in Table 2.5, that this
is also based on many flows receiving zero weights and thus not being accounted for.

TABLE 2.5: Optimal multipliers for the proposed self-evaluation model (2.13).

DMU ν1k ν2k ν3k η1k η2k q1k q2k µ1k µ2k

1 0 0 0.3030 0.0152 0 0 0.0606 0.0049 0.0022
2 0 0.0337 0 0.0143 0.0279 0 0 0.0001 0.0087
3 0.0000 0 0 0.0000 0 0.1444 0.0889 0 0.0333
4 0.0513 0.0071 0 0.0109 0.0186 0 0 0.0004 0.0048
5 0.0413 0.0040 0 0.0086 0.0130 0.0064 0.0080 0.0022 0
6 0 0.0140 0 0.0140 0 0 0.0332 0 0.0104
7 0.0592 0.0058 0 0.0123 0.0186 0 0 0.0005 0.0047
8 0 0.0000 0 0.0000 0.0000 0.1000 0.0750 0.0083 0
9 0 0.0217 0.0008 0.0017 0.0254 0.0357 0.0058 0.0034 0

10 0 0 0.5919 0.0278 0.0018 0 0 0.0011 0

We now consider the proposed minimax secondary goal model (2.15). In this manner,
we will be able to find flow weights in a cross evaluation approach that exhibit some
desirable characteristics. In particular, as discussed in Section 2.3.2, this model will
keep the DMU’s optimal overall self-efficiency score unchanged, but seeks to minimise
the maximum k-inefficiency for each of the stages across all DMUs. Table 2.7 lists the
optimal weights from solving model (2.15). The reduction of zero weights compared
to the foregoing results of Table 2.5 is noteworthy. In total, there are now only 19 zero
weights (compare with 35 in the previous model), improving the weight distribution
and providing more balanced results for the evaluated DMUs. The optimal weights
from Table 2.7 are subsequently used to calculate the elements of the cross-efficiency
matrices for the overall system, stage 1, and stage 2, respectively (see Appendix A,
Tables A.1, A.4, and A.7). The latter are the decision-making matrices, whose elements
(peer-efficiency scores for each DMU) are found according to the discussion in Section
2.3.3.1.
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TABLE 2.6: CCR self-efficiencies for the overall system, stage 1, and stage 2, derived
via model (2.13).

DMU Overall
Efficiency
ECCR

kk

Rank
Overall
System

Efficiency
Stage1
E1

kk

Rank
Stage1

Efficiency
Stage2
E2

kk

Rank
Stage2

1 0.936 5 1 1 0.908 5
2 0.909 6 0.924 7 0.886 7
3 1 1 0.889 8 1 1
4 0.894 7 1 1 0.741 8
5 0.690 10 0.676 9 0.709 9
6 1 1 1 1 1 1
7 0.955 4 1 1 0.890 6
8 1 1 0.935 6 1 1
9 0.728 9 0.499 10 1 1

10 0.844 8 0.985 5 0.640 10

TABLE 2.7: Optimal multipliers for the proposed minimax secondary model (2.15).

DMU ν1k ν2k ν3k η1k η2k q1k q2k µ1k µ2k

1 0.0000 0 0.3030 0.0152 0 0 0.0606 0.0049 0.0022
2 0 0.0337 0 0.0143 0.0279 0 0 0.0001 0.0087
3 0.0000 0.0000 0.0000 0 0.0000 0.0882 0.1029 0.0096 0.0027
4 0.0575 0.0048 0.0089 0.0109 0.0186 0 0.0000 0.0004 0.0048
5 0.0413 0.0040 0 0.0086 0.0130 0.0064 0.0080 0.0022 0.0000
6 0.0561 0.0046 0.0041 0.0111 0.0173 0 0.0087 0.0007 0.0058
7 0.0592 0.0058 0.0000 0.0123 0.0186 0 0 0.0005 0.0047
8 0.0000 0.0000 0 0.0000 0.0000 0.0791 0.0854 0.0082 0.0019
9 0.0000 0.0217 0.0008 0.0017 0.0254 0.0357 0.0058 0.0034 0
10 0.0000 0 0.5919 0.0278 0.0018 0 0 0.0011 0

The next step in our proposed approach is to apply the CRITIC method, see Section
2.3.3.2, to help determine an appropriate weight set for combining the individual cross-
efficiency scores into a final cross-efficiency score for each DMU and stage. This tech-
nique initially converts the cross-efficiency matrix into a matrix of relative scores for
the respective sub-stage, identifying the standard deviation; this indicates the contrast
in the viewpoints of the same evaluator DMUk (see in Appendix A, Tables A.2, A.5,
and A.8). It then displays the symmetric matrix for the respective sub-stage, identify-
ing the conflict, the information, and the final weight, for each DMU (see in Appendix
A, Tables A.3, A.6, and A.9). Conflict particularly gives voice to the less mainstream
opinions of the different evaluators regarding a certain evaluated DMU. An evaluator
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will be assigned a greater relative importance (final weight) if it provides more valu-
able information. This information should reward contrast, diversity, and inclusion, in
the case of the CRITIC multi-criteria method. As an example, in stage 1, the evalua-
tor (DMU) 1 is assigned the highest final weight (0.119) due to its standard deviation
(0.442) and conflict (11.024) measures, which are the highest among their peers. Simi-
larly, in stage 2, the evaluator with the highest final weight (0.128) is DMU3.

Recalling that the weights derived by formula (2.18) are used to estimate the final
cross-efficiencies in (2.16), see Sections 2.3.3.1 and 2.3.3.2, we display the CRITIC cross-
efficiencies for each DMU and stage, in Tables 2.8-2.10. In particular, the CRITIC cross-
efficiencies (êj) with their respective ranks for the overall system are summarised in the
fourth and fifth columns of Table 2.8. The proposed minimax secondary model (2.15)
evaluated that DMU6 is the most efficient (0.888) and DMU5 has the worst performance
(0.532) compared to others; thus, a unique ranking order is achieved. In addition, it can
be statistically concluded that the rankings derived from the CRITIC and the tradi-
tional average method (third column of table 2.8) are not significantly different based
on a Spearman rank correlation coefficient test (Daniel, 1978), with rs = 0.94. This is
significant at the 0.01 level (two-tailed).

The CRITIC cross-efficiencies (ê1
j ) with their respective ranks for the stage 1 are exhib-

ited in the fourth and fifth columns of Table 2.9. Model (2.15) deemed DMU4 as the
most promising DMU (1.000), attaining a unique ranking order once again. The differ-
ences between the ranks of CRITIC and average cross-efficiencies (third column of Ta-
ble 2.9) are also statistically insignificant. With respect to the fourth and fifth columns of
Table 2.10 (CRITIC cross-efficiencies and their corresponding ranks for stage 2), DMU3
is located in the first place, with a perfect efficiency score. The dissimilarities with the
average cross-efficiency rankings are also negligible based on the Spearman rank cor-
relation test (rs = 0.988). Note that the average cross-efficiencies have been computed
following the same reasoning as in CRITIC cross-efficiencies with the sole exception of
the method to aggregate the individual cross-efficiencies (see Section 2.2.1). Although
their difference is negligible, we consider that the averaging method, privileges the
majority vote, and downplays minority opinion by failing to fully respect diversity
and the principle of inclusion. CRITIC method fills this gap, assigning more weight
to “mavericks” and promoting the modern concept of fairness, as discussed in Section
2.3.3.2.

The CRITIC cross-efficiency scores obtained with our proposed minimax secondary
model (2.15) are also compared with the geometric average cross-efficiency scores ob-
tained with Kao and Liu’s (2019) aggressive-based approach. Note that prior to execut-
ing our analysis, we have easily adjusted their model to the specifications of our gen-
eralised two-stage DEA structure. The geometric average cross-efficiency scores along
with their ranks of the overall system, the stage 1, and the stage 2, are respectively
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depicted in the sixth and seventh columns of Tables 2.8, 2.9, and 2.10. Correlation anal-
ysis suggests that there is a highly strong association between the ranks of these two
approaches, as indicated by the correlation values 0.927 (overall system), 0.976 (stage
1), and 0.988 (stage 2), which are significant at the 0.01 level (two-tailed). This can be
demonstrated even by the fact that both methods achieve total agreement towards the
most desirable unit in all three tables. However, there are a number of points that need
to be considered, highlighting the preferability of our method over the other in terms
of attaining fairer evaluation results.

Firstly, by solving Kao and Liu’s (2019) model, we obtained an optimal set of multipli-
ers containing 23 zero weights (as compared with the 19 zero weights of our proposed
model). This may indicate a less realistic weight scheme for their method. Secondly,
in our minimax model both sub-stages of the generalised two-stage structure have the
same bargaining power and improve the overall efficiency. This is conducive to the de-
velopment of a cooperative situation, where the sub-stages behave altruistically even
without having reasons to assume that their cooperation will be returned. This stands
in sharp contrast with the aggressive method proposed by Kao and Liu (2019). Al-
though they guaranteed unique cross-efficiencies, they selected a non-cooperative ap-
proach, in which DMUs act egoistically with a view to maximising their self-evaluation
and downplaying the peer-evaluation. Thirdly, we have managed to acquire a higher
absolute cross-efficiency score for each DMU and stage (compared to the respective
score in Kao and Liu’s (2019) results), associated with some performance reward; this
is connected with the cooperative role of our model (2.15).

2.4.2 Implications

This example has illustrated the approach proposed in this paper, which is a novel
combination of the use of an additive self-efficiency aggregation model, a minimax
secondary goal model, and the CRITIC method in order to improve fairness and objec-
tivity in a cross evaluation context for a generalised two-stage DEA system. Firstly, a
more sensible weight distribution is obtained via the proposed minimax model (2.15)
than the basic self-evaluation model (2.13) and the aggressive-based model of Kao and
Liu (2019), highlighting our successful efforts in obtaining more meaningful rankings.
Secondly, the minimax model developed is in addition combined with the CRITIC ap-
proach to obtain a greater discrimination power than model (2.13) (see Tables 2.8-2.10).
Thirdly, on the aggregation of the individual cross-efficiencies, we have compared the
traditional average method with the weighted average method, in which the weights
are computed via the CRITIC approach. In the former, the opinions of the evaluators
are centred around the average (majority) viewpoint. In the latter, more credence and
higher inclusion is given to these evaluators that exhibit diversity. These may be de-
sirable characteristics in support of the more modern mindset of many organisations.
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Fourthly, it is proven that our proposed minimax model results in higher absolute ef-
ficiency scores (than Kao and Liu’s (2019) scores) connected with some performance
prize; this is due to the cooperative nature of the model.

In addition, it is noteworthy that the final rankings obtained are very similar between
the three different methods displayed in Tables 2.8-2.10. In practice, however, we think
that it is very important for DMUs, when subject to peer evaluation leading ultimately
to a ranking, that the methods by which this is achieved are agreeable to modern stan-
dards of inclusiveness and diversity and provide an acceptable level of objectivity. We
can expect that results are more easily accepted, indeed, if these characteristics are more
prominently present in the theoretical foundations of the methods deployed.

As stated in the introduction, the only study having used CRITIC in a DEA context
before, seems to be He and Ma’s (2015). In that article, CRITIC was used to objectively
determine weights used within a DEA collaborative development evaluation model
for comparing the internal mechanisms of the regional economy and regional logistics
within a 10-year period. Our approach differs in that we use it in the context of peer-
evaluation, as an alternative method to address the aggregation problem, in addition to
the considering this in the generalised two-stage DEA structure. But more importantly,
our study highlights how CRITIC’s main components of conflict and contrast intensity
can contribute towards a fairer and more diversified cross-efficiency perspective.

As for the possible areas where our study could be applicable, we begin by referring
to the manufacturing job shop or to line configurations like clothes manufacturing. In
such contexts, the Just-in-Time philosophy takes significantly into account the worker
rotations. This practice can eliminate employees’ fatigue, encourage their develop-
ment, and help identifying where they can work best. In this example, it is doable
to take day-to-day snapshots (DMUs) of the same factory floor, where the workers are
being rotated. In this way, it is possible to measure which of the working stations and
settings are (in)efficient and on which days. This will facilitate management towards
fairly identifying all those workers that need additional training for certain tasks.

Another promising area could be, for instance, the process of the refinement of the
selected cocoa beans into chocolate within a specialized factory. From the first stage,
where the cocoa beans are roasted and the cocoa nibs are ground, we mainly obtain
cocoa powder. The production manager, in collaboration with the marketing and sales
department as well as the outbound logistics manager, will eventually decide on a sen-
sible allocation of the available cocoa powder. On this basis, a proportion of this quan-
tity will be directly forwarded to the outside market for sale, and the remaining will be
further blended back with the butter, milk, and liquor in varying quantities, in the sec-
ond stage, to make different types of chocolate. The main target is to fairly compare the
efficiency of several generalised two-stage supply chains of different factory branches
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or farming communities that make use of cocoa beans from different species of cocoa
trees.

As a general ascertainment, it is imperative to improve the processes of efficiency
measurement and decision-making under a multi-criteria context and within more ad-
vanced network DEA structures; an organisational environment that will promote co-
operation, leniency, diversity, and inclusion can result in more effective benchmarking
strategies.

TABLE 2.8: Average cross-efficiencies, CRITIC cross-efficiencies, Geometric average
cross-efficiencies (Kao and Liu, 2019), and their respective ranks for the overall system.

DMU Average
CE

Ranking CRITIC CE
êj

Ranking Geometric average
CE (Kao and Liu,
2019)

Ranking

1 0.705 6 0.701 6 0.688 5
2 0.531 9 0.533 9 0.444 10
3 0.760 2 0.747 3 0.699 4
4 0.742 4 0.755 2 0.726 2
5 0.531 10 0.532 10 0.495 9
6 0.895 1 0.888 1 0.878 1
7 0.732 5 0.734 4 0.684 6
8 0.746 3 0.732 5 0.716 3
9 0.567 8 0.567 8 0.566 8

10 0.599 7 0.605 7 0.590 7

TABLE 2.9: Average cross-efficiencies, CRITIC cross-efficiencies, Geometric average
cross-efficiencies (Kao and Liu, 2019), and their respective ranks for the stage 1.

DMU Average
CE

Ranking CRITIC CE
ê1

j

Ranking Geometric average
CE (Kao and Liu,
2019)

Ranking

1 0.577 6 0.553 7 0.555 6
2 0.492 9 0.523 9 0.384 10
3 0.575 7 0.596 6 0.509 7
4 1.000 1 1.000 1 1.000 1
5 0.526 8 0.540 8 0.492 8
6 0.828 2 0.814 3 0.889 2
7 0.794 3 0.818 2 0.694 3
8 0.648 4 0.664 4 0.618 5
9 0.412 10 0.421 10 0.411 9

10 0.646 5 0.624 5 0.627 4
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TABLE 2.10: Average cross-efficiencies, CRITIC cross-efficiencies, Geometric average
cross-efficiencies (Kao and Liu, 2019), and their respective ranks for the stage 2.

DMU Average CE Ranking CRITIC CE
ê2

j

Ranking Geometric average
CE (Kao and Liu,
2019)

Ranking

1 0.910 3 0.916 3 0.914 2
2 0.676 7 0.706 7 0.673 7
3 1.000 1 1.000 1 0.997 1
4 0.607 9 0.627 9 0.614 9
5 0.606 10 0.620 10 0.605 10
6 0.924 2 0.921 2 0.912 3
7 0.774 6 0.796 6 0.781 6
8 0.840 4 0.809 5 0.826 4
9 0.818 5 0.837 4 0.815 5

10 0.639 8 0.662 8 0.645 8

2.5 Conclusions & Future Research

Single-stage and the basic serial two-stage DEA systems have fruitfully used various
quantitative methods to attain fairness in the evaluation outcomes. Little work, how-
ever, has been done addressing the challenge of attaining fairness in a network with
more complex interactions among its internal elements. This chapter provides new in-
sight to the generalised two-stage DEA structure of Yu and Shi (2014). We have here
proposed a modelling approach for this structure, which promotes fairness among the
evaluated DMUs.

In this study, we argue that fairness, or the acceptance of an evaluation and ranking by
the different DMUs and their stages, is improved by increasing measures related to the
degree of discriminatory power, the weight scheme, and the minority vote. We partic-
ularly propose a combination of an additive self-efficiency aggregation model, a multi-
objective minimax secondary model, and the CRITIC method in an aim to achieve these
aspects of fairness and thus a better degree of cooperation between stages of a DMU
and among DMUs. This combination is novel in the DEA literature. Furthermore, the
application of the CRITIC method to DEA is by itself novel.

The proposed minimax secondary goal model helps tackle the non-unique optimal
multipliers derived from the additive self-evaluation model. The minimax model has
the capacity to better discriminate the efficient DMUs than the additive self-evaluation
model. In addition, it has significantly eliminated the zero weights assigned to the
respective known factors than the additive self-evaluation model and the aggressive-
based approach of Kao and Liu (2019).
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We have shown in this chapter that the CRITIC method can be applied in DEA to al-
ternatively address the aggregation problem within the DEA cross-efficiency concept.
This approach will objectively determine the weights assigned to individual cross-
efficiencies to obtain the final cross-efficiencies. By taking into consideration both the
contrast intensity and the conflict measures among the DMUs, it manifests the general
message of this chapter towards satisfying a more contemporary concept of fairness
about diversity and inclusion of minority opinions. Moreover, the proposed minimax
model seeks for peer evaluation whereby each peer aims to evaluate the worst of the
other players in the best possible light. Its benign and cooperative nature, in conjunc-
tion with CRITIC, has the benefit to obtain higher absolute efficiency scores for each
DMU and stage than the geometric average efficiencies based on the aggressive method
of Kao and Liu (2019). This might be connected with some performance reward, en-
couraging in a way the DMUs to join the efficiency evaluation and ranking.

In this study, we have proposed an additive self-efficiency aggregation model in the
spirit of Chen et al. (2009). This is the basic self-evaluation model without the fur-
ther improvements introduced in later sections. In such a model, the system efficiency
is defined as the weighted arithmetic average of its sub-stages. As for its decomposi-
tion weights, Ang and Chen (2016) proved that they are non-increasing in the order of
sub-stages. Put simply, they highlighted that earlier stages would be assigned higher
relative importance, affecting the system’s efficiency to a greater extent. Based on that,
they also demonstrated that the overall and sub-stages’ efficiency scores are prone to
the impact of the decomposition weights. We acknowledge this as a limitation of our
study, and we believe that a re-definition of the weights, reflecting Ang and Chen’s
(2016) research, could accommodate such an issue. In addition, this chapter could also
focus more on the testing of the proposed models and frameworks with empirical data,
that is testing their practical value. It would be desirable, for instance, to evaluate the
performance of these methods in one of the potential areas described in Section 2.4.2,
or other (fair-trade) supply chains.

The models in this study were developed under the assumption of the constant returns-
to-scale. A direction for future research could be their advancement to variable returns-
to-scale input-oriented DEA models. Another potential path could be the intention to
tweak the CRITIC method by focusing perhaps on the level of acceptance of the par-
ticipants on the final evaluation and ranking scheme obtained. To this end, the conflict
measure could be adapted, for example, to fine-tune the impact of opinions with large
contrast intensity in relation to their distance to majority opinions. Finally, current
research studies the evaluation of the performance of DMUs with a generalised two-
stage structure, only when the data are positive real numbers, and the DEA models
are based on this condition. In particular in the envisaged areas of application such as
sustainable supply chains, datasets can be expected to be incomplete or less accurately
described. Future research could thus relax this assumption by allowing the data points
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to be imprecise and lie in an interval, for example. Other cases to be investigated con-
cern missing data or intervals, where some values are more likely to occur over other
values. In the latter case, since there is no information of the probability distributions,
fuzzy numbers and mathematical operations (Zimmermann, 2011) could be used as an
alternative option.

48



Chapter 3

A ranking framework based on
interval self and cross-efficiencies in
a two-stage DEA system



Chapter 3

3.1 Introduction

A paper based on this chapter has been published, see
Kremantzis, M. D., Beullens, P., & Klein, J. (2022). A ranking framework based on
interval self and cross-efficiencies in a two-stage DEA system. RAIRO - Operations
Research, 56(3), 1293-1319.

Data Envelopment Analysis (DEA) is a benchmarking technique for comparing the
relative efficiency of a decision-making unit (DMU) with the best observed efficiency
(Charnes et al., 1978). The evaluation of a DMU is based on the comparison between
the amount of input(s) consumed and the amount of output(s) produced (Cook et al.,
2014) by DMUs.

One of the undeniably attractive features of DEA is its weight flexibility. This allows
each DMU to be allocated its most favourable set of weights to be assigned to inputs
and outputs for determining its relative efficiency. Hence, in the conventional DEA,
the overall assessment of a DMU is based on the optimistic viewpoint (Zhu, 2015).
According to these notions, efficiencies are measured up to a maximum of 1. When,
from the most optimistic viewpoint, the DMU receives an optimum efficiency score of
1, then it is said to be DEA efficient; otherwise, it is said to be DEA inefficient. On
the other hand, if the performance of a DMU is based on the pessimistic viewpoint,
then efficiencies are measured within the range of 1 or greater to acquire the worst
relative efficiencies of the DMUs. When the DMU is assessed from the angle of the
worst relative efficiency, then the following occurs: the DMU that receives an optimum
efficiency score of one is called DEA inefficient and the DMUs with score greater than
one are called DEA non-inefficient (Wang and Yang, 2007).

Optimistic and pessimistic perspectives illustrate two extreme cases for each DMU.
Taking only one scenario into account limits the examination of the performance of a
unit. The obtained results might be unreasonable (Azizi, 2011). Therefore, it is thought
to be valuable to consider the two distinctive efficiencies together.

Research on exploring both aspects of viewing the efficiency of a DMU within a single-
stage structure is relatively extensive. Wang and Luo (2006) evaluated each DMU in
terms of the optimistic and pessimistic viewpoint, by introducing an input-oriented
virtual Ideal DMU (IDMU) and an output-oriented virtual Anti-ideal DMU (ADMU).
The two separate efficiencies were combined into the Relative Closeness (RC) index to
obtain a unique ranking order. Wu (2006) identified a weakness in Wang and Luo’s
(2006) paper dealing with the ADMU for DEA modelling. Wu argued that it is incon-
sistent to aggregate an input-oriented IDMU and an output-oriented ADMU into the
RC index.

Wang and Yang (2007) proposed an alternative way of measuring the performance
of DMUs. The efficiencies of DMUs are measured within the range of an interval,
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in which the upper bound is 1 and the lower bound equals to the performance of a
virtual ADMU, which is the worst among all DMUs. This approach, which only con-
siders the performance of the lower bound, was extended by Azizi and Jahed (2011),
who suggested a pair of improved bounded models for the target DMU. Wang et al.
(2007) combined optimistic and pessimistic efficiencies into a geometric average effi-
ciency to measure the overall performance of a DMU. The geometric average efficiency
was deemed effective, as it was simultaneously an efficiency measure and a ranking
index. Toloo and Tichy (2015) proposed a multiplier model to identify the maximum
efficiency scores and applied the envelopment model to attain the maximum discrim-
ination among efficient DMUs. Khodabakhshi and Aryavash (2017) used a double
frontier DEA procedure to introduce a new cross-efficiency method; the merit of their
approach lied on the non-use of any alternative secondary goal. Based on the ideal
and anti-ideal DMUs, Liu and Wang (2018) developed the normalised efficiency metric
and then formulated two DEA models to obtain its lower and upper bounds. Örkcü et
al. (2020) proposed a non-cooperative game like iterative optimistic-pessimistic DEA
approach to fully rank the DMUs. Badiezadeh et al. (2018) were, to our knowledge,
the first to conceive the idea of considering optimistic-pessimistic DEA models under a
network DEA context to evaluate the performance of a sustainable supply-chain man-
agement.

With the exception of Badiezadeh et al. (2018), the majority of the existing studies
on the double frontier DEA models are concerned with a system handled as a whole
unit, ignoring its internal structure. Several studies illustrate that this condition might
produce misleading results (Kao and Liu, 2019). In reality, systems can be composed
of two sub-stages operating interdependently. In this paper, we will extend our se-
lected optimistic-pessimistic ranking procedure to a two-stage tandem system to not
only measure the efficiency of the overall system and its individual stages’ efficiencies;
thus, the stage that causes inefficiencies can be identified.

The optimistic and pessimistic self-efficiency scores can be unified via the geometric
average efficiency. As shown in Wang et al. (2007), this score is an effective technique
with a better discriminating power than either of the opposing efficiencies. Yet, this fea-
ture has not been explored in a network environment, implying the possible existence
of a non-unique ranking. It also considers the effects of the optimistic and pessimistic
standpoints only within the self-appraisal context. The integration of the geometric av-
erage score in a peer-appraisal context would contribute to the assessment of a DMU
in terms of the weight sets of other players, leading to a more logical ranking. These
incremental points make us infer that this framework could be further extended by the
use of the cross-efficiency (CE) to ensure fairness in the evaluation outcomes.

The CE concept is based on the peer-evaluation notion (Sexton et al., 1986). As stressed
by Anderson et al. (2002), CE improves the probability of obtaining a unique ranking.
A shortcoming of the CE is the non-uniqueness of DEA optimal weights, leading to the
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non-uniqueness of cross-efficiencies. Remedial actions have been suggested towards
the adoption of secondary goals in an aim to select unique optimal multipliers (Doyle
and Green, 1994; Liang et al., 2008; Wu et al., 2016; Li et al., 2018; Zhu et al., 2021; Li
et al., 2021). The non-uniqueness issue is also critical in a two-stage (network) system
(Ma et al., 2014; Kao and Liu, 2019; Huang et al., 2019; Örkcü et al., 2019; Meng and
Xiong, 2021). Kao and Liu (2019), for instance, developed an aggressive CE model to
measure the efficiency in two basic network structures. Örkcü et al. (2019) came up
with a neutral CE model in a two-stage system, which is indifferent to the preference
choice between the aggressive and benevolent formulations.

Doyle and Green (1994) introduced an aggressive and a benevolent secondary goal
model to remedy the non-uniqueness of the optimal weights. The former ensures the
minimisation and the latter the maximisation of the cross-efficiencies of all other DMUs,
whilst both maintaining the optimistic self-efficiency of the target DMU. The use of any
formulation of the two may be subject to an individual judgement, possibly leading to
an irrational selection of either model. There is also no confirmation that these formu-
lations will result in the same ranking or that their optimal set of multipliers are unique
(Wang and Chin, 2010a).

To alleviate these deficiencies, Yang et al. (2012) suggested the “interval CE” for the ex-
ploration of the cross-efficiencies in a weight space considering all the weight profiles,
within the single-stage DEA structure. In such a peer-appraisal setting, the base DMU
is assessed regarding the most unfavourable and favourable weight profiles of each of
the other DMUs. The aggressive and benevolent models of this process were, however,
keeping only the optimistic self-efficiency value of each DMU fixed.

In summary, this chapter adapts an optimistic-pessimistic DEA approach in the light of
the two-stage tandem system, in order to then support the interval CE method in such
a network system. Using the proposed framework as shown in Figure 3.1, a meaning-
ful evaluation and ranking of the considered DMUs is attained. Decision makers will
be enabled to simultaneously consider: (i) both the optimistic and the pessimistic view-
points within the self-appraisal context, and (ii) the most favourable and unfavourable
weight sets of each of the other DMUs in a peer-appraisal setting. We believe that the
combination of the methods that compose our framework has not been considered be-
fore in the literature; in our view, this could lead to a meaningful ranking in addition
to it being adjusted to a two-stage tandem DEA structure.
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FIGURE 3.1: The proposed framework.

The procedures implemented in the first three steps of our proposed framework (Figure
1) have been applied in several studies (e.g., Wang et al., 2007) that focus on double
frontier DEA models to evaluate DMUs in a self-appraisal context in a single-stage
structure. As for these steps, our study differs in that our optimistic-pessimistic DEA
models, which are inspired by the studies of Wang and Luo (2006) and Wu (2006), are
built towards the two-stage tandem (network) system.

The remaining steps of the proposed framework pursue to support the peer-evaluation
of the considered DMUs via the customisation of the interval CE method to the speci-
fications of the two-stage tandem structure while embedding the respective combined
self-efficiency measure (that considers the effects of both opposing standpoints). To
rank the DMUs in the interval CE matrix of the corresponding flow, this chapter views
this matrix as a multi-criteria decision-making problem. To solve this problem, we
implement the goal programming method of Wang and Elhag (2007) to obtain the in-
terval local weight of each criterion. To delineate the interval global weight of each al-
ternative, we suggest a pair of linear programming models, introduced by Entani and
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Tanaka (2007). Finally, we apply the grey relational analysis (Kuo et al., 2008) for rank-
ing the interval global weights. To our knowledge, the aforementioned well-established
approaches have not been previously considered for extracting valuable information
from an interval CE matrix. We have also shown that our proposed framework offers a
more informative assessment of the units under consideration than particular existing
methods in network DEA-relevant literature.

The remainder of the paper is organised as follows. Section 2 shortly describes the pre-
liminaries and the methodological background. Section 3 proposes the framework to
meaningfully rank DMUs. Section 4 illustrates the methods with a numerical example.
Section 5 presents conclusions and further research.

3.2 Methodological Background

We assume that each DMUj (j = 1, 2, ..., n) uses m inputs (i = 1, 2, ..., m) to produce s
outputs (r = 1, 2, ..., s). Let Xij be the input value of i ∈ M for DMU j ∈ N and Yrj be the
output value of r ∈ S for DMU j ∈ N. We estimate the optimistic self-efficiency for each
DMU, based on determining an optimal set of the most favourable input and output
weights. The conventional input-oriented CCR DEA model (Charnes et al., 1978), that
assesses the efficiency of the target DMUk, is illustrated as follows:

Ekk = Max
s

∑
r=1

µrkYrk

subject to
m

∑
i=1

νikXik = 1,

s

∑
r=1

µrkYrj −
m

∑
i=1

νikXij ≤ 0, ∀j,

µrk, νik ≥ 0, ∀ r, i,

(3.1)

where µrk, νik are the rth output and the ith input weights for DMUk, respectively. If
the optimal (optimistic) self-efficiency E∗kk = 1, then DMUk is called DEA efficient;
otherwise it is said to be DEA inefficient.

3.2.1 Cross-efficiency & interval cross-efficiency in single-stage structures

A significant challenge of the conventional single-stage DEA model, is to distinguish
the efficient DMUs and thus to acquire a unique ranking of the DMUs. A potential
remedy to overcome this inability is the implementation of the CE concept (Sexton
et al., 1986). Let µ∗rk and ν∗ik be the optimal set of multipliers of model (3.1). Then,
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E∗kk = ∑s
r=1 µ∗rkYrk is the optimal self-efficiency score of DMUk and reflects its desire

to be assessed only on the basis of its own most favourable weights. On the other
hand, CE, in which peer-appraisal is the main notion, evaluates each DMU, considering
the weight profiles of all DMUs. The ratio Ekj = ∑s

r=1 µ∗rkYrj/ ∑m
i=1 ν∗ikXij denotes the

individual cross-efficiency of DMUj, based on the optimal weight scheme of DMUk. A
CE matrix (Table 1) can be a valuable tool to integrate both the peer-efficiency scores
Ekj (k, j = 1, 2, ..., n) and the self-efficiency scores Ekk (in the leading diagonal column).
The ultimate cross-efficiency, that attributes the final rank of a DMU, can be defined by
averaging all individual cross-efficiencies of the corresponding DMU being evaluated.
The ultimate score in this case is êj = 1

n ·∑
n
k=1 Ekj, ∀j (Angulo-Meza and Lins, 2002).

TABLE 3.1: Cross-efficiency matrix; Doyle and Green (1994).

Target DMUj

Evaluator DMUk 1 2 ... n

1 E11 E12 ... E1n

2 E21 E22 ... E2n

... ... ... ... ...
n En1 En2 ... Enn

The existence of multiple optimal weights from model (3.1) can deteriorate the theo-
retical usefulness of the results obtained via the cross-efficiency concept. To tackle this
issue, Doyle and Green (1994) proposed two opposed secondary goals to choose their
weights, favourable or unfavourable, among the optimal solutions. Model (3.2) is the
aggressive formulation and model (3.3) is the benevolent formulation.

Min
s

∑
r=1

µrk(
n

∑
j=1,j 6=k

Yrj)

subject to
m

∑
i=1

νik(
n

∑
j=1,j 6=k

Xij) = 1,

s

∑
r=1

µrkYrk − E∗kk

m

∑
i=1

νikXik = 0,

s

∑
r=1

µrkYrj −
m

∑
i=1

νikXij ≤ 0, ∀ j, j 6= k,

µrk, νik ≥ 0, ∀r, i,

(3.2)
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Max
s

∑
r=1

µrk(
n

∑
j=1,j 6=k

Yrj)

subject to the same constraints as in model (3.2).

(3.3)

Considering the DEA-related literature, we can draw the conclusion that there is not
a well-established methodological approach to guide the DM in reasonably selecting
either the benevolent or the aggressive strategy. In addition, the selection of either the
former or the latter model might not provide the same ranking or a unique optimal set
of weights. To overcome these obstacles, Yang et al. (2012) suggested the simultaneous
use of the two extreme cases in the context of a single-stage structure.

Model (3.4) is an aggressive-based model to obtain an optimal set of multipliers and
thus to identify the minimum individual cross-efficiency value of DMUj based on
DMUk.

Min EL
kj =

s

∑
r=1

µrkYrj

subject to
m

∑
i=1

νikXij = 1,

s

∑
r=1

µrkYrk − E∗kk

m

∑
i=1

νikXik = 0,

s

∑
r=1

µrkYrj −
m

∑
i=1

νikXij ≤ 0, ∀j; j 6= k,

µrk, νik ≥ 0, ∀ r, i.

(3.4)

Model (3.5) is a benevolent-based model to obtain an optimal set of weights and thus
to determine the maximum individual cross-efficiency of DMUj based on DMUk.

Max EU
kj =

s

∑
r=1

µrkYrj

subject to the same constraints as in model (3.4).

(3.5)

In the above two models, the optimistic self-efficiency score E∗kk, derived from model
(3.1), remains fixed; this keeps one of the basic properties of the traditional CE concept
intact. Overall, in this peer-evaluation procedure an interval individual cross-efficiency
score of DMUj in terms of DMUk is formed and lies in the range [EL

kj, EU
kj ]. EL

kj is the
lower bound and is found from model (3.4), whereas EU

kj is the upper bound obtained
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from model (3.5). Table 3.2 depicts the individual cross-efficiencies as interval numbers,
boosting the DM’s uncertainty. The elements in the diagonal column of table 3.2 show
the special case of the self-efficiency scores, for which Ekk = EL

kk = EU
kk, ∀ k ∈ {1, 2, ..., n}.

TABLE 3.2: Interval cross-efficiency matrix; Yang et al. (2012).

Target DMUj

Evaluator DMUk 1 2 ... n

1 [E11, E11] [EL
12, EU

12] ... [EL
1n, EU

1n]

2 [EL
21, EU

21] [E22, E22] ... [EL
2n, EU

2n]

... ... ... ... ...
n [EL

n1, EU
n1] [EL

n2, EU
n2] ... [Enn, Enn]

Models (3.4) and (3.5) make use of unfavourable and favourable multipliers, respec-
tively, to identify the individual cross-efficiencies towards the single-stage structure.
In either case, only the optimistic self-efficiency measure is involved to accommodate
their purpose.

In Section 3.3.1, a combined self-efficiency score is obtained indicating the merger of
the optimistic and pessimistic self-efficiencies. That score is embedded to the adjusted
cross-efficiency models (Section 3.3.2) to explore the effect of both opposing viewpoints.
The above-mentioned processes are part of a broader framework presented herein to
reasonably rank DMUs towards the two-stage tandem structure.

3.3 Models Development

The exploration of the internal processes taking place in the core of a DMU sets the
foundation for the transition from a single-stage to a two-stage DEA structure. Each
DMUj (j = 1, 2, ..., n) consumes m inputs (i = 1, 2, ..., m) in the first stage to generate
D intermediate products (d = 1, 2, ..., D). The outputs (intermediate measures) of the
first stage are converted into inputs in the second stage to produce s final outputs (r =

1, 2, ..., s). Let Xij be the input value of i ∈ M, Zdj be the intermediate product of d ∈ D,
and Yrj be the output value of r ∈ S, for DMU j ∈ N (Kao and Hwang, 2008). The
above process is illustrated in the exploratory Figure 3.2.
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FIGURE 3.2: Typical two-stage tandem DEA structure

According to the relational model of Kao and Hwang (2008), to measure the perfor-
mance of the overall system it is necessary to consider not only its operations, but
also the operations of its individual sub-stages. In model (3.6) these operations are
described by the constraints, which indicate that the aggregate output can not exceed
the aggregate input.

Es
k = Max

s

∑
r=1

µrkYrk

subject to
m

∑
i=1

νikXik = 1,

D

∑
d=1

ηdkZdj −
m

∑
i=1

νikXij ≤ 0, ∀ j,

s

∑
r=1

µrkYrj −
D

∑
d=1

ηdkZdj ≤ 0, ∀ j,

µrk, νik, ηdk ≥ 0, ∀ r, i, d.

(3.6)

At optimality of model (3.6), the system efficiency is estimated as Es
k = ∑s

r=1 µ∗rkYrk/

∑m
i=1 ν∗ikXik, the efficiency of stage 1 as E1

k = ∑D
d=1 η∗dkZdk/ ∑m

i=1 ν∗ikXik, and the efficiency
of stage 2 as E2

k = ∑s
r=1 µ∗rkYrk/ ∑D

d=1 η∗dkZdk. It is obvious that the overall efficiency is
the product of the efficiencies of the stage efficiencies.

3.3.1 Optimistic & pessimistic models in basic two-stage structure

The above model can set the basis for the exploration of the optimistic and pessimistic
self-efficiencies and, in turn, their integration into a geometric average efficiency score
within the two-stage tandem system.

Sub-stage 1 consumes inputs to generate intermediate products. The following input-
oriented CCR model (3.7) (Kao and Hwang, 2008) examines the performance of sub-
stage 1:
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E1
k = Max

D

∑
d=1

ηdkZdk

subject to
m

∑
i=1

νikXik = 1,

D

∑
d=1

ηdkZdj −
m

∑
i=1

νikXij ≤ 0, ∀ j,

νik, ηdk ≥ 0, ∀ i, d.

(3.7)

With reference to sub-stage 1 of a basic two-stage DEA structure, two fundamental
concepts, the IDMU and the ADMU, are introduced, following the principles of Wang
and Luo (2006). IDMU is a hypothetical DMU that utilises the least amount of inputs to
generate the most intermediate products. An ADMU, on the other side, uses the most
inputs to produce the least intermediate products. The IDMU can be expressed with
the vectors (Xmin, Zmax), where Xmin

i = mink{Xik} and Zmax
d = maxk{Zdk}, ∀ i, d. The

ADMU can be determined with the vectors (Xmax, Zmin), where Xmax
i = maxk{Xik} and

Zmin
d = mink{Zdk}, ∀ i, d. As stressed in Hatami-Marbini et al. (2010), the performance

of the IDMU cannot be worse than any of the actual DMUs, and the performance of the
ADMU cannot be better than that of the worst performing actual DMU.

The best and worst relative efficiency scores in terms of sub-stage 1 can be defined
by the following two CCR models, respective to the IDMU and the ADMU; they are
related to Wang and Luo (2006) and Wu’s (2006) models:

EIDMU(1) = Max
D

∑
d=1

ηdZmax
d

subject to
m

∑
i=1

νiXmin
i = 1,

D

∑
d=1

ηdZdj −
m

∑
i=1

νiXij ≤ 0, ∀ j,

νi, ηd ≥ 0, ∀ i, d,

(3.8)
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EADMU(1) = Min
D

∑
d=1

ηdZmin
d

subject to
m

∑
i=1

νiXmax
i = 1,

D

∑
d=1

ηdZdj −
m

∑
i=1

νiXij ≤ 0, ∀ j,

D

∑
d=1

ηdZmax
d − EIDMU(1)∗

m

∑
i=1

νiXmin
i ≥ 0,

νi, ηd ≥ 0, ∀ i, d,

(3.9)

where EIDMU(1)∗ is the optimal optimistic score of IDMU in terms of sub-stage 1, ob-
tained in model (3.8). Model (3.9) ensures that the best relative efficiency of sub-stage
1 is fixed at a value greater than or equal to EIDMU(1)∗.

By the same token, we establish the definitions as well as formulate the appropriate
optimisation models for the IDMU and the ADMU, regarding sub-stage 2 of the basic
two-stage structure. Note that sub-stage 2 focuses on the consumption of intermediate
products for the generation of the final outputs.

The next stage concerns the determination of the optimistic and pessimistic efficiency
scores of the IDMU and the ADMU, respectively, in terms of the overall system. The ref-
erence model is the relational two-stage DEA model (3.6). The efficiency of the IDMU
for the entire system can be defined as EIDMU(s) = ∑s

r=1 µrYmax
r / ∑m

i=1 νiXmin
i . The factor

weights µr and νi are assigned to the rth output and the ith input, respectively. We thus
construct the following LP model that aims to maximise the efficiency of the IDMU.

EIDMU(s) = Max
s

∑
r=1

µrYmax
r

subject to
m

∑
i=1

νiXmin
i = 1,

D

∑
d=1

ηdZdj −
m

∑
i=1

νiXij ≤ 0, ∀ j,

s

∑
r=1

µrYrj −
D

∑
d=1

ηdZdj ≤ 0, ∀ j,

µr, νi, ηd ≥ 0, ∀ r, i, d.

(3.10)

Similarly, the efficiency of the ADMU for the entire system can be illustrated as EADMU(s)
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= ∑s
r=1 µrYmin

r / ∑m
i=1 νiXmax

i . The associated optimisation model is formulated as fol-
lows:

EADMU(s) = Min
s

∑
r=1

µrYmin
r

subject to
m

∑
i=1

νiXmax
i = 1,

D

∑
d=1

ηdZdj −
m

∑
i=1

νiXij ≤ 0, ∀ j,

s

∑
r=1

µrYrj −
D

∑
d=1

ηdZdj ≤ 0, ∀ j,

s

∑
r=1

µrYmax
r − EIDMU(s)∗

m

∑
i=1

νiXmin
i ≥ 0,

µr, νi, ηd ≥ 0, ∀ r, i, d.

(3.11)

Model (3.11) aims to minimise the pessimistic efficiency measure of the ADMU, while
keeping the optimistic efficiency of the IDMU for the overall system no less than
EIDMU(s)∗. It should be noted that the second and third sets of constraints in both
models imply that the overall efficiency of DMU cannot exceed 1.

The next point to focus on in this paper is the examination of the highest and the lowest
relative efficiency of each DMU, considering their self-evaluation. In model (3.12), the
optimistic relative efficiency of DMUk for the sub-stage 1 is examined while EIDMU(1)∗

is kept fixed; it is related to Wang and Luo’s (2006) framework:

EIDMU(1)
k = Max

D

∑
d=1

ηdkZdk

subject to
m

∑
i=1

νikXik = 1,

D

∑
d=1

ηdkZdj −
m

∑
i=1

νikXij ≤ 0, ∀ j,

D

∑
d=1

ηdkZmax
d − EIDMU(1)∗

m

∑
i=1

νikXmin
i = 0,

νik, ηdk ≥ 0, ∀ i, d

(3.12)

In the same manner, we construct the counterpart model for measuring the highest
relative efficiency of DMUk for the sub-stage 2, considering EIDMU(2)∗ as the fixed pa-
rameter.
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The overall optimistic efficiency score of DMUk can be determined as EIDMU(s)
k =

∑s
r=1 µrkYrk/ ∑m

i=1 νikXik. It is clear that this measure is the product of the optimistic effi-
ciencies of the DMUk of the two sub-stages, adopting the principle of the multiplicative
efficiency decomposition approach (Kao and Hwang, 2008). Thus, we propose model
(3.13), that maximises the above ratio.

EIDMU(s)
k = Max

s

∑
r=1

µrkYrk

subject to
m

∑
i=1

νikXik = 1,

D

∑
d=1

ηdkZdj −
m

∑
i=1

νikXij ≤ 0, ∀ j,

s

∑
r=1

µrkYrj −
D

∑
d=1

ηdkZdj ≤ 0, ∀ j,

D

∑
d=1

ηdkZmax
d − EIDMU(1)∗

m

∑
i=1

νikXmin
i = 0,

s

∑
r=1

µrkYmax
r − EIDMU(2)∗

D

∑
d=1

ηdkZmin
d = 0,

µrk, νik, ηdk ≥ 0, ∀ r, i, d

(3.13)

The fourth and fifth constraints indicate that EIDMU(1)∗ and EIDMU(2)∗, respectively,
remain unchanged. Let ν∗k = (ν∗1k, ν∗2k, ..., ν∗mk), η∗k = (η∗1k, η∗2k, ..., η∗Dk),
µ∗k = (µ∗1k, µ∗2k, ..., µ∗sk), be an optimal solution to model (3.13). For DMUk, EIDMU(s)

k =

∑s
r=1 µ∗rkYrk/ ∑m

i=1 ν∗ikXik, EIDMU(1)
k = ∑D

d=1 η∗dkZdk/ ∑m
i=1 ν∗ikXik, and EIDMU(2)

k =

∑s
r=1 µ∗rkYrk/ ∑D

d=1 η∗dkZdk, which are referred to as optimistic self-efficiency measures
with respect to the overall system and its sub-stages, respectively.

Then, model (3.14) evaluates the worst relative efficiency of DMUk, in terms of sub-
stage 1, while the parameter EADMU(1)∗ takes the value as determined previously from
model (3.9). This model is related to Wu’s (2006) framework.
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EADMU(1)
k = Min

D

∑
d=1

ηdkZdk

subject to
m

∑
i=1

νikXik = 1,

D

∑
d=1

ηdkZdj −
m

∑
i=1

νikXij ≤ 0, ∀ j,

D

∑
d=1

ηdkZmin
d − EADMU(1)∗

m

∑
i=1

νikXmax
i = 0,

νik, ηdk ≥ 0, ∀ i, d

(3.14)

Similarly, we formulate the counterpart model for measuring the lowest relative effi-
ciency of DMUk for the sub-stage 2, considering EADMU(2)∗ as the unchanged parame-
ter.

The overall pessimistic score of DMUk can be determined as EADMU(s)
k = ∑s

r=1 µrkYrk/

∑m
i=1 νikXik and denotes the product of the pessimistic efficiencies of the DMUk of the

two sub-stages. Thus, we suggest model (3.15), whose purpose is to minimise the above
ratio. EADMU(1)∗ and EADMU(2)∗ are maintained.

EADMU(s)
k = Min

s

∑
r=1

µrkYrk

subject to
m

∑
i=1

νikXik = 1,

D

∑
d=1

ηdkZdj −
m

∑
i=1

νikXij ≤ 0, ∀ j,

s

∑
r=1

µrkYrj −
D

∑
d=1

ηdkZdj ≤ 0, ∀ j,

D

∑
d=1

ηdkZmin
d − EADMU(1)∗

m

∑
i=1

νikXmax
i = 0,

s

∑
r=1

µrkYmin
r − EADMU(2)∗

D

∑
d=1

ηdkZmax
d = 0,

µrk, νik, ηdk ≥ 0, ∀ r, i, d

(3.15)

Let ν∼k = (ν∼1k, ν∼2k, ..., ν∼mk), η∼k = (η∼1k, η∼2k, ..., η∼Dk), µ∼k = (µ∼1k, µ∼2k, ..., µ∼sk), be an optimal
solution to model (3.15). For DMUk, EADMU(s)

k = ∑s
r=1 µ∼rkYrk/ ∑m

i=1 ν∼ik Xik, EADMU(1)
k =

∑D
d=1 η∼dkZdk/ ∑m

i=1 ν∼ik Xik, and EADMU(2)
k = ∑s

r=1 µ∼rkYrk/ ∑D
d=1 η∼dkZdk, which are referred

to as pessimistic self-efficiency measures with respect to the overall system and its con-
stituent parts, respectively.
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Consequently, in a two-stage DEA structure, a self-efficiency interval is formulated
for each DMU under consideration, both for the overall system and its constituent
stages. For instance, considering the overall system, an efficiency interval denoted by
[EADMU(s)∗

k , EIDMU(s)∗
k ] is shaped, where EADMU(s)∗

k (lower bound) represents the worst
relative efficiency of DMUk and EIDMU(s)∗

k (upper bound) illustrates the best relative
efficiency of DMUk, obtained via models (3.15) and (3.13), respectively.

There is a clear need to integrate both optimistic and pessimistic self-efficiency mea-
sures to provide an overall assessment of the performance of each DMU in a two-stage
DEA process. This study adopts the geometric average efficiency measure, proposed
and verified by Wang et al. (2007), to meet this requirement. This is a more compre-
hensive strategy than either of the two opposing measures, and can better deal with the
drawbacks emerged in the efficiency evaluation. In addition, it is not only considered
as a ranking index (which is the case with the relative closeness index of the TOPSIS
method adopted by Wang and Luo (2006) to combine the optimistic and pessimistic
efficiencies of a DMU), but also an efficiency measure. Wang et al. (2007) also empha-
sised that the geometric average efficiency requires less computational time to be im-

plemented than the (average) cross efficiency. Let Ecomb(ε)∗
k =

√
EADMU(ε)∗

k · EIDMU(ε)∗
k

be the combined self-efficiency measure of DMUk, where ε = s (overall system) or 1
(sub-stage 1) or 2 (sub-stage 2). We easily prove that the combined self-efficiency score
of DMUk for the overall system is the product of the combined self-efficiency measures
of DMUk for the two sub-stages: Ecomb(s)∗

k =√
EADMU(s)∗

k · EIDMU(s)∗
k =

√
EADMU(1)∗

k · EADMU(2)∗
k · EIDMU(1)∗

k · EIDMU(2)∗
k =√

EADMU(1)∗
k · EIDMU(1)∗

k ·
√

EADMU(2)∗
k · EIDMU(2)∗

k = Ecomb(1)∗
k · Ecomb(2)∗

k .

The geometric average efficiency is an approachable efficiency measure that leads to
a fairer ranking index (Wang et al., 2007). However, we should consider that it sheds
light on the effects of the optimistic and pessimistic standpoints only within the self-
appraisal context. In other words, each DMU is assessed, based on its own most
favourable and unfavourable weights, without considering the weight scheme of each
of the other DMUs. This score also ensures a better discriminating power than either
of the optimistic and pessimistic efficiencies (Wang et al., 2007). Yet, this feature has
not been explored in a more complex network structure. To this end, in the next sub-
section, the archetypal optimistic-pessimistic ranking framework is further extended
by the use of the interval CE within a two-stage tandem system, to ensure a more logi-
cal ranking order.
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3.3.2 Interval cross-efficiencies in basic two-stage structure

In this sub-section, we will propose the customisation and simultaneous use of the tra-
ditional aggressive and benevolent secondary models in the context of the basic two-
stage DEA structure with combined self-efficiencies, obtained in Section 3.3.1. Their
purpose is the determination of the minimum and maximum individual cross-efficiencies
of DMUj, with respect to the optimal weight scheme of DMUk (k, j = 1, 2, ..., n), respec-
tively. A fruitful aspect we believe, is the integration of the combined self-efficiency
score for the corresponding system/stage within the CE process. This is irrespective of
the type of multipliers, favourable for a benevolent or unfavourable for an aggressive
strategy, that are used to capture the cross-efficiencies.

We initially adopt an aggressive strategy to establish the following minimisation model:

EL(s)
kj = Min

s

∑
r=1

µrkYrj

subject to
m

∑
i=1

νikXij = 1,

s

∑
r=1

µrkYrk − Ecomb(s)∗
k

m

∑
i=1

νikXik = 0,

s

∑
r=1

µrkYrk − Ecomb(2)∗
k

D

∑
d=1

ηdkZdk = 0,

D

∑
d=1

ηdkZdj −
m

∑
i=1

νikXij ≤ 0, ∀ j,

s

∑
r=1

µrkYrj −
D

∑
d=1

ηdkZdj ≤ 0, ∀ j,

µrk, νik, ηdk ≥ 0, ∀ r, i, d.

(3.16)

In model (3.16), Ecomb(s)∗
k and Ecomb(2)∗

k are the crisp combined self-efficiency measures
of the system and the sub-stage 2 for DMUk, respectively, obtained from Section 3.3.1.
The second and third constraint maintain combined system and sub-stage efficien-
cies for DMUs. Model (3.16) pursues to minimise the cross-efficiency value of DMUj

under the condition that the combined self-efficiency scores for the overall system
and its constituent parts remain unchanged. At optimality, the minimum individ-
ual cross-efficiencies of DMUj based on DMUk (j 6= k) for the overall system, the
stage 1, and the stage 2, are determined as EL(s)

kj = ∑s
r=1 µ∗rkYrj/ ∑m

i=1 ν∗ikXij, EL(1)
kj =

∑D
d=1 η∗dkZdj/ ∑m

i=1 ν∗ikXij, and EL(2)
kj = ∑s

r=1 µ∗rkYrj/ ∑D
d=1 η∗dkZdj, respectively. By the

same token, a benevolent strategy is implemented to construct the following maximi-
sation model:
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EU(s)
kj = Max

s

∑
r=1

µrkYrj

subject to the same constraints as in model (3.16).

(3.17)

This model seeks to maximise the cross-efficiency of DMUj given that the combined
self-efficiency measures are kept fixed for the overall system and its sub-stages. Simi-
larly, we define the maximum individual cross-efficiencies of DMUj for the system and
its stages.

In terms of ε, where ε = s (overall system), 1 (stage 1) or 2 (stage 2), for DMUj, its
cross-efficiency rated by DMUk lies in [EL(ε)

kj , EU(ε)
kj ], where EL(ε)

kj is the lower bound

and EU(ε)
kj is the upper bound. Therefore, three generalised interval CE matrices (based

on the concept of Table 3.2) are shaped for the n DMUs, in regard to the overall system,
the stage 1, and the stage 2, respectively. The diagonal column in each of these matrices
demonstrates the special case in which EL(ε)∗

jj = EU(ε)∗
jj = Ecomb(ε)∗

j ∀ j, where ε = s, 1
or 2.

The recently created interval CE matrices can be viewed as MCDM problems. Tak-
ing that into consideration, we will set the scene for the determination of the interval
local weights of criteria and the interval global weights of alternatives (ultimate cross-
efficiencies) to fully rank the DMUs, in a basic two-stage DEA structure.

3.3.3 Interval cross-efficiencies and MCDM context

Each generalised interval CE matrix (see Section 3.3.2) can be treated as a multi-criteria
decision making (MCDM) problem with j = 1, 2, ..., n DMUs that act as alternatives.
Each DMUj is assessed considering the weight profile of k = 1, 2, ..., n DMUs that
act as criteria. Interestingly, the former intuition is attributed to the novel study of
Cook et al. (2014), according to which each DEA-related problem could be viewed as a
multi-criteria evaluation problem. This has also been consolidated by Rakhshan (2017),
who argues that the combination of the MCDM and the DEA tools could mitigate their
drawbacks when applied as stand-alone techniques.

Our primary target is to estimate the interval ultimate cross-efficiency scores, which
are the interval global weights for the evaluated DMUs. To this end, our approach is
twofold as it requires not only the local weights of alternatives with respect to a certain
criterion, but also the local weights of criteria. The former are the elements EL(ε)

kj and

EU(ε)
kj , which act as lower-level and upper-level local weights of alternative j in reference

to criterion k for ε = s, 1 or 2, respectively, and overall compose [EL(ε)
kj , EU(ε)

kj ]. These
elements have been obtained in Section 3.3.2. The latter illustrates the local weight of
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criterion k, that is manifested as an interval value with lower bound wL
k and upper

bound wU
k . The existence of this interval value is due to dealing with two diametrically

opposed strategies for the overall system and its constituent stages.

Wang and Elhag (2007) suggest a goal programming (GP) method to elicit normalised
interval local weights from an interval comparison matrix. In our scenario, the inter-
val CE matrix is committed to undertaking the role of the interval comparison matrix.
Their method captures the lower and upper limits of the local weight of criterion k
(k = 1, 2, ..., n) without ignoring the interval individual cross-efficiencies and the po-
tential existence of uncertainty. We will provide their optimisation model as we would
apply this within the basic 2-stage series structure:

Ω = Min
n

∑
k=1

(δ+
k + δ−k + γ+

k + γ−k )

subject to (EL − I)WU − (n− 1)WL − ∆+ + ∆− = 0,

(EU − I)WL − (n− 1)WU − Γ+ + Γ− = 0,

wL
k +

n

∑
ω=1,ω 6=k

wU
ω ≥ 1, ∀ k,

wU
k +

n

∑
ω=1,ω 6=k

wL
ω ≤ 1, ∀ k,

WU −WL ≥ 0,

WU , WL, ∆+, ∆−, Γ+, Γ− ≥ 0,

(3.18)

where ∆+ = (δ+
1 , ..., δ+

n )T, ∆− = (δ−1 , ..., δ−n )T, Γ+ = (γ+
1 , ..., γ+

n )T, Γ− = (γ−1 , ..., γ−n )T,
WU = (wU

1 , ..., wU
n )T, WL = (wL

1 , ..., wL
n)T, I is a n ⊗ n unit matrix whose elements on

the diagonal are 1, and EL and EU are the minimum and maximum individual cross-
efficiency matrices, whose elements are in the form of EL(ε)

kj and EU(ε)
kj respectively. The

deviation vectors ∆+, ∆−, Γ+, Γ−, that appear in the first two constraint sets, pursue to
eliminate the uncertainty and connect the lower level criteria WL with the upper level
criteria WU . The third and fourth sets of constraints ensure the normalisation of the
local interval weights, whereas the fifth constraint set determines their lower and upper
bounds. Model (3.18) should, in effect, run three times, based on the investigation of
the interval CE matrix of the respective system and stage to compose [wL(ε)

k , wU(ε)
k ].

Their approach might make sense in our study for two reasons. It has a greater scope
for action due to its compatibility with any interval comparison matrix, and involves
less constraints than other methods such as that of Sugihara et al. (2004). This enables it
as an easier-to-use method for the DM. The fewer number of constraints was owed to its
practice, putting more emphasis on the matrix as a whole rather than on each element
individually. Wang and Elhag’s (2007) technique has, to our knowledge, not received
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attention on eliciting interval local weights from an interval CE matrix. Therefore, this
sub-section intends to use their approach to achieve this goal.

Taking the interval local weight for each criterion k and the interval local weight of each
alternative j with respect to criterion k into account, we determine the interval ultimate
cross-efficiencies for the alternatives. We recommend using the practical method of
Entani and Tanaka (2007) that is based on a pair of linear programming (LP) models.
Their approach treats the local weights of criteria as decision variables to be optimised
and intends to determine the global weights for each DMU. The pair of LP models is
described as follows:

EL.B.(ε)
j = Min

n

∑
k=1

w(ε)
k EL(ε)

kj

subject to
n

∑
k=1

w(ε)
k = 1,

wL(ε)
k ≤ w(ε)

k ≤ wU(ε)
k , ∀ k,

(3.19)

and

EU.B.(ε)
j = Max

n

∑
k=1

w(ε)
k EU(ε)

kj

subject to the same constraints as in model (3.19),

(3.20)

where w(ε)
k is the decision variable of the kth local criterion weight (k = 1, 2, ..., n) for

ε = s (overall system), 1 (stage 1) or 2 (stage 2). The above pair of LP models (3.19)-
(3.20) results in the interval global weight for each alternative j (j = 1, 2, ..., n), denoted
by [EL.B.(ε)

j , EU.B.(ε)
j ] for the entire system and its sub-stages. Table 3.3 illustrates the

synthesis of the interval cross-efficiencies.

TABLE 3.3: Synthesis of interval cross-efficiencies

Target DMUj

Evaluator DMUk 1 2 ... n

1 [wL(ε)
1 , wU(ε)

1 ] [EL(ε)
11 , EU(ε)

11 ] [EL(ε)
12 , EU(ε)

12 ] ... [EL(ε)
1n , EU(ε)

1n ]

2 [wL(ε)
2 , wU(ε)

2 ] [EL(ε)
21 , EU(ε)

21 ] [EL(ε)
22 , EU(ε)

22 ] ... [EL(ε)
2n , EU(ε)

2n ]

... ... ... ... ...

n [wL(ε)
n , wU(ε)

n ] [EL(ε)
n1 , EU(ε)

n1 ] [EL(ε)
n2 , EU(ε)

n2 ] ... [EL(ε)
nn , EU(ε)

nn ]

Ultimate cross-efficiencies [EL.B.(ε)
1 , EU.B.(ε)

1 ] [EL.B.(ε)
2 , EU.B.(ε)

2 ] ... [EL.B.(ε)
n , EU.B.(ε)

n ]
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3.3.4 Grey relational analysis for ranking DMUs

In Section 3.3.3, we obtained an interval ultimate cross-efficiency score for DMUj (j =

1, 2, ..., n). It is apparent that there is a significant need to identify a simple yet efficient
ranking approach for comparing and ranking different DMUs, whose performance is
expressed in the form of interval values. To this end, alternative techniques have been
developed in DEA-related literature.

Wang et al. (2005) proposed the minimax regret approach to compare and rank the
efficiency intervals of DMUs; in this method, the DMU with the smallest maximum
loss of efficiency is characterised as the most desirable one. Wang and Yang (2007)
alternatively suggested the Hurwicz criterion approach to deal with such a problem.
It is based on the best and the worst relative efficiencies of DMUs. One controversy
within the method is the use of a level of optimism α, that is fully determined by the
DM. The subjective judgement about the final value of α (DM’s attitude towards risk)
could alter the result (i.e. final ranking order) at any time, limiting the robustness.
Azizi (2011) utilised the A-acceptability index, not only to identify the superiority or
inferiority of a DMU over another DMU, but also to reveal the amount of satisfaction
the DM feels in terms of superiority or inferiority of one interval value over another.
Khalili-Damghani et al. (2015) took advantage of the well-established Shannon en-
tropy approach to determine the final ranks of DMUs.

In this study, the Grey Relational Analysis (GRA) is applied to obtain a unique rank-
ing order for the DMUs, whose ultimate cross-efficiencies are illustrated within cer-
tain boundaries, and thus to determine the most desirable alternative. GRA is based
on the grey system theory proposed by Deng (1989). It has proved to be a worthy
multi-attribute decision-making tool when limited, unreliable, and uncertain informa-
tion emerges (Pourmohammadi et al., 2018). GRA has fruitfully examined complex
interconnections among several factors (Chang, 2012) as well as obtained the optimal
alternative among several alternatives (Kuo et al., 2008; Sarraf and Nejad, 2020). It has
also been discussed as a method that evaluates the changes in the relationship between
variables (of homogeneous and non-homogeneous nature) over a period of time (Zhu
and Xu, 2017; Agyemang et al., 2020).

There is a plethora of reasons for selecting GRA to compare and rank the interval val-
ues within such a created multi-attribute decision-making context. The first is that
GRA is generally more applicable when the sample size is small and the distribution
pattern unknown (Wang et al., 2010; Wang et al., 2015; Kaviani et al., 2019). Since our
study takes into account a limited sample (10 bank branches) and there is no sufficient
information on their distribution, it is more justifiable to use GRA. The other reason
is related to Kuo et al.’s (2008) work, which argued that GRA can solve multi-criteria
decision-making problems by aggregating several attribute values into a single value
per decision alternative; these attribute values are typically in-commensurable. Our
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study seems compatible with the latter statement as it makes use of attributes, which
we cannot easily assume they are comparable with each other.

In addition, it is important to mention that other equally prevalent multi-criteria decision-
making methods may not be suitable for accommodating such an issue. For instance,
the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), which
was originally introduced by Hwang and Yoon (1981), aims to select the alternative
with the shortest distance from the positive ideal solution and the longest distance
from the negative ideal solution. GRA is on the same wavelength with TOPSIS method.
However, GRA additionally considers different min-max operators, which seem to be
more appropriate in our case where the sample size is limited and the distribution
pattern is not obvious (Zhang et al., 2014). Another example is the Shannon entropy
(Shannon, 1948), which is treated as an uncertainty measure of information. Based
on the information entropy, the quality of information derived via a decision-making
context can ensure the level of reliability of the respective problem. The entropy mea-
sure is normally used to determine the attribute weights, when they are unknown to
the decision maker. This limits its applicability, as it cannot be directly implemented
to compare and rank interval values of alternatives, such as the ones explored in our
study.

GRA consists of four main steps: grey relational generating, reference sequence defini-
tion, grey relational coefficient calculation, and grey relational grade (GRG) calculation.
In a first step, GRA translates the existing performance of all alternatives into compa-
rability sequence. According to the comparability sequence, an ideal target sequence
(reference sequence) is defined in the reference sequence definition (second step). In a
third step, a grey relational coefficient is calculated to illustrate the distance between
the comparability and the reference sequence. In a final step, the GRG between the ref-
erence and every comparability sequence is calculated, based on the grey relational co-
efficient. If the comparability sequence of an alternative has the highest grey relational
grade, then this alternative is deemed as the most desirable one (Kuo et al., 2008). Be-
low, we will provide an overview of the GRA as we would apply this to ranking the
interval ultimate cross-efficiencies.

To start with, we collect the data to be evaluated from the mathematical viewpoint.
The interval ultimate cross-efficiency scores, defined in Section 3.3.3, are gathered into
a n⊗ 2 matrix, setting out the appropriate conditions for translating the DMUs into al-
ternatives and the two extreme cases (lower bound, upper bound) into criteria. Hence,
we form another MCDM problem with j = 1, 2, ..., n alternatives that are assessed by
i = 1, 2 attributes. Table 3.4 depicts what we described above.
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TABLE 3.4: Interval ultimate cross-efficiencies

DMUj 1 (L.B.) 2 (U.B.)

1 EL.B.(ε)
1 EU.B.(ε)

1

2 EL.B.(ε)
2 EU.B.(ε)

2

... ... ...

n EL.B.(ε)
n EU.B.(ε)

n

The jth alternative can be expressed as E(ε)
j = (EL.B.(ε)

j , EU.B.(ε)
j ), where Ei(ε)

j is the ul-
timate cross-efficiency of attribute i of alternative j and where ε = s (overall system),
1 (stage 1) or 2 (stage 2). The term E(ε)

j is translated into the comparability sequence
¯

E(ε)
j = (

¯
EL.B.(ε)

j ,
¯

EU.B.(ε)
j ) by use of one of the following equations:

¯
Ei(ε)

j =
Ei(ε)

j −min{Ei(ε)
j , ∀ j}

max{Ei(ε)
j , ∀ j} −min{Ei(ε)

j , ∀ j}
, ∀ j, i, (3.21)

¯
Ei(ε)

j =
max{Ei(ε)

j , ∀ j} − Ei(ε)
j

max{Ei(ε)
j , ∀ j} −min{Ei(ε)

j , ∀ j}
, ∀ j, i, (3.22)

¯
Ei(ε)

j =
|Ei(ε)

j − Ei(ε)
des |

max{Ei(ε)
j , ∀ j} −min{Ei(ε)

j , ∀ j}
, ∀ j, i. (3.23)

Equation (3.21) is used for the greater-the-better attributes, Equation (3.22) is used
for the smaller-the-better attributes, and Equation (3.23) is used for the closer-to-the-
desired-value- Ei(ε)

des -the-better.

We proceed to calculating the grey relation distance between the reference sequence

(Ei(ε)
j ) and the comparability sequence (

¯
Ei(ε)

j ), which is ∆i(ε)
j = |Ei(ε)

j − ¯
Ei(ε)

j |, ∀ j, i. As

stressed in Kuo et al. (2008), the reference sequence Ei(ε)
j = (E1(ε)

j , E2(ε)
j ) = (1, 1).

Then, we compute the grey relational coefficient γ(Ei(ε)
j ,

¯
Ei(ε)

j ). It is used to deter-

mine how close Ei(ε)
j is to

¯
Ei(ε)

j . The larger the coefficient, the closer Ei(ε)
j and

¯
Ei(ε)

j

are. Let γ(Ei(ε)
j ,

¯
Ei(ε)

j ) =
∆(ε)

min +ζ·∆(ε)
max

∆i(ε)
j +ζ·∆(ε)

max
, ∀ j, i, where ∆(ε)

min = min{∆i(ε)
j , ∀ j, i}, ∆(ε)

max =

max{∆i(ε)
j , ∀ j, i}, and ζ denotes the distinguishing coefficient, ζ ∈ [0, 1]. The in-built ζ

is used to expand or squeeze the range of the grey relational coefficient. In other words,
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decision makers are offered the opportunity to modify their opinions based on a wide
range of values (Agyemang et al., 2020).

Finally, the GRG Γ(ε)
j , which is the weighted average of the grey relational coefficients,

is estimated as Γ(ε)
j = ∑2

i=1 wi · γi(ε)
j , ∀ j, where wi is the weight of the criterion i and can

be more prone to subjective modifications by a DM. Nevertheless, it is possible to de-
lineate it with the use of an objective method (Jahan et al., 2012). Besides, ∑2

i=1 wi = 1.
We should emphasise that GRG only ranks the alternatives; thus, it is not an efficiency
measure. The DMU with the highest GRG is placed first.

To conclude, GRA is considered as an efficient ranking tool not only for traditional
MCDM problems (Kuo et al., 2008), but also for efficiency evaluation DEA problems
as a MCDM context in disguise (Sarraf and Nejad, 2020). Nevertheless, GRA has, to
our knowledge, not yet received explicit attention on ranking interval values and, in
particular, interval ultimate cross-efficiencies within an interval CE matrix. Hence, this
section has aspired to attain this target, in the light of a meaningful prioritisation of the
DMUs.

3.4 Numerical Application

This section illustrates the use of the mathematical models presented in Section 3.3 to
meaningfully evaluate and rank the DMUs. There are two salient factors that evaluate
each DMU within the two-stage tandem structure herein: (i) the optimistic and pes-
simistic efficiency scores within a self-evaluation context, and (ii) the most favourable
and unfavourable weight sets of each of the other DMUs, in a peer-appraisal setting
that integrates the combined self-efficiency measure.

The numerical example drawn from Zhou et al. (2013) is used for illustrative pur-
poses. In Table 3.5, ten bank branches of China Construction Bank in Anhui are as-
sessed within the two-stage tandem structure (see Figure 3.1). The employee (X1), the
fixed assets (X2), and the expenses (X3) are the input resources of the first stage to
be consumed to produce the intermediate products; the credit (Z1) and the inter-bank
loans (Z2). The latter are used as inputs in the second stage to generate the final out-
puts; the loan (Y1) and the profit (Y2). For modelling, running, and analysing our data,
we have utilised the programming language Python 3.7.6 and in particular the version
2.1 of PuLP as the free linear programming library. The experiment ran on a computer
with 16GB RAM.

In our framework, we first consider determining the best and worst relative efficiencies
of the IDMU and the ADMU, respectively, for the overall system and its individual
stages. Table 3.6 exhibits the corresponding scores from solving models (3.8)-(3.11),
introduced in Section 3.3.1.
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TABLE 3.5: The numerical application of Zhou et al. (2013)

DMU X1 X2 X3 Z1 Z2 Y1 Y2

1 0.526 0.478 0.385 49.917 5.461 34.990 0.843
2 0.713 1.236 0.555 37.495 4.083 20.601 0.486
3 0.443 0.446 0.342 20.985 0.690 8.633 0.129
4 0.638 1.248 0.457 45.051 1.724 9.235 0.302
5 0.575 0.705 0.404 38.163 2.249 12.017 0.314
6 0.432 0.645 0.401 30.168 2.335 13.813 0.377
7 0.510 0.724 0.371 26.539 1.342 5.096 0.145
8 0.322 0.336 0.233 16.124 0.489 5.980 0.093
9 0.423 0.668 0.347 22.185 1.177 9.235 0.200
10 0.256 0.342 0.159 13.436 0.406 2.533 0.006

TABLE 3.6: Highest and lowest relative efficiency scores for the overall system, stage
1, and stage 2

EIDMU(1) 2.41405

EADMU(1) 0.05162

EIDMU(2) 10.92813

EADMU(2) 0.00550

EIDMU(s) 2.41405

EADMU(s) 0.00469

Then, models (3.12)-(3.15) are used to obtain the highest and the lowest relative effi-
ciency scores of the target DMUk in terms of the overall system, the stage 1, and the
stage 2. These scores are given in Table 3.7. Recall that these relative self-efficiency
scores indicate their distance from the respective IDMU and ADMU efficiencies, pre-
sented in Table 3.6. These scores are also accompanied by the combined self-efficiency
ratings for each DMU and system/stage. The numbers in parentheses illustrate the
rankings of the corresponding bank branches for each type of efficiency measure.

In Table 3.7, no matter what point of view efficiency is measured from, DMU1 is cer-
tainly the best unit and DMU10 is the worst unit, in terms of the entire system (sec-
ond expanded column). Considering stage 1, regardless of the viewpoint, DMU1 and
DMU3 are the most and least desirable units, respectively (third expanded column).
In stage 2 (fourth expanded column), DMU10 is deemed as the least promising unit.
However, there is no correspondence between the optimistic and pessimistic perspec-
tives regarding the best unit. Notably, none of the 10 bank branches perform efficiently
in both stages and viewpoints. This is, for instance, seen in the non-efficient overall
optimistic self-efficiency scores (EIDMU(s)

k ), where the highest score is 0.8132 occurring at
DMU1, followed by 0.3490 occurring at DMU6.
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The next focal point of the framework is the geometric aggregation of the optimistic and pes-
simistic perspectives, to build a combined self-efficiency measure for each DMU, with respect to
the system (Ecomb(s)

k ), the stage 1 (Ecomb(1)
k ), and the stage 2 (Ecomb(2)

k ). In table 3.7, DMU1 has the
best performance among all units, reflecting the two opposed standpoints. This is completely
verified by the consistent results of the overall system and the stage 1. Nevertheless, regarding
stage 2, there is a significant inconsistency between the optimistic and the pessimistic efficiency.
In detail, DMU1 receives a moderate rating (0.8132) with respect to the optimistic aspect. This
rating is compensated by its exceptional pessimistic performance (0.0760). The overall perfor-
mance of bank branch 1 is also grievously higher than the corresponding performance of all
others. For instance, in stage 1 the combined self-efficiency score of DMU1 approximates 0.51,
whereas the corresponding rating of DMU2 (in the second place) equals to 0.2733. The geo-
metric average efficiency also indicates that DMU10 has the worst performance in terms of the
overall system and the stage 2.

The combined self-efficiencies calculated for every DMU, satisfy the sound mathematical prop-
erty that the overall system combined self-efficiency score is the product of the two sub-stages,
as discussed in Section 3.3.1. As an example, the combined self-efficiencies calculated for DMU1
satisfy 0.1267 = 0.5099 ∗ 0.2486. Since this property is satisfied, every Ecomb(s)

k is no greater than

its corresponding Ecomb(1)
k and Ecomb(2)

k . Another point to be noted is that most bank branches

have a smaller Ecomb(2)
k than Ecomb(1)

k . Only DMUs 3, 8, and 9 have a smaller Ecomb(1)
k than

Ecomb(2)
k . However, after implementing the Wilcoxon’s matched-pairs signed-ranks test (Daniel,

1978) we found that there is not sufficient evidence to say that the average efficiency measures
of these two sub-stages are not equal. This may be due to the limited sample under examina-
tion. In addition, it is noteworthy that the difference between ratings and ranks of the combined
self-efficiency measures in all stages is quite significant for several bank branches. For instance,
the rank of DMU3 for the overall system, the stage 1, and the stage 2, is 8, 10, and 2, respectively,
indicating that at least 6 ranks difference exists. A large difference may reveal the source that
causes the inefficiency of the overall system. For example, DMUs 2 and 5 perform satisfactorily
in stage 1 (as compared to stage 2) whereas DMUs 3 and 8 perform satisfactorily in stage 2 (as
compared to stage 1). Decomposing the overall system combined self-efficiency score into the
product of its two sub-stages, may assist the respective bank branch in identifying the sub-stage
that triggers inefficiency.

The combined self-efficiency measures obtained with our proposed method (see the respective
columns of Table 3.7) are also compared with the respective scores (Table 3.8) obtained with
Kao and Hwang’s (2008) approach. As mentioned in Section 3.3, the latter approach aims to
explore the efficiency decomposition in a two-stage production process by taking into consider-
ation the series relationship of the two sub-stages. Their relational model (see model (3.6)) was
found to be reliable in terms of measuring overall and division efficiencies along with the better
identification of the causes of inefficiency. Our study has applied their relational model to fur-
ther analyse and validate the dataset provided in Table 3.5, by measuring the efficiencies of the
whole process and its constituent sub-stages for the ten DMUs. In Table 3.8, the self-efficiency
scores along with their ranks of the overall system, the stage 1, and the stage 2, are depicted in
the second, third, and fourth column, respectively. The rankings of the two models with respect
to the overall system are quite similar, showing that the largest difference is 1 occurring at the
bank branches 2, 3, and 8. The rankings of the two models with respect to sub-stage 1 are also
quite close to each other. In the latter case, the largest difference occurs at DMU7 with a rank
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difference of 4. The second largest difference occurs at DMUs 9 and 10 with a rank difference
of 2. For the remaining 7 bank branches, their rank differences are less than 2. The rank dif-
ferences look very similar even with the case of sub-stage 2. Correlation analysis suggests that
there is a highly strong association between the ranks of these two approaches, as indicated
by the Spearman coefficients (Daniel, 1978) of 0.985 (overall system), 0.806 (stage 1), and 0.841
(stage 2), which are significant at the 0.01 level (two-tailed). This can be demonstrated even by
the fact that both our method and Kao and Hwang’s method identify DMU1 as the best per-
former. However, our approach is more informative within the self-appraisal context, in that
it not only considers the most favourable self-efficiency scores (as in Kao and Hwang, 2008),
but also the most unfavourable ones to obtain a more accurate and less misleading overall as-
sessment for each DMU and flow. As a result, it puts emphasis on both sides of the same coin
simultaneously. The above points further validate the rationale of our approach.

As discussed in Section 3.1, the geometric average efficiency is an easy-to-use measure with a
good discriminating power amongst the evaluated DMUs. However, it may not be sufficiently
strong in terms of leading to a unique ranking in this two-stage process. As a matter of fact,
there is no absolute discrimination of some inefficient DMUs considering the combined self-
evaluation results at each stage, presented in Table 3.7. In particular, in the overall system the
DMUs 2 and 6 tied (0.0528) in the second place. Similarly, at stage 2 the DMUs 3 and 6 also
tied (0.2094), sharing the second place. In such results, each DMU is self-assessed ignoring the
weight profile of each of the other DMUs. Embedding the geometric average score into a peer
context, would possibly contribute to a more comprehensive ranking. To this end, the proposed
framework is further extended by the use of the interval CE.

The next step in our proposed approach concerns the implementation of the interval CE to-
wards the evaluated network structure, as discussed in Section 3.3.2. Tables 3.9-3.11 show-
case the interval individual cross-efficiencies of DMUj based on the optimal weight scheme of
DMUk for the overall system, the stage 1, and the stage 2, respectively. In this case, each DMU
is evaluated considering simultaneously an aggressive (model 3.16) and a benevolent (model
3.17) strategy; this originally creates an atmosphere of neutrality.

TABLE 3.7: Self-efficiency ratings and ranks of the overall system, the stage 1, and the
stage 2, with the proposed method

DMU EIDMU(s)
k EADMU(s)

k Ecomb(s)
k EIDMU(1)

k EADMU(1)
k Ecomb(1)

k EIDMU(2)
k EADMU(2)

k Ecomb(2)
k

1 0.8132 (1) 0.0197 (1) 0.1267 (1) 1.0000 (1) 0.2600 (1) 0.5099 (1) 0.8132 (6) 0.0760 (1) 0.2486 (1)
2 0.3255 (3) 0.0086 (2) 0.0528 (2) 0.5186 (2) 0.1441 (5) 0.2733 (2) 0.6277 (8) 0.0595 (2) 0.1933 (6)
3 0.1398 (9) 0.0058 (6) 0.0284 (8) 0.1421 (10) 0.1298 (10) 0.1358 (10) 0.9838 (2) 0.0446 (5) 0.2094 (2)
4 0.2450 (5) 0.0038 (8) 0.0307 (6) 0.2655 (5) 0.1731 (3) 0.2144 (5) 0.9227 (3) 0.0222 (8) 0.1432 (8)
5 0.2886 (4) 0.0062 (4) 0.0423 (4) 0.3927 (4) 0.1818 (2) 0.2672 (3) 0.7350 (7) 0.0341 (7) 0.1584 (7)
6 0.3490 (2) 0.0080 (3) 0.0528 (2) 0.4101 (3) 0.1549 (4) 0.2521 (4) 0.8509 (5) 0.0515 (3) 0.2094 (2)
7 0.1454 (8) 0.0030 (9) 0.0208 (9) 0.2549 (6) 0.1425 (7) 0.1906 (6) 0.5706 (9) 0.0208 (9) 0.1090 (9)
8 0.1476 (7) 0.0055 (7) 0.0285 (7) 0.1476 (9) 0.1372 (8) 0.1423 (9) 1.0000 (1) 0.0402 (6) 0.2005 (5)
9 0.2141 (6) 0.0061 (5) 0.0363 (5) 0.2389 (7) 0.1362 (9) 0.1804 (7) 0.8963 (4) 0.0451 (4) 0.2011 (4)
10 0.0133 (10) 0.0029 (10) 0.0062 (10) 0.1796 (8) 0.1438 (6) 0.1607 (8) 0.0739 (10) 0.0204 (10) 0.0389 (10)
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TABLE 3.8: Self-efficiency ratings and ranks of the overall system, the stage 1, and the
stage 2, with Kao and Hwang’s (2008) method

DMU Es
k (Rank) E1

k (Rank) E2
k (Rank)

1 1.00 (1) 1.00 (1) 1.00 (1)
2 0.43 (3) 0.55 (2) 0.79 (8)
3 0.29 (7) 0.29 (9) 1.00 (1)
4 0.30 (6) 0.32 (7) 0.94 (4)
5 0.35 (4) 0.43 (4) 0.83 (7)
6 0.54 (2) 0.54 (3) 1.00 (1)
7 0.18 (9) 0.28 (10) 0.62 (9)
8 0.28 (8) 0.31 (8) 0.92 (5)
9 0.33 (5) 0.38 (5) 0.85 (6)
10 0.17 (10) 0.37 (6) 0.47 (10)

To make the content of Tables 3.9-3.11 comprehensible to the reader, it should be ideal
to present a few examples. In the second column of Table 3.9, DMU1 is assessed based
on the weight profile of all other DMUs, except its own weight set. The minimum and
maximum individual cross-efficiencies of DMU1 based on the optimal weight scheme
of DMU2 are 0.1216 and 0.2371, respectively, for the overall system. In the fifth column
of table 3.10, DMU4 is also peer-appraised with respect to the weight profile of all other
DMUs. The minimum and maximum individual cross-efficiencies of DMU4 based on
the weight profile of DMU10 are 0.1475 and 0.2281, respectively, for sub-stage 1. Table
3.11 determines in a similar manner the individual cross-efficiencies for each DMU, for
the sub-stage 2. The diagonal leading column in each of these three matrices demon-
strates the special case in which EL(ε)∗

jj = EU(ε)∗
jj = Ecomb(ε)∗

j ∀ j, where ε = s (overall
system), 1 (stage 1) or 2 (stage 2). These are the combined self-efficiency scores. Clearly,
the property of maintaining the combined self-efficiency measure for each DMU is sat-
isfied both for the overall system and its individual stages; this accomplishes our efforts
towards a more reasoned peer-appraisal setting that entails the effects of the optimistic
and pessimistic viewpoints.

Recalling the discussion in Section 3.3.3, we view each interval CE matrix as a MCDM
problem. In Tables 3.9-3.11, the ten DMUs (alternatives) located in their last 11 columns,
are evaluated by the weight profiles of the ten DMUs (criteria) presented in their first
column. To designate the interval global weights (interval ultimate cross-efficiencies)
in the last row of each of these matrices, it is required to determine the interval weight
per criterion except the known interval individual cross-efficiencies. To start with, the
interval weight of each criterion is determined in the second, third, and fourth column
of Table 3.12, with respect to the overall system, stage 1, and stage 2, respectively. The
interval weights are obtained via the GP model (3.18), and the interval global weights,
according to the pair of optimisation models (3.19) and (3.20), as stated in Section 3.3.3.
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3.11:Intervalcross-efficiencies

for
the

stage
2

D
M

U
1

2
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7

8
9
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1

0.2486
0.2486
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0.3007
0.4856

0.2078
0.2820

0.2072
0.2246

0.2294
0.2600

0.1473
0.1743

0.3056
0.4745

0.2739
0.3044

0.0225
0.2417

2
0.2454

0.2504
0.1933
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0.2052

0.2842
0.2046

0.2263
0.2265
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0.1455

0.1757
0.3080

0.4686
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0.3006
0.0227

0.2387
3

0.1072
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0.1336
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0.1964

0.0896
0.1564

0.0993
0.1811

0.0636
0.1214
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0.1316
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0.0157
0.1042

4
0.1261

0.3039
0.0973

0.2389
0.1526

0.3012
0.1432

0.1432
0.1140

0.1867
0.1320

0.2393
0.0885

0.1213
0.1551

0.2779
0.1390

0.2580
0.0114

0.1413
5

0.1752
0.1899

0.1352
0.1495

0.2119
0.3710

0.1588
0.1988

0.1584
0.1584

0.1753
0.1833

0.1126
0.1229

0.2154
0.3626

0.1931
0.2326

0.0159
0.1847

6
0.1963

0.2225
0.1515

0.1753
0.2375

0.4348
0.1861

0.2228
0.1775

0.1856
0.2094

0.2094
0.1319

0.1377
0.2414

0.4249
0.2164

0.2726
0.0178

0.2165
7
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0.2161

0.1409
0.1447

0.1878
0.3122

0.1410
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0.1403
0.1595

0.1625
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0.1090
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0.1909
0.2959

0.1711
0.2251

0.0141
0.1787

8
0.1050

0.1825
0.0925

0.1258
0.1972

0.2075
0.0905

0.185
0.0943

0.1473
0.1065

0.1706
0.0661

0.1143
0.2005

0.2005
0.1373

0.1797
0.0148

0.1021
9

0.1641
0.2136

0.1512
0.1408

0.2207
0.2732

0.1237
0.2070

0.1368
0.1697

0.1515
0.2095

0.0973
0.1280

0.2243
0.2585

0.2011
0.2011

0.0165
0.1596

10
0.1444

1.0000
0.1132

0.7699
0.0847

0.5521
0.0422

0.5815
0.0649

0.6285
0.0943

0.8637
0.0395

0.4397
0.0764

0.5268
0.0858
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0.0389

0.0389
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There was not any indication that the interval weights in Table 3.12 are not unique.
To the best of our knowledge, there are not even any such discussions in the relevant
literature to whether these interval weights are unique or not.

For instance, in the second column of the last row of table 3.9, we obtain the interval
ultimate CE of DMU1: [0.1000, 0.2611], where 0.1000 is the minimum and 0.2611 is
the maximum CE score. The minimum score of DMU1 for the overall system is esti-
mated via solving model (3.19). The basic prerequisites of this model are to recognise
the minimum individual cross-efficiencies of DMU1 based on the weight profile of all
ten DMUs (left side of column 2 of Table 3.9) and the interval weights per criterion for
the overall system (column 2 of Table 3.12). The maximum ultimate cross-efficiency of
DMU1 for the overall system is estimated via solving model (3.20). The basic prerequi-
sites of this model are to identify the maximum individual cross-efficiencies of DMU1
based on the weight profile of all 10 DMUs (right side of column 2 of Table 3.9) and the
interval weights per criterion for the overall system (column 2 of Table 3.12).

The final step of our methodological approach seeks for a unique and reasonable priori-
tisation of the interval ultimate cross-efficiencies via the established GRA, as discussed
in Section 3.3.4. This step continues to allow the DMUs, located in the columns of the
interval CE matrices mentioned above, to act as alternatives and to be assessed by two
attributes; the first attribute concerns the minimum (worst condition) and the second
attribute is pertinent to the maximum (best condition) ultimate CE of each DMU, to-
wards the corresponding system/stage. The interval ultimate cross-efficiencies (last
row of each of the Tables 3.9-3.11) form the appropriate matrix, as shown in Table 3.4.

TABLE 3.12: Interval weights per criterion for the overall system, the stage 1, and the
stage 2

Criteria
(DMUs)

Interval Weights per
criterion (Overall sys-
tem)

Interval Weights per
criterion (Stage 1)

Interval Weights per
criterion (Stage 2)

1 0.0000 0.1111 0.4502 0.4726 0.0134 0.1198
2 0.0000 0.1111 0.0286 0.0510 0.0133 0.1197
3 0.0000 0.1111 0.0506 0.0730 0.0016 0.1080
4 0.0000 0.1111 0.0479 0.0703 0.0023 0.1088
5 0.0000 0.1111 0.0390 0.0613 0.0068 0.1132
6 0.0000 0.1111 0.0283 0.0507 0.0091 0.1156
7 0.0000 0.1111 0.0433 0.0657 0.0052 0.1117
8 0.0000 0.1111 0.0538 0.0761 0.0017 0.1081
9 0.0000 0.1111 0.0394 0.0618 0.0060 0.1125
10 0.0000 0.1111 0.0170 0.0394 0.0000 0.0887
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The data of performance values of the two attributes are subsequently normalised
through the greater-the-better equation (3.21); this choice reflects the necessity of push-
ing up the peer-efficiency of each DMU. The results are depicted in Appendix B and
particularly in the second column of Table B.1 for the overall system, of Table B.2 for
stage 1, and of Table B.3 for stage 2. The grey relational distance calculation is also
utilised to measure the distance between the reference sequence and the comparabil-
ity sequence (normalised values), see the third column of each of the three tables in
Appendix B. In addition, we compute the grey relational coefficient to explore how
close the reference and the comparability sequences are. In this formula, the value of ζ

may affect the size of the correlation degree distribution interval, thereby affecting the
results of the correlation analysis. The value of ζ can be determined considering the
DMU’s tendency towards optimism-pessimism. Following Deng (1989), we have set
ζ = 0.5 implying that the DMU has neither an optimistic nor a conservative attitude.
The respective results are portrayed in the last column of each of the three tables in
Appendix B.

The GRG and the rank for each DMU with respect to the overall system, the stage 1,
and the stage 2, are illustrated in the second, third, and fourth column of Table 3.13, re-
spectively. It is important to make two remarks about the process of obtaining the GRG:
firstly, the relative importance weights of the two performance attributes were assumed
to be equal (w1 = w2 = 0.5) illustrating that the two extremes are of the same impor-
tance, and secondly, the GRG is just an index that only captures the rank rather than
an efficiency measure. The unique final rank in Table 3.13 reflects the improvement of
the discriminating power, as compared to the original rank derived from the combined
self-efficiency measures in Table 3.7. This practically means that the non-dominated
bank branches, which cannot be fully discriminated by the self-evaluation notion, can
be discriminated by the methodologies followed in peer notion. In detail, DMU10 is
without a doubt the least desirable unit in all three cases. DMU1 is also considered to
be the most promising bank branch for the overall system and stage 1, while DMU3 is
the best unit according to stage 2. Generally, one can deduce that the ranking results
for all branches (except DMU10) are not consistent and may show a higher degree of
uncertainty and inefficiency in specific stages.

The GRG grades obtained with our proposed framework (see Table 3.13) are also com-
pared with the respective ultimate cross-efficiency ratings (Table 3.14) obtained via the
Kao and Liu’s (2019) approach. In their study, they applied the concept of cross-
evaluation to measure the efficiency of basic (parallel & series) network structures.
Their proposed aggressive-based secondary goal model was particularly able to de-
compose the cross-efficiency score of the overall system into the product of those of
the internal sub-stages for the series structure. Our study has applied their aggressive-
based model under the two-stage tandem series structure and the peer-appraisal set-
ting to further analyse the dataset provided in Table 3.5. In Table 3.14, the peer-efficiency
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scores along with their ranks of the overall system, the stage 1, and the stage 2, are
respectively presented in the second, third, and fourth column. Firstly, we have no-
ticed that the multiplicative mathematical relationship between the overall system and
its sub-stage efficiencies is indeed satisfied. For example, the ultimate cross-efficiency
score of DMU6 (0.446) is equal to the product of its sub-stage 1 (0.574) and sub-stage
2 (0.778) efficiencies. Secondly, the rankings of the two methods with respect to the
overall system and the stage 1 are not significantly different based on a Spearman rank
order correlation test with statistics of 0.964 and 0.830, respectively. These are signifi-
cant at the 0.01 level (two-tailed). However, it is worthwhile to mention that DMU10
has a difference of 3 ranks in terms of the evaluation of stage 1. Thirdly, as for the stage
2, the rankings from the two methods are not so close. The bank branch 2 is the extreme
case with a rank difference of 6. The second largest difference occurs at DMU8 with a
rank difference of 4. All the remaining bank branches have a rank difference of no
more than 3. Statistically, this situation is even further validated by the Spearman coef-
ficient of 0.503, which implies a moderate association between the rankings of the two
methods. Finally, Kao and Liu’s (2019) approach only considers the most unfavourable
weight sets of each of the other DMUs, while keeping the optimistic self-efficiency score
constant. However, our study is more multi-dimensional since it simultaneously takes
into account the most favourable and unfavourable weight sets of each of the other
players, while integrating the respective combined self-efficiency measure.

Finally, it can be statistically inferred that the rankings of the DMUs obtained from
the combined self-efficiency measures (self-appraisal), and the grey relational grades
after showing peer-appraisal, are similar with respect to the overall system and its sub-
stages. As an example, for the overall system, according to the Spearman correlation
test (Daniel, 1978), the rs = 0.948. This indicates that under the significance level of
0.01, there is a strong positive association between the ranking values of the DMUs
obtained by the two separate conditions (self-appraisal & peer-appraisal), confirming
the validity of our framework. Exceptions are considered the DMUs 1, 6, and 8 within
the evaluation of the second sub-stage, where there is a larger rank difference of 3. This
could be justified by the nature of the self-appraisal setting to let each bank branch to be
evaluated based only on its own (favourable and unfavourable) standpoint, while the
peer-appraisal setting expects the bank branches to be evaluated from the (favourable
and unfavourable) standpoint of all branches.
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TABLE 3.13: Grey Relational Grade and ranks of the overall system, the stage 1, and
the stage 2

DMU GRG Γ(s)
j Rank

Overall
System

GRG
Γ(1)

j

Rank
Stage1

GRG
Γ(2)

j

Rank
Stage2

1 1.0000 1 1.0000 1 0.6199 4
2 0.4062 3 0.4181 2 0.4830 8
3 0.3750 6 0.3356 8 0.9916 1
4 0.3655 8 0.3477 7 0.5145 6
5 0.3978 4 0.3931 4 0.4886 7
6 0.4333 2 0.4171 3 0.5719 5
7 0.3530 9 0.3519 5 0.3992 9
8 0.3729 7 0.3349 9 0.9471 2
9 0.3811 5 0.3512 6 0.6543 3
10 0.3333 10 0.3335 10 0.3403 10

TABLE 3.14: Peer-efficiency ratings and ranks of the overall system, the stage 1, and
the stage 2, with Kao and Liu’s (2019) method

DMU System CE (Rank) Stage 1 CE (Rank) Stage 2 CE (Rank)

1 1.000 (1) 1.000 (1) 1.000 (1)
2 0.416 (3) 0.534 (4) 0.780 (2)
3 0.239 (7) 0.315 (10) 0.760 (4)
4 0.251 (6) 0.488 (5) 0.513 (8)
5 0.330 (4) 0.573 (3) 0.576 (7)
6 0.446 (2) 0.574 (2) 0.778 (3)
7 0.160 (9) 0.420 (6) 0.381 (9)
8 0.238 (8) 0.336 (9) 0.710 (6)
9 0.297 (5) 0.392 (8) 0.756 (5)
10 0.072 (10) 0.397 (7) 0.182 (10)

3.5 Conclusions & Future Research

This chapter has provided new insight into the attainment of a meaningful and unique
ranking of DMUs under a two-stage tandem (network) structure. In particular, it ex-
tends the selected optimistic-pessimistic DEA models into the two-stage tandem sys-
tem, to then complement the interval CE method within such a system. Decision mak-
ers are offered with the chance of evaluating the performance of the DMUs by consider-
ing: (i) the optimistic and pessimistic self-efficiency scores, and (ii) the most favourable
and unfavourable weight profiles of each of the other DMUs in a peer-appraisal setting.
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In this study, we have introduced a 7-step methodological approach, as shown in Fig-
ure 3.1, which combines existing methods from the literature in a novel way. This ap-
proach supports the aforementioned conditions and ensures more multi-dimensional
evaluation outcomes.

The procedures implemented in the first three steps of our framework indicate how the
optimistic and pessimistic DEA models, which are inspired by the studies of Wang and
Luo (2006) and Wu (2006), are built towards the more realistic two-stage tandem system
that better reflects the complex interconnections among its internal sub-systems. The
DMUs are initially evaluated, based on their own most favourable (optimistic) and un-
favourable (pessimistic) optimal multipliers, and then are aggregated into a combined
self-efficiency measure via the geometric average.

The remaining steps of our framework ensure the peer-evaluation of the DMUs via the
customisation of the interval CE method to the specifications of the two-stage tandem
structure while keeping the combined self-efficiency measure unchanged. To rank all
DMUs in the interval CE matrix of the corresponding flow, the study introduces an
alternative novel use of the GP method of Wang and Elhag (2007), the LP models by
Entani and Tanaka (2007), and the GRA of Kuo et al. (2008). The combination of such
well-established techniques for extracting valuable insights from an interval CE matrix
has not been considered before. This combination underpins the wider MCDM context
to which the elements of the interval CE matrix belong.

We envisage that our study could be applicable in several areas. In the non-life insur-
ance industry (Kao and Hwang, 2008), for example, operations consist of the insurance
service and the capital investment. Customers pay direct written and reinsurance pre-
miums, which are then invested in a portfolio to earn underwriting profit. Another
promising area would be the evaluation of the performance of the high-technology
industry that is decomposed into the technology development and the economic ap-
plication (Zhang and Chen, 2019). In this two-stage tandem network, raw data and
knowledge are processed into technological achievements, which are then transformed
into economic development. A third application connects our study’s methodological
framework with the operational activities of the international shipping industry; these
could be divided into the supervision of the ship dispatching management and the con-
trol of the working time in the port (Gan et al., 2019). Finally, the efficiency evaluation
of two-stage (food) supply chains of different factories or farming communities (Kre-
mantzis et al., 2022) could also serve the goals of our chapter. For instance, the process
of the refinement of selected cocoa beans into milk/dark chocolate and the production
of black tea through withering, fermentation, drying, and sieving across a number of
specialised factory branches could further highlight the importance of our evaluation
and ranking framework.
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This chapter treats the two sub-stages of a DMU equally. In reality, however, there
might be a certain degree of leader-follower relationship between the upstream and
downstream of a particular DMU. We acknowledge this as a limitation of our study
and we believe that the introduction of relative weights for the different stages when
calculating overall efficiency could accommodate such an issue. In addition, one of the
main steps of the grey relational analysis methodology, used to rank the interval ulti-
mate cross-efficiencies within an interval cross-efficiency matrix, is the calculation of
the grey relational grade. It is defined as the weighted average of the grey relational
coefficients, where the weight of the respective criterion is subjectively determined by
the decision maker. To better reflect the reality, we would have taken advantage of an
existing powerful multi-criteria decision-making method, such as the analytic network
process (Saaty and Vargas, 2013) or the best-worst method (Rezaei, 2016), to identify
in an objective manner the weights. We have also recognised that the grey relational
grade is just an index that can only capture the rank rather than an efficiency mea-
sure. In other words, there is no sufficient information that would allow the identifi-
cation of the DEA-efficient DMUs that constitute the best-practice frontier. However,
we acknowledge that the GRA technique has not received attention on ranking inter-
val cross-efficiencies within an interval CE matrix and, thus, our chapter has worked
towards this direction. Finally, further study could focus on the testing of the proposed
models and frameworks with empirical data. In the shipping industry, for example, it
could be deployed to compare the efficiency of potential designs of a particular type of
vessel, including the selection of the right mixture of maintenance policies.

The models in this study were developed under the assumption of the constant returns-
to-scale. A direction for future research could be their advancement to variable returns-
to-scale DEA models. This chapter has also integrated the best and worst relative ef-
ficiencies of each DMU and stage into an overall assessment using the geometric av-
erage efficiency; this measure has been adopted after carefully checking the discus-
sions in Wang et al. (2007) study. An interesting area for further examination could
be the integration of the self-efficiency scores into a single comprehensive measure, us-
ing either the (weighted) arithmetic mean or the (weighted) harmonic mean. To the
best of our knowledge, such metrics have not been paid attention to comparing and
analysing the sensitivity of the integration within a network double-frontier DEA con-
text. Which of these metrics leads to the most meaningful ranking outcome, will be a
subject of future in-depth studies. In addition, current research studies the evaluation
of the performance of several DMUs with a two-stage tandem structure in a self and
in a peer-appraisal setting, only when the data (i.e., the input and output factors) are
accurate and unambiguous, and the DEA models are based on this condition. Future
research could relax this assumption by allowing the data points to be imprecise (e.g.,
to be expressed as linguistic terms) and lie in an interval. Other cases to be investi-
gated concern missing data or intervals, where some values are more likely to occur
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over other values. In the latter case, since there is no information of the probability dis-
tributions, fuzzy numbers and mathematical operations (Zimmermann, 2011) could
be used as an ideal alternative option. For example, there is a growing body of liter-
ature (Ebrahimnejad, 2012; Hatami-Marbini et al., 2017; Santos Arteaga et al., 2021;
Peykani et al., 2022) surrounding the development of novel fuzzy DEA approaches and
models characterised by intuitionistic fuzzy data, applied possibility, necessity, credi-
bility, general fuzzy measures, and/or trapezoidal fuzzy numbers. Some of these mod-
els were solved with the aid of either a linear programming with an intuitionistic fuzzy
objective function and an alphabetical technique, a chance-constrained programming,
a lexicographic multi-objective linear programming, or a fuzzy linear programming.
The network double-frontier DEA models introduced in this study could be adjusted
to the specifications of such an uncertain (fuzzy) environment adopting the most suit-
able formulation and solution techniques.

Finally, it would be worthwhile to adjust the modelling approaches, introduced in
our study, ensuring that they will be taking into consideration the decision maker’s
preferences. Relevant literature has already focused on this aspect by combining DEA
and multiple-objective linear programming (Hosseinzadeh Lotfi et al., 2010a; Hossein-
zadeh Lotfi et al., 2010b; Ebrahimnejad and Hosseinzadeh Lotfi, 2012; Tavana et al.,
2018).
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4.1 Introduction

The purpose of this article is to extend the current literature on the network hierarchical
DEA structures. Our study particularly considers the measurement and evaluation of
the performance of several parallel processes, wherein each process integrates a multi-
function hierarchical structure. Additive decomposition and multiplicative aggrega-
tion DEA models are presented and used in a higher education context to investigate
the areas of weakness of the considered Business Schools.

An increasing number of companies, especially those with complex organisation charts,
are actively engaged in improving their production systems, as a response to the in-
tense market competition. Data envelopment analysis (DEA) has been extensively ex-
ploited as an effective performance evaluation technique to gain insight into the past
accomplishments and future developments of a decision-making unit (DMU) (Em-
rouznejad and Yang, 2018). Since the seminal work of Charnes et al. (1978), DEA
has been widely used in various contexts, including energy and environment (Zhou et
al., 2008; Zhai et al., 2019), local governments (Amatatsu et al., 2012), R & D depart-
ments (Wang et al., 2013), financial institutions (Paradi and Zhu, 2013), supply chains
(Azadi et al., 2014), sports (Moreno and Lozano, 2014), international shipping (Gan et
al., 2019), and inland transportation (Stefaniec et al., 2020). See also Liu et al. (2013)
for a review of applications.

Traditional DEA approaches put emphasis on evaluating the most favourable efficiency
measure of a DMU, only by considering its exogenous inputs and outputs. This is
referred to as black-box analysis (Kao and Hwang, 2008). The internal structure of a
unit usually consists of several divisions with similar and/or different functions; they
may be interrelated, independent, or a mixture of these, depending on the objective
of the system (Kao, 2014). Ignoring the internal operations of a DMU could lead to
misinterpretation. For instance, while the whole unit could be characterised as efficient,
all its individual stages may be inefficient. The traditional concept can also lead to a
large relative fraction of DEA-efficient DMUs, without the means to distinguish them
(Ma et al., 2017). To enable the study of internal operations, research has extended DEA
models to consider network structures (Färe and Grosskopf, 2000).

The network system differs from the black-box in that it involves more complex struc-
tures, thereby leading to a less systematic illustration (Kao, 2017). In the two-stage
tandem system, all inputs used by a DMU feed into a first stage, producing intermedi-
ate outputs that all feed into a second stage, producing the final outputs of the entire
system. Kao and Hwang (2008) proposed that the system efficiency is decomposed
into the product of the efficiencies of the two divisions. Real-world cases, however,
may extend the former structure to a general one, in which the first stage additionally
generates final outputs, the second stage also produces exogenous inputs, and certain
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outputs of the second stage are re-utilised by the first. Lu et al. (2016) applied this
structure to evaluate multiple investment trust corporations.

The above-mentioned systems have a series structure, in that they operate interdepen-
dently. In other types of networks, the internal divisions are placed in parallel without
impacting one another (Kao, 2012). There are two classes of parallel systems, based on
their functions. Multi-component systems involve the assessment of DMUs with multi-
ple divisions of the same function in that they use the same inputs to produce the same
outputs. Research into the first class has been conducted to measure the efficiency of
forest districts in Taiwan (Kao, 2009b). The second class focuses on the multi-function
systems, in which the internal divisions separate their operations by consuming their
own inputs, although it is a common practice to also share inputs. Extensive research
has examined such systems in various applications (Beasley, 1995; Vaz et al., 2010;
Lozano, 2015).

The investigation of the internal composition of a production system enables the im-
proved use of the DEA approach (Gan et al., 2019). However, treating the internal com-
ponents of a system as black-boxes, continues to be widespread. This paper highlights
this issue, considering the context of a parallel system. For example, the department
of marketing at university X has two independent functions, teaching and research. If
their internal operations are neglected, it cannot identify the potential sources of ineffi-
ciency, the way the inputs are further shared, and those layers with a beneficial impact
on the respective section. To remedy these issues, each sub-system could be further
split into sub-subsystems, and so on, to a reasonable level of detail. In a university
department, one may want to identify sources of (in)efficiency down to the level of
teaching programmes, for example.

The hierarchical structure has an eminent position in contemporary organisations. It
can, inter alia, signify the organisational culture and dynamics, and coordinate the re-
sponsibilities of people across several departments and levels. Nevertheless, such a
structure has to our knowledge not paid significant attention to exploring the internal
operations of a network system, and in particular of a parallel system. In a university,
a faculty typically operates as multiple parallel departments, each of which is further
hierarchically structured across research, teaching, and enterprise.

Some approaches in DEA have systematically examined the hierarchical structures.
Castelli et al. (2004) were among the first to propose two distinctive models to measure
the performance of single-level and two-level hierarchical structures. This paper, that
treated the internal components as independent DMUs, was improved by Cook and
Green (2005). The latter developed a model to measure the hierarchical efficiency at all
levels simultaneously.

Recently, Kao (2015) developed a relational model for a single-stage hierarchical struc-
ture to measure both the overall system and its divisions’ efficiencies at the same time.
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He argued that this structure is identical to a parallel system (Kao, 2009b), in that the
system efficiency is decomposed into the weighted arithmetic average of the efficien-
cies of the units at the bottom level. Kao (2015) optimised the efficiency of the overall
production system, considering only the constraints corresponding to the terminal di-
visions. Li et al. (2020) focused on the same hierarchical structure by additionally op-
timising the efficiencies of the terminal divisions as opposed to Kao (2015). Zhang and
Chen (2019) extended the concept of Kao (2015) to a generalised single-stage hierarchi-
cal structure wherein all internal units across the different levels can reflect a two-stage
tandem system. To examine the relationship between the system and its sub-units,
they introduced additive aggregation and multiplicative decomposition DEA models.
Gan et al. (2019) suggested a general two-stage series process, in which each stage is no
longer treated as a black-box, but is further elaborated into a hierarchical structure with
multiple layers. They argued that a single-stage hierarchy cannot really correspond to
complex production processes. A number of studies have been reported in this direc-
tion, such as Bod’a et al. (2020) and Yu et al. (2021). We summarize the core literature,
relevant to network-hierarchical DEA structures, in Table 1.

TABLE 4.1: Related literature on network-hierarchical DEA systems.

Type of network Efficiency measurement Area of application
Black-box DEA model SS n/a n/a

Kao (2012) MCP D higher-education
Kao (2015) SSH D higher-education

Lozano (2015) MFP SBM pollution generation
Lu et al. (2016) G2 D investment trust corporations

Gan et al. (2019) G2H D international shipping industry
Zhang and Chen (2019) SSHMS D & A high-technology

Li et al. (2020) 2LH × electric power generation
This Paper MFPH D & A higher-education

D: decomposition, A: aggregation, SBM: slacks-based measure, SS: single-stage system, MCP:

multi-component parallel system, SSH: single-stage hierarchical system, MFP: multi-function

parallel system, G2: general two-stage system, G2H: general two-stage system with integrated

hierarchies, SSHMS: single-stage hierarchical system with integrated multi-stage series pro-

cesses, 2LH: two-level hierarchical system, MFPH: multi-function parallel system with inte-

grated hierarchies

A real-life organisation is likely to consist of several departments that could be further
extended into a number of distinctive tasks, arranged either in sequence or in parallel.
To better reflect the reality, we claim that these tasks can be then ordered as multi-layer
hierarchical structures. These structures demonstrate that the strategic, tactical, and op-
erational decisions cannot be made across the same level, by the same resources. The
above case contributes to a more complex network system with embedded hierarchical
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structures. Gan et al. (2019) adopted such a structure, enabling the initial tasks to be
interdependent (i.e., to be connected in series). The primary difference between our
proposed system herein, against that of the earlier work of Gan et al. (2019) is that we
seek to optimise the performance score of a system, in which the departments operate
in parallel (i.e., they act independently from one another) incorporating as well a multi-
function hierarchical structure. In this paper, we propose an additive decomposition
model and a multiplicative aggregation model to measure and evaluate the operating
performance of DMUs with a parallel multi-layer multi-function hierarchical structure.
The proposed structure seeks to address the weaknesses of the traditional black-box
DEA model and the parallel system of Kao (2012); this is attained by improving the
level of discriminatory power among efficient DMUs and by measuring the perfor-
mance scores of not only the overall system and its parallel sub-systems, but also the
internal units at all levels of each of the integrated hierarchies. Therefore, our proposed
structure is shown to be a more accurate reflection of the entire production/operating
process of several large scale organisations.

The remainder of the paper is organised as follows. Section 2 briefly describes the
methodological background. Section 3 proposes new models to evaluate DMUs with
multi-function parallel network hierarchical structure. Several properties of such a sys-
tem are also analysed. Section 4 validates the proposed models with an application in
the education sector. Finally, Section 5 presents conclusions and further research.

4.2 Methodological Background

In this section, we explore the network nature of two established systems: the parallel
with shared inputs, and the single-stage hierarchical structure. This will ease the pre-
sentation of the advanced structure and its mathematical models proposed in Section
4.3.

4.2.1 A parallel system with shared inputs

In a real-life application, the core of a production system may be composed of multiple
divisions with distinctive functions, operating independently among themselves. Such
a system tends to be a more accurate picture of the reality, once joint inputs, shared by a
number of divisions, are involved, other than their own inputs. Beasley (1995) and Mo-
linero (1996) proposed a system with p parallel processes or divisions. In this system,
see also Figure 4.1, the Xij, XS

lj and Yrj are the ith dedicated input value, the lth shared
input value, and the rth final output value, respectively, of DMUj (j = 1, 2, ..., n). Let
M = {1, 2, ..., m}, Q = {1, 2, ..., q}, and S = {1, 2, ..., s} be the index sets associated
with the dedicated inputs, the shared inputs, and the final outputs, respectively. The
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division k (k = 1, 2, ..., p) of DMUj utilises the division-dedicated input i with value
X(k)

ij , i ∈ I(k), M =
⋃

k∈P I(k) such that I(k) ∩ I(i) = ∅, ∀ k, i ∈ P, and a proportion

α
(k)
l of the shared input l ∈ Q with value XS

lj, to produce the final output r with value

Y(k)
rj , r ∈ O(k), S =

⋃
k∈P O(k) such that O(k) ∩O(o) = ∅, ∀ k, o ∈ P. In such a system,

the total division-specific and shared inputs consumed, and total outputs produced by
the p divisions of DMUj are Xij = ∑

p
k=1 X(k)

ij , XS
lj = ∑

p
k=1 α

(k)
l XS

lj, and Yrj = ∑
p
k=1 Y(k)

rj ,
respectively.

FIGURE 4.1: Parallel system with shared inputs

To measure the performance of the overall system of the target DMUo, Beasley (1995)
introduced and later Kao (2012) and Kao (2017) validated the following model under
constant returns to scale:
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Eo = Max
s

∑
r=1

µroYro

subject to
m

∑
i=1

νioXio +
q

∑
l=1

tloXS
lo = 1,

∑
r∈O(k)

µroY(k)
rj − ( ∑

i∈I(k)

νioX(k)
ij +

q

∑
l=1

tloα
(k)
l XS

lj) ≤ 0, ∀ j, k,

tlo, νio, µro ≥ ε, ∀ l, i, r,

(4.1)

where tlo, νio, and µro are the positive optimal multipliers, and ε is an infinitesimal non-
Archimedean number. According to the relational model (1), the overall performance
score of the evaluated DMU to be maximised is the ratio of the total outputs to that of
inputs. It is also required that the aggregation of outputs should not exceed the aggre-
gation of inputs, for every internal division. In such a model, α

(k)
l is a parameter that is

objectively designated by the decision maker (possibly based on historical data) prior
to solving the corresponding mathematical model. It is also ensured that the sum of the
proportions of the lth shared input is 1. However, if it is treated as the most favourable
value, reflected from the data, then it is additionally essential to involve the following
constraints: L(k)

lo ≤ α
(k)
l ≤ U(k)

lo , ∑
p
k=1 α

(k)
l = 1, and α

(k)
l ≥ 0, ∀ l, k. At optimality, the

system efficiency is calculated as Eo = ∑s
r=1 µ∗roYro/(∑m

i=1 ν∗ioXio + ∑
q
l=1 t∗loXS

lo), and the
division efficiencies as E(k)

o = ∑r∈O(k) µ∗roY(k)
ro /(∑i∈I(k) ν∗ioX(k)

io + ∑
q
l=1 t∗loα

(k)
l XS

lj). A prop-
erty of this structure is that the system efficiency equals to the weighted average of its
division efficiencies (Kao, 2009b).

To the best of our knowledge, the internal divisions of such a commonly used structure
are still treated as black-boxes. This may hinder our efforts to gain further insight
into more complex and realistic cases, regarding the activities of a department and the
mechanisms behind a core business task.

4.2.2 A single-stage hierarchical structure

A relatively recent network system is that of a hierarchical structure, embedded ei-
ther in a single-stage or in a general two-stage series network. Its adoption may help
the investigation of the operational procedures. As discussed in Section 1, Kao (2015)
proposed a relational model to evaluate the performance of the overall system and its
internal units, reflecting a single-stage hierarchical structure with three levels.

Consider a system with the general hierarchical structure shown in Figure 4.2 (Kao,
2017). The system has q levels and is an extension of the three-level system of Kao
(2015). The first level, for example, consists of p(1) divisions, each of which is decom-
posed into several divisions at the follower level. The kth level (k = 2, 3, ..., q) has a total
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of p(k) − p(k−1) divisions subordinated to the p(k−1) − p(k−2) divisions at the (k− 1)th
level. Denote P[1] = {1, 2, ..., p(1)} and P[k] = {p(k−1) + 1, ..., p(k)}, as the sets of the
divisions in the first and the kth level (k = 2, 3, ..., q), respectively. Moreover, let S(l)
be the set of divisions viewed as subordinates to division l. If S(l) = ∅, then l is re-
ferred to as terminal. Let T denote the set of the terminal divisions. They are enabled
to generate the outputs, while receiving inputs allocated from their parent unit (the im-
mediate predecessor). On the other hand, the intermediate units i.e. the non-terminal
divisions cannot produce outputs themselves, but they can distribute their inputs to
their subordinate divisions at the next level.

In such a single-stage system, let Xij and Yrj be the ith input (i = 1, 2, ..., m) and rth
output (r = 1, 2, ..., s) for the DMUj (j = 1, 2, ..., n). Division l distributes its inputs
X(l)

ij , i ∈ I(l), received by its parent unit, to its subordinate divisions ξ ∈ S(l), and

collects the outputs Y(l)
rj , r ∈ O(l) received from its subordinate divisions. Hence, in

mathematical terms we have X(l)
ij = ∑ξ∈S(l) X(ξ)

ij and Y(l)
rj = ∑ξ∈S(l) Y(ξ)

rj .

FIGURE 4.2: General single-stage hierarchical structure
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Kao (2015) developed the relational input-oriented model (4.2) to optimise the effi-
ciency score of the target DMUo arranged as a multi-layer hierarchical structure within
a single-stage system.

E′o = Max
s

∑
r=1

µroYro

subject to
m

∑
i=1

νioXio = 1,

∑
r∈O(l)

µroY(l)
rj − ∑

i∈I(l)

νioX(l)
ij ≤ 0, l ∈ T, ∀ j,

νio, µro ≥ ε, ∀ i, r.

(4.2)

To avoid redundancy, Kao highlighted that only the terminal divisions need to be taken
into account. In mathematical symbols, l ∈ T. One of the properties of the system
is that its overall efficiency is decomposed into the weighted average of those of the
terminal divisions. To apply model (4.2), we should ensure that all DMUs have the
same hierarchical structure. In particular, for every DMU, a unit at the leader level
should have the same number of subordinate units at the follower level, operating
different functions.

In Section 4.3.1, the scenario of the integration of such a hierarchical structure into the
internal divisions of a parallel system with shared inputs will be thoroughly discussed.
This direction can successfully enhance the performance measurement in more com-
plex systems within the production and operations management.

4.3 Models Development

Real-life companies can have a complex corporate structure. The complexity corre-
sponds to their numerous (tangible and intangible) resources, either being interactive
or entirely independent, in any department. The utilities of such a structure are to suc-
cessfully adapt to the constant changes of the internal and external environment, to
comply with customers’ requirements, and to minimise fixed and variable costs.

There are at least three separate (traditional single-stage and network) production sys-
tems, proposed in the DEA-literature, that have intertwined with multi-layer hierar-
chical structures: (i) a three-level multi-function hierarchical structure embedded in
the core of a single-stage system (Kao, 2015), (ii) a three-level with two-stage processes
hierarchical structure embedded in a single-stage system (Zhang and Chen, 2019), and
(iii) a multi-level hierarchical structure integrated into an operating stage of a general
two-stage series system (Gan et al., 2019). In this paper, we extend the above list by
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considering the case of several parallel processes, wherein each sub-system integrates
a multi-function hierarchical structure. The new system is introduced in Figure 4.3.

4.3.1 Parallel-hierarchical network DEA model

Based on the consolidated idea of Kao (2015), the evaluated DMUs should have the
same network-hierarchical structure; this can set the basis for a less demanding com-
parison amongst them. We have combined the ideas developed in Sections 4.2.1 and
4.2.2 into a situation like in Figure 4.3. From the perspective of Figure 4.3, the sub-
systems of a system (DMU) must execute different operations, and each sub-system is
obliged to have the same function with its counterpart in each of the other DMUs. In
addition, the hierarchical structures of the different sub-systems of a DMU may vary
in terms of the number and the arrangement of their internal units. However, the hier-
archical structure of a certain sub-system of DMUj (j = 1, 2, ..., n) should be identical
with the counterpart structure of the sub-system in each of the remaining DMUs.

On a macro level, the proposed system consists of two successive layers. The external
one is associated with the action of retrieving managerial data from the entire system.
This examines the overall performance of the DMU under consideration. The system
applies m sub-system specific inputs and q shared inputs to generate s final outputs.
Subsequently, in the interior part of the system, we detect p sub-systems connected
in parallel, that is they are independent among each other and they cannot typically
exchange information. A sub-system k (k = 1, 2, ..., p) consumes the dedicated inputs
X(k)

ij , i ∈ I(k) ⊆ {1, 2, ..., m}, and the shared inputs α
(k)
l XS

lj (l = 1, 2, ..., q) to generate the

final outputs Y(k)
rj , r ∈ O(k) ⊆ {1, 2, ..., s}. This layer evaluates the performance of each

department/task, which is an integral part of the whole system.

On a micro level, in the interior of a sub-system, we identify a three-level multi-function
hierarchical structure. The top level 0 (sub-system k) has two subordinate units, la-
belled (1) and (2), performing distinctive functions, at level 1. Functions (1) and (2) have
in rotation three subordinate units (1.1), (1.2), and (1.3), and two subordinate units, (2.1)
and (2.2), respectively, at level 2. Only unit (2.2) has two sub-units (2.2.1) and (2.2.2) at
the bottom level 3. The internal units (1.1), (1.2), (1.3), (2.1), (2.2.1), and (2.2.2) are char-
acterised as terminal, since they cannot be further broken down into several subordi-
nate units. Note that the hierarchical structure presented herein is indicative and may
be subject to modifications, reflecting the respective business environment. The inter-
nal unit u (u = 1, 2, 1.1, 1.2, 1.3, 2.1, 2.2, 2.2.1, 2.2.2) of sub-system k of DMUj allocates
the sub-system specific inputs X(k)u

ij , i ∈ I(k), and a proportion θ
(k)u
l of the lth shared

input XS
lj, received by its parent unit, to its subordinate units at the follower level, and

collects the outputs Y(k)u
rj , r ∈ O(k), received from its subordinate units.
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Taking the structure of the above system into account, we obtain the following equali-
ties:

(i) Xij = ∑
p
k=1 X(k)

ij = ∑
p
k=1(X(k)1

ij + X(k)2
ij ) = ∑

p
k=1(X(k)1.1

ij + X(k)1.2
ij + X(k)1.3

ij + X(k)2.1
ij +

X(k)2.2
ij ) = ∑

p
k=1(X(k)1.1

ij + X(k)1.2
ij + X(k)1.3

ij + X(k)2.1
ij + X(k)2.2.1

ij + X(k)2.2.2
ij ), ∀ i, j,

(ii) XS
lj = ∑

p
k=1 α

(k)0
l XS

lj = ∑
p
k=1(∑2

k1=1 β
(k)k1
l α

(k)0
l XS

lj) = ∑
p
k=1(∑1.3

k2=1.1 γ
(k)k2
l β

(k)1
l α

(k)0
l XS

lj +

∑2.2
k3=2.1 γ

(k)k3
l β

(k)2
l α

(k)0
l XS

lj) = ∑
p
k=1(∑1.3

k2=1.1 γ
(k)k2
l β

(k)1
l α

(k)0
l XS

lj + γ
(k)2.1
l β

(k)2
l α

(k)0
l XS

lj +

∑2.2.2
k4=2.2.1 δ

(k)k4
l γ

(k)2.2
l β

(k)2
l α

(k)0
l XS

lj), ∀ l, k, j,

(iii) Yrj = ∑
p
k=1 Y(k)

rj = ∑
p
k=1(Y(k)1

rj + Y(k)2
rj ) = ∑

p
k=1(Y(k)1.1

rj + Y(k)1.2
rj + Y(k)1.3

rj + Y(k)2.1
rj +

Y(k)2.2
rj ) = ∑

p
k=1(Y(k)1.1

rj + Y(k)1.2
rj + Y(k)1.3

rj + Y(k)2.1
rj + Y(k)2.2.1

rj + Y(k)2.2.2
rj ), ∀ r, j.
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FIGURE 4.3: An embedded hierarchical network structure within a multi-function par-
allel system
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To model the proposed network-hierarchical structure, we adopt two main properties
relevant to the network relational model conceptualised by Kao (2009a) and Kao (2015).
We, firstly, assume that the same factor, either the sub-system dedicated inputs Xij, the
shared inputs XS

lj or the outputs Yrj, has the same weight νio, tlo, and µro, respectively,
no matter which process (system, sub-system or internal unit of the hierarchy) it cor-
responds to. This is a common assumption of a relational model within network DEA
(Kao, 2009a). Furthermore, the system cannot be handled anymore as a whole unit,
but rather as a network with three successive layers, whose operations should be taken
into consideration. Therefore, the aggregate output should be less than or equal to
the aggregate input for each internal (sub-system or hierarchy) or external (system)
process, for each DMU. Our objective function aims to maximise the ratio of the aggre-
gated amount of final outputs to that of the inputs (both the sub-system specific and
the shared inputs) for the system, visible from the outside.

The typical ratio-form input-oriented network-hierarchical DEA model under constant
returns to scale for DMUo can be described as follows:
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EHN
o = Max ∑s

r=1 µroYro

∑m
i=1 νioXio + ∑

q
l=1 tloXS

lo

subject to
s

∑
r=1

µroYrj − (
m

∑
i=1

νioXij +
q

∑
l=1

tloXS
lj) ≤ 0, ∀j,

∑
r∈O(k)

µroY(k)
rj − ( ∑

i∈I(k)

νioX(k)
ij +

q

∑
l=1

tloα
(k)0
l XS

lj) ≤ 0, ∀j, k,

∑
r∈O(k)

µroY
(k)k1
rj − ( ∑

i∈I(k)

νioX
(k)k1
ij +

q

∑
l=1

tloβ
(k)k1
l α

(k)0
l XS

lj) ≤ 0, ∀j, k, k1 = 1, 2,

∑
r∈O(k)

µroY
(k)k2
rj − ( ∑

i∈I(k)

νioX
(k)k2
ij +

q

∑
l=1

tloγ
(k)k2
l β

(k)1
l α

(k)0
l XS

lj) ≤ 0, ∀j, k, k2 = 1.1, 1.2, 1.3,

∑
r∈O(k)

µroY
(k)k3
rj − ( ∑

i∈I(k)

νioX
(k)k3
ij +

q

∑
l=1

tloγ
(k)k3
l β

(k)2
l α

(k)0
l XS

lj) ≤ 0, ∀j, k, k3 = 2.1, 2.2, (4.3)

∑
r∈O(k)

µroY
(k)k4
rj − ( ∑

i∈I(k)

νioX
(k)k4
ij +

q

∑
l=1

tloδ
(k)k4
l γ

(k)2.2
l β

(k)2
l α

(k)0
l XS

lj) ≤ 0, ∀j, k, k4 = 2.2.1, 2.2.2,

p

∑
k=1

α
(k)0
l = 1,

2

∑
k1=1

β
(k)k1
l = 1,

1.3

∑
k2=1.1

γ
(k)k2
l = 1,

2.2

∑
k3=2.1

γ
(k)k3
l = 1,

2.2.2

∑
k4=2.2.1

δ
(k)k4
l = 1, ∀ l, k,

L(k,n)
l ≤ α

(k)0
l /α

(n)0
l ≤ U(k,n)

l , ∀ l, k = 1, ..., p, n = 1, ..., p, k 6= n,

L(k)1,2
l ≤ β

(k)1
l /β

(k)2
l ≤ U(k)1,2

l , ∀ l, k,

L(k)2.1,2.2
l ≤ γ

(k)2.1
l /γ

(k)2.2
l ≤ U(k)2.1,2.2

l , ∀ l, k,

L
(k)k2,n2
l ≤ γ

(k)k2
l /γ

(k)n2
l ≤ U

(k)k2,n2
l , ∀ l, k2 = 1.1, 1.2, 1.3, n2 = 1.1, 1.2, 1.3, k2 6= n2,

L(k)2.2.1,2.2.2
l ≤ δ

(k)2.2.1
l /δ

(k)2.2.2
l ≤ U(k)2.2.1,2.2.2

l , ∀ l, k,

α
(k)0
l , β

(k)k1
l , γ

(k)k2
l , γ

(k)k3
l , δ

(k)k4
l ≥ 0, tlo, νio, µro ≥ ε, ∀ r, i, l, k, k1, k2, k3, k4.

where νio, tlo, and µro are ensured to be positive, by integrating the small non-Archimedean
parameter ε. In model (4.3), there are four groups of constraint sets. The first group
(first constraint set) reflects the entire system. The second group (second constraint
set) is pertinent to the performance of each sub-system k. The third group (from third
to sixth constraints sets) illustrates the operations of each of the internal units of the
hierarchical structure embedded into sub-system k. For a unit at a certain level, the
aggregation of outputs produced by its subordinate units at the follower level should
not exceed the aggregation of inputs allocated to it by its parent unit. For example,
regarding the unit (2.2) of level 2, it ought to satisfy the constraint ∑r∈O(k) µroY(k)2.2

rj −
(∑i∈I(k) νioX(k)2.2

ij + ∑
q
l=1 tloγ

(k)2.2
l β

(k)2
l α

(k)0
l XS

lj) ≤ 0, ∀j, k. The final group (remaining
constraints sets) indicates that the proportion of the shared input allocated to the re-
spective internal unit of sub-system k should be treated as a variable. In other words,
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it seeks for the optimal most favourable value. For instance, with respect to the pro-

portion variable δ
(k)k4
l , two constraint sets are formulated to reflect its dynamics: (i)

the ∑2.2.2
k4=2.2.1 δ

(k)k4
l = 1, ∀ l, k, denotes that the total sum of the proportions of shared

resources allocated to the internal units of the third level should be 1, and (ii) the
L(k)2.2.1,2.2.2

l ≤ δ
(k)2.2.1
l /δ

(k)2.2.2
l ≤ U(k)2.2.1,2.2.2

l , ∀ l, k, illustrates that the ratio of the propor-
tions of shared resources in that level is bounded from below by L(k)2.2.1,2.2.2

l and above by
U(k)2.2.1,2.2.2

l . These are user-specified parameters and typically reflect the requirements
of the production.

The constraint corresponding to the system is the sum of those corresponding to the
sub-system: ∑s

r=1 µroYrj − (∑m
i=1 νioXij + ∑

q
l=1 tloXS

lj) = ∑s
r=1 µro ∑

p
k=1 Y(k)

rj −
(∑m

i=1 νio ∑
p
k=1 X(k)

ij + ∑
q
l=1 tlo ∑

p
k=1 α

(k)0
l XS

lj) = ∑
p
k=1[∑s

r=1 µroY(k)
rj − (∑m

i=1 νioX(k)
ij +

∑
q
l=1 tloα

(k)0
l XS

lj)]. The system constraint is thus redundant and can be removed. In addi-
tion, the constraint corresponding to the sub-system is the sum of those corresponding

to the level 1: ∑s
r=1 µroY(k)

rj − (∑m
i=1 νioX(k)

ij + ∑
q
l=1 tloα

(k)0
l XS

lj) = ∑s
r=1 µro ∑2

k1=1 Y
(k)k1
rj −

(∑m
i=1 νio ∑2

k1=1 X
(k)k1
ij + ∑

q
l=1 tlo ∑2

k1=1 β
(k)k1
l α

(k)0
l XS

lj) = ∑2
k1=1[∑s

r=1 µroY
(k)k1
rj −

(∑m
i=1 νioX

(k)k1
ij + ∑

q
l=1 tloβ

(k)k1
l α

(k)0
l XS

lj)]. The sub-system constraint is redundant and
may be omitted. By the same token, we identify that the constraints sets regarding
the internal units of level 1 and the unit (2.2) of level 2 within each sub-system are ad-
ditionally redundant and can be deleted. Hence, only the internal operations of the
terminal units at the bottom level of the hierarchy for each sub-system should be taken
into account.

With regard to the constraint group about proportions, we should also discuss about

the removal of ∑
p
k=1 α

(k)0
l = 1. In particular, the constraint ∑2

k1=1 β
(k)k1
l = 1, ∀ k, l, can

be transformed into ∑2
k1=1(β

(k)k1
l α

(k)0
l XS

lj) − α
(k)0
l XS

lj = 0, ∀ k, l, j. Since the constraint

∑
p
k=1 α

(k)0
l = 1⇔ ∑

p
k=1 α

(k)0
l XS

lj − XS
lj = 0⇔ ∑

p
k=1 ∑2

k1=1(β
(k)k1
l α

(k)0
l XS

lj)−∑
p
k=1 α

(k)0
l XS

lj =

0 ⇔ ∑
p
k=1[∑2

k1=1(β
(k)k1
l α

(k)0
l XS

lj) − α
(k)0
l XS

lj] = 0, is the sum of those corresponding to

∑2
k1=1 β

(k)k1
l = 1, then it is redundant.

Model (4.3) is nonlinear due to its nonlinear objective function and several nonlin-

ear terms, such as tloα
(k)0
l , tloβ

(k)k1
l α

(k)0
l , and tloγ

(k)k2
l β

(k)1
l α

(k)0
l . With respect to the ob-

jective function, we can assign a value of 1 to the denominator as a constraint, and
maximise the value of the numerator. The other nonlinear terms can be linearised
by variable transformations as set out below: tloα

(k)0
l = ν

(k)0
lo , tloβ

(k)k1
l α

(k)0
l = b

(k)k1
lo ,

tloγ
(k)k2
l β

(k)1
l α

(k)0
l = c

(k)k2
lo , tloγ

(k)k3
l β

(k)2
l α

(k)0
l = c

(k)k3
lo , and tloδ

(k)k4
l γ

(k)2.2
l β

(k)2
l α

(k)0
l = d

(k)k4
lo ,

∀ l, k, k1, k2, k3, k4. Thus, we obtain the following linear model (4.4):
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EHN
o = Max

s

∑
r=1

µroYro

subject to
m

∑
i=1

νioXio +
q

∑
l=1

tloXS
lo = 1,

s

∑
r=1

µroYrj − (
m

∑
i=1

νioXij +
q

∑
l=1

tloXS
lj) ≤ 0, ∀j,

∑
r∈O(k)

µroY(k)
rj − ( ∑

i∈I(k)

νioX(k)
ij +

q

∑
l=1

ν
(k)0
lo XS

lj) ≤ 0, ∀j, k,

∑
r∈O(k)

µroY
(k)k1
rj − ( ∑

i∈I(k)

νioX
(k)k1
ij +

q

∑
l=1

b
(k)k1
lo XS

lj) ≤ 0, ∀j, k, k1 = 1, 2,

∑
r∈O(k)

µroY
(k)k2
rj − ( ∑

i∈I(k)

νioX
(k)k2
ij +

q

∑
l=1

c
(k)k2
lo XS

lj) ≤ 0, ∀j, k, k2 = 1.1, 1.2, 1.3,

∑
r∈O(k)

µroY
(k)k3
rj − ( ∑

i∈I(k)

νioX
(k)k3
ij +

q

∑
l=1

c
(k)k3
lo XS

lj) ≤ 0, ∀j, k, k3 = 2.1, 2.2,

∑
r∈O(k)

µroY
(k)k4
rj − ( ∑

i∈I(k)

νioX
(k)k4
ij +

q

∑
l=1

d
(k)k4
lo XS

lj) ≤ 0, ∀j, k, k4 = 2.2.1, 2.2.2, (4.4)

p

∑
k=1

ν
(k)0
lo = tlo,

2

∑
k1=1

b
(k)k1
lo = ν

(k)0
lo ,

1.3

∑
k2=1.1

c
(k)k2
lo = b(k)1

lo , ∀ l, k,

2.2

∑
k3=2.1

c
(k)k3
lo = b(k)2

lo ,
2.2.2

∑
k4=2.2.1

d
(k)k4
lo = c(k)2.2

lo , ∀ l, k,

ν
(n)0
lo L(k,n)

l ≤ ν
(k)0
lo ≤ ν

(n)0
lo U(k,n)

l , ∀ l, k = 1, ..., p, n = 1, ..., p, k 6= n,

b(k)2
lo L(k)1,2

l ≤ b(k)1
lo ≤ b(k)2

lo U(k)1,2
l , ∀ l, k,

c(k)2.2
lo L(k)2.1,2.2

l ≤ c(k)2.1
lo ≤ c(k)2.2

lo U(k)2.1,2.2
l , ∀ l, k,

c
(k)n2
lo L

(k)k2,n2
l ≤ c

(k)k2
lo ≤ c

(k)n2
lo U

(k)k2,n2
l , ∀ l, k2 = 1.1, 1.2, 1.3, n2 = 1.1, 1.2, 1.3, k2 6= n2,

d(k)2.2.2
lo L(k)2.2.1,2.2.2

l ≤ d(k)2.2.1
lo ≤ d(k)2.2.2

lo U(k)2.2.1,2.2.2
l , ∀ l, k,

tlo, νio, µro, ν
(k)0
lo , b

(k)k1
lo , c

(k)k2
lo , c

(k)k3
lo , d

(k)k4
lo ≥ ε ∀ r, i, l, k, k1, k2, k3, k4.

After an optimal solution (tlo∗ , νio∗ , µro∗ , ν
(k)0∗
lo , b

(k)k1∗
lo , c

(k)k2∗
lo , c

(k)k3∗
lo , d

(k)k4∗
lo ) is obtained for

DMUo under the linear model (4.4), the efficiencies of the overall system, its sub-
systems, and its internal units at all levels of the hierarchical structure within each
sub-system are calculated as follows:

(i) EHN
o = ∑s

r=1 µro∗Yro/(∑m
i=1 νio∗Xio + ∑

q
l=1 tlo∗XS

lo) (overall system efficiency),

(ii) E(k)
o = ∑r∈O(k) µro∗Y

(k)
ro /(∑i∈I(k) νio∗X

(k)
io + ∑

q
l=1 ν

(k)0
lo∗ XS

lo), ∀ k (sub-system
k efficiency),
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(iii) E(k1,k)
o = ∑r∈O(k) µro∗Y

(k)k1
ro /(∑i∈I(k) νio∗X

(k)k1
io + ∑

q
l=1 b

(k)k1∗
lo XS

lo), ∀ k, k1 (unit k1 of
level 1 efficiency),

(iv) E(k2,k)
o = ∑r∈O(k) µro∗Y

(k)k2
ro /(∑i∈I(k) νio∗X

(k)k2
io + ∑

q
l=1 c

(k)k2∗
lo XS

lo), ∀ k, k2 (unit k2 of level 2
efficiency),

(v) E(k3,k)
o = ∑r∈O(k) µro∗Y

(k)k3
ro /(∑i∈I(k) νio∗X

(k)k3
io + ∑

q
l=1 c

(k)k3∗
lo XS

lo), ∀ k, k3 (unit k3 of level 2
efficiency),

(vi) E(k4,k)
o = ∑r∈O(k) µro∗Y

(k)k4
ro /(∑i∈I(k) νio∗X

(k)k4
io + ∑

q
l=1 d

(k)k4∗
lo XS

lo), ∀ k, k4 (unit k4 of level 3
efficiency).

4.3.2 Efficiency decomposition

While developing a network DEA model such as the one proposed in this paper, it could be
essential to consider the concept of the efficiency decomposition. According to Kao (2017), ef-
ficiency decomposition is an approach to measure the system efficiency that utilises exogenous
inputs to produce exogenous outputs. It measures system-division efficiencies and then identi-
fies a mathematical relationship that associates them.

As denoted in Kao (2015), when the internal divisions of a system share the available resources,
then they are indispensable parts of a parallel structure. In this chapter, there is a parallel hier-
archical structure within each operating sub-system and a typical parallel structure among the
sub-systems of such a network DEA system. From the perspective of the entire system, its effi-
ciency is decomposed into the weighted arithmetic average of those of the sub-systems, where
the weight of the sub-system k is defined as the proportion of the aggregate input consumed by
this sub-system in that consumed by all sub-systems (whole system), and ∑

p
k=1 ω(k) = 1:

EHN
o =

p

∑
k=1

ω(k)E(k)
o =

p

∑
k=1

(
∑i∈I(k) νioX(k)

io + ∑
q
l=1 ν

(k)0
lo XS

lo

∑m
i=1 νioXio + ∑

q
l=1 tloXS

lo

∑r∈O(k) µroY(k)
ro

∑i∈I(k) νioX(k)
io + ∑

q
l=1 ν

(k)0
lo XS

lo

)

=
∑

p
k=1 ∑r∈O(k) µroY(k)

ro

∑m
i=1 νioXio + ∑

q
l=1 tloXS

lo
=

∑s
r=1 µroYro

∑m
i=1 νioXio + ∑

q
l=1 tloXS

lo
. (4.5)

From the perspective of the hierarchical structure embedded into a sub-system, the efficiency
of a unit at level ξ is a weighted average of the ones of the subordinates at level ξ + 1, where
the respective weight is formulated in a similar approach, as before. Hence, the efficiencies of
sub-system k, and the internal units (1), (2), and (2.2) are decomposed as follows:
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E(k)
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(4.6)

E(1,k)
o =

1.3

∑
k2=1.1

ω(k2,k)E(k2,k)
o =

1.3

∑
k2=1.1

(
∑i∈I(k) νioX

(k)k2
io + ∑

q
l=1 c

(k)k2
lo XS

lo

∑i∈I(k) νioX(k)1
io + ∑

q
l=1 b(k)1

lo XS
lo

∑r∈O(k) µroY
(k)k2
ro

∑i∈I(k) νioX
(k)k2
io + ∑

q
l=1 c

(k)k2
lo XS

lo

)

=
∑r∈O(k) µroY(k)1

ro

∑i∈I(k) νioX(k)1
io + ∑

q
l=1 b(k)1

lo XS
lo

,

(4.7)
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(4.8)
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(4.9)

where ∑2
k1=1 ω(k1,k) = 1, ∑1.3

k2=1.1 ω(k2,k) = 1, ∑2.2
k3=2.1 ω(k3,k) = 1, and ∑2.2.2

k4=2.2.1 ω(k4,k) = 1.

Based on the above decompositions, the network-hierarchical system efficiency, EHN
o , can in

effect be decomposed as the weighted average of the ones of the terminal units, belonging to
the hierarchical structure of sub-system k:
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EHN
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∑
k=1

ω(k)(
2

∑
k1=1

ω(k1,k)E(k1,k)
o ) =

p

∑
k=1

ω(k)(ω(1,k)
1.3

∑
k2=1.1

ω(k2,k)E(k2,k)
o + ω(2,k)

2.2

∑
k3=2.1

ω(k3,k)E(k3,k)
o ) =

p

∑
k=1

ω(k)[(ω(1,k)
1.3

∑
k2=1.1

ω(k2,k)E(k2,k)
o ) + (ω(2,k)(ω(2.1,k)E(2.1,k)

o + ω(2.2,k)
2.2.2

∑
k4=2.2.1

ω(k4,k)E(k4,k)
o ))] =

p

∑
k=1

1.3

∑
k2=1.1

w(k2,k)E(k2,k)
o +

p

∑
k=1

w(2.1,k)E(2.1,k)
o +

p

∑
k=1

2.2.2

∑
k4=2.2.1

w(k4,k)E(k4,k)
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(4.10)

where w(k2,k) = ω(k)ω(1,k)ω(k2,k), w(2.1,k) = ω(k)ω(2,k)ω(2.1,k), w(k4,k) = ω(k)ω(2,k)ω(2.2,k)ω(k4,k),
and ∑

p
k=1 ∑1.3

k2=1.1 w(k2,k) + ∑
p
k=1 w(2.1,k) + ∑

p
k=1 ∑2.2.2

k4=2.2.1 w(k4,k) = 1. According to (Cook et al.,
2010), such an additive efficiency decomposition approach enables the measurement of the per-
formance of the system under the assumptions of both constant returns to scale and variable
returns to scale.

4.3.3 Efficiency aggregation

Since the proposed model (4.4) firstly measures the system and its constituent processes’ effi-
ciencies and then seeks for a mathematical relationship (the additive form) that links them, it
can be classified as an additive efficiency decomposition model (Kao, 2018). Another known
approach for measuring the performance score of a network DEA system is the efficiency ag-
gregation (Kao, 2017; Zhang and Chen, 2019). In such an approach, the internal processes are
initially aggregated (either in additive or in multiplicative form) to establish the system effi-
ciency and subsequently to address its performance measurement.

From the perspective of the additive form towards our parallel-hierarchical system, we can
easily observe that the efficiency decomposition is identical with the concept of the efficiency
aggregation. Nevertheless, if the decision-maker selects to build the system efficiency by aggre-
gating the sub-system efficiencies in a multiplicative way, then we expect that the two theoreti-
cal concepts will substantially differ from one another. In this case, we propose the multiplica-
tive efficiency aggregation model (4.11) to measure the performance of the system in Figure
4.3:

EHN′
o = Max

p

∏
k=1

E(k)
o =

p

∏
k=1

(
∑r∈O(k) µroY(k)

ro

∑i∈I(k) νioX(k)
io + ∑

q
l=1 ν

(k)0
lo XS

lo

) (4.11)

subject to the constraints of the additive decomposition DEA model.

Model (4.11) differs from model (4.4) only in terms of its objective function. This illustrates the
system efficiency as the product of those of its sub-systems. A limitation of model (4.11) is that
it is non-linear. We could yet argue that the majority of non-linear solvers run flexibly, ensuring
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an optimal solution for models with non-linear objective function and linear constraints (Kao,
2018).

We can additionally determine the relationship of the system efficiencies between the additive
decomposition model (4.4) and the multiplicative aggregation model (4.11), based on the inspi-
rational ideas of Kao (2018) and Zhang and Chen (2019):

EHN
o =

∑s
r=1 µroYro

∑m
i=1 νioXio + ∑

q
l=1 tloXS

lo
=

p

∑
k=1

ω(k)E(k)
o ≥

p

∏
k=1

(E(k)
o )ω(k) ≥

p

∏
k=1

E(k)
o (4.12)

The first inequality from the left holds, since the weighted arithmetic mean is greater than or
equal to the weighted geometric mean. The other inequality is in effect, given that E(k)

o ≤
1, ∀ k ∈ {1, 2, ..., p} and ∑

p
k=1 ω(k) = 1. Hence, the system efficiency of model (4.4) is always

greater than or equal to that of the multiplicative model (4.11), and this is also confirmed by the
numerical application in Section 4.4.

4.4 An illustrative application to higher education

The performance evaluation of the higher education sector has been widely discussed in the lit-
erature (Casu and Thanassoulis, 2006; Kao and Hung, 2008; Kao, 2012; Witte et al., 2013; Kao,
2015; Moncayo–Martı́nez et al., 2020; Ghasemi et al., 2020). Kao (2012), for instance, explored
the case of a chemistry and physics university department in UK that consists of two major par-
allel functions, the teaching and the research. It was said that each university department has
a different proportion of resources at its disposal to allocate to teaching and research tasks. In
such a parallel production system, the internal parallel divisions are still treated as black-boxes,
without enabling the decision-maker to understand and identify the main sources of ineffi-
ciency within teaching and research. Kao (2015) suggested the measurement and evaluation of
a university department in the form of a single-stage hierarchical structure. In their example,
the university department under consideration is decomposed into three major functions: the
enterprise, the research, and the teaching activities. The latter are further divided into work at
the undergraduate and graduate levels. Although Kao’s (2015) study successfully examined the
performance of such a university department with a single-stage hierarchical structure, it did
not pay attention to more complicated (parallel) network structures. In reality, a university de-
partment (e.g., Business School) could contain multiple parallel sub-departments each of which
may consist of a number of internal functions arranged in a multi-layer hierarchical form. To
illustrate the effectiveness of our proposed multi-function parallel network hierarchical DEA
system, we expand the illustrative application presented in Kao (2015) by looking more closely
at multiple parallel academic departments with distinctive functions, each of which is further
viewed as a hierarchical form, see also Section 4.3.1. An embedded hierarchical structure within
a multi-function parallel system has, to our knowledge, not yet been considered in the existing
literature, particularly to examine the relative efficiency of the different departments and tasks
of a Business School. This study illustrates the proposed models by measuring the operating
performance of several Business Schools across a number of hypothetical universities.
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Since our target is to better correspond to a real-life scenario, we assume that a Business School
can be viewed as a more complicated network system; that is, it contains various departments
(Accounting, Banking and Finance, Digital Marketing, Decision Analytics and Risk, Human
Resource Management and Organisational Behaviour, Strategy Innovation and Entrepreneur-
ship), that operate independently without affecting each other. Each of those departments per-
forms various academic and managerial functions. For the sake of simplicity, we presume that
the Business Schools to be evaluated and compared in this study, have only three departments:
Accounting (A), Banking and Finance (B), and Decision Analytics and Risk (D). The internal
composition of each department is no longer treated as a black-box but takes into account three
main functions: teaching, research, and enterprise. Teaching is further divided into under-
graduate and postgraduate teaching activities. These functions are arranged into a multi-layer
hierarchical structure. Figure 4.4 illustrates the structure of this parallel network hierarchical
system.

FIGURE 4.4: Embedded hierarchical network structure within a multi-function paral-
lel system - The structure of the hypothetical Business School
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In determining departments’ and their internal units’ efficiencies for the considered Business
School, the following two inputs are used: personnel (X1) and expenses (X2). The former rep-
resents the number of academic and administrative staff and the latter, the general expenditure
(e.g., staff salaries, capital investment) and equipment expenditures. With regard to outputs, the
following are generated: the number of students (at an undergraduate and postgraduate level)
graduating within a year, the credit-hours taught (at an undergraduate and postgraduate level)
which are derived by the total number of students attending the unit over all units taught by the
department, the total number of publications published by the academic faculty of the partic-
ular department within a year, the grants received from government funding councils, and the
enterprise income obtained from contractual agreements made between the department and
the local businesses with respect to service provision. As for the grants and enterprise income,
there is a discussion on Cook and Zhu (2007) which suggests that they might be either inputs
or outputs. Implicitly, this paper is measuring the Business School performance from the point
of view of the University. The University identifies these kinds of income as outputs produced
by the Business School. Certainly, they may plough some of that income back into the Business
School in the form of salaries and capital investment. However, salaries and investment are al-
ready inputs in this example. All the aforementioned outputs are dedicated, that is they are re-
lated to different functions within a specific department. In particular, students and credits are
associated with teaching, publications and grants with research, and income with enterprise,
see also Table 4.2. Note that the purpose of this application is to showcase whether and how
the measurement and evaluation of DMUs arranged into a parallel multi-layer multi-function
hierarchical structure is attained. The data follows the example of Kao’s (2015) in spirit, and
arguably still is a simplification of most real Business Schools. The study is not intended to
represent real Business Schools but instead can help to illustrate how the application of this
methodology may help them to identify areas that may benefit from further attention towards
improving their performance.

TABLE 4.2: Classification of the outputs to three departments

Outputs A B D
undergraduate students Y1 Y8 Y15

postgraduate students Y2 Y9 Y16

publications Y3 Y10 Y17

grants Y4 Y11 Y18

income Y5 Y12 Y19

undergraduate credits Y6 Y13 Y20

postgraduate credits Y7 Y14 Y21

Personnel and expenses are shared among the departments and their different functions. They
can be distributed using either pre-determined (fixed) proportions or variable proportions. In
our scenario, the proportions are treated as variables rather than parameters, as it is difficult
to specify instances such as, the amount of time a lecturer dedicates to each function or the
amount of money being collected by each of the departments.

In the spirit of Kao’s (2015) study, we assume that each Business School allocates similar amounts
of resources to its three departments; that is, α

(1)0
l
∼= α

(2)0
l
∼= α

(3)0
l , and ∑3

k=1 α
(k)0
l = 1, l = 1, 2,
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where α
(k)0
l is the proportion of each resource l allocated to department k (k = 1, 2, 3). The pro-

portions are expressed in ranges in the form of 0.5 ≤ α
(1)0
l /α

(2)0
l ≤ 2, 0.5 ≤ α

(1)0
l /α

(3)0
l ≤ 2,

and 0.5 ≤ α
(2)0
l /α

(3)0
l ≤ 2. Furthermore, every department allocates approximately 40%,

40%, and 20% of each input to the three major functions; that is, β
(k)1
l
∼= β

(k)2
l
∼= 2β

(k)3
l ,

and ∑3
k1=1 β

(k)k1
l = 1, l = 1, 2, and k = 1, 2, 3, where β

(k)k1
l is the proportion of each re-

source l of department k allocated to each of these functions (k1 = 1, 2, 3). The proportions
are expressed in ranges in the form of 0.5 ≤ β

(k)1
l /β

(k)2
l ≤ 2, 1 ≤ β

(k)2
l /β

(k)3
l ≤ 4, and

1 ≤ β
(k)1
l /β

(k)3
l ≤ 4. We also assume that the teaching function at each department allo-

cates similar amounts of resources to both undergraduate and postgraduate levels; that is,

γ
(k)1.1
l

∼= γ
(k)1.2
l , and ∑1.2

k2=1.1 γ
(k)k2
l = 1, l = 1, 2, and k = 1, 2, 3, where γ

(k)k2
l is the propor-

tion of each resource l of department k allocated to each of these levels (k2 = 1.1, 1.2). The
proportions are expressed in ranges in the form of 0.5 ≤ γ

(k)1.1
l /γ

(k)1.2
l ≤ 2. The values of the

shared inputs and the dedicated outputs for the evaluation of the Business Schools in twenty
hypothetic universities are depicted in Table 4.3.

TABLE 4.3: Data of the Business School in twenty hypothetic universities

DMU X1 X2 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21

1 20 40 35 60 55 25 25 15 70 4 2 15 70 50 5 80 30 50 25 30 50 95 65
2 55 120 40 85 60 35 35 20 15 2 1 45 110 140 15 100 65 120 80 40 65 110 20
3 25 80 25 50 50 25 10 10 15 1 2 20 70 55 5 45 25 15 20 20 30 40 20
4 70 55 30 65 40 25 20 20 25 5 1 25 90 60 5 100 50 95 100 25 30 30 25
5 80 60 45 95 50 35 25 20 65 75 3 35 110 90 10 120 65 30 30 30 75 120 55
6 75 45 30 100 55 65 20 20 50 35 10 30 85 50 5 75 30 20 25 185 70 80 50
7 75 75 15 60 35 20 5 20 10 30 25 25 120 65 10 105 55 30 40 15 60 45 5
8 20 30 20 70 50 30 10 15 15 10 10 20 65 45 5 45 20 30 15 20 60 60 15
9 30 110 55 140 140 315 20 95 90 80 30 60 90 50 5 115 60 70 100 55 95 55 80
10 85 80 60 180 170 250 20 180 160 145 45 20 65 50 5 45 20 35 25 85 115 60 130
11 12 74 10 28 55 55 34 19 90 101 79 24 5 28 25 20 118 122 20 62 53 64 103
12 125 86 37 40 45 91 20 106 92 43 35 77 72 81 50 72 115 65 113 29 72 103 121
13 113 66 88 101 105 128 42 88 109 81 118 128 14 9 100 107 89 19 123 51 104 123 9
14 74 10 126 5 83 20 22 130 25 116 98 74 57 75 57 111 45 85 119 72 83 32 19
15 121 127 40 127 48 20 123 130 106 91 67 65 130 29 109 81 85 5 19 8 46 55 45
16 23 86 125 70 81 130 83 100 14 61 122 93 112 112 75 22 5 33 36 119 47 85 24
17 32 69 83 56 105 34 56 46 104 100 91 25 25 82 99 81 58 82 34 97 28 119 98
18 118 30 81 110 56 12 15 72 85 87 17 36 122 100 126 72 110 74 44 87 34 126 24
19 72 57 130 77 27 115 30 81 27 89 106 40 23 20 12 43 49 68 76 121 100 30 64
20 17 91 105 6 92 105 47 30 85 51 42 45 26 15 24 36 5 53 44 15 112 6 10

4.4.1 Models from literature

The traditional black-box model has been initially applied to evaluate the operating perfor-
mance of the Business Schools, as shown in the second column of Table 4.4. This model is
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simply the typical input-oriented constant returns-to-scale DEA model (Charnes et al., 1978)
that makes use of the two exogenous shared inputs to produce the twenty-one exogenous ded-
icated outputs. In other words, it entirely ignores all the internal operations and mechanisms
of the system (parallel sub-systems and integrated hierarchies).

According to the second column of Table 4.4, we can easily notice that there are in total 14
efficient DMUs and 6 inefficient ones. The efficient DMUs cannot be readily discriminated
and this especially matters, when we consider the problem as a multi-criteria decision-making
case. Besides, we are not able to obtain the efficiencies of the constituent departments of the
respective Business School.

The model (4.1) of Kao (2012), see Section 4.2.1, has also been implemented to evaluate the per-
formance of the Business Schools, as illustrated in columns 3-9 of Table 4.4. The simplification
of such a model compared to the proposed models of this paper is that the parallel sub-divisions
of the system are treated as black-boxes.

According to column 3 of Table 4.4, there are now 8 DMUs with a perfect efficiency score of
one, that is their respective components (departments) are absolutely efficient. There is still,
however, the problem with the lack of discrimination of the efficient DMUs that cannot lead us
to a unique ranking order. The efficiency scores of the three departments (A, B, D) are given in
columns 4, 6, and 8, respectively. The numbers next to each of the efficiency scores (in columns
5, 7, and 9) are the respective weights in the efficiency decomposition. Using the Business
School 15 as an example, its efficiency scores for A (0.9997), B (0.5541), and D (0.3353) multiplied
by their respective weights of 0.443, 0.309, and 0.248, will obtain the efficiency score of the whole
system, 0.6973. Using the information of the efficiency score, we can conclude that DMU’s 15
relatively low performance is owed to its weak Decision Analytics and Risk department, whose
operations should be improved. Nevertheless, it is not clear to us which constituent functions
of that department have the millstone of a heavy burden round their necks.
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TABLE 4.4: Efficiency scores of black-box model and Kao (2012)

Kao’s (2012) Model

DMU Black-box [Rank] Eo [Rank] E(A)
o ω(A) E(B)

o ω(B) E(D)
o ω(D)

1 1 [1] 1 [1] 1 0.429 1 0.215 1 0.356
2 0.9556 [15] 0.7247 [15] 0.4532 0.237 0.8412 0.433 0.7665 0.330
3 0.7124 [20] 0.5499 [19] 0.4551 0.250 0.6689 0.500 0.4065 0.250
4 0.8845 [17] 0.6596 [17] 0.5015 0.320 0.6915 0.320 0.7715 0.360
5 0.8620 [18] 0.7599 [14] 0.7383 0.337 0.7654 0.283 0.7750 0.380
6 1 [1] 0.9077 [11] 0.9247 0.356 0.6951 0.215 1 0.430
7 0.7200 [19] 0.5339 [20] 0.3111 0.250 0.6903 0.500 0.4441 0.250
8 1 [1] 1 [1] 1 0.252 1 0.499 1 0.249
9 1 [1] 1 [1] 1 0.240 1 0.480 1 0.279
10 1 [1] 0.8961 [12] 1 0.400 0.7496 0.297 0.9026 0.303
11 1 [1] 1 [1] 1 0.496 1 0.248 1 0.255
12 0.8869 [16] 0.6282 [18] 0.5249 0.249 0.3353 0.296 0.8752 0.455
13 1 [1] 0.8415 [13] 0.8911 0.373 0.8199 0.355 0.8016 0.272
14 1 [1] 1 [1] 1 0.403 1 0.202 1 0.395
15 1 [1] 0.6973 [16] 0.9997 0.443 0.5541 0.309 0.3353 0.248
16 1 [1] 1 [1] 1 0.454 1 0.250 1 0.296
17 1 [1] 1 [1] 1 0.250 1 0.250 1 0.500
18 1 [1] 1 [1] 1 0.283 1 0.467 1 0.250
19 1 [1] 0.9197 [10] 0.9973 0.354 0.7184 0.225 0.9623 0.421
20 1 [1] 0.9823 [9] 1 0.400 0.9116 0.200 1 0.400

4.4.2 Results from the parallel-hierarchical network model

To obtain the information regarding the performance of the functions of each department within
the considered Business School, we implement the additive decomposition model (4.4) and the
multiplicative aggregation model (4.11). For modelling, running, and analysing our data, we
have utilised the programming language Python 3.7.6 and in particular the version 2.1 of PuLP
as the free linear programming library for model (4.4). As for the non-linear model (4.11), we
have implemented the GEKKO which is a Python package for machine learning and optimi-
sation. It is combined with large-scale solvers for non-linear programming models as well. To
define the type of the problem, we have used a non-dynamic mode that sets all differential
terms to zero to calculate the steady-state conditions. The experiments ran on a computer with
16GB RAM.

These models do not only allow us to discriminate the efficient DMUs, but also to simultane-
ously calculate the efficiencies of the Business School of interest, its constituent departments,
and the functions within the respective department. The results obtained by models (4.4) and
(4.11) are respectively illustrated in Tables 4.5 and 4.6. The second column in each table shows
the efficiency of the respective overall system along with its rank. The remaining columns pro-
vide the efficiency scores with their respective weights of each sub-system and sub-unit within
the sub-system.
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The ranks of the efficiency scores of the overall system obtained via our proposed model (4.4)
are also compared with the overall systems’ ranks of black-box and Kao’s (2012) models. It can
be statistically inferred that the ranks are quite similar, and this is verified by the Spearman
rank-order correlation test with values 0.678 and 0.924, respectively. These are significant at
the 0.01 level (two-tailed). The same situation holds even for our proposed model (4.11). The
results of the correlation analysis further validate the underpinning of our model in some way.

Using the Business School 18 as an example, its efficiency score for the Accounting (0.4553)
is decomposed into the efficiencies of the teaching (0.7690), research (0.3263), and enterprise
(0.2707) multiplied by their respective weights of 0.333, 0.333, and 0.333. Note that teaching
efficiency is further decomposed into the efficiencies of the undergraduate (0.3069) and post-
graduate (1) levels multiplied by their respective weights, 0.333 and 0.667. By the same token,
the efficiency scores of the other two departments, Banking and Finance (0.8045) and Decision
Analytics and Risk (0.5141), are identified. Hence, the efficiency scores of the three departments
multiplied by their respective weights provide the efficiency of DMU 18, which is 0.6446.

The unsatisfactory performance of Business School 18 is mainly due to the Accounting and
secondly to the Decision Analytics and Risk department. If this Business School desires to sig-
nificantly improve its efficiency, then it should strengthen its contribution to society (enterprise)
along with its research activities, as far as the A department is concerned. With regard to D de-
partment, particular emphasis should be placed on the enterprise. In summary, this Business
School should genuinely pursue constant and long-term synergies with representatives from
the public and private sector towards more impactful and effective research and educational
actions.

As discussed in Section 4.3.3, the system efficiency of model (4.4) should be greater than or equal
to the respective one in model (4.11). By comparing the second columns of Table 4.5 and Table
4.6, we validate our initial assumption. This is further bolstered by the fact that the Business
School’s efficiency is the product of the ones of the three internal departments. For example,
DMU’s 18 efficiency (0.1946) is obtained by multiplying A’s (0.4622), B’s (0.8131), and D’s effi-
ciency (0.5178). With regard to DMU 18, the promising performance of its B department still has
considerable potential for further improvements, through the upgrade of the teaching methods
and the training of the teaching staff, to better support postgraduate taught modules. The root
cause of the problem, however, is located to the A department that should better adhere to the
following guidelines: (i) strengthen its contributions to society, and (ii) provide greater (finan-
cial) incentives to the academic faculty to ensure grants via more powerful research proposals.
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TABLE 4.5: Efficiency scores of additive decomposition model (4.4)

DMU EHN
o [Rank] E(A−U−T)

o ω(A−U−T) E(A−P−T)
o ω(A−P−T) E(A−T)

o ω(A−T) E(A−R)
o ω(A−R) E(A−E)

o ω(A−E) E(A)
o ω(A)

1 0.7713 [4] 0.4768 0.391 1 0.609 0.7952 0.333 0.8827 0.333 0.5472 0.333 0.7417 0.236
2 0.4399 [15] 0.1475 0.333 0.3475 0.667 0.2808 0.333 0.3285 0.333 0.2616 0.333 0.2903 0.231
3 0.3723 [17] 0.1956 0.333 0.4296 0.667 0.3516 0.333 0.4488 0.333 0.1200 0.333 0.3068 0.250
4 0.4164 [16] 0.1452 0.333 0.4085 0.667 0.3207 0.333 0.3056 0.333 0.2255 0.333 0.2839 0.244
5 0.4937 [14] 0.1906 0.333 0.5908 0.667 0.4574 0.333 0.3427 0.333 0.2523 0.333 0.3508 0.244
6 0.5495 [11] 0.1380 0.333 0.7320 0.667 0.5340 0.333 0.4548 0.333 0.2714 0.333 0.4201 0.250
7 0.3459 [19] 0.0778 0.333 0.2911 0.667 0.2200 0.333 0.2197 0.333 0.0464 0.333 0.1620 0.250
8 0.7274 [7] 0.2637 0.333 1 0.667 0.7546 0.333 0.9642 0.333 0.2630 0.333 0.6606 0.250
9 0.6593 [8] 0.7211 0.333 1 0.667 0.9070 0.333 1 0.333 0.1861 0.333 0.6977 0.458
10 0.5628 [10] 0.8729 0.510 1 0.490 0.9352 0.333 1 0.333 0.1565 0.333 0.6973 0.469
11 0.8091 [3] 0.3555 0.336 1 0.664 0.7833 0.333 0.8440 0.333 0.7797 0.333 0.8023 0.250
12 0.3574 [18] 0.3129 0.480 0.4773 0.520 0.3984 0.333 0.2504 0.333 0.1544 0.333 0.2677 0.216
13 0.5081 [13] 0.2134 0.333 0.7266 0.667 0.5555 0.333 0.6052 0.333 0.4880 0.333 0.5496 0.369
14 0.9968 [1] 1 0.667 0.8563 0.333 0.9521 0.333 1 0.333 1 0.333 0.9840 0.200
15 0.3365 [20] 0.2684 0.392 0.4506 0.608 0.3792 0.333 0.1374 0.333 0.8063 0.333 0.4410 0.472
16 0.8730 [2] 1 0.667 0.6394 0.333 0.8798 0.333 0.7451 0.333 1 0.333 0.8750 0.322
17 0.7462 [5] 0.6793 0.377 0.8775 0.623 0.8029 0.333 1 0.333 0.7208 0.333 0.8412 0.476
18 0.6446 [9] 0.3069 0.333 1 0.667 0.7690 0.333 0.3263 0.333 0.2707 0.333 0.4553 0.250
19 0.5130 [12] 0.5508 0.412 0.5241 0.588 0.5351 0.333 0.5363 0.333 0.4162 0.333 0.4959 0.322
20 0.7315 [6] 1 0.667 0.6652 0.333 0.8884 0.333 1 0.333 0.7611 0.333 0.8832 0.500
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Table 4.5 Continued:

DMU E(B−U−T)
o ω(B−U−T) E(B−P−T)

o ω(B−P−T) E(B−T)
o ω(B−T) E(B−R)

o ω(B−R) E(B−E)
o ω(B−E) E(B)

o ω(B)

1 0.0848 0.333 1 0.667 0.6949 0.333 0.8968 0.333 0.8115 0.333 0.8010 0.471
2 0.0849 0.333 0.4287 0.667 0.3141 0.333 0.5092 0.333 0.7754 0.333 0.5329 0.463
3 0.0535 0.333 0.3711 0.667 0.2652 0.333 0.6204 0.333 0.4892 0.333 0.4583 0.500
4 0.0429 0.333 0.5566 0.667 0.3853 0.333 0.5723 0.333 0.5014 0.333 0.4863 0.488
5 0.3577 0.333 0.5969 0.667 0.5172 0.333 0.6301 0.333 0.6731 0.333 0.6068 0.489
6 0.1755 0.333 0.3927 0.667 0.3203 0.333 0.6284 0.333 0.3974 0.333 0.4487 0.250
7 0.1325 0.333 0.4818 0.667 0.3654 0.333 0.6274 0.333 0.4470 0.333 0.4799 0.500
8 0.1453 0.333 0.6761 0.667 0.4992 0.333 1 0.333 0.8771 0.333 0.7921 0.500
9 0.3903 0.333 0.9030 0.667 0.7321 0.333 0.6186 0.333 0.3447 0.333 0.5651 0.229
10 0.6364 0.667 0.2361 0.333 0.5030 0.333 0.3011 0.333 0.2900 0.333 0.3647 0.235
11 1 0.336 1 0.664 1 0.333 0.4883 0.333 0.4758 0.333 0.6547 0.250
12 0.2623 0.607 0.2578 0.393 0.2606 0.333 0.4168 0.333 0.4037 0.333 0.3604 0.352
13 0.6235 0.518 0.5960 0.482 0.6102 0.333 0.8125 0.333 0.0481 0.333 0.4903 0.355
14 1 0.667 1 0.333 1 0.333 1 0.333 1 0.333 1 0.400
15 0.4692 0.666 0.2160 0.334 0.3847 0.333 0.4655 0.333 0.1151 0.333 0.3218 0.291
16 0.9943 0.590 1 0.410 0.9967 0.333 1 0.333 1 0.333 0.9989 0.452
17 1 0.580 1 0.420 1 0.333 0.2865 0.333 0.7822 0.333 0.6896 0.238
18 1 0.667 0.3055 0.333 0.7685 0.333 1 0.333 0.6451 0.333 0.8045 0.500
19 0.4950 0.333 0.7000 0.667 0.6316 0.333 0.3556 0.333 0.1488 0.333 0.3787 0.260
20 0.5313 0.337 0.7274 0.663 0.6613 0.333 0.6470 0.333 0.1800 0.333 0.4961 0.250

Table 4.5 Continued:

DMU E(D−U−T)
o ω(D−U−T) E(D−P−T)

o ω(D−P−T) E(D−T)
o ω(D−T) E(D−R)

o ω(D−R) E(D−E)
o ω(D−E) E(D)

o ω(D)

1 1 0.488 0.9247 0.512 0.9614 0.333 0.5586 0.333 0.7214 0.333 0.7471 0.293
2 0.4453 0.496 0.4642 0.504 0.4548 0.333 0.4694 0.333 0.3128 0.333 0.4123 0.306
3 0.3075 0.667 0.1326 0.333 0.2492 0.333 0.3056 0.333 0.2424 0.333 0.2657 0.250
4 0.3510 0.333 0.6143 0.667 0.5265 0.333 0.4900 0.333 0.2125 0.333 0.4097 0.268
5 0.7034 0.667 0.3717 0.333 0.5929 0.333 0.1837 0.333 0.4764 0.333 0.4177 0.267
6 0.5080 0.645 0.4611 0.355 0.4913 0.333 1 0.333 0.5028 0.333 0.6647 0.500
7 0.3368 0.667 0.1442 0.333 0.2726 0.333 0.1723 0.333 0.3402 0.333 0.2617 0.250
8 0.7681 0.667 0.4200 0.333 0.6521 0.333 0.3425 0.333 1 0.333 0.6649 0.250
9 0.3765 0.488 0.4541 0.512 0.4162 0.333 1 0.333 0.5994 0.333 0.6719 0.313
10 0.2493 0.333 0.7345 0.667 0.5727 0.333 0.3407 0.333 0.6064 0.333 0.5066 0.296
11 1 0.667 1 0.333 1 0.333 1 0.333 0.6688 0.333 0.8896 0.500
12 0.5873 0.353 0.6226 0.647 0.6101 0.333 0.3065 0.333 0.2825 0.333 0.3997 0.432
13 0.6513 0.667 0.0873 0.333 0.4633 0.333 0.4339 0.333 0.5291 0.333 0.4754 0.276
14 1 0.656 1 0.344 1 0.333 1 0.333 1 0.333 1 0.400
15 0.3270 0.667 0.1785 0.333 0.2775 0.333 0.0354 0.333 0.1243 0.333 0.1457 0.236
16 0.6904 0.667 0.1607 0.333 0.5138 0.333 1 0.333 0.3410 0.333 0.6183 0.226
17 0.8096 0.483 0.8220 0.517 0.8160 0.333 0.8475 0.333 0.2415 0.333 0.6350 0.286
18 1 0.667 0.4764 0.333 0.8255 0.333 0.5185 0.333 0.1982 0.333 0.5141 0.250
19 0.3354 0.333 0.4810 0.667 0.4325 0.333 0.7108 0.333 0.6858 0.333 0.6097 0.418
20 0.0643 0.337 0.3011 0.663 0.2213 0.333 0.7700 0.333 1 0.333 0.6638 0.250
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TABLE 4.6: Efficiency scores of multiplicative aggregation model (4.11)

DMU EHN′
o [Rank] E(A−U−T)

o ω(A−U−T) E(A−P−T)
o ω(A−P−T) E(A−T)

o ω(A−T) E(A−R)
o ω(A−R) E(A−E)

o ω(A−E) E(A)
o ω(A)

1 0.4452 [4] 0.4816 0.383 1 0.617 0.8016 0.333 0.8830 0.333 0.5435 0.333 0.7427 0.434
2 0.0672 [15] 0.1845 0.333 0.3580 0.667 0.3002 0.333 0.3301 0.333 0.2526 0.333 0.2943 0.409
3 0.0383 [18] 0.1961 0.333 0.4530 0.667 0.3673 0.333 0.4530 0.333 0.1181 0.333 0.3128 0.448
4 0.0589 [16] 0.0962 0.333 0.4599 0.667 0.3387 0.333 0.2363 0.333 0.3013 0.333 0.2921 0.348
5 0.0928 [14] 0.1307 0.333 0.6429 0.667 0.4721 0.333 0.2767 0.333 0.3411 0.333 0.3633 0.321
6 0.1443 [10] 0.0989 0.333 0.8113 0.667 0.5738 0.333 0.4644 0.333 0.3628 0.333 0.4670 0.374
7 0.0209 [20] 0.0825 0.333 0.2889 0.667 0.2201 0.333 0.2261 0.333 0.0452 0.333 0.1638 0.474
8 0.3538 [6] 0.2609 0.333 1 0.667 0.7536 0.333 0.9655 0.333 0.2649 0.333 0.6613 0.402
9 0.2713 [8] 0.7361 0.333 1 0.667 0.9120 0.333 1 0.333 0.1867 0.333 0.6996 0.313
10 0.1324 [11] 0.8872 0.510 1 0.490 0.9425 0.333 1 0.333 0.1565 0.333 0.6997 0.278
11 0.4724 [3] 0.3642 0.333 1 0.667 0.7881 0.333 0.8469 0.333 0.7851 0.333 0.8067 0.461
12 0.0435 [17] 0.2029 0.357 0.5062 0.643 0.3980 0.333 0.3047 0.333 0.1962 0.333 0.2996 0.362
13 0.1292 [12] 0.2148 0.333 0.7287 0.667 0.5574 0.333 0.6051 0.333 0.4870 0.333 0.5498 0.321
14 0.9869 [1] 1 0.667 0.8824 0.333 0.9608 0.333 1 0.333 1 0.333 0.9869 0.483
15 0.0222 [19] 0.1868 0.333 0.4506 0.667 0.3627 0.333 0.1186 0.333 0.8571 0.333 0.4461 0.365
16 0.5456 [2] 1 0.667 0.6477 0.333 0.8826 0.333 0.7495 0.333 1 0.333 0.8774 0.293
17 0.3705 [5] 0.6833 0.393 0.8774 0.607 0.8012 0.333 1 0.333 0.7316 0.333 0.8443 0.360
18 0.1946 [9] 0.2947 0.333 1 0.667 0.7649 0.333 0.3093 0.333 0.3125 0.333 0.4622 0.347
19 0.1178 [13] 0.4716 0.374 0.5242 0.626 0.5046 0.333 0.5671 0.333 0.4384 0.333 0.5033 0.378
20 0.2952 [7] 1 0.667 0.6666 0.333 0.8888 0.333 1 0.333 0.7660 0.333 0.8849 0.272

Table 4.6 Continued:

DMU E(B−U−T)
o ω(B−U−T) E(B−P−T)

o ω(B−P−T) E(B−T)
o ω(B−T) E(B−R)

o ω(B−R) E(B−E)
o ω(B−E) E(B)

o ω(B)

1 0.0850 0.333 1 0.667 0.6950 0.333 0.8965 0.333 0.8126 0.333 0.8014 0.236
2 0.0874 0.333 0.4284 0.667 0.3148 0.333 0.5080 0.333 0.7799 0.333 0.5342 0.288
3 0.0538 0.333 0.3669 0.667 0.2625 0.333 0.6251 0.333 0.4911 0.333 0.4596 0.283
4 0.0429 0.333 0.5646 0.667 0.3907 0.333 0.5725 0.333 0.5014 0.333 0.4882 0.273
5 0.3627 0.333 0.6064 0.667 0.5251 0.333 0.6301 0.333 0.6731 0.333 0.6095 0.324
6 0.1997 0.333 0.4472 0.667 0.3647 0.333 0.5865 0.333 0.4412 0.333 0.4641 0.329
7 0.1334 0.333 0.4879 0.667 0.3697 0.333 0.6281 0.333 0.4470 0.333 0.4816 0.250
8 0.1447 0.333 0.6757 0.667 0.4987 0.333 1 0.333 0.8786 0.333 0.7924 0.310
9 0.3654 0.333 0.9680 0.667 0.7672 0.333 0.6188 0.333 0.3438 0.333 0.5766 0.374
10 0.6871 0.667 0.2489 0.333 0.5410 0.333 0.2954 0.333 0.2754 0.333 0.3706 0.309
11 1 0.617 1 0.383 1 0.333 0.4946 0.333 0.4792 0.333 0.6579 0.309
12 0.2623 0.607 0.2579 0.393 0.2606 0.333 0.4168 0.333 0.4037 0.333 0.3604 0.305
13 0.6235 0.515 0.5965 0.485 0.6104 0.333 0.8214 0.333 0.0480 0.333 0.4932 0.310
14 1 0.493 1 0.507 1 0.333 1 0.333 1 0.333 1 0.267
15 0.4704 0.644 0.2412 0.356 0.3887 0.333 0.4580 0.333 0.1203 0.333 0.3223 0.258
16 0.9966 0.591 1 0.409 0.9980 0.333 1 0.333 1 0.333 0.9993 0.277
17 1 0.580 1 0.420 1 0.333 0.2872 0.333 0.7822 0.333 0.6898 0.381
18 1 0.667 0.3234 0.333 0.7745 0.333 1 0.333 0.6648 0.333 0.8131 0.359
19 0.5073 0.333 0.7152 0.667 0.6459 0.333 0.3574 0.333 0.1484 0.333 0.3839 0.330
20 0.5324 0.333 0.7287 0.667 0.6633 0.333 0.6545 0.333 0.1812 0.333 0.4996 0.311
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Table 4.6 Continued:

DMU E(D−U−T)
o ω(D−U−T) E(D−P−T)

o ω(D−P−T) E(D−T)
o ω(D−T) E(D−R)

o ω(D−R) E(D−E)
o ω(D−E) E(D)

o ω(D)

1 1 0.488 0.9301 0.512 0.9642 0.333 0.5586 0.333 0.7214 0.333 0.7481 0.330
2 0.4370 0.530 0.4420 0.470 0.4394 0.333 0.5577 0.333 0.2859 0.333 0.4277 0.303
3 0.3075 0.667 0.1357 0.333 0.2502 0.333 0.3056 0.333 0.2424 0.333 0.2661 0.269
4 0.3510 0.333 0.6236 0.667 0.5327 0.333 0.4940 0.333 0.2125 0.333 0.4131 0.379
5 0.7034 0.667 0.3835 0.333 0.5968 0.333 0.1837 0.333 0.4764 0.333 0.4190 0.355
6 0.4934 0.667 0.4155 0.333 0.4675 0.333 1 0.333 0.5299 0.333 0.6658 0.298
7 0.3540 0.667 0.1604 0.333 0.2894 0.333 0.1609 0.333 0.3460 0.333 0.2655 0.276
8 0.7370 0.667 0.3613 0.333 0.6118 0.333 0.4138 0.333 1 0.333 0.6752 0.289
9 0.3765 0.488 0.4588 0.512 0.4186 0.333 1 0.333 0.5994 0.333 0.6727 0.313
10 0.2493 0.333 0.7526 0.667 0.5848 0.333 0.3407 0.333 0.6064 0.333 0.5106 0.413
11 1 0.572 1 0.428 1 0.333 1 0.333 0.6704 0.333 0.8901 0.230
12 0.4981 0.402 0.6163 0.598 0.5688 0.333 0.3349 0.333 0.3060 0.333 0.4032 0.332
13 0.6513 0.667 0.0896 0.333 0.4640 0.333 0.4365 0.333 0.5291 0.333 0.4765 0.369
14 1 0.403 1 0.597 1 0.333 1 0.333 1 0.333 1 0.250
15 0.3005 0.667 0.1715 0.333 0.2575 0.333 0.0460 0.333 0.1597 0.333 0.1544 0.377
16 0.7348 0.667 0.1521 0.333 0.5406 0.333 1 0.333 0.3262 0.333 0.6222 0.431
17 0.8096 0.483 0.8290 0.517 0.8196 0.333 0.8475 0.333 0.2415 0.333 0.6362 0.258
18 1 0.667 0.4758 0.333 0.8253 0.333 0.5439 0.333 0.1844 0.333 0.5178 0.294
19 0.3354 0.333 0.4818 0.667 0.4330 0.333 0.7108 0.333 0.6858 0.333 0.6099 0.291
20 0.0661 0.333 0.3066 0.667 0.2264 0.333 0.7764 0.333 1 0.333 0.6676 0.417

4.5 Conclusions & Future Research

In our chapter, we have proposed a new multi-function parallel (network) hierarchical
structure to more accurately reflect the complex internal mechanisms and procedures
of large organisations. These typically consist of multiple departments that could, in
turn, be extended into a number of distinctive operational functions, arranged either
in series or in parallel or in a hierarchical structure. These components consume and
generate resources that can be interactive and/or independent.

The conventional black-box model evaluates a company (system), while ignoring its
internal operations. Kao’s (2012) model evaluates the constituent departments (sub-
systems) of a company, which are independent amongst them. However, it still handles
the internal structure of each department as a black-box case. Kao’s (2015) model has
successfully considered the internal processes of a single-stage system as a multi-layer
hierarchical structure, yet it ignores that each department may have its own complex
structure. The above models did not recognise the necessity of assessing a company,
in which the network scheme might intertwine with a hierarchical structure. Gan et
al. (2019) are one of the first to adopt such a notion, enabling the sub-systems to be
interdependent. Our chapter presents an alternative to Gan et al. (2019), by proposing
an embedded hierarchical network structure within a multi-function parallel system. In
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our proposed scheme, the constituent sub-systems act independently from one another
accommodating another class of problems.

In this chapter, DMUs have a network-hierarchical structure. On a macro level, the
external layer is associated with the action of retrieving data from the entire system,
whereas the internal layer from each of the sub-systems connected in parallel. On a
micro level, that is the interior part of a sub-system, we evaluate the constituent units
that form a multi-level multi-function hierarchical structure.

To evaluate the performance of the DMUs with such a structure, we propose an addi-
tive decomposition model (4.4) and a multiplicative aggregation model (4.11). In both
models, we obtain the system, the sub-systems, and their internal units’ efficiencies as
well as identify their relationship. In particular, the efficiency of a unit at a higher level
is the weighted average of those of the subordinates at the immediate lower level; the
weight of that unit is the proportion of the input consumed by that subordinate in that
consumed by all subordinates. For the additive model (4.4), the overall efficiency is
decomposed into the weighted arithmetic average of those of the parallel sub-systems.
It can also be expressed as the weighted average of the efficiencies of the terminal units
that belong to the hierarchical structure of each sub-system. For the multiplicative
model (4.11), the system efficiency is defined as the product of the efficiencies of the
constituent sub-systems. We have also proven that the system efficiency of model (4.4)
is always greater than or equal to the respective one in model (4.11).

The performance measurement and evaluation of several Business Schools across a
number of universities illustrates the proposed models. These models allow us to not
only discriminate the efficient units, but also to simultaneously calculate the efficien-
cies of the Business School of interest, its departments, and the functions within the
respective department. Hence, decision-makers will be enabled to take certain actions
by improving the areas of weakness.

Other areas of application of the proposed structure may include performance eval-
uation of business functions such as human resources, accounting and finance, mar-
keting, and supply chain. The supply chain management of an organisation, for in-
stance, ensures that goods and services get to customers in the easiest way possible.
Such a department could be decomposed into several independent operations such as
production, procurement, logistics, and customer service. These operations could be
hierarchically divided into people’s responsibilities, tasks, and values. The main target
is to meaningfully compare the efficiency of several parallel (network) hierarchical sup-
ply chains of different factory branches inside and outside the country. Identifying and
improving the areas of weakness of the most ineffective supply chains, could reduce
operating costs, increase the quality of products, and meet customers’ needs.
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Another promising area could be the evaluation of the operating performance of a com-
mercial ship. Stakeholders from the shipping industry might be interested in, for in-
stance, exploring the most desirable ship design associated with a valid scenario, in
which the maintenance policy is an integral part. The corresponding maintenance pol-
icy could be operationalised through the various input and output factors. A ship can-
not operate without the effective management of its constituent sub-systems (electrical,
diesel propulsion, lube oil, heavy fuel oil, deck) incorporated within its hull and deck.
Because of the complex layout of the ship, its overall management system can integrate
both the multi-function parallel network and the multi-layer hierarchical structures.

The discussion of both models is under the constant returns to scale assumption. This
can be expanded to variable returns to scale situation for the additive model. Another
challenge for future research could be the evaluation of a system that requires the inte-
gration of a hierarchical structure into other more complex network processes, such as
assembly and disassembly, mixed, and dynamic systems (Cook et al., 2010; Kao, 2016;
Kao, 2017). It would also be interesting to develop appropriate DEA modelling tech-
niques, which will acknowledge that not all competing DMUs have exactly the same
internal structure.

It is also worthwhile to point out that the dataset used in Section 4.4. was based in
part on Kao (2015), and has been extended by taking random samples for each of the
additional output factors that include integer values in the range of [1 to 330]. The goal
of this dataset was to indicate how the theoretical network hierarchical DEA structure
is applied to an illustrative example in the higher education sector. Other methods used
in the literature aim to develop multiple input-output production frontiers and bring
more structure and accuracy in the generation of instances, such as the piecewise Cobb-
Douglas and the cubic polynomial production functions (Banker et al., 1993; Giraleas
et al., 2012; Khezrimotlagh, 2022).

Among the models proposed in this study to measure the performance of the multi-
function parallel network hierarchical system, the multiplicative efficiency aggregation
model is the only non-linear network DEA formulation due to its non-linear objec-
tive function. Although the majority of non-linear solvers can run flexibly (Kao, 2018),
the model is still considered computationally complex and a global optimal solution
cannot be easily guaranteed. Alternative algorithms can be used by transforming the
model into either a second order cone programming or a semi-definite programming
problem, following the spirit of Chen and Zhu (2017) and Kuo et al. (2020) or Zhang
and Chen (2019), respectively. The aforementioned techniques lie in the field of convex
optimization, see also Boyd et al. (2004) and Zhu (2020).

Finally, current research studies the evaluation of the performance of DMUs with a
multi-function parallel network hierarchical structure, only when the data are positive
real numbers, and the DEA models are based on this condition. Future research could
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relax this assumption by allowing the data points (inputs, intermediate measures, and
outputs) to be imprecise and lie in an interval. Other cases to be investigated concern
missing data or intervals, where some values are more likely to occur over other val-
ues. In the latter case, since there is no information of the probability distributions,
fuzzy numbers and mathematical operations (Zimmermann, 2011) could be used as an
alternative option.
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Chapter 5

5.1 Overview

This final chapter summarises the main results of the dissertation and outlines the over-
all research contributions for each of the three main chapters. These are provided in
Section 5.2 and Section 5.3, respectively. Additionally, Section 5.4 presents the research
limitations of the study. Finally, Section 5.5 identifies potential directions of future re-
search.

5.2 Summary of Findings

The work described in this thesis sheds new light on the use of several alternative mod-
elling approaches and methodological frameworks to attain fairness in the evaluation
of DMUs structured as a DEA network. Multiple insightful findings have been pro-
duced and they are summarised below.

In Chapter 2, we have initially identified that as the number of zero weights decreases,
more information relevant to the known factors are taken into account. This makes
the weight distribution significantly less uneven, reflecting the alternating require-
ments and needs of the stakeholders involved. A more realistic weight distribution
has been obtained via the proposed minimax cross-efficiency model for a generalised
two-stage DEA structure than our basic additive self-efficiency aggregation model and
the aggressive-based model of Kao and Liu (2019).

Moreover, we have shown that the CRITIC multi-criteria decision-making method is
compatible with the minimax model, since it rewards contrast. While it is more likely
that the worst-performing DMU attempts to assess itself in its best possible light, the
efficiency scores of the other better-performing DMUs might decrease. Since this sit-
uation increases the contrast, our proposed minimax secondary goal model seems to
be an acceptable option to coexist with the CRITIC method. CRITIC and the minimax
model have been found to obtain a greater discrimination power than the additive self-
efficiency aggregation model.

We have also applied the CRITIC method to determine an appropriate weight set for
aggregating the individual cross-efficiencies into a final cross-efficiency score for each
DMU and flow. By identifying the standard deviation (one of the technique’s main at-
tributes), we indicate the contrast in the viewpoints of an individual evaluator DMUk.
The conflict, which is the other main attribute of the CRITIC method, manages to give
voice to the less mainstream viewpoints of the different evaluators regarding the eval-
uated DMU. An evaluator will be assigned a greater final weight if it provides more
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valuable information. This information should reward contrast, diversity, and inclu-
sion. CRITIC cross-efficiencies have been compared with the respective final cross-
efficiencies obtained via the traditional average method. Although the difference be-
tween methods is negligible, we note that the average method, which promotes the
majority vote, excludes the minority without fully respecting the degree of diversifica-
tion of the different opinions. CRITIC method fills this gap, assigning more weight to
“mavericks” and promoting the modern concept of fairness.

Finally, we have recognised that in our minimax model both sub-stages of the gener-
alised two-stage structure have the same bargaining power and improve the overall
efficiency. This is conducive to the development of a cooperative situation. This stands
in contrast with the aggressive method of Kao and Liu (2019). They selected a non-
cooperative approach, in which DMUs act egoistically with a view to maximising their
self-evaluation and downplaying the peer-evaluation. Following this comparison, we
have shown that our proposed minimax (cooperative) model accomplishes a higher ab-
solute cross-efficiency score for each DMU and stage connected with some performance
reward than the respective scores of Kao and Liu (2019).

In Chapter 3, we have initially demonstrated that the combined self-efficiency score of
the target DMUk for the overall system is the product of the combined self-efficiency
measures of DMUk for the two sub-stages. In addition, the combined self-efficiency
measures obtained with our proposed optimistic-pessimistic evaluation and ranking
framework within a two-stage tandem structure, have been compared with the respec-
tive scores obtained with Kao and Hwang’s (2008) approach. Correlation analysis and
further comparisons have suggested that there is a very strong association between the
ranks of these two approaches. However, our approach is more informative within the
self-appraisal context, in that it not only considers the optimistic viewpoint (as in Kao
and Hwang (2008)), but also the pessimistic viewpoint.

Moreover, since there is no absolute discrimination of some inefficient DMUs consid-
ering the combined self-efficiency results at each stage, we have intensified our efforts
towards the extension of the optimistic-pessimistic ranking framework by the use of
the interval cross-efficiency, in which the respective combined self-efficiency score is
embedded. As for the interval cross-efficiency, we have shown that the property of
maintaining the combined self-efficiency measure for each DMU is satisfied both for
the overall system and its individual stages; this accomplishes a more reasoned peer-
appraisal setting that entails the effects of both the optimistic and pessimistic perspec-
tives.

Furthermore, we have viewed each interval cross-efficiency matrix of the correspond-
ing flow as a multi-criteria decision making problem. To solve this problem, we have
initially implemented the goal programming method of Wang and Elhag (2007) to ob-
tain the interval local weight of each criterion. To delineate the interval global weight
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of each alternative, we have then suggested a pair of linear programming models, in-
troduced by Entani and Tanaka (2007). Eventually, we have applied the grey relational
analysis tool (Kuo et al., 2008) for ranking the interval global weights.

The unique final ranks obtained via the Grey Relational Grades have reflected the im-
provement of the discriminating power, as compared to the original ranks derived from
the combined self-efficiency measures. This practically means that the DMUs, which
cannot be fully discriminated by the self-evaluation notion, can be discriminated by
the methodologies followed in peer notion. Furthermore, the Grey Relational Grades
have been compared with the cross-efficiency ratings obtained via the aggressive-based
secondary goal model of Kao and Liu (2019). It has been found that our approach is
more multidimensional since it simultaneously considers the most favourable and un-
favourable weight sets of each of the other players, while integrating the respective
combined self-efficiency measure (and not simply the optimistic self-efficiency). Fi-
nally, it has been statistically inferred that the rankings of the DMUs obtained from
the combined self-efficiency measures (self-appraisal), and the grey relational grades
after showing peer-appraisal, are similar with respect to the overall system and its sub-
stages.

In Chapter 4, by applying the traditional black-box model leads to the following: (i)
all internal operations have been entirely neglected, (ii) the efficient DMUs cannot be
easily discriminated, and (iii) it has been impossible to obtain the efficiencies of the con-
stituent departments within the respective Business School. Furthermore, the results
obtained by using Kao’s (2009b) model, have demonstrated that there is still the prob-
lem with the lack of discrimination of the efficient DMUs that cannot lead to a unique
and meaningful ranking. It has also been evident that the efficiencies of the main op-
erational functions within the department of a particular hypothetical Business School
cannot be computed via Kao’s (2009b) model.

In addition, the ranks of the efficiency scores of the overall system obtained via the
newly proposed additive efficiency decomposition or multiplicative efficiency aggre-
gation models have been compared with the overall systems’ ranks of black-box and
Kao’s (2009b) models. It has been statistically inferred that the ranks are quite similar,
and this has been verified by the Spearman rank-order correlation test. However, our
proposed models have allowed us to not only discriminate the efficient units, but also
to simultaneously calculate the efficiencies of the Business School of interest, its depart-
ments, and the operational functions within each department. Hence, decision makers
will be enabled to take certain actions by strengthening the areas of weakness.

In this chapter, we have additionally drawn other compact conclusions related to the
system, the sub-systems, and the efficiencies of their internal units, as well as their type
of relationships. As for the additive decomposition model, the system efficiency is de-
composed into the weighted arithmetic average of those of the sub-systems, where the
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weight of the sub-system k is defined as the proportion of the aggregate input con-
sumed by this sub-system in that consumed by all sub-systems. It has also proven that
the network-hierarchical system efficiency can be decomposed as the weighted average
of the ones of the terminal units, belonging to the hierarchical structure of sub-system
k. As for the multiplicative aggregation model, the system efficiency is the product of
the efficiencies of its parallel sub-systems (internal departments). Finally, the system
efficiency of the additive decomposition model has been confirmed to be greater than
or equal to the respective one in the multiplicative aggregation model.

5.3 Research Contributions

This thesis has several appealing contributions to the investigation of systems or organ-
isations composed of a number of independent and/or interdependent internal opera-
tions. These contributions have the potential to enhance the fairness and discriminatory
power of the evaluation of DMUs with significant internal structure by DEA.

Chapter 2 has identified a novel route to address the challenge of attaining fairness
in the evaluation outcomes of the generalised two-stage DEA structure of Yu and Shi
(2014). In particular, we have argued that fairness, or the acceptance of an evaluation
and ranking by the different DMUs and their constituent flows, is improved by in-
creasing measures related to the degree of discriminatory power, the weight scheme,
and the minority vote. As a result, we have proposed a combination of an additive
self-efficiency aggregation model, a multi-objective minimax secondary model, and the
CRITIC method in an aim to achieve these aspects of fairness and thus a better degree
of cooperation between stages of a DMU and among DMUs. This combination is novel
in the DEA literature. The application of the CRITIC method to the DEA context is by
itself novel.

Chapter 3 has provided new insight into the traditional optimistic-pessimistic evalua-
tion and ranking DEA framework. This methodological framework has been adapted
to the specifications of the more realistic two-stage tandem system to better reflect
the complex interconnections among its internal sub-systems. There are two salient
features that have been explored towards the evaluation of DMUs with such a net-
work structure. As for the first, DMUs have been evaluated based on their own most
favourable (optimistic) and unfavourable (pessimistic) optimal multipliers and com-
bined via the geometric average efficiency. As for the second, DMUs have also been
assessed in relation to the most favourable and unfavourable weight profiles of each
of the other DMUs while integrating the combined self-efficiency measure. The latter
statement serves the objectives of the interval cross-efficiency concept.

Chapter 4 has recognised the necessity of assessing a company, in which the network
scheme might intertwine with a hierarchical structure. We have, therefore, proposed an
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embedded hierarchical network structure within a multi-function parallel system. In
such a scheme, the constituent sub-systems act independently from one another. This
novel network DEA structure can not only discriminate the efficient DMUs, but also
calculate simultaneously the efficiencies of the system, its internal parallel sub-systems,
and their internal units arranged in a hierarchical form. Their relationships have also
been identified. Our ultimate goal, in this chapter, has been to indicate patterns related
to the examined system’s past achievements, in order to make more concrete future
suggestions.

5.4 Research Limitations

While this thesis presents strong results and insightful recommendations and conclu-
sions in ensuring appropriate conditions for a fairer evaluation and ranking of DMUs
with a network DEA structure, some limitations and shortcomings are also acknowl-
edged as follows.

In Chapter 2, we have proposed an additive self-efficiency aggregation model in the
spirit of Chen et al. (2009). This is the basic self-evaluation model without the fur-
ther improvements introduced in later chapters. In such a model, the system efficiency
is defined as the weighted arithmetic average of its sub-stages. As for its decompo-
sition weights, Ang and Chen (2016) proved that they are non-increasing in the or-
der of sub-stages. Put simply, they highlighted that earlier stages would be assigned
higher relative importance, affecting the system’s efficiency to a greater extent. Based
on that, they also demonstrated that the overall and sub-stages’ efficiency scores are
prone to the impact of the decomposition weights. We acknowledge this as a limita-
tion of our study, and we believe that a re-definition of the weights, reflecting Ang and
Chen’s (2016) research, could accommodate such an issue. In addition, this chapter
has successfully managed to consider various factors to attain fairness in the evalua-
tion outcomes of DMUs with a generalised two-stage DEA structure. As a result, our
methodological contributions could easily attract the attention of decision-makers in
various industries. The utilisation of our proposed techniques in real-world cases and
contexts would be essential and interesting.

In Chapter 3, one of the main steps of the grey relational analysis methodology, used to
rank the interval ultimate cross-efficiencies within an interval cross-efficiency matrix, is
the calculation of the grey relational grade. It is defined as the weighted average of the
grey relational coefficients, where the weight of the respective criterion is subjectively
determined by the decision maker. To better reflect the reality, we would have taken
advantage of an existing powerful multi-criteria decision-making method, such as the
analytic network process (Saaty and Vargas, 2013) or the best-worst method (Rezaei,
2016), to identify in an objective manner the weights. Furthermore, we have recognised
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that the grey relational grade is just an index that can only capture the rank rather than
an efficiency measure. In other words, there is no sufficient information to how to
identify the DEA-efficient DMUs that constitute the best-practice frontier.

In Chapter 4, the evaluated DMUs should have the same network hierarchical struc-
ture. We acknowledge that this requirement will potentially decrease the applicability
of the network scheme, since the competing DMUs in a great number of real-life cases
do not have exactly the same structure. We believe that this issue can be accommodated
in a future research study. Moreover, the proposed multiplicative efficiency aggrega-
tion model, that alternatively measures the performance of the multi-function parallel
network hierarchical system, is a non-linear network DEA model due to its non-linear
objective function. Its solution is considered to be more demanding and computation-
ally complex. In addition, a global optimal solution cannot be easily guaranteed. In-
stead of solving a series of parametric linear programs, our model could have been
transformed into either a second order cone programming or a semi-definite program-
ming problem, following the spirit of Chen and Zhu (2017) and Kuo et al. (2020) or
Zhang and Chen (2019), respectively. The aforementioned techniques lie in the field
of convex optimization (Boyd et al., 2004) and typically use non-heuristic algorithms
(e.g., interior point method) to generate “feasible approximations and tighter upper bounds
on the global optimal solution” (Zhu, 2020, p.10).

5.5 Future Research Directions

A number of potential directions for future research following on from the work de-
scribed in this thesis are identified as promising.

Firstly, in Chapter 2, the models were developed under the assumption of the constant
returns-to-scale (CRS). A direction for future research could be their advancement to
variable returns-to-scale (VRS) input-oriented DEA models. Another potential path
could be the intention to tweak the CRITIC method by focusing perhaps on the level of
acceptance of the participants on the final evaluation and ranking scheme obtained.

Secondly, in Chapter 3, current research studies the evaluation of the performance of
several DMUs with a two-stage tandem structure in a self and in a peer-appraisal set-
ting, only when the data are positive real numbers, and the DEA models are based on
this condition. Future research could relax this assumption by allowing the data points
(inputs, intermediate measures, and outputs) to be imprecise and lie in an interval.
Other cases to be investigated concern missing data or intervals, where some values
are more likely to occur over other values. In the latter case, since there is no infor-
mation of the probability distributions, fuzzy numbers and mathematical operations
(Zimmermann, 2011) could be used as an ideal alternative option.
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Thirdly, in Chapter 4, the discussion of both the additive decomposition and the multi-
plicative aggregation models is under the constant returns to scale assumption. These
models can be expanded to variable returns to scale situation in order to explore their
revised properties. Another challenge for future research could be the measurement
and the evaluation of the performance of a system that requires the integration of a
hierarchical structure into other more complex and less systematic network processes,
such as assembly and disassembly, mixed, and dynamic systems (Cook et al., 2010;
Kao, 2016; Kao, 2017). As a final point, it would be promising to associate the network
DEA models, developed under this paper’s novel network hierarchical structure, with
data science (Zhu, 2020; Shi et al., 2021). More specifically, machine learning models
such as k-nearest neighbours, logistic regression, random forest, classification and re-
gression trees (Brighton and Mellish, 2002; Jordan and Mitchell, 2015; Katsikopoulos
et al., 2021) could, for instance, accomplish the classification of the DMUs into those in
the best-practice frontier and those which are not in this frontier.

Finally, future research could also focus more on the testing of the proposed models
and frameworks with empirical data, that is testing their practical value. It would be
desirable, for instance, to measure the performance, rank, and select the right mixture
of maintenance policies within the shipping industry. We could, alternatively, evaluate
and compare the efficiency of potential designs of a particular type of vessel. This
could make use of different maintenance policies and technical components to fulfil
the requirements of its internal functions arranged in various network DEA formats.
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Appendix A

A.1 Overall system

TABLE A.1: Cross-efficiency Matrix of the overall system for the proposed model
(2.15).

DMUs 1 2 3 4 5 6 7 8 9 10

1 0.936 0.461 0.810 0.654 0.691 0.673 0.647 0.801 0.473 0.859
2 0.155 0.909 0.440 0.615 0.640 0.629 0.666 0.433 0.767 0.077
3 0.467 0.771 1.000 0.772 0.794 0.785 0.772 1.000 0.885 0.224
4 0.738 0.891 0.429 0.894 0.837 0.866 0.891 0.420 0.731 0.850
5 0.287 0.604 0.430 0.677 0.690 0.649 0.689 0.431 0.651 0.208
6 0.941 0.767 1.000 0.955 0.939 1.000 0.964 0.975 0.602 0.738
7 0.462 0.851 0.598 0.955 0.905 0.943 0.955 0.588 0.818 0.263
8 0.524 0.675 1.000 0.706 0.827 0.710 0.715 1.000 0.837 0.326
9 0.472 0.605 0.551 0.581 0.669 0.559 0.588 0.553 0.728 0.362

10 0.738 0.503 0.450 0.661 0.644 0.656 0.653 0.442 0.463 0.844

TABLE A.2: Matrix of relative scores for the overall system for the proposed model
(2.15).

DMUs 1 2 3 4 5 6 7 8 9 10

1 0.993 0.000 0.668 0.194 0.171 0.259 0.158 0.657 0.024 1.000
2 0.000 1.000 0.019 0.091 0.000 0.158 0.208 0.022 0.721 0.000
3 0.397 0.691 1.000 0.511 0.516 0.514 0.490 1.000 1.000 0.189
4 0.742 0.959 0.000 0.835 0.658 0.697 0.807 0.000 0.635 0.989
5 0.168 0.319 0.003 0.255 0.168 0.204 0.268 0.019 0.446 0.167
6 1.000 0.683 1.000 1.000 1.000 1.000 1.000 0.957 0.329 0.845
7 0.391 0.869 0.297 0.998 0.887 0.870 0.976 0.289 0.841 0.238
8 0.469 0.478 1.000 0.333 0.627 0.342 0.338 1.000 0.886 0.319
9 0.403 0.320 0.214 0.000 0.097 0.000 0.000 0.229 0.627 0.364

10 0.742 0.093 0.036 0.213 0.013 0.220 0.173 0.037 0.000 0.980

Std Deviation 0.332 0.354 0.446 0.374 0.370 0.331 0.361 0.436 0.347 0.397
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TABLE A.3: Symmetric Matrix for the overall system for the proposed model (2.15).

DMUs 1 2 3 4 5 6 7 8 9 10

1 0.538 -0.655 0.383 -0.185 -0.163 -0.129 -0.262 0.386 -0.473 0.508
2 -0.536 0.384 -0.360 -0.368 -0.362 -0.353 -0.282 -0.359 0.250 -0.467
3 -0.438 0.238 0.429 -0.219 0.077 -0.211 -0.192 0.449 0.771 -0.608
4 0.109 0.019 -0.745 0.007 -0.290 -0.018 0.026 -0.763 -0.584 0.350
5 -0.160 0.160 -0.621 -0.138 -0.248 -0.183 -0.105 -0.628 -0.118 -0.020
6 0.339 0.107 0.345 0.607 0.541 0.620 0.582 0.335 -0.050 0.247
7 -0.245 0.577 -0.477 0.382 0.258 0.317 0.437 -0.488 0.187 -0.183
8 -0.380 -0.143 0.454 -0.423 -0.124 -0.417 -0.429 0.480 0.562 -0.530
9 -0.103 -0.567 -0.107 -0.861 -0.760 -0.834 -0.877 -0.092 -0.228 -0.040

10 0.610 -0.578 -0.137 -0.128 -0.303 -0.093 -0.189 -0.149 -0.827 0.737

Conflict 10.265 10.459 10.836 11.326 11.375 11.301 11.290 10.829 10.509 10.005

Information 3.412 3.707 4.828 4.236 4.213 3.743 4.081 4.725 3.642 3.967

Final Weight 0.084 0.091 0.119 0.104 0.104 0.092 0.101 0.117 0.090 0.098

A.2 Stage 1

TABLE A.4: Cross-efficiency Matrix of the stage 1 for the proposed model (2.15).

DMUs 1 2 3 4 5 6 7 8 9 10

1 1.000 0.335 0.319 0.526 0.526 0.535 0.526 0.526 0.266 0.970
2 0.050 0.924 0.412 0.516 0.578 0.541 0.578 0.578 1.000 0.052
3 0.133 0.664 0.889 0.666 0.666 0.663 0.666 0.666 0.800 0.145
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.150 0.572 0.557 0.659 0.676 0.669 0.676 0.676 0.613 0.153
6 0.875 0.660 0.398 0.962 1.000 1.000 1.000 1.000 0.413 0.837
7 0.167 0.830 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.182
8 0.250 0.728 0.697 0.743 0.755 0.749 0.755 0.935 0.770 0.254
9 0.250 0.500 0.437 0.449 0.456 0.452 0.456 0.456 0.499 0.250

10 1.000 0.417 0.464 0.602 0.596 0.605 0.596 0.596 0.383 0.985
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TABLE A.5: Matrix of relative scores for the stage 1 for the proposed model (2.15).

DMUs 1 2 3 4 5 6 7 8 9 10

1 1.000 0.000 0.000 0.139 0.128 0.150 0.128 0.128 0.000 0.968
2 0.000 0.886 0.137 0.121 0.223 0.162 0.223 0.223 1.000 0.000
3 0.088 0.495 0.837 0.394 0.386 0.385 0.386 0.386 0.728 0.099
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.105 0.357 0.350 0.380 0.404 0.396 0.404 0.404 0.473 0.107
6 0.868 0.488 0.116 0.932 1.000 1.000 1.000 1.000 0.200 0.828
7 0.123 0.744 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.137
8 0.211 0.592 0.555 0.533 0.550 0.542 0.550 0.880 0.686 0.213
9 0.211 0.248 0.174 0.000 0.000 0.000 0.000 0.000 0.318 0.209

10 1.000 0.124 0.213 0.277 0.257 0.280 0.257 0.257 0.160 0.984

Std Deviation 0.442 0.323 0.383 0.377 0.380 0.381 0.380 0.399 0.379 0.429

TABLE A.6: Symmetric Matrix for the stage 1 for the proposed model (2.15).

DMUs 1 2 3 4 5 6 7 8 9 10

1 0.705 -0.673 -0.416 -0.253 -0.297 -0.257 -0.297 -0.316 -0.663 0.703
2 -0.565 0.206 -0.272 -0.471 -0.418 -0.457 -0.418 -0.418 0.236 -0.571
3 -0.661 0.318 0.318 -0.098 -0.083 -0.107 -0.083 -0.092 0.410 -0.658
4 0.285 -0.078 -0.224 -0.491 -0.502 -0.502 -0.502 -0.413 -0.082 0.290
5 -0.621 0.568 0.370 0.309 0.344 0.313 0.344 0.375 0.531 -0.619
6 0.411 0.087 0.059 0.581 0.580 0.592 0.580 0.620 -0.065 0.411
7 -0.570 0.617 0.525 0.456 0.482 0.455 0.482 0.509 0.580 -0.566
8 -0.652 0.517 0.307 0.160 0.193 0.161 0.193 0.346 0.513 -0.650
9 -0.063 -0.434 -0.521 -0.850 -0.850 -0.851 -0.850 -0.892 -0.313 -0.069

10 0.706 -0.688 -0.389 -0.252 -0.300 -0.258 -0.300 -0.321 -0.669 0.704

Conflict 11.024 9.559 10.242 10.908 10.853 10.910 10.853 10.601 9.520 11.025

Information 4.869 3.092 3.921 4.115 4.123 4.162 4.123 4.231 3.610 4.727

Final Weight 0.119 0.075 0.096 0.100 0.101 0.102 0.101 0.103 0.088 0.115
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A.3 Stage 2

TABLE A.7: Cross-efficiency Matrix of the stage 2 for the proposed model (2.15).

DMUs 1 2 3 4 5 6 7 8 9 10

1 0.908 1.000 0.810 1.000 1.000 0.969 0.978 0.801 1.000 0.696
2 0.604 0.886 0.440 0.889 0.734 0.802 0.884 0.433 0.610 0.782
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.641 0.735 0.429 0.741 0.679 0.710 0.736 0.420 0.547 0.636
5 0.482 0.684 0.430 0.715 0.709 0.617 0.715 0.431 0.703 0.717
6 1.000 1.000 1.000 0.945 0.868 1.000 0.913 0.975 0.937 0.568
7 0.840 0.886 0.598 0.890 0.812 0.876 0.890 0.588 0.670 0.905
8 1.000 0.571 1.000 0.634 0.936 0.645 0.639 1.000 0.926 0.736
9 0.605 0.903 0.551 1.000 1.000 0.762 1.000 0.553 1.000 1.000

10 0.641 0.795 0.450 0.800 0.718 0.750 0.791 0.442 0.592 0.640

TABLE A.8: Matrix of relative scores for the stage 2 for the proposed model (2.15).

DMUs 1 2 3 4 5 6 7 8 9 10

1 0.822 1.000 0.668 1.000 1.000 0.920 0.940 0.657 1.000 0.297
2 0.236 0.735 0.019 0.696 0.172 0.483 0.680 0.022 0.137 0.494
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.307 0.382 0.000 0.293 0.000 0.243 0.269 0.000 0.000 0.158
5 0.000 0.263 0.003 0.221 0.096 0.000 0.212 0.019 0.343 0.345
6 1.000 1.000 1.000 0.850 0.590 1.000 0.758 0.957 0.862 0.000
7 0.691 0.735 0.297 0.699 0.415 0.676 0.696 0.289 0.270 0.779
8 1.000 0.000 1.000 0.000 0.801 0.073 0.000 1.000 0.837 0.388
9 0.237 0.775 0.214 1.000 1.000 0.379 1.000 0.229 1.000 1.000

10 0.307 0.523 0.036 0.453 0.124 0.348 0.420 0.037 0.099 0.165

Std Deviation 0.383 0.343 0.446 0.361 0.410 0.372 0.354 0.436 0.419 0.353
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TABLE A.9: Symmetric Matrix for the stage 2 for the proposed model (2.15).

DMUs 1 2 3 4 5 6 7 8 9 10

1 -0.263 0.121 -0.215 0.153 -0.073 -0.023 0.158 -0.219 -0.012 0.142
2 -0.307 0.111 -0.540 -0.030 -0.698 0.048 -0.052 -0.562 -0.768 -0.357
3 0.338 -0.063 0.343 -0.040 0.324 0.068 -0.049 0.344 0.360 -0.022
4 -0.029 0.348 -0.260 0.198 -0.376 0.336 0.160 -0.282 -0.451 -0.417
5 -0.723 -0.125 -0.804 -0.029 -0.444 -0.399 0.000 -0.803 -0.576 0.173
6 0.479 0.310 0.526 0.332 0.516 0.395 0.333 0.527 0.527 0.246
7 -0.145 0.235 -0.380 0.051 -0.573 0.225 0.004 -0.405 -0.615 -0.592
8 0.226 -0.095 0.422 0.056 0.682 -0.061 0.081 0.445 0.704 0.345
9 -0.853 -0.268 -0.911 -0.222 -0.679 -0.528 -0.200 -0.913 -0.719 0.036

10 -0.172 0.254 -0.381 0.119 -0.498 0.205 0.090 -0.403 -0.552 -0.338

Conflict 11.450 9.172 12.201 9.410 11.820 9.733 9.476 12.271 12.103 10.785

Information 4.382 3.143 5.437 3.401 4.848 3.616 3.356 5.354 5.076 3.807

Final Weight 0.103 0.074 0.128 0.080 0.114 0.085 0.079 0.126 0.120 0.090
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Appendix B

B.1 Overall system and Grey Relational Analysis

TABLE B.1: Normalisation of data, calculation of grey relational distance and grey
relational coefficient for the overall system

DMU Normalisation of data Grey relational distance Grey relational coefficient
C1 C2 C1 C2 C1 C2

1 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000
2 0.3132 0.2217 0.6868 0.7783 0.4213 0.3911
3 0.1851 0.1477 0.8149 0.8523 0.3803 0.3697
4 0.1456 0.1181 0.8544 0.8819 0.3692 0.3618
5 0.2941 0.1872 0.7059 0.8128 0.4146 0.3809
6 0.3847 0.3046 0.6153 0.6954 0.4483 0.4183
7 0.1267 0.0376 0.8733 0.9624 0.3641 0.3419
8 0.1861 0.1313 0.8139 0.8687 0.3806 0.3653
9 0.2349 0.1372 0.7651 0.8628 0.3952 0.3669
10 0.0000 0.0000 1.0000 1.0000 0.3333 0.3333

Reference value 1.0000 1.0000 — — — —

B.2 Stage 1 and Grey Relational Analysis

TABLE B.2: Normalisation of data, calculation of grey relational distance and grey
relational coefficient for the stage 1

DMU Normalisation of data Grey relational distance Grey relational coefficient
C1 C2 C1 C2 C1 C2

1 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000
2 0.2585 0.3467 0.7415 0.6533 0.4028 0.4335
3 0.0159 0.0043 0.9841 0.9957 0.3369 0.3343
4 0.0397 0.0834 0.9603 0.9166 0.3424 0.3529
5 0.2284 0.2278 0.7716 0.7722 0.3932 0.3930
6 0.2753 0.3259 0.7247 0.6741 0.4083 0.4259
7 0.0827 0.0756 0.9173 0.9244 0.3528 0.3510
8 0.0135 0.0000 0.9865 1.0000 0.3364 0.3333
9 0.0732 0.0797 0.9268 0.9203 0.3504 0.3520
10 0.0000 0.0015 1.0000 0.9985 0.3333 0.3337

Reference value 1.0000 1.0000 — — — —
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B.3 Stage 2 and Grey Relational Analysis

TABLE B.3: Normalisation of data, calculation of grey relational distance and grey
relational coefficient for the stage 2

DMU Normalisation of data Grey relational distance Grey relational coefficient
C1 C2 C1 C2 C1 C2

1 0.7556 0.6199 0.2444 0.3801 0.6717 0.5681
2 0.6000 0.2820 0.4000 0.7180 0.5555 0.4105
3 0.9915 1.0000 0.0085 0.0000 0.9833 1.0000
4 0.6230 0.4104 0.3770 0.5896 0.5701 0.4589
5 0.6204 0.2765 0.3796 0.7235 0.5685 0.4087
6 0.7209 0.5041 0.2791 0.4959 0.6418 0.5021
7 0.4250 0.0000 0.5750 1.0000 0.4651 0.3333
8 1.0000 0.9409 0.0000 0.0591 1.0000 0.8942
9 0.8417 0.5893 0.1583 0.4107 0.7596 0.5491
10 0.0000 0.0602 1.0000 0.9398 0.3333 0.3473

Reference value 1.0000 1.0000 — — — —
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