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Satellite Flood Inundation Assessment and Forecast
Using SMAP and Landsat
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Abstract—The capability and synergistic use of multisource
satellite observations for flood monitoring and forecasts is crucial
for improving disaster preparedness and mitigation. Here, surface
fractional water cover (FW) retrievals derived from Soil Moisture
Active Passive (SMAP) L-band (1.4 GHz) brightness temperatures
were used for flood assessment over southeast Africa during the
Cyclone Idai event. We then focused on five subcatchments of the
Pungwe basin and developed a machine learning based approach
with the support of Google Earth Engine for daily (24-h) forecasting
of FW and 30-m inundation downscaling and mapping. The Classi-
fication and Regression Trees model was selected and trained using
retrievals derived from SMAP and Landsat coupled with rainfall
forecasts from the NOAA Global Forecast System. Independent val-
idation showed that FW predictions over randomly selected dates
are highly correlated (R = 0.87) with the Landsat observations.
The forecast results captured the flood temporal dynamics from
the Idai event; and the associated 30-m downscaling results showed
inundation spatial patterns consistent with independent satellite
synthetic aperture radar observations. The data-driven approach
provides new capacity for flood monitoring and forecasts leveraging
synergistic satellite observations and big data analysis, which is
particularly valuable for data sparse regions.

Index Terms—Flood, Global Forecast System (GFS), Google
Earth Engine (GEE), Landsat, Soil Moisture Active Passive
(SMAP).

I. INTRODUCTION

EXTREME rainfall-driven flooding is one of the most
widespread and costly natural disasters [1] and is expected
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to become more frequent with global warming [2]. As one of the
deadliest and most devastating storms on record in the southern
hemisphere, tropical cyclone Idai brought extreme rainfall to
southeast Africa in March 2019, affecting about 3 million peo-
ple, damaging more than 200 000 houses and resulting in more
than 1000 deaths and total damages exceeding $2 Billion [3].
Timely assessment and early warning systems are essential to
disaster preparedness and rapid responses. Advances in remote
sensing and big data techniques provide new opportunities for
building efficient and effective all-weather and multiscale flood
assessment and forecast capabilities.

Satellite optical-infrared (IR) and microwave remote sensing
observations are suitable for delineating flood inundation ex-
tent over large areas due to the unique surface reflectance and
microwave signatures of standing water [4]. Satellite optical-IR
sensors such as PlanetScope multispectral cameras, Landsat, and
MODIS enable accurate detection of open water at submeter to
1000-m spatial resolutions and global coverage at daily to 16-day
cycles [5]−[7]. However, cloud cover and suboptimal solar illu-
mination can severely reduce the number of valid measurements
from optical-IR remote sensing, resulting in major data loss
during rainfall-driven flood events [8]. Despite the drawbacks
likely limiting near-real-time flood monitoring, long-term water
inundation records composited from clear-sky optical-IR obser-
vations are valuable in quantifying historical water inundation
dynamics and flood feasibility [9], [10].

Microwave remote sensing is another powerful tool for flood
monitoring due to the strong microwave sensitivity to surface
water, and relative insensitivity to solar illumination, atmo-
sphere, and cloud cover constraints [11]. In addition, microwave
signals are more capable of detecting water features under veg-
etation relative to optical-IR observations, although the degree
of vegetation contamination and signal loss is proportional to
channel frequency, with greater vegetation transparency and
surface water sensitivity at lower microwave frequencies [11],
[12]. Active microwave remote sensing allows for flood mapping
under all-weather conditions at resolutions on the order of meters
to a few kilometers [13]−[16] but with infrequent monitoring
provided from existing satellite synthetic aperture radar (SAR)
based observations (e.g., approximately six-day global coverage
for Sentinel-1 constellations) or limited spatial coverage from
global navigation satellite (GNSS) based techniques (e.g., areas
between 38° N and 38° S latitude for Cyclone GNSS constella-
tion) [17].
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Passive microwave radiometry has also been used for flood
mapping and provides capabilities for global monitoring with
high temporal frequency (∼1−3 days) but at coarse (5−25 km)
spatial scales [18]−[21]. For example, the National Aeronautics
and Space Administration (NASA) Soil Moisture Active Passive
(SMAP) and European Space Agency (ESA) Soil Moisture
and Ocean Salinity (SMOS) missions provide low frequency
(L-band) microwave emission observations with enhanced sen-
sitivity to water signals underlying vegetation [22], [23], though
potential applications requiring finer landscape level assess-
ments of surface water dynamics are limited by the coarse
(∼40 km) SMAP footprint [21].

Due to the complementary nature of different remote sensing
techniques, data fusion approaches combining multisensor ob-
servations show promise for enhanced flood mapping in terms
of accuracy, temporal coverage, and spatial resolution [24], [25].
The emergence of cloud-based geospatial processing platforms
such as Google Earth Engine (GEE) provides an efficient means
for rapid access and combined analysis of multisource data [26].
The capability of accurate flood mapping within minutes was
achieved by analyzing hundreds of Sentinel-1 SAR and Landsat
images archived on the GEE [27]–[29]. In addition to exploiting
a growing number of observations from current satellite sensors
through big data techniques, planned next generation satellite
missions including the NASA-ISRO SAR and NASA-CNES
SWOT radar altimetry missions will enable further enhancement
in global water cycle and flood assessment leveraging satellite
river gauging and high spatial−temporal resolution observations
[30], [31].

While timely satellite assessment is crucial to disaster emer-
gency response at the time of flooding, effective flood inundation
forecasts are indispensable for early warning systems, disas-
ter preparedness, and management. Traditional flood forecast
systems exploit flood-related hydrologic processes simulated
by physical models, which rely on quantified descriptions of
catchment and river physical characteristics, and are driven by
rainfall outputs from a numerical weather prediction (NWP)
model [32]−[34]. For example, a flood forecasting system uti-
lizing graphics processing unit computation showed potential in
predicting water level and flood extent with 34 h of lead time
for a selected catchment [35]. Considering the highly nonlinear
correspondence between rainfall and flood inundation, and the
lack of accurate descriptions of hydrologic parameters at sub-
kilometer levels, data-driven approaches represent an alternative
to physically based forecast systems by leveraging the flexibility
of machine-learning methods in linking rainfall inputs and inun-
dation outputs [36]−[38]. Despite recent advances in empirical
data-driven flood forecasts, direct flood observations (e.g., in-
undation extent) from satellites have not been comprehensively
utilized in current forecast systems. The flood inundation pattern
inherent in long-term satellite observations has also not been
fully utilized to inform regional flood forecasts. The capabilities
of efficient and fine-scale (e.g., 30-m) flood inundation forecasts
targeting individual houses or small neighborhoods are still lack-
ing, especially for data sparse regions where effective preflood
disaster preparedness and risk mitigation are greatly needed.

Here, we used global NASA SMAP surface fractional water
cover (FW) observations [21] for monitoring flood inundation

Fig. 1. (a) Five unit catchments (delineated in red) within the Pungwe basin
and (b) water occurrence from 2000 to 2019 over the catchments derived from
the USGS Landsat water mask.

during the cyclone Idai event over southeast Africa. We
developed a machine-learning scheme for obtaining finer (30-m)
resolution flood forecasts by fusing synergistic information from
satellite observations and NWP outputs. Detailed descriptions
of the methods, results, and discussion from this article are
presented in Sections II, III, and IV, respectively.

II. METHODS

A. Study Region

Our study involves regional flood mapping over southeast
Africa (latitude: −5° to −35°; longitude: 18° to 50°), along with
finer (30-m) scale flood inundation forecast assessments over
five unit catchments (∼163 km2) within the lower Pungwe River
basin [Fig. 1(a)]. The basin covers ∼31 000 km2 extending from
Zimbabwe’s eastern highlands to the Sofala province lowlands
in Mozambique; the region experiences seasonal wet and dry
cycles with recurring drought and flood events [39]. Cyclone
Idai made landfall near Beira, the Sofala provincial capital,
on the night of March 14 to March 15, 2019, as a category
2 storm [40]. As the storm moved slowly inland, it brought
extreme rainfall that led to devastating flooding in Mozambique
and triggered major flooding over the larger southeast African
region [40]. Regional flooding was exacerbated by persistent
rainfall and wet conditions in the weeks prior to the Idai event.
The flood inundation distributions over southeast Africa were
mapped using SMAP FW data in our study. For evaluating the
potential utility of satellite-based flood forecasts, we focused on
the five unit catchments of the Pungwe basin [Fig. 1(b)] within
the Sofala province, where severe flooding occurred during the
Idai event [40].

B. Datasets

Five dynamic datasets were used in this study including the
SMAP FW record [21], the NASA-United States Department of
Agriculture (USDA) SMAP global soil moisture dataset [41],
[42], United States Geological Survey (USGS) Landsat water
mask data [43], National Oceanic and Atmospheric Adminis-
tration (NOAA) National Centers for Environmental Prediction
(NCEP) Global Forecast System (GFS) 384-Hour Predicted
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Atmosphere Data [44], and NASA Advanced Rapid Imaging
and Analysis (ARIA) flood inundation products [45], [46].
One static dataset, depicting unit catchment boundaries from
the Multi-Error-Removed-Improved-Terrain (MERIT) Basins
dataset [47], was also used for the study. The SMAP FW and
MERIT boundary data were uploaded to GEE in this study
for performing the multisource analysis with the other datasets,
which are accommodated and regularly updated on GEE. Except
for the static MERIT boundary data, all other datasets used in
this study were temporally dynamic.

The FW data derived using SMAP brightness temperature
(Tb) observations represent the areal proportion of standing
water within the sensor footprint (∼40 km resolution) [21]. The
SMAP mission was successfully launched in January 2015 and
provides desirable characteristics for FW monitoring, including
L-band (1.4 GHz) microwave sensitivity to surface water and
reduced sensitivity to atmosphere contamination and overlying
vegetation cover relative to optical-IR and higher-frequency
microwave satellite observations, consistent sensor view ge-
ometry, well-calibrated Tb retrievals, and advanced detection
and mitigation of radio frequency interference [22]. The SMAP
FW annual averages are highly correlated (R = 0.85) with
alternative global water maps derived from MODIS (MOD44W)
observations, while capturing both flash flooding and seasonal
inundation variations from 1−3 day global coverage [21]. The
SMAP ascending orbit FW data from March 11 to 19, 2019
were used directly for regional mapping of the Idai flood event;
and the multiyear record (July 2015 to March 2019) was used
along with Landsat and GFS records for the flood forecasts by
accounting for the surface water conditions prior to the forecast
dates. We used FW retrievals from SMAP ascending orbits due to
their higher accuracy relative to the alternative estimates derived
from descending orbit observations [21].

The NASA-USDA SMAP global soil moisture dataset is
generated by assimilating SMAP surface soil moisture into the
modified two-layer Palmer model for providing both surface and
subsurface soil moisture over the globe at 0.25° × 0.25° spatial
resolution [41]. The water-holding capacity of saturated soil in
the surface layer is assumed to be 25.4 mm [41]. The resulting
soil moisture product showed improved correlation with in situ
measurements relative to model outputs derived without assimi-
lating SMAP products [42]. Here, the surface soil moisture data
were used to depict background soil wetness conditions prior to
the target prediction date for the flood forecasts.

The 30-m Landsat water mask data integrated in the USGS
Landsat-7/8 surface reflectance products [48] were used to cal-
culate the FW of the selected unit catchments and served as the
target variable in the flood forecast model. The Landsat water
mask data were originally derived using the Fmask algorithm
[48], which has been widely used with optical-IR imagery for
distinguishing land, water, cloud, and cloud shadow, with a
documented 2% omission error and 14% commission error [43].
For this study, only Landsat observations with cloud coverage
less than 20% were selected to calculate the reference FW values
for training and validating the forecast model. In addition, the
Landsat data from 2000 to 2019 were used to generate water
occurrence data, which represents overall flood feasibility for the

past two decades. For example, floods have frequently occurred
in the selected unit catchments as evidenced by the widespread
distribution of areas with high water occurrence [e.g., >30%
highlighted in light blue to purple; Fig. 1(b)].

The GFS is a three-dimensional weather forecast model op-
erationally running at NOAA-NCEP [49] and archived on GEE
for the record since July 2015. The GFS couples a variety of
models accounting for atmosphere, ocean, land, and sea ice
processes, and provides up to 384-h forecasts, with 3-h forecast
intervals for selected model outputs as gridded forecast variables
[49]–[51]. The GFS precipitation forecasts have been coupled
with hydrological models to improve runoff predictions [50]
and understanding of hydrological processes [52]. The GFS
forecasts of cumulative surface precipitation at 0.25° spatial
resolution served as predictors for deriving the flood inundation
forecast. We also used GFS precipitation outputs to describe
background rainfall conditions prior to the forecast date.

The catchment boundary delineations were derived from
MERIT hydrography data [47], which account for topographic
effects using a 3-arcsec (∼90 m) resolution DEM [53]. The
MERIT Basins dataset provides enhanced delineation of unit
catchments over the globe, including approximately 2.94 million
vectorized river flowlines and unit catchments [47]; these data
provided the required hydrography for the river routing and
hydrological simulations from this study.

Flood maps independently derived by the NASA Jet Propul-
sion Laboratory ARIA project [47] using space-borne SAR
observations were used for assessing the inundation forecast
results from this study. ARIA flood proxy maps for March 19
and March 23, 2019 over Mozambique were produced using
imagery acquired by Sentinel-1 SAR and the Phased Array type
L-band SAR (PALSAR) onboard the Advanced Land Observing
Satellite 2 (ALOS-2), respectively. The ARIA maps delineated
areas likely flooded due to Cyclone Idai at a spatial resolution of
30 m for Sentinel-1 and 25 m for ALOS-2 results. The ALOS-2
flood maps were resampled to 30-m resolution for comparing
against the Sentinel-1 and model forecast flood results from this
study. The processed images were compared to each other for
cross-validation, while larger differences and uncertainties in
the satellite derived flood maps are expected over urban and
vegetated areas [46].

C. Regional Flood Mapping Using SMAP

Regional flood mapping was performed by analyzing the
SMAP derived FW dynamics. For deriving SMAP FW data,
an ancillary lookup table (LUT) was first established to provide
reference L-band microwave emissivities for land and water end-
members, excluding ocean areas, under a range of land surface
conditions defined by an existing Advanced Microwave Scan-
ning Radiometer (AMSR) global land parameter data record
[21], [54]. Land and water endmembers for the LUT were
identified as grid cells fully (100%) land and fully water covered
using an ancillary global land cover map and the AMSR land
parameter record. Based on the ancillary LUT and using SMAP
daily ascending orbit Tb (L1CTB) retrievals as primary inputs,
daily FW retrievals were derived over the global domain using



6710 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 2. Algorithm flowchart for machine learning based satellite flood forecast
and inundation mapping.

a difference ratio (DR) of SMAP emissivities [21]

FW =
(erefhl − eobsh )

(erefhl − erefhw)
≈ (T ref

bhl − T obs
bh )

(T ref
bhl − T ref

bhw)
(1)

where h denotes H-polarization, l is for pure land, w is for pure
water, ref is the reference emissivity (or Tb) under the LUT
defined land surface condition, and obs is the SMAP observed
emissivity (or Tb). The resulting SMAP FW retrievals were
derived on a daily basis for each 36-km grid cell, consistent with
the SMAP L1CTB global EASE-grid format. The inundation
area was calculated using the temporal increase of FW extent
relative to a preflood period for the 36-km grid cells. For the
Idai flood, the averaged surface water conditions during March
11−13, 2019 prior to the cyclone Idai landfall on March 15 were
used to describe the preflood inundation level. The increase in
FW extent for March 17−19, 2019 relative to the preflood period
quantified the newly flooded area due to the cyclone-driven
rainfall.

D. Machine Learning Based Satellite Flood Forecast

Rainfall-driven flood inundation patterns are primarily gov-
erned by soil infiltration and saturation excess runoff mecha-
nisms, whereas inundation spatial variability is controlled by
topography, soil, rainfall, and vegetation properties [55]. For
establishing precipitation and inundation relationships using
data-driven approaches, a major assumption of the flood forecast
is that precipitation is the primary driver of flooding represented
by the satellite observed inundation extent and that these rela-
tionships are consistent between model training (past) and fore-
cast (future) periods. Accordingly, historical satellite inundation
observations together with model precipitation predictions en-
able flood inundation forecasts as demonstrated in the algorithm
flowchart (Fig. 2) and detailed below.

Our analysis was performed using the GEE platform, which is
a web-based service capable of efficient archiving, processing,
visualizing, and analyzing petabyte data. The high-performance
cloud computation capabilities of GEE enable both conventional
spatial analysis and machine learning from a large collection of
datasets including remote sensing imagery, reanalysis data, and

vector data, and for clarifying their interconnections. Similar
to flood predictions based on hydrological models [56], the
potential response of surface inundation to projected rainfall
depends on initial soil wetness conditions. The SMAP products
and previous precipitation information were used to quantify
prior surface and soil wetness levels for the study areas and larger
domain potentially contributing to the flood inundation. Our
data-driven model is region-specific; so only the time-variant
features were used as predictors while implicitly accounting for
the impacts from static variables such as soil properties and
terrain (DEM).

Here we selected the Classification and Regression Trees
(CART) model implemented using GEE to derive 1-day
(24-h) ahead forecasts of FW inundation patterns within the five
Pungwe basin unit catchments [Fig. 1(b)]. The CART model is a
decision-tree type machine-learning approach, which is analyt-
ically and mathematically rigorous and capable of establishing
relationships between target variables and predictors through a
recursive partitioning procedure [57], [58]. The CART mecha-
nism allows for automatic missing value handling, cost-sensitive
learning, dynamic feature construction, and probability tree
estimation [57]. For training and validating the CART model,
the GFS, SMAP, and clear-sky Landsat water mask data were
collected for the period from May 2015 to February 2019, where
80% of the∼100 data records covering different dates were used
for model training and the other 20% for validation. Metrics
including correlation coefficient (R), root mean square error
(RMSE), and RMSE normalized by mean value (nRMSE) were
calculated by comparing predicted and observed FW values and
used for evaluating model performance. The relative importance
of each predictor was determined based on the decrease in node
impurity derived during the model training process [57].

Landsat observations acquired at about 10:00 A.M. local time
were used in our forecast model, while 8:00 A.M. (UTC time; or
10:00 A.M. local time in Mozambique) was set as the time for
predicting catchment FW values. Here, we defined day 0 as the
“current” date to make the forecast, and day +n/−n as the date
n days after or before day 0. The CART model predictors for the
1-day inundation forecast included the following:

1) cumulative surface precipitation forecasted by the GFS
for the 32-h period before 8:00 A.M. (UTC time) of the
forecast date or day +1 over the selected catchments and
adjacent 50-km buffer zones within the Pungwe River
basin (GFS_A32h);

2) cumulative surface precipitation obtained by GFS outputs
for the 24-h period of day−1 over the selected catchments
and adjacent buffer zones (GFS_B24h);

3) mean SMAP FW over the three-day period before the
forecast date over the selected catchments (FW_sc) and
buffer zones (FW_bz);

4) NASA-USDA SMAP global surface soil moisture for the
study area and buffer zones (SSM_bz).

We excluded the SSM and precipitation forecasts as predictors
due to their negligible importance (∼0%) in the flood forecasts
over the selected catchments. The target variable for the flood
forecast is the FW aggregated from the 30-m Landsat water mask
for the selected catchments.



DU et al.: SATELLITE FLOOD INUNDATION ASSESSMENT AND FORECAST USING SMAP AND LANDSAT 6711

Fig. 3. (a) FW extent during peak flood conditions for March 17−19, 2019
depicted by SMAP. (b) Dramatic flooded area increase estimated from SMAP
FW retrievals for the 36-km grid cells relative to the period of March 11−13
around the major city of Beira and the surrounding region.

We also performed a 3-day (72-h) forecast test to evaluate
the model potential for longer term assessments. The associated
long-range predictors were defined similar to the 1-day forecast
except that cumulative surface precipitation forecasted by GFS
for the 80-h period before 8:00 A.M. (UTC time) of day +3 was
used (GFS_A80h) instead of GFS_A32h.

The predicted FW values were downscaled for generating
30-m inundation maps using an empirical interpolation approach
guided by 30-m water occurrence information derived from the
long-term USGS Landsat water mask (Section II-B) [21]. The
water occurrence information was used for prioritizing the pre-
dicted FW allocation sequentially to all 30-m pixels within the
selected catchments. The approach was initially developed for
30-m downscaling of coarse (36-km) grid SMAP FW retrievals,
whereby the 30-m results showed favorable spatial accuracy
for water (70.71%) and land (98.99%) classifications relative to
independent Landsat-8 results over diverse climate, vegetation,
and terrain conditions [21]. The resulting 30-m flood inundation
forecasts were compared with contemporaneous ARIA SAR
derived inundation patterns for independent assessment.

III. RESULTS

A. SMAP Flood Mapping

The SMAP L-band microwave radiometer is optimal for flood
mapping from cyclone events characterized by heavy cloud
cover and intense precipitation. The surface water inundation
was depicted by SMAP FW observations for March 17−19,
2019 [Fig. 3(a)], when extensive inundated areas were identified
in the southeast African countries including Mozambique, Zim-
babwe, Malawi, and Madagascar [59]. Relative to the preflood
period, the dramatic flooded area increase [blue and purple
shades in Fig. 3(b)] around the major city of Beira and the
surrounding areas stemmed from the intense cyclone-driven
rainfall event. Severe floods were also detected by SMAP in
eastern Zimbabwe where riverine and flash flooding were re-
ported [60]. It is noted that the region was affected by extended
rainfall leading up to the cyclone making landfall [61], which
likely predisposed the region to flooding. The dark blue areas
[Fig. 3(a)] are large lakes (e.g., Lake Bangweulu and Lake

Fig. 4. Comparisons between FW data observed by Landsat and predicted by
the 1-day forecast CART model for the 163 km2 study area within the Pungwe
basin using the validation dataset covering randomly selected dates (R = 0.87;
RMSE = 0.68%, nRMSE = 25.6%).

Malawi) and seasonal flooded savanna (e.g., Cameia National
Park [62]). The newly flooded areas cover about 27 560.6 and 31
400.2 km2 for Mozambique and Zimbabwe, respectively, due to
rainfall following Idai’s landfall.

B. Flood Inundation Forecast

The 1-day ahead forecast model validation showed predicted
FW values consistent with Landsat observations (Fig. 4; R =
0.87, RMSE = 0.68%; nRMSE = 25.6%). The relative impact
of the model flood forecast predictors, scored from most to least
importance were: FW_sc (0.36), SSM_bz (0.34), GFS_B24h
(0.18), GFS_A32H (0.06), and FW_bz (0.05). The prior surface
water condition over the unit catchments and soil moisture
over the larger region had the greatest influence on the 1-day
inundation forecast; whereas, the inundation changes after day
0 also depended on precipitation since day −1, along with a
relatively small contribution from FW_bz. We then made 1-day
flood forecasts using the trained model for the Idai flood peak
(March 19, 2019) and recession (March 23, 2019) periods.
Accordingly, 76.3% of the unit catchments were predicted as
flooded on March 19, 2019, which suggests intensive flood
inundation in the region and resembles the Sentinel-1 SAR
estimates (82.2%). For March 23, the predicted FW area sharply
dropped to 28.8%, which reflects the flood water receding and
agrees with the PALSAR result (31.3%).

Compared with the 1-day forecast model, the 3-day forecast
validation showed lower correspondence (R = 0.53) between
predicted and observed FW values, along with larger RMSE
1.39% and nRMSE 58.19% differences. The order of importance
of the model predictors was: SSM_bz (0.43), FW_sc (0.19),
FW_bz (0.16), GFS_A80h (0.15), and GFS_B24h (0.06). Rela-
tive to the 1-day forecast model, FW_sc and GFS_B42h showed
less control on the inundation forecast, while accumulated pre-
cipitation for the study area after day 0, and surface water and soil
wetness over the surrounding region played a more important
role in the forecast. We also applied the 3-day prediction model
to the Idai event, and the predicted FW values (62.45% for March
19 and 16.85% for March 23) were underestimated by about
24.0% and 46.2% relative to the SAR observations.

The predicted FW values were further downscaled based on
the historical water occurrence map, which indicated higher
flood probability in the northern catchments, especially for the
area adjacent to the Pungwe river, and lower flood probability
in the eastern catchments [Fig. 1(b)]. The 30-m inundation map
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Fig. 5. Inundation maps for March 19, 2019, produced using (a) our machine
learning based approach and (b) ARIA based on Sentinel-1 SAR observations.
Areas without flooding are shown in gray, while red lines denote catchment
boundaries.

Fig. 6. Predicted (a) and observed (b) flood inundation maps for March 23,
2019. The inundation map (b) produced by ARIA was based on ALOS PALSAR
observations. Areas without flooding are shown in gray and red lines denote
catchment boundaries.

downscaled from the 1-day forecast for March 19 [Fig. 5(a)]
showed the northern catchments as heavily flooded, which was
also observed from the ARIA Sentinel assessment. The two line
features in the northern part of the basin are major roads in the
region, which were not predicted as flooded [Fig. 5(a)]. The as-
sociated 30-m inundation map downscaled from the FW forecast
for March 23 correctly predicted flooded areas remaining in the
northern and southern parts of the study area, consistent with the
ARIA PALSAR assessment (Fig. 6). Pixel-based comparisons
with the SAR results showed respective commission and omis-
sion errors for the 30-m water predictions as 16.5% and 28.8%
for March 19, and 43.6% and 49.7% for March 23.

IV. DISCUSSION

The GEE-based analysis showed the potential of data-driven
models in making fine-scale flood inundation forecasts in a data
sparse region using complementary global satellite observations
and NWPs as key model predictors. The resulting 1-day (24-h)
and 3-day (72-h) model forecasts predicted widespread inun-
dation from the Idai cyclone landfall event on March 19 and
the subsequent flood recession on March 23. The 3-day model

forecast skill was meaningful but lower than the 1-day forecast
in terms of correlation and RMSE performance relative to the
Landsat reference. This is expected since the GFS predictions
have generally lower performance with longer lead time [63];
larger uncertainties likely stem from a lack of satellite surface
wetness observations closer to the forecast dates. The SMAP
FW and SSM records were the two most important features in
the 1-day forecast, which suggests that the background surface
wetness level is generally crucial in determining how the coming
precipitation affects short-term (e.g., 1 day) inundation changes
and potential flood risk. Compared with the 1-day forecast,
current soil wetness conditions over the surrounding areas be-
come more important in the 3-day forecast, which suggests the
possible contribution from upstream runoff to the downstream
flooding. The cumulative precipitation over a longer time period
(e.g., the next 80 h) also shows more importance in regulating
inundation relative to shorter period precipitation (e.g., 32 h).

The CART model has the advantage of describing complex
and nonlinear correspondence between predictors and target
variables [64]. However, the regression tree model is built on
locally optimal splits, which may lead to relatively less stable
predictions over variant training datasets compared with more
complex deep-learning methods [64], [65]. One limitation of
our study involves the relatively small data sample population
(∼100) used for training and validating the CART models,
which were built from a relatively short period (July 2015 to
February 2019) when overlapping satellite and GFS forecast
records were available. In addition, tradeoffs were made between
sample size and Landsat image quality. Possible solutions for
increasing the sample size involve using satellite observations
over an extended period and introducing other high-quality
water mapping products from satellite SAR sensors. Besides
possible misclassifications in Landsat water mask data, such as
those resulting from overlying vegetation or mixed-pixel issues,
additional uncertainties related to Landsat FW aggregated for
the catchments may come from partial data loss due to the
remaining cloud cover. It is noted that the machine-learning
model was built based on Landsat water/land classifications,
and cloud-cover constraints only affected the model training
but not the SMAP flood mapping or forecast using the model.
A more robust machine-learning model is likely to be built
using relatively larger data sample size acquired from longer
satellite observations to mitigate possible model overfitting.
Here, an additional test was made for demonstrating possible
model improvement using training data acquired from a longer
study period relative to the approach targeting the Idai event. The
NASA SMAP L3 Radiometer Global Daily 36 km EASE-Grid
Soil Moisture (Version 7) data were first downloaded for the
study region. We then followed the same approach described
in Section II-D to build the 24-h forecast model, but 1) us-
ing the NASA SMAP product in place of the USDA-NASA
SMAP product, which ceased updating in GEE after 2020,
and 2) using a relatively larger data sample population (∼130)
acquired from an extended period from July 1, 2015 to April 30,
2021. Comparisons using the validation dataset showed similar
performance to the model described in Section III-B. For the
model targeting the Idai event (Section III-B), the correlation
coefficients (R) between the model predictions and Landsat
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FW data are 0.94 and 0.87 for the respective training and
validation datasets, while the corresponding R values for the
model updated over the extended period are 0.91 and 0.89.
These results indicate more reliable model performance when
trained using the larger data sample and longer satellite record.
Further model improvements are expected using longer term
satellite observations and weather forecast training data, along
with more complex machine-learning approaches able to exploit
spatial and temporal pattern recognition, such as convolutional
neural network (CNN) methods [66]. The potential of machine-
learning methods can be further explored by estimating regional
inundation directly using multifrequency Tb observations from
space-borne microwave radiometers and developing flood inun-
dation forecast models targeting 30-m pixels though such tests
have constraints under GEE, which is a noncommercial platform
and has a per-user quota on computational resources.

The downscaled flood forecasts provided 30-m inundation
mapping consistent with the SAR results. The downscaling
analysis for the Idai event benefits from the fact that pixel-based
water occurrence information is likely reliably derived from
the long-term Landsat record for the region, where frequent
floods and droughts have occurred. However, the downscaling
approach was constrained by several factors, including SMAP
and Landsat surface water detection limitations over dense veg-
etation, and recent flooding extremes exceeding the historical
satellite record [21]. Additional ancillary information including
preferential inundation areas and flow networks delineated from
digital terrain and surface hydrography data may help improve
the downscaling algorithm. In addition, reconstructed water
occurrence data with greater weighting to more recent obser-
vations may improve downscaling performance. The difference
identified in inundation mapping for major roads (Fig. 5) may
result from the difficulty of SAR observations in distinguishing
water from other low backscattering features such as roads [8].
Part of the inconsistency between the flood forecasts and SAR
observations may also result from the different timing of the
retrievals in sampling the dynamic surface water conditions.
The forecast is made for 10:00 A.M. (local time) when Landsat
daytime observations were acquired for CART model training,
while the Sentinel-1 and ALOS-2 Idai flood mapping results
are derived from, respectively, 18:00 and 12:00 P.M. local time
observations.

V. CONCLUSION

The SMAP FW data effectively captured surface water dy-
namics during the severe tropical cyclone Idai event, indicat-
ing potential utility for regional flood monitoring to inform
disaster assessments. The regional inundation and soil mois-
ture information acquired from SMAP was further combined
with Landsat observations and GFS precipitation forecasts to
establish a GEE-based machine-learning approach for effec-
tive regional flood forecasts. The resulting 1-day (24-h) FW
forecast predictions were highly correlated (R = 0.87) with
contemporaneous Landsat observations and showed relatively
low errors (RMSE= 0.68%; nRMSE= 25.6%). A model feature
importance analysis showed that timely satellite measurements
of surface wetness over the study area are crucial for determining

the 1-day forecast inundation extent from a rainfall-driven flood
event, while the cumulative precipitation over a longer period
and surface wetness information for the surrounding region
become more important for longer (3-day) forecasts. The 1-day
forecasts for the Idai event captured the flood inundation tem-
poral dynamics and 30-m spatial pattern consistent with in-
dependent satellite SAR observations. The approach provides
new capacity for global flood monitoring and forecasts from
synergistic satellite observations, including data sparse regions
of Africa.

ACKNOWLEDGMENT

The GFS data were produced by NOAA NCEP and obtained
from GEE. The Landsat water mask data were provided by the
USGS and archived by GEE. The SMAP brightness temperature
data were downloaded from the National Snow and Ice Data
Center (NSIDC) Distributed Active Archive Center (DAAC),
located in Boulder, CO, USA. The MERIT-basins data can be ac-
cessed from https://www.reachhydro.org/home/params/merit-
basins. The SAR inundation maps were provided courtesy of
the NASA ARIA team (http://aria.jpl.nasa.gov). The original
SAR data were provided by ESA and JAXA. The NASA SMAP
L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture
(Version 7) data can be downloaded from https://nsidc.org/data/
SPL3SMP/versions/7.

REFERENCES

[1] Y. Hong, R. F. Adler, A. Negri, and G. J. Huffman, “Flood and landslide
applications of near real-time satellite rainfall products,” Nat. Hazards,
vol. 43, no. 2, pp. 285–294, 2007.

[2] K. Emanuel, “Assessing the present and future probability of hur-
ricane Harvey’s rainfall,” Proc. Nat. Acad. Sci., vol. 114, no. 48,
pp. 12681–12684, 2017.

[3] S. Devi, “Cyclone Idai: 1 month later, devastation persists,” Lancet,
vol. 393, no. 10181, 2019, Art. no. 1585.

[4] J. Du et al., “Remote sensing of environmental changes in cold regions:
Methods, achievements and challenges,” Remote Sens., vol. 11, no. 16,
2019, Art. no. 1952.

[5] M. L. Carroll et al., “Development of an operational land water mask for
MODIS collection 6, and influence on downstream data products,” Int. J.
Digit. Earth, vol. 10, no. 2, pp. 207–218, 2017.

[6] S. W. Cooley, L. C. Smith, L. Stepan, and J. Mascaro, “Tracking dynamic
northern surface water changes with high-frequency planet cubesat im-
agery,” Remote Sens., vol. 9, no. 12, 2017, Art. no. 1306.

[7] J. W. Jones, “Improved automated detection of subpixel-scale
inundation—Revised dynamic surface water extent (DSWE) partial sur-
face water tests,” Remote Sens., vol. 11, no. 4, 2019, Art. no. 374.

[8] X. Shen, D. Wang, K. Mao, E. Anagnostou, and Y. Hong, “Inundation
extent mapping by synthetic aperture radar: A review,” Remote Sens.,
vol. 11, no. 7, 2019, Art. no. 879.

[9] J. F. Pekel, A. Cottam, N. Gorelick, and A. S. Belward, “High-resolution
mapping of global surface water and its long-term changes,” Nature,
vol. 540, pp. 418–422, 2016.

[10] A. H. Pickens et al., “Mapping and sampling to characterize global inland
water dynamics from 1999 to 2018 with full Landsat time-series,” Remote
Sens. Environ., vol. 243, 2020, Art. no. 111792.

[11] F. T. Ulaby, R. K. Moore, and A. K. Fung, “Microwave remote sensing
fundamentals and radiometry,” in Microwave Remote Sensing: Active and
Passive, vol. 1. Norwood, MA, USA: Artech House Publishers, 1986.

[12] B. Chapman, K. McDonald, M. Shimada, A. Rosenqvist, R. Schroeder, and
L. Hess, “Mapping regional inundation with spaceborne L-Band SAR,”
Remote Sens., vol. 7, pp. 5440–5470, 2015.

[13] C. Chew, J. T. Reager, and E. Small, “CYGNSS data map flood inundation
during the 2017 Atlantic hurricane season,” Sci. Rep., vol. 8, no. 1, pp. 1–8,
2018.

https://www.reachhydro.org/home/params/merit-basins
http://aria.jpl.nasa.gov
https://nsidc.org/data/SPL3SMP/versions/7


6714 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

[14] L. L. Bourgeau-Chavez, E. S. Kasischke, S. M. Brunzell, J. P. Mudd,
K. B. Smith, and A. L. Frick, “Analysis of space-borne SAR data for
wetland mapping in Virginia Riparian ecosystems,” Int. J. Remote Sens.,
vol. 22, no. 18, pp. 3665–3687, 2001.

[15] A. Bartsch et al., “Detection of open water dynamics with ENVISAT
ASAR in support of land surface modelling at high latitudes,” Biogeo-
sciences, vol. 9, no. 2, pp. 703–714, 2012.

[16] J. Liang and D. Liu, “A local thresholding approach to flood water
delineation using sentinel-1 SAR imagery,” ISPRS J. Photogramm. Remote
Sens., vol. 159, pp. 53–62, 2020.

[17] O. Eroglu, M. Kurum, D. Boyd, and A. C. Gurbuz, “High spatio-temporal
resolution CYGNSS soil moisture estimates using artificial neural net-
works,” Remote Sens., vol. 11, no. 19, 2019, Art. no. 2272.

[18] R. Schroeder et al., “Development and evaluation of a multi-year fractional
surface water data set derived from active/passive microwave remote
sensing data,” Remote Sens., vol. 7, no. 12, pp. 16688–16732, 2015.

[19] J. Du, J. S. Kimball, L. A. Jones, and J. D. Watts, “Implementation of
satellite based fractional water cover indices in the pan-Arctic region using
AMSR-E and MODIS,” Remote Sens. Environ., vol. 184, pp. 469–481,
2016.

[20] B. Pham-Duc, C. Prigent, F. Aires, and F. Papa, “Comparisons of global
terrestrial surface water datasets over 15 years,” Hydrometeorol, vol. 18,
pp. 993–1007, 2017.

[21] J. Du et al., “Assessing global surface water inundation dynamics using
combined satellite information from SMAP, AMSR2 and Landsat,” Re-
mote Sens. Environ., vol. 213, pp. 1–17, 2018.

[22] D. Entekhabi et al., “The soil moisture active passive (SMAP) mission,”
Proc. IEEE, vol. 98, no. 5, pp. 704–716, May 2010.

[23] M. Parrens et al., “Global-scale surface roughness effects at L-band as
estimated from SMOS observations,” Remote Sens. Environ., vol. 181,
pp. 122–136, 2016.

[24] X. Tong et al., “An approach for flood monitoring by the combined use of
Landsat 8 optical imagery and COSMO-SkyMed radar imagery,” ISPRS
J. Photogramm. Remote Sens., vol. 136, pp. 144–153, 2018.

[25] K. Irwin, D. Beaulne, A. Braun, and G. Fotopoulos, “Fusion of SAR,
optical imagery and airborne LiDAR for surface water detection,” Remote
Sens., vol. 9, no. 9, 2017, Art. no. 890.

[26] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and
R. Moore, “Google earth engine: Planetary-scale geospatial analysis for
everyone,” Remote Sens. Environ., vol. 202, pp. 18–27, 2017.

[27] B. DeVries, C. Huang, J. Armston, W. Huang, J. W. Jones, and M. W.
Lang, “Rapid and robust monitoring of flood events using sentinel-1 and
Landsat data on the Google earth engine,” Remote Sens. Environ., vol. 240,
2020, Art. no. 111664.

[28] V. L. Inman and M. B. Lyons, “Automated inundation mapping over large
areas using Landsat data and Google Earth Engine,” Remote Sens., vol. 12
no. 8, 2020, Art. no. 1348.

[29] V. Tiwari et al., “Flood inundation mapping-Kerala 2018; harnessing the
power of SAR, automatic threshold detection method and Google Earth
Engine,” PLOS One, vol. 15, no. 8, 2020, Art. no. e0237324.

[30] O. Alvarez-Salazar et al., “Mission design for NISAR repeat-pass inter-
ferometric SAR,” in Proc. Sensors, Syst., Next-Gener. Satellites XVIII. Int.
Soc. Opt. Photon., vol. 9241, 2014, Art. no. 92410C.

[31] L. L. Fu and C. Ubelmann, “On the transition from profile altimeter to
swath altimeter for observing global ocean surface topography,” J. Atmos.
Ocean. Technol., vol. 31, no. 2, pp. 560–568, 2014.

[32] N. Wanders et al., “Development and evaluation of a pan-European
multimodel seasonal hydrological forecasting system,” J. Hydrometeorol.,
vol. 20, no. 1, pp. 99–115, 2019.

[33] H. Wu, M. Huang, Q. Tang, D. B. Kirschbaum, and P. Ward, “Hydromete-
orological hazards: Monitoring, forecasting, risk assessment, and socioe-
conomic responses,” Adv. Meteorol., vol. 2016, 2016, Art. no. 2367939,
doi: 10.1155/2016/2367939.

[34] G. P. Schumann et al., “A first large-scale flood inundation forecasting
model,” Water Resour. Res., vol. 49, no. 10, pp. 6248–6257, 2013.

[35] X. Ming, Q. Liang, X. Xia, D. Li, and H. J. Fowler, “Real-time flood
forecasting based on a high-performance 2-D hydrodynamic model and
numerical weather predictions,” Water Resour. Res., vol. 56, no. 7, 2020,
Art. no. e2019WR025583.

[36] M. J. Chang et al., “A support vector machine forecasting model for
typhoon flood inundation mapping and early flood warning systems,”
Water, vol. 10, no. 12, 2018, Art. no. 1734.

[37] J. H. Wang, G. F. Lin, M. J. Chang, I. H. Huang, and Y. R. Chen, “Real-
time water-level forecasting using dilated causal convolutional neural
networks,” Water Resour. Manage., vol. 33, no. 11, pp. 3759–3780, 2019.

[38] W. Wu, R. Emerton, Q. Duan, A. W. Wood, F. Wetterhall and D. E. Robert-
son, “Ensemble flood forecasting: Current status and future opportunities,”
Wiley Interdiscipl. Rev.: Water, vol. 7, no. 3, 2020, Art. no. e1432.

[39] L. A. Swatuk and P. Van der Zaag, “River basin security: Theory and prac-
tice in the save and Pungwe River Basins of Zimbabwe and Mozambique,”
Georgetown Int. Environ. Law Rev., vol. 21, 2008, Art. no. 705.

[40] N. I. Ulloa, S. H. Chiang, and S. H. Yun, “Flood proxy mapping with nor-
malized difference sigma-naught index and Shannon’s entropy,” Remote
Sens., vol. 12, no. 9, 2020, Art. no. 1384.

[41] N. Sazib, I. Mladenova, and J. Bolten, “Leveraging the Google Earth
Engine for drought assessment using global soil moisture data,” Remote
Sens., vol. 10, no. 8, 2018, Art. no. 1265.

[42] I. E. Mladenova et al., “Evaluating the operational application of SMAP
for global agricultural drought monitoring,” IEEE J. Sel. Top. Appl. Earth
Observ. Remote Sens., vol. 12, no. 9, pp. 3387–3397, Sep. 2019.

[43] Z. Zhu and C. E. Woodcock, “Continuous change detection and classifica-
tion of land cover using all available Landsat data,” Remote Sens. Environ.,
vol. 144, pp. 152–171, 2014.

[44] M. Buehner, J. Morneau, and C. Charette, “Four-dimensional ensemble-
variational data assimilation for global deterministic weather prediction,”
Nonlinear Processes Geophys., vol. 20, pp. 669–682, 2013.

[45] S. H. Yun et al., “Global rapid flood mapping system with spaceborne SAR
data,” Presented at AGU Fall Meeting, New Orleans, LA, USA, 2017.

[46] National Aeronautics and Space Administration, Jet Propulsion Labo-
ratory, and California Institute of Technology, “ARIA: Advanced rapid
imaging and analysis share repository,” 2019. [Online]. Available: https:
//aria-share.jpl.nasa.gov

[47] P. Lin et al., “Global reconstruction of naturalized river flows at 2.94
million reaches,” Water Resour. Res., vol. 55, no. 8, pp. 6499–6516, 2019.

[48] Z. Zhu, S. Wang, and C. E. Woodcock, “Improvement and expansion
of the Fmask algorithm: Cloud, cloud shadow, and snow detection for
Landsats 4–7, 8, and sentinel 2 images,” Remote Sens. Environ., vol. 159,
pp. 269–277, 2015.

[49] S. Saha et al., “The NCEP climate forecast system version 2,” J. Climate,
vol. 27, no. 6, pp. 2185–2208, 2014.

[50] Y. Peng, G. Wang, G. Tang, H. Zhou, Y. Wang, and D. Jian, “Study on
reservoir operation optimization of Ertan hydropower station considering
GFS forecasted precipitation,” Sci. China Technol. Sci., vol. 54, no. 1,
pp. 76–82, 2011.

[51] Y. Fan and H. van den Dool, “Bias correction and forecast skill of
NCEP GFS ensemble week-1 and week-2 precipitation, 2-m surface air
temperature, and soil moisture forecasts,” Weather Forecasting, vol. 26,
no. 3, pp. 355–370, 2011.

[52] V. Favier, M. Falvey, A. Rabatel, E. Praderio, and D. López, “Interpreting
discrepancies between discharge and precipitation in high-altitude area of
Chile’s Norte Chico region (26–32° s),” Water Resour. Res., vol. 45, no. 2,
pp. 1–20, 2009.

[53] D. Yamazaki, D. Ikeshima, J. Sosa, P. D. Bates, G. H. Allen, and
T. M. Pavelsky, “MERIT hydro: A high-resolution global hydrography
map based on latest topography dataset,” Water Resour. Res., vol. 55, no. 6,
pp. 5053–5073, 2019.

[54] J. Du, J. S. Kimball, L. A. Jones, Y. Kim, J. M. Glassy, and J. D. Watts,
“A global satellite environmental data record derived from AMSR-E and
AMSR2 microwave earth observations,” Earth System Sci. Data, vol. 9,
2017, Art. no. 791.

[55] E. F. Wood, M. Sivapalan, and K. Beven, “Similarity and scale in catchment
storm response,” Rev. Geophys., vol. 28, no. 1, pp. 1–18, 1990.

[56] H. Wu et al., “Evaluation of real-time global flood modeling with satellite
surface inundation observations from SMAP,” Remote Sens. Environ.,
vol. 233, 2019, Art. no. 111360.

[57] D. Steinberg and N. S. Cardell, “The hybrid CART-Logit model in classi-
fication and data mining,” Salford Systems White Paper, 1998.

[58] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and
Regression Trees. Boca Raton, FL, USA: CRC Press, 1984.

[59] UN Office for the Coordination of Humanitarian Affairs (OCHA),
“Mozambique: Cyclone Idai & floods situation report no. 1 (as of Feb. Apr.
2019),” 2019. [Online]. Available: https://reliefweb.int/sites/reliefweb.int/

[60] W. G. Bonga, “Poverty and pandemic response in zimbabwe,” Dyn. Res.
J. Econ. Finance, vol. 5, no. 1, pp. 7–14, 2020.

[61] E. Mongo, E. Cambaza, R. Nhambire, J. Singo, and E. Machava, “Out-
break of cholera due to cyclone Idai in central mozambique (2019),” in
Evaluation of Health Services. London, U.K.: IntechOpen, 2020.

[62] B. J. Huntley, V. Russo, F. Lages, and N. Ferrand, Biodiversity of An-
gola: Science & Conservation: A Modern Synthesis. Basingstoke, U.K.:
Springer Nature, 2019.

https://dx.doi.org/10.1155/2016/2367939
https://aria-share.jpl.nasa.gov
https://reliefweb.int/sites/reliefweb.int/


DU et al.: SATELLITE FLOOD INUNDATION ASSESSMENT AND FORECAST USING SMAP AND LANDSAT 6715

[63] P. Mukhopadhyay et al., “Performance of a very high-resolution global
forecast system model (GFS T1534) at 12.5 km over the Indian region
during the 2016–2017 monsoon seasons,” J. Earth Syst. Sci., vol. 128,
no. 6, 2019, Art. no. 155.

[64] U. Schneider, “Cart trees and random forests in linguistics,” in Hochleis-
tungsrechnen in Baden-Wuerttemberg-Ausgewaehlte Aktivitaeten Im Bw-
gridinin 2012: Beitraege Zu Anwenderprojekten und Infrastruktur im
Bwgrid Im Jahr 2012. KIT Scientific Publishing, Karlsruhe, Germany,
2014, p. 67.

[65] J. Maroco, D. Silva, A. Rodrigues, M. Guerreiro, I. Santana, and
A. de Mendonça, “Data mining methods in the prediction of dementia: A
real-data comparison of the accuracy, sensitivity and specificity of linear
discriminant analysis, logistic regression, neural networks, support vector
machines, classification trees and random forests,” BMC Res. Notes, vol. 4,
no. 1, pp. 1–14, 2011.

[66] A. Gebrehiwot, L. Hashemi-Beni, G. Thompson, P. Kordjamshidi, and
T. E. Langan, “Deep convolutional neural network for flood extent mapping
using unmanned aerial vehicles data,” Sensors, vol. 19, no. 7, 2019,
Art. no. 1486.

Jinyang Du (Member, IEEE) received the Ph.D. de-
gree in geographic information systems and cartog-
raphy from the Institute of Remote Sensing Applica-
tions, Chinese Academy of Sciences, Beijing, China,
in 2006.

From 2006 to 2007, he was a Visiting Scientist
with the Hydrology and Remote Sensing Laboratory,
Agricultural Research Service, U.S. Department of
Agriculture, Beltsville, MD, USA. He is currently a
Research Scientist with the Numerical Terradynamic
Simulation Group, University of Montana, Missoula,

MY, USA. His research interests include microwave modeling of vegetation, soil
and snow signatures, remote sensing of land surface parameters, and machine
learning.

John S. Kimball (Senior Member, IEEE) received
the the B.A. and M.A. degrees in physical geography
from San Diego State University, San Diego, CA,
USA, in 1987 and 1990, respectively, and Ph.D. de-
gree in bioresource engineering from Oregon State
University, Corvallis, OR, USA, in 1995.

He is currently a Professor of Systems Ecology and
Director of the Numerical Terradynamic Simulation
Group (NTSG), University of Montana, Missoula,
MT, USA. He has contributed to more than 180
peer-reviewed scientific publications in his field. He

has served on several NASA mission teams developing satellite environmental
applications designed to meet NASA Earth Science objectives.

Justin Sheffield received the B.Sc. degree in math-
ematics with oceanography from the University of
Southampton, Southampton, U.K., in 1989, the M.Sc.
degree in engineering mathematics from the Uni-
versity of Newcastle, Newcastle upon Tyne, U.K.,
in 1992, and the Ph.D. degree in hydroclimatology
from the University of Wageningen, Wageningen,
The Netherlands, in 2008.

From 1992 to 2000, he was a Research Scientist
with the University of Newcastle. He was a Re-
search Scholar with Princeton University, Princeton,

NJ, USA, from 2000 to 2016. He is currently a Professor of Hydrology and
Remote Sensing with University of Southampton. His interests are focused on
fundamental and applied research on large-scale hydrology and its interactions
with climate variability and change. He has authored or coauthored extensively
on hydrological extremes, climate change, and hydrological processes from
catchment to global scale and on the application of research to natural haz-
ards impacts reduction, and water and food security particularly in developing
regions, including monitoring and prediction systems.

Dr. Sheffield is a recipient of a number of awards including the Prince Sultan
Bin Abdulaziz International Prize for Water in 2014 for research work on
drought monitoring and prediction, and the Plinius Medal of the European
Geosciences Union in 2013 for outstanding multidisciplinary research and
applications in hydrological hazards. He was named as the 2019 Robert E.
Horton Lecturer in Hydrology by the American Meteorological Society for
advancing hydrologically coherent analyses of drought across time and space
scales, and for pioneering the development of integrated drought monitoring
tools for food-insecure countries.

Ming Pan received the B.S. degree in hydraulic engi-
neering (major) and computer science (minor) from
Tsinghua University, Beijing, China, in 2000, and
the M.S. and Ph.D. degrees in hydrology and water
resources from Princeton University, Princeton, NJ,
USA, in 2002 and 2006, respectively.

He is currently a Senior Researcher with the Center
for Western Weather and Water Extremes, Scripps
Institution of Oceanography, University of California
San Diego, La Jolla, CA, USA. From 2014 to 2021
(and from 2008 to 2014), he was a Research Scholar

(Associate Research Scientist) with the Department of Civil and Environmental
Engineering, Princeton University. From 2006 to 2007, he was a Postdoctoral
Research Associate with the Department of Civil and Environmental Engineer-
ing, Massachusetts Institute of Technology, Cambridge, MA, USA. His research
interest includes hydrologic modeling, remote sensing, data assimilation, and
water resources engineering.

Colby K. Fisher received the Ph.D. degree in wa-
ter resources, hydrology, and remote sensing from
Princeton University, Princeton, NJ, USA, in 2018,
and the B.S. degree in environmental engineering
from the SUNY College of Environmental Science
and Forestry, Syracuse, NY, USA, in 2012.

He is currently an Independent Researcher in
Princeton. His research interests include global scale
hydrologic modeling, remote sensing data assimila-
tion, software development, and high performance
computing with a focus on applications in hydrologic

extremes and their impact on society.

Hylke Beck received the B.Sc., M.Sc., and Ph.D.
degrees in hydrology from VU University Amster-
dam, Amsterdam, The Netherlands, in 2006, 2008,
and 2013, respectively.

From 2013 to 2016, he was a Postdoc with the Joint
Research Centre (JRC), Ispra, Italy, and from 2016
to 2020, he was a Postdoc with Princeton Univer-
sity, Princeton, NJ, USA. His expertise includes pre-
cipitation estimation, flood and drought forecasting,
satellite remote sensing, machine learning, and big
data analysis. He has produced multiple innovative

hydrometeorological data products, including the groundbreaking MSWEP
precipitation product. He is a fierce proponent of open-access, diversity, and
equality in science.

Eric F. Wood received the Susan Dod Brown Profes-
sorship in civil and environmental engineering from
Princeton University, Princeton, NJ, USA, in 1976.

His research areas include hydroclimatology with
an emphasis on the modeling and analysis of the
global water and energy cycles through land surface
modeling; satellite remote sensing of precipitation,
soil moisture, and evapotranspiration; and data anal-
ysis. His application areas include the monitoring and
forecasting of drought, hydrologic impacts from cli-
mate change, and seasonal hydrological forecasting.

Dr. Wood was the recipient of the Doctor Honoris Causa from Ghent Uni-
versity, Ghent, Belgium, in 2011, the 2014 Creativity Award of Prince Sultan
Bin Abdulaziz International Prize for Water, the European Geosciences Union’s
Alfred Wegener Medal and John Dalton Medal, AMS’s Jules G. Charney Award
and Robert E. Horton Memorial Lectureship, and the American Geophysical
Union’s Hydrology Section’s Robert E. Horton Award. He is a Foreign Fellow
of the Australian Academy of Technological Sciences and Engineering (ATSE),
a Fellow of the Royal Society of Canada, the American Geophysical Union, and
the American Meteorological Society.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


