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Abstract 

The field of crystal structure prediction (CSP) has changed dramatically over the past decade and 

methods now exist that will strongly influence the way that new materials are discovered, in areas 

such as pharmaceutical materials and the discovery of new, functional molecular materials with 

targeted properties. Machine learning (ML) methods, which are being applied in many areas of 

chemistry, are starting to be explored for CSP. This overview will discuss the areas where ML is 

expected to have the greatest impact on CSP and its applications: improving the evaluation of 

energies; analyzing the landscapes of predicted structures and for the identification of promising 

molecules for a target property.  

 

Introduction 

The principal goal of CSP is to calculate the potential crystal structures of any given material from its 

chemical composition. Most CSP methods involve a search for local minima on the energy surface 

defined by the structural variables describing a crystal structure (unit cell dimensions, molecular 

positions and orientations), and ranking of these minima by their calculated energies. [1] The difficulty 

of CSP is highlighted by the occurrence of polymorphism, where a molecule can exist in one of several 

crystalline phases that may possess different physical and chemical properties. It has been shown that 

most polymorphs of organic molecules are separated by less than 2 kJ/mol in lattice energy, [2] thus 

highlighting the need for accurate computational methods to correctly predict the energy ranking of 

structures. The large number of possible structures involved in CSP for a given molecule means that 

accurate energies must be achieved at as low a computational cost as possible. Despite these 

challenges, considerable progress has been achieved in the past few decades and it is now possible to 

predict the crystal structure landscape of even quite complex systems, including multi-component 

crystals (salts, co-crystals and solvates), [3] [4] and pharmaceuticals that can adopt many molecular 

conformations. [5] [6] [7]  Therefore, CSP is becoming more widely used, for example in the 

pharmaceutical industry to complement experimental polymorph screening, [8] and to prioritize 

candidates for synthesis for functional materials discovery. [9] Predicting the likely crystal structures 

of a molecule is crucial for predicting many properties that depend on the relative arrangement of 
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molecules in a crystal: a few examples include mechanical properties, porosity, the kinetics of 

dissolution and electron and hole mobilities in organic semiconductors. 

The results of CSP can provide crucial information for experimental design. For example, predictions 

were able to show that the formation of caffeine-benzoic acid co-crystals is thermodynamically 

favourable, leading to the design of a seeding experiment which ultimately enabled the synthesis of 

the elusive crystal structure. [10] More recently, new polymorphs of iproniazid [11] and dalcetrapib 

[12] have been discovered from crystallizations under pressure which were guided from the results of 

CSP that discovered thermodynamically stable structures with high densities. CSP has also been 

applied in the area of porous molecular materials, helping to understand and modify the crystalline 

properties of porous organic cages [13] [14] and guiding the discovery of extrinsically porous 

molecular crystals for gas storage and molecular separations [9].   

In recent years, ML methods have been employed across many areas of chemistry and are starting to 

be explored for CSP. [15] [16] [17] This includes their use for making highly accurate predictions of the 

relative energies of crystals, and in the analysis of CSP landscapes where the high dimensionality of 

the structural space can be simplified using ML algorithms.  

This overview highlights the areas where ML methods are expected to have greatest impact on CSP 

methods and their applications. While many of the same challenges exist for other types of crystalline 

materials, we focus on organic molecular CSP. 

Machine learning of the relative stabilities of putative structures 

A requirement of CSP is the evaluation of accurate energies for large numbers of computer-generated 

crystal structures. A large-scale computational study has shown that free energy differences are < 2 

kJ/mol in over half of observed polymorphs for small organic molecules, exceeding 6.4 kJ/mol in only 

5 % of cases [2]. These differences are usually dominated by the lattice energy – the energy of the 

static arrangement of molecules in a crystal – with differences in entropy due to lattice vibrations 

usually being smaller than lattice energy differences [2]. Thus, temperature effects, including thermal 

expansion, are usually treated as a minor energetic contribution; it has been estimated that about 1 

in 5 polymorph pairs swap their order of stability between 0 K and their melting point [18]. Therefore, 

the focus of CSP has largely been on obtaining accurate lattice energies.  

Traditionally, the choice has been between force fields, which describe the interactions between 

atoms using physically-motivated functional forms, and more expensive quantum mechanical 

electronic structure methods (typically, solid state density functional theory, DFT). Many of the 

available methods have been benchmarked against the X23 benchmark set of measured sublimation 

enthalpies of a set of small organic molecules, [19] [20] [21], showing that the best force fields have 

mean absolute errors of 9 kJ/mol, while errors in the best DFT methods are about half this magnitude. 

Therefore, the fact that CSP is ever successful, given the small energy separations between 

polymorphs and predicted crystal structures, relies on cancellation of errors. For force fields, in 

particular, much of the errors are systematic, so do not affect the energetic ranking of predicted 

structures. Nevertheless, the increased accuracy of DFT methods is often necessary, particularly 

where polarization or charge-transfer interactions make important contributions to intermolecular 

interactions, or where changes in molecular geometry are significant. However, DFT energy 

calculations can be 103 – 105 times more computationally expensive than force fields [17], even for 



small molecules. Thus, ML has been investigated as a means to achieve DFT-quality energies in CSP 

studies at more affordable computational costs. 

The main requirement of an ML model is the ability to model the nonlinear relationship between 

energy and geometric descriptors of the crystal structure, which are usually represented by their local 

atomic environments, such as in the smooth overlap of atomic positions (SOAP) [22] and atom-centred 

symmetry function (ACSFs) [23] approaches. The use of a kernel, or covariance, matrix describing 

similarity between atomic configurations in Gaussian process regression (GPR) models is popular in 

chemical applications of ML, as are neural networks. While ML models have been thoroughly tested 

for accurately predicting the energies and properties of inorganic crystal structures, [24] and small 

organic molecules, [25] applications to organic molecular crystal structures are more challenging, in 

part due to the number of atoms involved. [26] 

In the field of inorganic structure prediction, Tong et al. [27] demonstrated that a GPR model could be 

trained to high-level DFT calculations on-the-fly during a structure search for predicting boron  

clusters, saving an estimated 1-2 orders of magnitude in computational cost compared to full DFT 

calculations, and suggested that their work could apply to periodic systems. Deringer et al. [28] used 

GPR to train a potential for CSP of elemental phosphorus, initially training on DFT calculated energies 

of randomly generated structures, and refining the potential during the structure search, so that it 

could eventually identify complex structures whose size puts them out-of-reach of DFT calculations.  

In the area of organic molecular CSP, several approaches have shown how applying ML allows for the 

use of quantum mechanics methods, more affordably than running such high-level calculations on all 

predicted crystal structures of a molecule. As a first demonstration in this area, Musil et al. [15]  

showed that GPR using the SOAP description of structural similarity could predict DFT lattice energies 

of pentacene CSP structures with less than 1 kJ/mol error, although the errors are higher for 

chemically more complex molecules. A Δ-ML approach, which learns the difference in energy between 

lower (force field) and higher (DFT) levels led to lower errors and more uniform performance for 

different molecules. The approach has been extended by Egorova et al., who developed a multilevel 

ML approach to correct the relative stabilities of predicted structures, [17] further reducing the 

required amount of the most computationally expensive, high-level energy calculations.  

Other work includes training on a finite molecular cluster from the crystal structure at the target level 

using the many-body expansion of the lattice energy, instead of using periodic calculations. McDonagh 

et al. explored ML models for learning individual two-body (i.e. dimer) corrections to force field-

calculated energies while keeping the long-range interactions at low level to reduce the cost. [29] This 

approach allows more accurate quantum chemistry models, such as correlated wavefunction 

methods, which are currently unaffordable for calculations on periodic structures. A similar approach 

was described by Wengert et al. [30], who included larger molecular clusters and reported that the 

use of ML reduces the computing time taken for 10 000 crystal structures of a small organic molecule 

from 30 million CPU hours to 80 000 CPU hours. 

This dramatic reduction in cost means that ML models can be used to assess more computationally 

demanding free energy differences of crystal structures and include contributions from lattice 

vibrations, which are known to be important for polymorph relative stabilities [2] [18], and nuclear 



quantum effects. Kapil and Engel [31] demonstrated such an approach, training a neural network 

model that was used for calculating free energy differences between crystal structures of benzene, 

glycine and succinic acid.  

ML-enabled analysis of structural landscapes 

An aim of CSP is to produce a set of all energetically feasible crystal packings of the studied system. 

These structure sets are rich with information on structure-function relationships, and are analyzed 

to identify which structures are most likely to be experimentally realized. Key barriers in such analysis 

include uncertainty in the predictions themselves and the high dimensionality of CSP landscapes, 

which creates a challenge for visualizing the distribution of predicted structures. While the 

dimensionality of the energy surface depends on the symmetry and number of molecules in the 

crystallographic unit cell, as an illustrative example, a structure with four rigid molecules in the unit 

cell is defined by up to 30 degrees of freedom: the unit cell dimensions, along with the orientations 

and positions of each molecule within the unit cell.  

Reducing this dimensionality can help identify structure-function relationships. A common solution is 

to visualize the structures in only a few dimensions; for example, CSP results are often presented as a 

plot of relative energies against densities of the predicted structures. Chemical intuition can also be 

applied to also classify structures by the presence of certain interactions (e.g. hydrogen bonds) [32] 

or packing features. [33] The information loss and bias in analyzing sets of predicted structures may 

be minimized by applying dimensionality reduction methods to identify features that capture the 

greatest structural variation across the set of structures, and to form a lower dimensional 

representation in which similarity and dissimilarity of structures is preserved. As with ML for energies 

of crystal structures, dimensionality reduction relies on descriptors of each structure; again, such 

descriptors usually describe the local environment of atoms, such as ACSFs and SOAP. As a part of 

their work on learning energies, Egorova et al. [17] performed principal component analysis (PCA) of 

the sets of predicted crystal structures of a series of small molecules, each described using ACSFs. This 

work found that a small number of principal components (linear combinations of ACSFs) capture most 

of the variability across predicted structures, demonstrating that stable crystal structures tend to be 

found in a lower-dimensional manifold of the full dimensionality of the energy surface. 

A related approach, useful for classification of structures, is clustering - an unsupervised ML method 

that optimizes the separation data points into clusters of similar points and defines each point by just 

one descriptor – its cluster index. As an example, Musil et al. [15] combined the non-linear 

dimensionality reduction technique, sketch-map [34], with clustering methods to produce 2-

dimensional mappings of crystal structure landscapes of pentacene (Error! Reference source not 

found.a) and two azapentacenes proposed as promising organic semiconductors. The reduced 

mapping for pentacene showed clear groupings of structures which, when classified using hierarchical 

density-based clustering [35], reproduced results from heuristic classification of the structures, 

according to the known structural classes of the crystal structures of polyaromatic hydrocarbons 

(sheet-like, herringbone, etc). This demonstration that known structural classes can be identified 

algorithmically supports the application of these methods for analysis of CSP results. The approach 

was applied to analyze the combined set of predicted crystal structures of 28 molecules in a single 

clustered mapping [36] (Error! Reference source not found.b), which revealed relationships between 

molecular structure, preferred crystal packing and electron mobility. These findings demonstrate 



potential for ML to accelerate structure classification and navigation of the combined space of 

molecular structures, crystal structure and materials properties. Thus, similar approaches have been 

applied in exploration for porous molecular crystals. [37] [38] 

 

. 

 

 

 

Figure 1: a) Reduced mapping of the CSP structures of pentacene, colored by cluster (inset structures show the 

crystal packing in representative structures from each cluster). Reproduced from [15] with permission from the 

Royal Society of Chemistry b) CSP structures of 28 pyrrole azaphenacenes combined on one map. The inset 

image in b) shows the same mapping colored by the molecule in the structure – indicating the ability of multiple 

similar molecules to adopt each packing type. Adapted with permission from [34]. Copyright 2018 American 

Chemical Society [36]. 

 

These studies also highlighted several challenges. For instance, not all structure sets can be effectively 

clustered, as was found for a second azapentacene in [15], and the mappings can be sensitive to 

choices in the representation; for example, the cutoff distance around each atom in SOAP influences 

the relative importance of inter- and intra-molecular similarity when comparing crystal structures of 

different molecules [36] Crystal structure representations can sometimes be constructed with a 

particular application in mind: Moosavi et al. [38] showed that representations capturing the 

topological features of pores within predicted crystal structures lead to mappings that group 

structures with similar calculated methane deliverable capacities. 

The same need to choose ‘the right tool for the job’ applies to dimensionality reduction algorithms. 

Direct comparison of algorithms for dimensionality reduction has been underexplored in the context 

of analysing crystal structure landscapes. In their CSP study of pyrrole azaphenacenes, Yang et al. 

observed important differences in the distribution of points in the mappings produced using four 



different dimensionality reduction algorithms [39], demonstrating that researcher expertise is still 

required in algorithm selection. 

While the examples discussed so far have focussed on using unsupervised ML for visualization and the 

identification of structure-function relationships, a related method called the Generalized Convex Hull 

(GCH) attempts to identify which predicted crystal structures should be synthesizable. A conventional 

convex hull (CH) examines the energy of a material with respect to stoichiometry or some structural 

variable, such as molar volume. Only structures on the CH are considered thermodynamically stable. 

This analysis, however, relies on intuitively chosen features. The GCH algorithm [40] uses 

dimensionality reduction, via kernel PCA [41], to select data-driven coordinates for CH construction. 

In this way, the GCH identifies structures that are low in energy or extremal in geometry in some 

respect and could, therefore, be stabilizable. Uncertainty in the structural features and energies is also 

addressed. The GCH samples the hull points probabilistically across many iterations in which the data 

points are randomised within boundaries determined by a machine-learned estimation of their 

uncertainties. The approach was demonstrated for the identification of crystalline phases of hydrogen 

from CSP at high pressure and identified magnetically stabilizable phases of oxygen. From the 

perspective of applying CSP for the discovery of functional molecular materials, the GCH was 

demonstrated to identify predicted crystal structures of pentacene that could be stabilized by 

chemical modification. 

Chemical space exploration 

To be used as an effective method for discovering materials with targeted properties, CSP must be 

combined with methods for proposing promising molecules. Exhaustive searches of possible 

candidates are prohibitively expensive; as an example, for small drug-like molecules a calculated 

search space of up to 1060 possible molecules is estimated to exist. [42] [43]  In contrast, the largest 

CSP studies to date have assessed groups of 10-30 molecules to identify the candidates with the best 

predicted properties. [9] [44] [36] Due to the gulf between the scale of CSP that is currently affordable 

and the size of chemical space, more targeted methods, such as data-driven techniques, are required 

to focus effort on the best candidate molecules. [45] Data-driven methods to generate molecules, 

which have mainly applied in the area of drug discovery, have also been demonstrated for functional 

materials discovery.  

Molecular Representations Data driven chemical space exploration requires molecules to be 

represented in a computer readable manner. [22] Ideal representations are invertible, mapping only 

to specific molecular structures, and invariant to symmetry operations. 

Molecular graphs are a common method of representing structures as bonds and atoms within a 

molecule can be represented as the edges and vertices of a graph. A popular method converts a 2D 

molecular graph into a string of ascii characters called simplified molecular-input line-entry system 

(SMILES) strings. These are invertible, but not unique - one molecular structure can map to multiple 

SMILES strings. [46] Suggested improvements, all canonical, include the unique, non-standardized 

canonical SMILES [47], InChi – a standardized string identifier [48] – and SELFIES, which always 

represent valid molecules [49]. 

 

High-throughput Virtual Screening (HTVS) 



The conceptually simplest approach for finding high-performing molecules is HTVS, where molecular 

datasets are tested for a targeted property via computational predictions. HTVS is often performed 

using a funnelling method (Error! Reference source not found.a), to reduce cost whilst allowing 

properties to be determined more accurately for the later candidate pools. Quantitative structure-

property relationship and ML models for property prediction have been applied as steps in the 

funnelling strategy. [45] [50] HTVS can use generative models or existing chemical databases, such as 

ZINC [51], the CSD [52] [53] and the Harvard Clean Energy Project [54], to build the initial populations 

of compounds to screen. Whilst CSP has not been applied in truly high-throughput studies, 

improvements in efficiency of the methods have made it possible to perform CSP, followed by 

property prediction for the sets of low-energy predicted crystal structures, for up to about 30 small 

molecules. [36] The properties of molecular materials often depend on intrinsic molecular properties, 

as well as properties that emerge due to the way that molecules are arranged in the solid. HTVS can 

take advantage of this: applying initial filtering based on calculated properties of isolated molecules 

and predicting crystal structures of only the molecules with the most promising properties. With 

further improvements in methods, coupled with increasingly available high-performance computing, 

CSP and property predictions should soon be possible on hundreds of candidate molecules on 

sufficiently short timescales to be useful in guiding experiments. 

Generative Modelling 

Generative Neural Network Models (GNNs): An advantage of sequence-based descriptors, such as 

SMILES, is that recurrent NNs can be trained to generate new descriptor sequences corresponding to 

new molecules. This approach has been demonstrated for molecular discovery of drug-like and other 

small organic molecules. [55] [56] 

 Other NN approaches involve training a generator to sample latent space for candidate molecules 

(Error! Reference source not found.b). Two main methods for this are generative adversarial 

networks (GANs) [57] and variational autoencoders (VAEs). [58]. VAEs were demonstrated for 

molecular design by Gómez-Bombarelli and co-workers [59], training the model on molecules from 

the ZINC and QM9 datasets. They demonstrated that the autoencoder can be jointly trained to predict 

molecules, along with their properties (such as drug-likeness and synthetic accessibility). Similarly, 

GANs have been demonstrated for the discovery of drug-like molecules and organic photovoltaic 

molecules. [60] [61] A workflow can be envisioned of performing CSP on the optimized generated 

molecules to predict their material properties. 

As VAEs and GANs typically work on single molecules, CSP could have a similar role here as in HTVS: 

molecules are generated with optimized properties, followed by prediction of crystal structures and 

the resulting properties of the materials. Their direct application to the generation of crystal structures 

has been demonstrated for simple inorganic crystals, [62] [63] but is hindered by the challenge of 

representing three-dimensional crystal structures in a continuous latent space. We envisage further 

challenges for organic molecular crystals: because of the small energy differences between alternative 

crystal packings, minor changes in molecular structure can often lead to energy re-rankings of 

proposed crystal packings and, therefore, the experimental observation of completely different crystal 

structures, introducing discontinuities in the relationship between molecule and solid-state 

properties.  



Evolutionary Algorithms (EAs): Issues with previously discussed methods include the computational 

cost of training the generator and the large amount of training data required to learn from. EAs are 

one alternative for generating new promising molecules (Error! Reference source not found.c). EAs 

are an optimization method inspired by evolution where members of an initial population undergo 

genetic operations and fitness evaluations to create successive generations, with the fitter candidates 

more likely to contribute to the next generation. In the area of molecular materials discovery, EAs 

have been applied to discovery of organic semiconductors, [44] and porous organic cages [64], where 

the properties to be optimized were charge carrier mobilities and persistent porosity, respectively. 

EAs can be efficient for exploration, requiring calculations on a small fraction of possible molecules 

during optimization to the best molecules. This opens the possibility for CSP within the fitness 

evaluation itself, if these methods can be made sufficiently fast for application to hundreds of 

molecules.  

Chemical space networks (CSNs) can be used to monitor the progress of chemical space exploration 

campaigns [65], where edges of a graph denote ‘morphing relationships’ used to generate one 

molecule from another. One can trace a path from each generated molecule back to the initial species, 

where edges contain information on the operations used. CSNs are powerful tools for the visualization 

of molecular sets which can reveal potential design rules, as shown by Kunkel et al. [66]. 

Regardless of the approach used to generate molecules for assessment using CSP, the outcome is a 

set of molecules, each of which has an associated ensemble of predicted crystal structures. Thus, 

prioritization of molecules must consider the relevant properties (e.g. charge carrier mobility or 

porosity) of multiple crystal structures for each molecule. Some methods have been proposed, 

considering weighted averaged properties over low energy crystal structures to assess the likelihood 

that a molecule will lead to a crystal structure with the desired properties, [33] [36] along with 

measures of property variation amongst low energy crystal structures to assess uncertainty and risk. 

[44] 



Figure 2 - Schematic representations of three approaches for exploring chemical space for new 

molecules with targeted properties: (a) high-throughput virtual screening; (b) GNNs (c) evolutionary 

algorithms and d) the inclusion of synthetic accessibility in chemical space exploration workflow. 

(Part d adapted with permission from J. Chem. Inf. Model. 2020, 60, 5714. Copyright 2020 American 

Chemical Society.) 

Synthetic accessibility 

The emerging methods for computational exploration of chemical space are exciting steps on the path 

to materials discovery, but experimental realization is vital; this requires feasible synthetic pathways 

to candidate species. When synthetic accessibility (SA) is not considered by a molecular generative 

model, candidates may be too challenging to synthesize in the lab. Approaches to biasing the 

generation of molecules towards synthetically accessible species have been discussed in detail by Gao 

and Coley [67]. 



 

Evaluation of SA with a post-hoc filter (Error! Reference source not found.Figure 2di) is the 

simplest approach: molecular generation is not biased and filtering is applied to the generated species 

after exploration is complete. Alternatively, heuristic biases can be used to guide molecular generation 

as part of the optimization function (Figure 2dii). However typical rapid scoring functions for SA (e.g. 

Ertl SAScore, [68] SYBA [69]) focus on molecular complexity; structurally complex candidates are not 

always synthetically complex, given a reasonable set of starting materials and reactions. Instead, 

Computer-aided synthesis planning (CASP) such as AiZynthFinder [70], involves prediction of full 

retrosynthetic pathways to a given molecule. While the process can be computationally expensive, it 

effectively mimics the process that chemists undertake. Information such as the number of synthetic 

steps or the availability and cost of precursors can be included in the fitness evaluation of candidates. 

 

A third possibility is to directly influence the generation of molecules (Figure 2diiiError! Reference 

source not found.). Imposing explicit constraints on the building blocks and molecular 

transformations of a chemical space exploration campaign limits the proportion of the space that can 

be assessed, but should produce more synthetically accessible candidates. The Synthetically 

Accessible Virtual Inventory (SAVI) [71] works in this style, where 53 known single-step, two-reactant 

reactions were applied to 150,000 readily available precursors, generating a 1.75 billion dataset of 

which 1.09 billion compounds scored highly for synthetic accessibility.  

 

As with the field of computer generation of molecules as a whole, synthetic accessibility prediction 

methods have focused on drug-like targets. These methods might need significant modification to 

account for the different types of molecular targets and the scale of synthesis required in materials 

discovery. Bennett et. al. [72] developed a binary classification model for the synthetic difficulty of 

porous organic cage precursors, learning the responses from experienced synthetic chemists to the 

question “Can you make 1g of the compound in under 5 steps?”. Limiting the number of reaction steps 

works to reduce the overall yield loss during synthesis. While this limits access to species up to five 

synthetic steps away from available starting materials, their model was able to find precursors for 

promising porous materials with easier synthetic requirements.  

 

Outlook 

CSP methods can guide and accelerate materials discovery as research in this area shifts from an 

interesting academic challenge to applied studies [8]. While much prior progress has built on 

developments of traditional simulation methods – algorithms for exploring multi-dimensional energy 

landscapes, and models for calculating accurate lattice energies – data-driven, ML methods could lead 

to further exciting advances. These include acceleration of CSP through machine learning of accurate 

energies, methods for visualizing and interpreting the outcomes of large CSP datasets, and approaches 

to chemical space exploration to identify the best molecules to explore using CSP. Thus, the area will 

continue to benefit from close collaborations across chemistry, mathematics and computing science.  
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